Properties

Label 189.2.u.a.4.6
Level $189$
Weight $2$
Character 189.4
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(4,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([2, 12]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.u (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 4.6
Character \(\chi\) \(=\) 189.4
Dual form 189.2.u.a.142.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.279530 - 1.58529i) q^{2} +(-1.44281 + 0.958286i) q^{3} +(-0.555633 + 0.202234i) q^{4} +(0.230811 - 0.0840085i) q^{5} +(1.92247 + 2.01940i) q^{6} +(-1.31413 - 2.29631i) q^{7} +(-1.13383 - 1.96386i) q^{8} +(1.16338 - 2.76524i) q^{9} +O(q^{10})\) \(q+(-0.279530 - 1.58529i) q^{2} +(-1.44281 + 0.958286i) q^{3} +(-0.555633 + 0.202234i) q^{4} +(0.230811 - 0.0840085i) q^{5} +(1.92247 + 2.01940i) q^{6} +(-1.31413 - 2.29631i) q^{7} +(-1.13383 - 1.96386i) q^{8} +(1.16338 - 2.76524i) q^{9} +(-0.197697 - 0.342421i) q^{10} +(-4.84773 - 1.76443i) q^{11} +(0.607872 - 0.824240i) q^{12} +(4.55694 - 1.65859i) q^{13} +(-3.27299 + 2.72518i) q^{14} +(-0.252512 + 0.342391i) q^{15} +(-3.70226 + 3.10657i) q^{16} +(-0.800052 - 1.38573i) q^{17} +(-4.70892 - 1.07132i) q^{18} +(-1.01489 + 1.75785i) q^{19} +(-0.111257 + 0.0933558i) q^{20} +(4.09656 + 2.05382i) q^{21} +(-1.44205 + 8.17829i) q^{22} +(0.761889 - 4.32089i) q^{23} +(3.51784 + 1.74693i) q^{24} +(-3.78401 + 3.17516i) q^{25} +(-3.90315 - 6.76046i) q^{26} +(0.971367 + 5.10455i) q^{27} +(1.19457 + 1.01014i) q^{28} +(4.90485 + 1.78522i) q^{29} +(0.613375 + 0.304597i) q^{30} +(6.87843 - 2.50354i) q^{31} +(2.48544 + 2.08554i) q^{32} +(8.68517 - 2.09979i) q^{33} +(-1.97315 + 1.65567i) q^{34} +(-0.496227 - 0.419617i) q^{35} +(-0.0871845 + 1.77173i) q^{36} +7.97175 q^{37} +(3.07039 + 1.11753i) q^{38} +(-4.98537 + 6.75988i) q^{39} +(-0.426682 - 0.358029i) q^{40} +(-5.13780 + 1.87001i) q^{41} +(2.11079 - 7.06836i) q^{42} +(-1.25671 - 7.12716i) q^{43} +3.05039 q^{44} +(0.0362167 - 0.735983i) q^{45} -7.06285 q^{46} +(2.05603 + 0.748334i) q^{47} +(2.36466 - 8.02999i) q^{48} +(-3.54610 + 6.03533i) q^{49} +(6.09130 + 5.11121i) q^{50} +(2.48225 + 1.23266i) q^{51} +(-2.19656 + 1.84314i) q^{52} +(3.36601 - 5.83010i) q^{53} +(7.82069 - 2.96678i) q^{54} -1.26714 q^{55} +(-3.01962 + 5.18441i) q^{56} +(-0.220226 - 3.50879i) q^{57} +(1.45904 - 8.27464i) q^{58} +(9.52886 + 7.99566i) q^{59} +(0.0710608 - 0.241310i) q^{60} +(-3.15274 - 1.14750i) q^{61} +(-5.89158 - 10.2045i) q^{62} +(-7.87869 + 0.962425i) q^{63} +(-2.22153 + 3.84780i) q^{64} +(0.912458 - 0.765644i) q^{65} +(-5.75654 - 13.1816i) q^{66} +(-1.29472 + 7.34273i) q^{67} +(0.724777 + 0.608160i) q^{68} +(3.04139 + 6.96431i) q^{69} +(-0.526505 + 0.903961i) q^{70} +(-0.508002 + 0.879885i) q^{71} +(-6.74961 + 0.850619i) q^{72} +5.79634 q^{73} +(-2.22834 - 12.6376i) q^{74} +(2.41687 - 8.20730i) q^{75} +(0.208412 - 1.18196i) q^{76} +(2.31889 + 13.4506i) q^{77} +(12.1099 + 6.01369i) q^{78} +(-1.44495 - 8.19469i) q^{79} +(-0.593546 + 1.02805i) q^{80} +(-6.29311 - 6.43403i) q^{81} +(4.40068 + 7.62220i) q^{82} +(6.59880 + 2.40177i) q^{83} +(-2.69154 - 0.312703i) q^{84} +(-0.301074 - 0.252631i) q^{85} +(-10.9473 + 3.98451i) q^{86} +(-8.78749 + 2.12452i) q^{87} +(2.03143 + 11.5208i) q^{88} +(-7.78417 + 13.4826i) q^{89} +(-1.17687 + 0.148315i) q^{90} +(-9.79707 - 8.28455i) q^{91} +(0.450499 + 2.55491i) q^{92} +(-7.52512 + 10.2036i) q^{93} +(0.611607 - 3.46859i) q^{94} +(-0.0865749 + 0.490991i) q^{95} +(-5.58455 - 0.627255i) q^{96} +(-1.78818 - 10.1413i) q^{97} +(10.5590 + 3.93456i) q^{98} +(-10.5188 + 11.3525i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} - 15 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} - 15 q^{9} + 3 q^{10} - 15 q^{11} - 3 q^{12} - 12 q^{13} - 30 q^{14} + 9 q^{16} + 27 q^{17} - 3 q^{18} + 3 q^{19} - 18 q^{20} + 15 q^{21} - 12 q^{22} - 36 q^{23} - 72 q^{24} - 3 q^{25} + 30 q^{26} - 12 q^{27} - 12 q^{28} - 30 q^{29} - 3 q^{30} - 3 q^{31} - 75 q^{32} + 15 q^{33} - 18 q^{34} + 15 q^{35} - 60 q^{36} - 6 q^{37} + 69 q^{38} + 51 q^{39} + 51 q^{40} - 39 q^{42} - 12 q^{43} - 6 q^{44} - 21 q^{45} - 6 q^{46} - 21 q^{47} + 90 q^{48} - 42 q^{49} - 39 q^{50} + 33 q^{51} + 9 q^{52} + 9 q^{53} - 9 q^{54} - 24 q^{55} + 111 q^{56} - 18 q^{57} - 3 q^{58} + 27 q^{59} - 63 q^{60} - 21 q^{61} + 75 q^{62} + 63 q^{63} - 30 q^{64} - 90 q^{65} - 3 q^{66} - 3 q^{67} - 30 q^{68} - 6 q^{69} + 39 q^{70} - 18 q^{71} + 183 q^{72} - 42 q^{73} + 51 q^{74} - 45 q^{75} - 24 q^{76} + 15 q^{77} - 30 q^{78} + 15 q^{79} + 102 q^{80} - 87 q^{81} - 6 q^{82} - 42 q^{83} + 135 q^{84} - 63 q^{85} - 93 q^{86} + 75 q^{87} - 51 q^{88} + 75 q^{89} - 39 q^{90} - 21 q^{91} - 66 q^{92} + 81 q^{93} + 33 q^{94} + 15 q^{95} - 171 q^{96} - 12 q^{97} - 36 q^{98} + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.279530 1.58529i −0.197658 1.12097i −0.908583 0.417704i \(-0.862835\pi\)
0.710925 0.703267i \(-0.248276\pi\)
\(3\) −1.44281 + 0.958286i −0.833004 + 0.553267i
\(4\) −0.555633 + 0.202234i −0.277817 + 0.101117i
\(5\) 0.230811 0.0840085i 0.103222 0.0375697i −0.289893 0.957059i \(-0.593620\pi\)
0.393115 + 0.919489i \(0.371397\pi\)
\(6\) 1.92247 + 2.01940i 0.784846 + 0.824417i
\(7\) −1.31413 2.29631i −0.496696 0.867924i
\(8\) −1.13383 1.96386i −0.400871 0.694328i
\(9\) 1.16338 2.76524i 0.387792 0.921747i
\(10\) −0.197697 0.342421i −0.0625172 0.108283i
\(11\) −4.84773 1.76443i −1.46165 0.531996i −0.515828 0.856692i \(-0.672516\pi\)
−0.945818 + 0.324696i \(0.894738\pi\)
\(12\) 0.607872 0.824240i 0.175478 0.237937i
\(13\) 4.55694 1.65859i 1.26387 0.460010i 0.378803 0.925477i \(-0.376336\pi\)
0.885065 + 0.465467i \(0.154114\pi\)
\(14\) −3.27299 + 2.72518i −0.874743 + 0.728334i
\(15\) −0.252512 + 0.342391i −0.0651983 + 0.0884051i
\(16\) −3.70226 + 3.10657i −0.925565 + 0.776641i
\(17\) −0.800052 1.38573i −0.194041 0.336089i 0.752545 0.658541i \(-0.228826\pi\)
−0.946586 + 0.322452i \(0.895493\pi\)
\(18\) −4.70892 1.07132i −1.10990 0.252513i
\(19\) −1.01489 + 1.75785i −0.232832 + 0.403278i −0.958641 0.284620i \(-0.908133\pi\)
0.725808 + 0.687897i \(0.241466\pi\)
\(20\) −0.111257 + 0.0933558i −0.0248778 + 0.0208750i
\(21\) 4.09656 + 2.05382i 0.893944 + 0.448179i
\(22\) −1.44205 + 8.17829i −0.307447 + 1.74362i
\(23\) 0.761889 4.32089i 0.158865 0.900967i −0.796302 0.604899i \(-0.793213\pi\)
0.955167 0.296068i \(-0.0956756\pi\)
\(24\) 3.51784 + 1.74693i 0.718075 + 0.356590i
\(25\) −3.78401 + 3.17516i −0.756801 + 0.635032i
\(26\) −3.90315 6.76046i −0.765472 1.32584i
\(27\) 0.971367 + 5.10455i 0.186940 + 0.982371i
\(28\) 1.19457 + 1.01014i 0.225752 + 0.190899i
\(29\) 4.90485 + 1.78522i 0.910807 + 0.331507i 0.754575 0.656214i \(-0.227843\pi\)
0.156232 + 0.987720i \(0.450065\pi\)
\(30\) 0.613375 + 0.304597i 0.111987 + 0.0556115i
\(31\) 6.87843 2.50354i 1.23540 0.449650i 0.359958 0.932969i \(-0.382791\pi\)
0.875444 + 0.483319i \(0.160569\pi\)
\(32\) 2.48544 + 2.08554i 0.439369 + 0.368674i
\(33\) 8.68517 2.09979i 1.51189 0.365526i
\(34\) −1.97315 + 1.65567i −0.338393 + 0.283945i
\(35\) −0.496227 0.419617i −0.0838777 0.0709282i
\(36\) −0.0871845 + 1.77173i −0.0145307 + 0.295289i
\(37\) 7.97175 1.31055 0.655273 0.755392i \(-0.272553\pi\)
0.655273 + 0.755392i \(0.272553\pi\)
\(38\) 3.07039 + 1.11753i 0.498084 + 0.181288i
\(39\) −4.98537 + 6.75988i −0.798299 + 1.08245i
\(40\) −0.426682 0.358029i −0.0674644 0.0566094i
\(41\) −5.13780 + 1.87001i −0.802389 + 0.292046i −0.710476 0.703721i \(-0.751520\pi\)
−0.0919131 + 0.995767i \(0.529298\pi\)
\(42\) 2.11079 7.06836i 0.325702 1.09067i
\(43\) −1.25671 7.12716i −0.191646 1.08688i −0.917114 0.398625i \(-0.869488\pi\)
0.725468 0.688256i \(-0.241624\pi\)
\(44\) 3.05039 0.459863
\(45\) 0.0362167 0.735983i 0.00539886 0.109714i
\(46\) −7.06285 −1.04136
\(47\) 2.05603 + 0.748334i 0.299903 + 0.109156i 0.487589 0.873073i \(-0.337877\pi\)
−0.187686 + 0.982229i \(0.560099\pi\)
\(48\) 2.36466 8.02999i 0.341310 1.15903i
\(49\) −3.54610 + 6.03533i −0.506586 + 0.862190i
\(50\) 6.09130 + 5.11121i 0.861440 + 0.722834i
\(51\) 2.48225 + 1.23266i 0.347584 + 0.172607i
\(52\) −2.19656 + 1.84314i −0.304609 + 0.255597i
\(53\) 3.36601 5.83010i 0.462357 0.800826i −0.536721 0.843760i \(-0.680337\pi\)
0.999078 + 0.0429338i \(0.0136705\pi\)
\(54\) 7.82069 2.96678i 1.06426 0.403727i
\(55\) −1.26714 −0.170861
\(56\) −3.01962 + 5.18441i −0.403514 + 0.692795i
\(57\) −0.220226 3.50879i −0.0291697 0.464750i
\(58\) 1.45904 8.27464i 0.191582 1.08651i
\(59\) 9.52886 + 7.99566i 1.24055 + 1.04095i 0.997481 + 0.0709378i \(0.0225992\pi\)
0.243071 + 0.970009i \(0.421845\pi\)
\(60\) 0.0710608 0.241310i 0.00917391 0.0311530i
\(61\) −3.15274 1.14750i −0.403667 0.146923i 0.132204 0.991223i \(-0.457795\pi\)
−0.535871 + 0.844300i \(0.680017\pi\)
\(62\) −5.89158 10.2045i −0.748231 1.29597i
\(63\) −7.87869 + 0.962425i −0.992621 + 0.121254i
\(64\) −2.22153 + 3.84780i −0.277691 + 0.480975i
\(65\) 0.912458 0.765644i 0.113177 0.0949664i
\(66\) −5.75654 13.1816i −0.708581 1.62254i
\(67\) −1.29472 + 7.34273i −0.158175 + 0.897058i 0.797649 + 0.603121i \(0.206077\pi\)
−0.955825 + 0.293936i \(0.905035\pi\)
\(68\) 0.724777 + 0.608160i 0.0878922 + 0.0737503i
\(69\) 3.04139 + 6.96431i 0.366140 + 0.838404i
\(70\) −0.526505 + 0.903961i −0.0629294 + 0.108044i
\(71\) −0.508002 + 0.879885i −0.0602887 + 0.104423i −0.894594 0.446879i \(-0.852535\pi\)
0.834306 + 0.551302i \(0.185869\pi\)
\(72\) −6.74961 + 0.850619i −0.795449 + 0.100246i
\(73\) 5.79634 0.678410 0.339205 0.940712i \(-0.389842\pi\)
0.339205 + 0.940712i \(0.389842\pi\)
\(74\) −2.22834 12.6376i −0.259040 1.46909i
\(75\) 2.41687 8.20730i 0.279077 0.947697i
\(76\) 0.208412 1.18196i 0.0239065 0.135580i
\(77\) 2.31889 + 13.4506i 0.264262 + 1.53284i
\(78\) 12.1099 + 6.01369i 1.37118 + 0.680917i
\(79\) −1.44495 8.19469i −0.162569 0.921975i −0.951536 0.307539i \(-0.900495\pi\)
0.788967 0.614436i \(-0.210616\pi\)
\(80\) −0.593546 + 1.02805i −0.0663605 + 0.114940i
\(81\) −6.29311 6.43403i −0.699235 0.714892i
\(82\) 4.40068 + 7.62220i 0.485973 + 0.841731i
\(83\) 6.59880 + 2.40177i 0.724312 + 0.263628i 0.677755 0.735288i \(-0.262953\pi\)
0.0465569 + 0.998916i \(0.485175\pi\)
\(84\) −2.69154 0.312703i −0.293671 0.0341187i
\(85\) −0.301074 0.252631i −0.0326561 0.0274017i
\(86\) −10.9473 + 3.98451i −1.18048 + 0.429661i
\(87\) −8.78749 + 2.12452i −0.942118 + 0.227773i
\(88\) 2.03143 + 11.5208i 0.216551 + 1.22812i
\(89\) −7.78417 + 13.4826i −0.825120 + 1.42915i 0.0767068 + 0.997054i \(0.475559\pi\)
−0.901827 + 0.432097i \(0.857774\pi\)
\(90\) −1.17687 + 0.148315i −0.124053 + 0.0156338i
\(91\) −9.79707 8.28455i −1.02701 0.868457i
\(92\) 0.450499 + 2.55491i 0.0469678 + 0.266368i
\(93\) −7.52512 + 10.2036i −0.780319 + 1.05807i
\(94\) 0.611607 3.46859i 0.0630824 0.357758i
\(95\) −0.0865749 + 0.490991i −0.00888240 + 0.0503746i
\(96\) −5.58455 0.627255i −0.569971 0.0640190i
\(97\) −1.78818 10.1413i −0.181563 1.02969i −0.930293 0.366818i \(-0.880447\pi\)
0.748730 0.662875i \(-0.230664\pi\)
\(98\) 10.5590 + 3.93456i 1.06662 + 0.397450i
\(99\) −10.5188 + 11.3525i −1.05718 + 1.14096i
\(100\) 1.46039 2.52948i 0.146039 0.252948i
\(101\) −0.216381 1.22716i −0.0215307 0.122107i 0.972148 0.234368i \(-0.0753019\pi\)
−0.993679 + 0.112261i \(0.964191\pi\)
\(102\) 1.26027 4.27966i 0.124785 0.423749i
\(103\) −5.49218 + 1.99899i −0.541161 + 0.196966i −0.598115 0.801410i \(-0.704083\pi\)
0.0569541 + 0.998377i \(0.481861\pi\)
\(104\) −8.42404 7.06861i −0.826045 0.693134i
\(105\) 1.11807 + 0.129898i 0.109113 + 0.0126767i
\(106\) −10.1833 3.70643i −0.989092 0.360000i
\(107\) −0.697132 1.20747i −0.0673943 0.116730i 0.830359 0.557228i \(-0.188135\pi\)
−0.897754 + 0.440498i \(0.854802\pi\)
\(108\) −1.57204 2.63981i −0.151269 0.254016i
\(109\) 7.71790 13.3678i 0.739241 1.28040i −0.213596 0.976922i \(-0.568518\pi\)
0.952837 0.303481i \(-0.0981489\pi\)
\(110\) 0.354204 + 2.00879i 0.0337720 + 0.191530i
\(111\) −11.5017 + 7.63921i −1.09169 + 0.725082i
\(112\) 11.9989 + 4.41910i 1.13379 + 0.417566i
\(113\) 1.58825 9.00739i 0.149410 0.847344i −0.814310 0.580430i \(-0.802885\pi\)
0.963720 0.266915i \(-0.0860042\pi\)
\(114\) −5.50090 + 1.32993i −0.515206 + 0.124560i
\(115\) −0.187139 1.06132i −0.0174508 0.0989682i
\(116\) −3.08633 −0.286558
\(117\) 0.715030 14.5306i 0.0661046 1.34335i
\(118\) 10.0119 17.3411i 0.921667 1.59637i
\(119\) −2.13070 + 3.65821i −0.195321 + 0.335347i
\(120\) 0.958714 + 0.107682i 0.0875182 + 0.00983002i
\(121\) 11.9608 + 10.0363i 1.08735 + 0.912393i
\(122\) −0.937845 + 5.31878i −0.0849085 + 0.481540i
\(123\) 5.62084 7.62154i 0.506814 0.687211i
\(124\) −3.31558 + 2.78210i −0.297748 + 0.249840i
\(125\) −1.22071 + 2.11434i −0.109184 + 0.189112i
\(126\) 3.72806 + 12.2210i 0.332122 + 1.08873i
\(127\) −5.99018 10.3753i −0.531543 0.920659i −0.999322 0.0368140i \(-0.988279\pi\)
0.467779 0.883845i \(-0.345054\pi\)
\(128\) 12.8186 + 4.66558i 1.13301 + 0.412383i
\(129\) 8.64304 + 9.07881i 0.760978 + 0.799345i
\(130\) −1.46883 1.23249i −0.128825 0.108097i
\(131\) 2.70243 15.3262i 0.236112 1.33906i −0.604147 0.796873i \(-0.706486\pi\)
0.840259 0.542185i \(-0.182403\pi\)
\(132\) −4.40112 + 2.92315i −0.383068 + 0.254427i
\(133\) 5.37027 + 0.0204650i 0.465661 + 0.00177454i
\(134\) 12.0023 1.03684
\(135\) 0.653028 + 1.09659i 0.0562037 + 0.0943791i
\(136\) −1.81425 + 3.14238i −0.155571 + 0.269456i
\(137\) 12.6174 10.5872i 1.07797 0.904527i 0.0822224 0.996614i \(-0.473798\pi\)
0.995751 + 0.0920869i \(0.0293538\pi\)
\(138\) 10.1903 6.76823i 0.867457 0.576150i
\(139\) −9.40916 7.89523i −0.798075 0.669664i 0.149655 0.988738i \(-0.452184\pi\)
−0.947730 + 0.319074i \(0.896628\pi\)
\(140\) 0.360581 + 0.132799i 0.0304746 + 0.0112236i
\(141\) −3.68357 + 0.890565i −0.310213 + 0.0749991i
\(142\) 1.53688 + 0.559377i 0.128972 + 0.0469419i
\(143\) −25.0173 −2.09205
\(144\) 4.28328 + 13.8517i 0.356940 + 1.15431i
\(145\) 1.28207 0.106470
\(146\) −1.62025 9.18890i −0.134093 0.760479i
\(147\) −0.667235 12.1060i −0.0550326 0.998485i
\(148\) −4.42936 + 1.61216i −0.364092 + 0.132518i
\(149\) 2.57300 + 2.15900i 0.210788 + 0.176872i 0.742069 0.670324i \(-0.233845\pi\)
−0.531281 + 0.847196i \(0.678289\pi\)
\(150\) −13.6866 1.53727i −1.11750 0.125518i
\(151\) 9.11293 + 3.31683i 0.741600 + 0.269920i 0.685067 0.728481i \(-0.259773\pi\)
0.0565331 + 0.998401i \(0.481995\pi\)
\(152\) 4.60288 0.373343
\(153\) −4.76264 + 0.600211i −0.385037 + 0.0485242i
\(154\) 20.6750 7.43597i 1.66604 0.599208i
\(155\) 1.37730 1.15569i 0.110628 0.0928275i
\(156\) 1.40296 4.76422i 0.112327 0.381443i
\(157\) −1.72819 1.45013i −0.137925 0.115733i 0.571215 0.820800i \(-0.306472\pi\)
−0.709140 + 0.705068i \(0.750917\pi\)
\(158\) −12.5871 + 4.58132i −1.00137 + 0.364471i
\(159\) 0.730406 + 11.6373i 0.0579250 + 0.922898i
\(160\) 0.748872 + 0.272567i 0.0592035 + 0.0215483i
\(161\) −10.9233 + 3.92869i −0.860879 + 0.309624i
\(162\) −8.44071 + 11.7749i −0.663165 + 0.925126i
\(163\) −0.843390 1.46079i −0.0660594 0.114418i 0.831104 0.556117i \(-0.187709\pi\)
−0.897163 + 0.441699i \(0.854376\pi\)
\(164\) 2.47655 2.07807i 0.193386 0.162270i
\(165\) 1.82824 1.21428i 0.142328 0.0945318i
\(166\) 1.96294 11.1324i 0.152354 0.864041i
\(167\) −2.50098 + 14.1838i −0.193532 + 1.09757i 0.720963 + 0.692974i \(0.243700\pi\)
−0.914494 + 0.404598i \(0.867411\pi\)
\(168\) −0.611422 10.3737i −0.0471722 0.800352i
\(169\) 8.05621 6.75996i 0.619708 0.519997i
\(170\) −0.316336 + 0.547909i −0.0242618 + 0.0420227i
\(171\) 3.68017 + 4.85146i 0.281429 + 0.371000i
\(172\) 2.13962 + 3.70593i 0.163145 + 0.282575i
\(173\) 1.35283 1.13516i 0.102854 0.0863048i −0.589910 0.807469i \(-0.700837\pi\)
0.692765 + 0.721164i \(0.256393\pi\)
\(174\) 5.82436 + 13.3369i 0.441544 + 1.01107i
\(175\) 12.2638 + 4.51667i 0.927060 + 0.341429i
\(176\) 23.4289 8.52742i 1.76602 0.642779i
\(177\) −21.4104 2.40481i −1.60931 0.180757i
\(178\) 23.5498 + 8.57141i 1.76513 + 0.642454i
\(179\) 9.33259 + 16.1645i 0.697550 + 1.20819i 0.969313 + 0.245829i \(0.0790600\pi\)
−0.271763 + 0.962364i \(0.587607\pi\)
\(180\) 0.128717 + 0.416261i 0.00959403 + 0.0310262i
\(181\) 3.45518 + 5.98454i 0.256821 + 0.444827i 0.965389 0.260816i \(-0.0839915\pi\)
−0.708567 + 0.705643i \(0.750658\pi\)
\(182\) −10.3949 + 17.8470i −0.770518 + 1.32291i
\(183\) 5.64843 1.36560i 0.417544 0.100948i
\(184\) −9.34946 + 3.40292i −0.689251 + 0.250867i
\(185\) 1.83997 0.669694i 0.135277 0.0492369i
\(186\) 18.2792 + 9.07731i 1.34030 + 0.665581i
\(187\) 1.43341 + 8.12929i 0.104822 + 0.594473i
\(188\) −1.29374 −0.0943555
\(189\) 10.4451 8.93863i 0.759772 0.650190i
\(190\) 0.802565 0.0582242
\(191\) 0.731779 + 4.15013i 0.0529497 + 0.300293i 0.999769 0.0214718i \(-0.00683522\pi\)
−0.946820 + 0.321764i \(0.895724\pi\)
\(192\) −0.482060 7.68049i −0.0347897 0.554291i
\(193\) −16.5826 + 6.03556i −1.19364 + 0.434449i −0.861000 0.508606i \(-0.830161\pi\)
−0.332639 + 0.943054i \(0.607939\pi\)
\(194\) −15.5771 + 5.66959i −1.11837 + 0.407053i
\(195\) −0.582795 + 1.97907i −0.0417348 + 0.141724i
\(196\) 0.749783 4.07057i 0.0535560 0.290755i
\(197\) −3.45583 5.98566i −0.246217 0.426461i 0.716256 0.697838i \(-0.245854\pi\)
−0.962473 + 0.271377i \(0.912521\pi\)
\(198\) 20.9373 + 13.5021i 1.48795 + 0.959549i
\(199\) −2.90529 5.03211i −0.205950 0.356717i 0.744485 0.667639i \(-0.232695\pi\)
−0.950435 + 0.310923i \(0.899362\pi\)
\(200\) 10.5260 + 3.83115i 0.744299 + 0.270903i
\(201\) −5.16841 11.8349i −0.364551 0.834766i
\(202\) −1.88492 + 0.686055i −0.132622 + 0.0482706i
\(203\) −2.34621 13.6091i −0.164672 0.955170i
\(204\) −1.62850 0.182913i −0.114018 0.0128065i
\(205\) −1.02877 + 0.863238i −0.0718522 + 0.0602911i
\(206\) 4.70422 + 8.14794i 0.327758 + 0.567694i
\(207\) −11.0619 7.13362i −0.768858 0.495821i
\(208\) −11.7185 + 20.2970i −0.812529 + 1.40734i
\(209\) 8.02153 6.73086i 0.554861 0.465583i
\(210\) −0.106608 1.80878i −0.00735668 0.124818i
\(211\) −1.52641 + 8.65668i −0.105082 + 0.595950i 0.886105 + 0.463484i \(0.153401\pi\)
−0.991187 + 0.132466i \(0.957710\pi\)
\(212\) −0.691223 + 3.92012i −0.0474734 + 0.269235i
\(213\) −0.110234 1.75631i −0.00755308 0.120341i
\(214\) −1.71932 + 1.44268i −0.117530 + 0.0986197i
\(215\) −0.888805 1.53946i −0.0606160 0.104990i
\(216\) 8.92324 7.69533i 0.607149 0.523601i
\(217\) −14.7881 12.5050i −1.00388 0.848897i
\(218\) −23.3493 8.49844i −1.58141 0.575587i
\(219\) −8.36299 + 5.55455i −0.565119 + 0.375342i
\(220\) 0.704065 0.256259i 0.0474680 0.0172770i
\(221\) −5.94415 4.98774i −0.399847 0.335511i
\(222\) 15.3255 + 16.0981i 1.02858 + 1.08044i
\(223\) −7.61933 + 6.39338i −0.510228 + 0.428132i −0.861210 0.508250i \(-0.830293\pi\)
0.350981 + 0.936383i \(0.385848\pi\)
\(224\) 1.52283 8.44803i 0.101749 0.564458i
\(225\) 4.37786 + 14.1576i 0.291857 + 0.943839i
\(226\) −14.7233 −0.979381
\(227\) 18.4448 + 6.71335i 1.22422 + 0.445581i 0.871616 0.490190i \(-0.163073\pi\)
0.352608 + 0.935771i \(0.385295\pi\)
\(228\) 0.831961 + 1.90506i 0.0550979 + 0.126166i
\(229\) 7.22389 + 6.06156i 0.477368 + 0.400559i 0.849474 0.527631i \(-0.176920\pi\)
−0.372106 + 0.928190i \(0.621364\pi\)
\(230\) −1.63019 + 0.593339i −0.107491 + 0.0391236i
\(231\) −16.2352 17.1845i −1.06820 1.13065i
\(232\) −2.05536 11.6566i −0.134941 0.765290i
\(233\) 10.4888 0.687145 0.343572 0.939126i \(-0.388363\pi\)
0.343572 + 0.939126i \(0.388363\pi\)
\(234\) −23.2351 + 2.92821i −1.51893 + 0.191423i
\(235\) 0.537422 0.0350575
\(236\) −6.91154 2.51560i −0.449903 0.163751i
\(237\) 9.93763 + 10.4387i 0.645519 + 0.678065i
\(238\) 6.39493 + 2.35520i 0.414521 + 0.152665i
\(239\) 5.79830 + 4.86535i 0.375061 + 0.314714i 0.810760 0.585379i \(-0.199054\pi\)
−0.435699 + 0.900093i \(0.643499\pi\)
\(240\) −0.128796 2.05207i −0.00831377 0.132460i
\(241\) 7.18643 6.03013i 0.462919 0.388435i −0.381285 0.924458i \(-0.624518\pi\)
0.844204 + 0.536023i \(0.180074\pi\)
\(242\) 12.5671 21.7669i 0.807844 1.39923i
\(243\) 15.2454 + 3.25245i 0.977992 + 0.208645i
\(244\) 1.98383 0.127002
\(245\) −0.311462 + 1.69093i −0.0198986 + 0.108029i
\(246\) −13.6536 6.78024i −0.870520 0.432292i
\(247\) −1.70926 + 9.69369i −0.108758 + 0.616795i
\(248\) −12.7156 10.6696i −0.807441 0.677523i
\(249\) −11.8224 + 2.85825i −0.749212 + 0.181135i
\(250\) 3.69307 + 1.34417i 0.233570 + 0.0850126i
\(251\) 10.5090 + 18.2021i 0.663322 + 1.14891i 0.979737 + 0.200287i \(0.0641873\pi\)
−0.316415 + 0.948621i \(0.602479\pi\)
\(252\) 4.18302 2.12809i 0.263506 0.134057i
\(253\) −11.3173 + 19.6022i −0.711515 + 1.23238i
\(254\) −14.7735 + 12.3964i −0.926970 + 0.777820i
\(255\) 0.676485 + 0.0759826i 0.0423631 + 0.00475822i
\(256\) 2.27008 12.8743i 0.141880 0.804641i
\(257\) −18.8715 15.8350i −1.17717 0.987762i −0.999994 0.00358315i \(-0.998859\pi\)
−0.177176 0.984179i \(-0.556696\pi\)
\(258\) 11.9766 16.2396i 0.745630 1.01103i
\(259\) −10.4759 18.3056i −0.650944 1.13746i
\(260\) −0.352153 + 0.609947i −0.0218396 + 0.0378273i
\(261\) 10.6427 11.4862i 0.658769 0.710978i
\(262\) −25.0520 −1.54772
\(263\) −0.272526 1.54557i −0.0168047 0.0953042i 0.975252 0.221097i \(-0.0709637\pi\)
−0.992057 + 0.125793i \(0.959853\pi\)
\(264\) −13.9712 14.6756i −0.859868 0.903222i
\(265\) 0.287136 1.62843i 0.0176386 0.100034i
\(266\) −1.46871 8.51917i −0.0900523 0.522344i
\(267\) −1.68912 26.9122i −0.103373 1.64700i
\(268\) −0.765559 4.34170i −0.0467640 0.265212i
\(269\) 2.97432 5.15166i 0.181347 0.314103i −0.760992 0.648761i \(-0.775288\pi\)
0.942340 + 0.334658i \(0.108621\pi\)
\(270\) 1.55587 1.34177i 0.0946872 0.0816575i
\(271\) 5.09086 + 8.81763i 0.309248 + 0.535633i 0.978198 0.207674i \(-0.0665895\pi\)
−0.668950 + 0.743307i \(0.733256\pi\)
\(272\) 7.26687 + 2.64492i 0.440619 + 0.160372i
\(273\) 22.0742 + 2.56459i 1.33599 + 0.155216i
\(274\) −20.3108 17.0428i −1.22702 1.02959i
\(275\) 23.9462 8.71570i 1.44401 0.525577i
\(276\) −3.09832 3.25453i −0.186497 0.195900i
\(277\) 3.13289 + 17.7675i 0.188237 + 1.06755i 0.921725 + 0.387843i \(0.126780\pi\)
−0.733488 + 0.679702i \(0.762109\pi\)
\(278\) −9.88611 + 17.1232i −0.592929 + 1.02698i
\(279\) 1.07930 21.9331i 0.0646157 1.31310i
\(280\) −0.261428 + 1.45029i −0.0156233 + 0.0866717i
\(281\) −1.12946 6.40548i −0.0673779 0.382119i −0.999786 0.0207105i \(-0.993407\pi\)
0.932408 0.361408i \(-0.117704\pi\)
\(282\) 2.44148 + 5.59060i 0.145388 + 0.332915i
\(283\) 2.14044 12.1391i 0.127236 0.721592i −0.852718 0.522371i \(-0.825048\pi\)
0.979955 0.199221i \(-0.0638412\pi\)
\(284\) 0.104320 0.591628i 0.00619025 0.0351067i
\(285\) −0.345599 0.791368i −0.0204715 0.0468766i
\(286\) 6.99309 + 39.6598i 0.413510 + 2.34513i
\(287\) 11.0459 + 9.34055i 0.652017 + 0.551355i
\(288\) 8.65852 4.44659i 0.510208 0.262018i
\(289\) 7.21983 12.5051i 0.424696 0.735595i
\(290\) −0.358377 2.03245i −0.0210446 0.119350i
\(291\) 12.2983 + 12.9183i 0.720937 + 0.757286i
\(292\) −3.22064 + 1.17222i −0.188474 + 0.0685988i
\(293\) 2.38551 + 2.00168i 0.139363 + 0.116939i 0.709804 0.704399i \(-0.248783\pi\)
−0.570441 + 0.821338i \(0.693228\pi\)
\(294\) −19.0050 + 4.44175i −1.10840 + 0.259048i
\(295\) 2.87107 + 1.04499i 0.167160 + 0.0608414i
\(296\) −9.03863 15.6554i −0.525360 0.909950i
\(297\) 4.29770 26.4594i 0.249378 1.53533i
\(298\) 2.70342 4.68246i 0.156605 0.271248i
\(299\) −3.69470 20.9537i −0.213670 1.21178i
\(300\) 0.316898 + 5.04902i 0.0182961 + 0.291505i
\(301\) −14.7147 + 12.2518i −0.848141 + 0.706184i
\(302\) 2.71082 15.3738i 0.155990 0.884664i
\(303\) 1.48816 + 1.56319i 0.0854927 + 0.0898032i
\(304\) −1.70347 9.66084i −0.0977005 0.554087i
\(305\) −0.824089 −0.0471872
\(306\) 2.28281 + 7.38241i 0.130500 + 0.422024i
\(307\) −8.70368 + 15.0752i −0.496745 + 0.860388i −0.999993 0.00375447i \(-0.998805\pi\)
0.503248 + 0.864142i \(0.332138\pi\)
\(308\) −4.00862 7.00465i −0.228412 0.399127i
\(309\) 6.00854 8.14724i 0.341814 0.463480i
\(310\) −2.21711 1.86038i −0.125923 0.105662i
\(311\) −4.50894 + 25.5715i −0.255679 + 1.45003i 0.538646 + 0.842532i \(0.318936\pi\)
−0.794325 + 0.607493i \(0.792175\pi\)
\(312\) 18.9280 + 2.12599i 1.07159 + 0.120360i
\(313\) −20.1564 + 16.9132i −1.13931 + 0.955991i −0.999416 0.0341761i \(-0.989119\pi\)
−0.139890 + 0.990167i \(0.544675\pi\)
\(314\) −1.81580 + 3.14505i −0.102471 + 0.177485i
\(315\) −1.73764 + 0.884016i −0.0979049 + 0.0498086i
\(316\) 2.46010 + 4.26102i 0.138392 + 0.239701i
\(317\) 2.51228 + 0.914394i 0.141104 + 0.0513575i 0.411607 0.911362i \(-0.364968\pi\)
−0.270503 + 0.962719i \(0.587190\pi\)
\(318\) 18.2444 4.41088i 1.02309 0.247350i
\(319\) −20.6275 17.3085i −1.15492 0.969091i
\(320\) −0.189506 + 1.07474i −0.0105937 + 0.0600800i
\(321\) 2.16292 + 1.07409i 0.120723 + 0.0599498i
\(322\) 9.28153 + 16.2185i 0.517239 + 0.903822i
\(323\) 3.24787 0.180716
\(324\) 4.79784 + 2.30228i 0.266547 + 0.127904i
\(325\) −11.9772 + 20.7451i −0.664376 + 1.15073i
\(326\) −2.08003 + 1.74536i −0.115202 + 0.0966663i
\(327\) 1.67474 + 26.6831i 0.0926135 + 1.47558i
\(328\) 9.49783 + 7.96962i 0.524430 + 0.440049i
\(329\) −0.983492 5.70470i −0.0542217 0.314510i
\(330\) −2.43604 2.55886i −0.134100 0.140861i
\(331\) −19.3284 7.03494i −1.06238 0.386676i −0.249059 0.968488i \(-0.580121\pi\)
−0.813323 + 0.581813i \(0.802344\pi\)
\(332\) −4.15223 −0.227883
\(333\) 9.27413 22.0438i 0.508219 1.20799i
\(334\) 23.1845 1.26860
\(335\) 0.318015 + 1.80356i 0.0173750 + 0.0985387i
\(336\) −21.5469 + 5.12249i −1.17548 + 0.279455i
\(337\) −26.6331 + 9.69364i −1.45079 + 0.528046i −0.942813 0.333322i \(-0.891830\pi\)
−0.507982 + 0.861368i \(0.669608\pi\)
\(338\) −12.9685 10.8818i −0.705392 0.591894i
\(339\) 6.34013 + 14.5179i 0.344349 + 0.788505i
\(340\) 0.218378 + 0.0794829i 0.0118432 + 0.00431057i
\(341\) −37.7621 −2.04493
\(342\) 6.66227 7.19027i 0.360254 0.388805i
\(343\) 18.5190 + 0.211725i 0.999935 + 0.0114321i
\(344\) −12.5718 + 10.5490i −0.677827 + 0.568764i
\(345\) 1.28705 + 1.35194i 0.0692924 + 0.0727860i
\(346\) −2.17772 1.82733i −0.117075 0.0982377i
\(347\) −3.24503 + 1.18110i −0.174203 + 0.0634045i −0.427649 0.903945i \(-0.640658\pi\)
0.253446 + 0.967349i \(0.418436\pi\)
\(348\) 4.45297 2.95758i 0.238704 0.158543i
\(349\) 13.4023 + 4.87804i 0.717409 + 0.261116i 0.674826 0.737977i \(-0.264219\pi\)
0.0425837 + 0.999093i \(0.486441\pi\)
\(350\) 3.73214 20.7043i 0.199491 1.10669i
\(351\) 12.8928 + 21.6500i 0.688168 + 1.15559i
\(352\) −8.36899 14.4955i −0.446069 0.772614i
\(353\) −18.5879 + 15.5971i −0.989332 + 0.830148i −0.985471 0.169844i \(-0.945674\pi\)
−0.00386143 + 0.999993i \(0.501229\pi\)
\(354\) 2.17252 + 34.6140i 0.115468 + 1.83971i
\(355\) −0.0433348 + 0.245764i −0.00229997 + 0.0130438i
\(356\) 1.59851 9.06559i 0.0847208 0.480475i
\(357\) −0.431430 7.31990i −0.0228337 0.387410i
\(358\) 23.0168 19.3134i 1.21647 1.02074i
\(359\) −2.27027 + 3.93223i −0.119820 + 0.207535i −0.919696 0.392630i \(-0.871565\pi\)
0.799876 + 0.600165i \(0.204899\pi\)
\(360\) −1.48643 + 0.763357i −0.0783416 + 0.0402325i
\(361\) 7.43998 + 12.8864i 0.391578 + 0.678233i
\(362\) 8.52143 7.15033i 0.447876 0.375813i
\(363\) −26.8748 3.01857i −1.41056 0.158434i
\(364\) 7.11899 + 2.62187i 0.373137 + 0.137423i
\(365\) 1.33786 0.486942i 0.0700269 0.0254877i
\(366\) −3.74379 8.57269i −0.195691 0.448102i
\(367\) −8.69204 3.16364i −0.453721 0.165141i 0.105043 0.994468i \(-0.466502\pi\)
−0.558764 + 0.829327i \(0.688724\pi\)
\(368\) 10.6024 + 18.3639i 0.552689 + 0.957285i
\(369\) −0.806173 + 16.3828i −0.0419677 + 0.852853i
\(370\) −1.57599 2.72969i −0.0819318 0.141910i
\(371\) −17.8111 0.0678745i −0.924708 0.00352387i
\(372\) 2.11769 7.19131i 0.109797 0.372852i
\(373\) 35.7808 13.0231i 1.85266 0.674313i 0.868856 0.495064i \(-0.164855\pi\)
0.983804 0.179249i \(-0.0573667\pi\)
\(374\) 12.4866 4.54476i 0.645668 0.235004i
\(375\) −0.264888 4.22037i −0.0136788 0.217939i
\(376\) −0.861575 4.88623i −0.0444323 0.251988i
\(377\) 25.3120 1.30364
\(378\) −17.0901 14.0600i −0.879019 0.723168i
\(379\) 31.7811 1.63248 0.816242 0.577710i \(-0.196054\pi\)
0.816242 + 0.577710i \(0.196054\pi\)
\(380\) −0.0511911 0.290319i −0.00262605 0.0148931i
\(381\) 18.5852 + 9.22924i 0.952148 + 0.472828i
\(382\) 6.37461 2.32017i 0.326154 0.118710i
\(383\) 35.5306 12.9321i 1.81553 0.660799i 0.819368 0.573268i \(-0.194325\pi\)
0.996162 0.0875309i \(-0.0278976\pi\)
\(384\) −22.9657 + 5.55234i −1.17196 + 0.283342i
\(385\) 1.66519 + 2.90975i 0.0848661 + 0.148295i
\(386\) 14.2034 + 24.6011i 0.722936 + 1.25216i
\(387\) −21.1703 4.81645i −1.07615 0.244834i
\(388\) 3.04449 + 5.27321i 0.154560 + 0.267707i
\(389\) −33.5247 12.2020i −1.69977 0.618666i −0.703971 0.710229i \(-0.748591\pi\)
−0.995799 + 0.0915636i \(0.970814\pi\)
\(390\) 3.30032 + 0.370691i 0.167118 + 0.0187707i
\(391\) −6.59714 + 2.40116i −0.333632 + 0.121432i
\(392\) 15.8732 + 0.120981i 0.801718 + 0.00611045i
\(393\) 10.7878 + 24.7025i 0.544174 + 1.24607i
\(394\) −8.52303 + 7.15167i −0.429384 + 0.360296i
\(395\) −1.02193 1.77004i −0.0514191 0.0890604i
\(396\) 3.54875 8.43506i 0.178331 0.423878i
\(397\) −17.0510 + 29.5331i −0.855763 + 1.48223i 0.0201719 + 0.999797i \(0.493579\pi\)
−0.875935 + 0.482429i \(0.839755\pi\)
\(398\) −7.16525 + 6.01236i −0.359161 + 0.301372i
\(399\) −7.76787 + 5.11673i −0.388880 + 0.256157i
\(400\) 4.14554 23.5105i 0.207277 1.17553i
\(401\) −0.0515308 + 0.292246i −0.00257333 + 0.0145941i −0.986067 0.166346i \(-0.946803\pi\)
0.983494 + 0.180940i \(0.0579141\pi\)
\(402\) −17.3170 + 11.5016i −0.863693 + 0.573650i
\(403\) 27.1922 22.8170i 1.35454 1.13660i
\(404\) 0.368401 + 0.638090i 0.0183286 + 0.0317461i
\(405\) −1.99304 0.956372i −0.0990348 0.0475225i
\(406\) −20.9185 + 7.52358i −1.03817 + 0.373389i
\(407\) −38.6449 14.0656i −1.91556 0.697206i
\(408\) −0.393683 6.27241i −0.0194902 0.310531i
\(409\) 26.9921 9.82433i 1.33468 0.485782i 0.426544 0.904467i \(-0.359731\pi\)
0.908132 + 0.418685i \(0.137509\pi\)
\(410\) 1.65606 + 1.38960i 0.0817868 + 0.0686273i
\(411\) −8.05881 + 27.3663i −0.397512 + 1.34988i
\(412\) 2.64737 2.22141i 0.130427 0.109441i
\(413\) 5.83833 32.3886i 0.287286 1.59374i
\(414\) −8.21674 + 19.5305i −0.403831 + 0.959870i
\(415\) 1.72485 0.0846694
\(416\) 14.7851 + 5.38133i 0.724898 + 0.263841i
\(417\) 21.1415 + 2.37460i 1.03530 + 0.116285i
\(418\) −12.9126 10.8350i −0.631578 0.529957i
\(419\) 19.7106 7.17406i 0.962925 0.350476i 0.187746 0.982218i \(-0.439882\pi\)
0.775179 + 0.631742i \(0.217660\pi\)
\(420\) −0.647508 + 0.153937i −0.0315951 + 0.00751133i
\(421\) −4.09657 23.2328i −0.199655 1.13230i −0.905632 0.424064i \(-0.860603\pi\)
0.705977 0.708234i \(-0.250508\pi\)
\(422\) 14.1500 0.688814
\(423\) 4.46126 4.81483i 0.216914 0.234105i
\(424\) −15.2660 −0.741381
\(425\) 7.42732 + 2.70332i 0.360278 + 0.131130i
\(426\) −2.75346 + 0.665695i −0.133405 + 0.0322530i
\(427\) 1.50810 + 8.74765i 0.0729820 + 0.423329i
\(428\) 0.631540 + 0.529925i 0.0305266 + 0.0256149i
\(429\) 36.0951 23.9737i 1.74269 1.15746i
\(430\) −2.19204 + 1.83934i −0.105710 + 0.0887009i
\(431\) −10.1733 + 17.6207i −0.490031 + 0.848759i −0.999934 0.0114729i \(-0.996348\pi\)
0.509903 + 0.860232i \(0.329681\pi\)
\(432\) −19.4539 15.8808i −0.935975 0.764064i
\(433\) −29.6631 −1.42552 −0.712758 0.701410i \(-0.752554\pi\)
−0.712758 + 0.701410i \(0.752554\pi\)
\(434\) −15.6904 + 26.9390i −0.753164 + 1.29311i
\(435\) −1.84978 + 1.22859i −0.0886899 + 0.0589063i
\(436\) −1.58490 + 8.98841i −0.0759029 + 0.430467i
\(437\) 6.82222 + 5.72452i 0.326351 + 0.273841i
\(438\) 11.1433 + 11.7051i 0.532448 + 0.559293i
\(439\) 0.909155 + 0.330905i 0.0433916 + 0.0157933i 0.363625 0.931546i \(-0.381539\pi\)
−0.320233 + 0.947339i \(0.603761\pi\)
\(440\) 1.43673 + 2.48848i 0.0684932 + 0.118634i
\(441\) 12.5637 + 16.8272i 0.598271 + 0.801294i
\(442\) −6.24546 + 10.8174i −0.297066 + 0.514533i
\(443\) −1.65088 + 1.38526i −0.0784358 + 0.0658155i −0.681163 0.732132i \(-0.738525\pi\)
0.602727 + 0.797948i \(0.294081\pi\)
\(444\) 4.84580 6.57063i 0.229972 0.311828i
\(445\) −0.664025 + 3.76587i −0.0314778 + 0.178519i
\(446\) 12.2652 + 10.2917i 0.580775 + 0.487328i
\(447\) −5.78127 0.649351i −0.273445 0.0307132i
\(448\) 11.7551 + 0.0447964i 0.555378 + 0.00211643i
\(449\) 0.802022 1.38914i 0.0378498 0.0655577i −0.846480 0.532421i \(-0.821282\pi\)
0.884330 + 0.466863i \(0.154616\pi\)
\(450\) 21.2202 10.8977i 1.00033 0.513721i
\(451\) 28.2062 1.32818
\(452\) 0.939118 + 5.32600i 0.0441724 + 0.250514i
\(453\) −16.3267 + 3.94725i −0.767093 + 0.185458i
\(454\) 5.48676 31.1170i 0.257507 1.46039i
\(455\) −2.95725 1.08913i −0.138638 0.0510593i
\(456\) −6.64106 + 4.41087i −0.310996 + 0.206558i
\(457\) 5.25692 + 29.8135i 0.245908 + 1.39461i 0.818374 + 0.574686i \(0.194876\pi\)
−0.572466 + 0.819929i \(0.694013\pi\)
\(458\) 7.59006 13.1464i 0.354660 0.614289i
\(459\) 6.29639 5.42996i 0.293890 0.253449i
\(460\) 0.318614 + 0.551856i 0.0148555 + 0.0257304i
\(461\) 11.1051 + 4.04192i 0.517216 + 0.188251i 0.587421 0.809281i \(-0.300143\pi\)
−0.0702054 + 0.997533i \(0.522365\pi\)
\(462\) −22.7042 + 30.5412i −1.05629 + 1.42090i
\(463\) 27.5236 + 23.0951i 1.27913 + 1.07332i 0.993363 + 0.115019i \(0.0366930\pi\)
0.285768 + 0.958299i \(0.407751\pi\)
\(464\) −23.7049 + 8.62788i −1.10047 + 0.400539i
\(465\) −0.879693 + 2.98729i −0.0407948 + 0.138532i
\(466\) −2.93194 16.6278i −0.135819 0.770270i
\(467\) −1.42224 + 2.46339i −0.0658134 + 0.113992i −0.897055 0.441920i \(-0.854298\pi\)
0.831241 + 0.555912i \(0.187631\pi\)
\(468\) 2.54129 + 8.21829i 0.117471 + 0.379890i
\(469\) 18.5627 6.67625i 0.857144 0.308281i
\(470\) −0.150226 0.851971i −0.00692939 0.0392985i
\(471\) 3.88309 + 0.436147i 0.178923 + 0.0200966i
\(472\) 4.89820 27.7791i 0.225458 1.27863i
\(473\) −6.48318 + 36.7679i −0.298097 + 1.69059i
\(474\) 13.7705 18.6720i 0.632500 0.857633i
\(475\) −1.74108 9.87414i −0.0798861 0.453057i
\(476\) 0.444071 2.46352i 0.0203540 0.112915i
\(477\) −12.2057 16.0904i −0.558861 0.736730i
\(478\) 6.09221 10.5520i 0.278651 0.482638i
\(479\) −5.99052 33.9740i −0.273714 1.55231i −0.743017 0.669272i \(-0.766606\pi\)
0.469303 0.883037i \(-0.344505\pi\)
\(480\) −1.34167 + 0.324372i −0.0612388 + 0.0148055i
\(481\) 36.3268 13.2219i 1.65636 0.602865i
\(482\) −11.5684 9.70700i −0.526924 0.442142i
\(483\) 11.9954 16.1360i 0.545811 0.734214i
\(484\) −8.67551 3.15763i −0.394341 0.143529i
\(485\) −1.26469 2.19051i −0.0574266 0.0994657i
\(486\) 0.894541 25.0776i 0.0405772 1.13754i
\(487\) 4.94964 8.57303i 0.224290 0.388481i −0.731816 0.681502i \(-0.761327\pi\)
0.956106 + 0.293021i \(0.0946605\pi\)
\(488\) 1.32115 + 7.49261i 0.0598056 + 0.339174i
\(489\) 2.61671 + 1.29943i 0.118332 + 0.0587624i
\(490\) 2.76768 + 0.0210944i 0.125031 + 0.000952948i
\(491\) 2.63401 14.9382i 0.118871 0.674152i −0.865889 0.500236i \(-0.833247\pi\)
0.984760 0.173916i \(-0.0556422\pi\)
\(492\) −1.58179 + 5.37150i −0.0713128 + 0.242166i
\(493\) −1.45030 8.22507i −0.0653183 0.370438i
\(494\) 15.8451 0.712906
\(495\) −1.47416 + 3.50395i −0.0662586 + 0.157491i
\(496\) −17.6883 + 30.6371i −0.794229 + 1.37564i
\(497\) 2.68807 + 0.0102437i 0.120577 + 0.000459492i
\(498\) 7.83588 + 17.9429i 0.351134 + 0.804042i
\(499\) −15.6060 13.0950i −0.698619 0.586211i 0.222761 0.974873i \(-0.428493\pi\)
−0.921380 + 0.388662i \(0.872937\pi\)
\(500\) 0.250678 1.42166i 0.0112107 0.0635788i
\(501\) −9.98367 22.8611i −0.446037 1.02136i
\(502\) 25.9181 21.7479i 1.15678 0.970655i
\(503\) 6.10125 10.5677i 0.272041 0.471189i −0.697343 0.716737i \(-0.745635\pi\)
0.969384 + 0.245548i \(0.0789680\pi\)
\(504\) 10.8232 + 14.3814i 0.482103 + 0.640598i
\(505\) −0.153035 0.265064i −0.00680996 0.0117952i
\(506\) 34.2388 + 12.4619i 1.52210 + 0.553999i
\(507\) −5.14556 + 17.4735i −0.228522 + 0.776023i
\(508\) 5.42658 + 4.55344i 0.240766 + 0.202026i
\(509\) −3.98485 + 22.5992i −0.176625 + 1.00169i 0.759626 + 0.650360i \(0.225382\pi\)
−0.936251 + 0.351331i \(0.885729\pi\)
\(510\) −0.0686432 1.09367i −0.00303957 0.0484284i
\(511\) −7.61717 13.3102i −0.336964 0.588809i
\(512\) 6.23845 0.275703
\(513\) −9.95885 3.47306i −0.439694 0.153339i
\(514\) −19.8280 + 34.3432i −0.874577 + 1.51481i
\(515\) −1.09973 + 0.922780i −0.0484597 + 0.0406625i
\(516\) −6.63840 3.29657i −0.292239 0.145123i
\(517\) −8.64671 7.25545i −0.380282 0.319094i
\(518\) −26.0914 + 21.7244i −1.14639 + 0.954516i
\(519\) −0.864066 + 2.93422i −0.0379283 + 0.128798i
\(520\) −2.53819 0.923825i −0.111307 0.0405124i
\(521\) −29.0781 −1.27393 −0.636967 0.770891i \(-0.719811\pi\)
−0.636967 + 0.770891i \(0.719811\pi\)
\(522\) −21.1840 13.6611i −0.927197 0.597931i
\(523\) 27.7925 1.21528 0.607641 0.794212i \(-0.292116\pi\)
0.607641 + 0.794212i \(0.292116\pi\)
\(524\) 1.59792 + 9.06228i 0.0698056 + 0.395887i
\(525\) −22.0226 + 5.23559i −0.961146 + 0.228500i
\(526\) −2.37401 + 0.864068i −0.103512 + 0.0376752i
\(527\) −8.97234 7.52869i −0.390841 0.327955i
\(528\) −25.6316 + 34.7550i −1.11547 + 1.51252i
\(529\) 3.52333 + 1.28239i 0.153188 + 0.0557560i
\(530\) −2.66180 −0.115621
\(531\) 33.1956 17.0476i 1.44056 0.739804i
\(532\) −2.98804 + 1.07468i −0.129548 + 0.0465933i
\(533\) −20.3111 + 17.0430i −0.879770 + 0.738215i
\(534\) −42.1916 + 10.2005i −1.82581 + 0.441420i
\(535\) −0.262344 0.220132i −0.0113421 0.00951715i
\(536\) 15.8881 5.78279i 0.686260 0.249778i
\(537\) −28.9553 14.3790i −1.24952 0.620498i
\(538\) −8.99831 3.27512i −0.387945 0.141200i
\(539\) 27.8395 23.0008i 1.19913 0.990715i
\(540\) −0.584611 0.477235i −0.0251577 0.0205369i
\(541\) 12.1578 + 21.0579i 0.522704 + 0.905350i 0.999651 + 0.0264179i \(0.00841006\pi\)
−0.476947 + 0.878932i \(0.658257\pi\)
\(542\) 12.5555 10.5353i 0.539304 0.452530i
\(543\) −10.7200 5.32348i −0.460041 0.228452i
\(544\) 0.901506 5.11270i 0.0386518 0.219205i
\(545\) 0.658372 3.73381i 0.0282015 0.159939i
\(546\) −2.10478 35.7110i −0.0900764 1.52829i
\(547\) 3.22077 2.70254i 0.137710 0.115552i −0.571331 0.820720i \(-0.693573\pi\)
0.709041 + 0.705167i \(0.249128\pi\)
\(548\) −4.86952 + 8.43426i −0.208016 + 0.360294i
\(549\) −6.84095 + 7.38311i −0.291964 + 0.315103i
\(550\) −20.5106 35.5255i −0.874576 1.51481i
\(551\) −8.11603 + 6.81016i −0.345755 + 0.290123i
\(552\) 10.2285 13.8692i 0.435353 0.590313i
\(553\) −16.9187 + 14.0870i −0.719457 + 0.599039i
\(554\) 27.2910 9.93310i 1.15948 0.422017i
\(555\) −2.01296 + 2.72946i −0.0854454 + 0.115859i
\(556\) 6.82472 + 2.48400i 0.289433 + 0.105345i
\(557\) −6.63331 11.4892i −0.281062 0.486814i 0.690584 0.723252i \(-0.257353\pi\)
−0.971647 + 0.236438i \(0.924020\pi\)
\(558\) −35.0721 + 4.41995i −1.48472 + 0.187111i
\(559\) −17.5478 30.3937i −0.742192 1.28551i
\(560\) 3.14073 + 0.0119687i 0.132720 + 0.000505769i
\(561\) −9.85833 10.3554i −0.416219 0.437204i
\(562\) −9.83885 + 3.58105i −0.415027 + 0.151057i
\(563\) −17.1364 + 6.23715i −0.722214 + 0.262864i −0.676865 0.736107i \(-0.736662\pi\)
−0.0453487 + 0.998971i \(0.514440\pi\)
\(564\) 1.86661 1.23977i 0.0785985 0.0522037i
\(565\) −0.390112 2.21244i −0.0164121 0.0930779i
\(566\) −19.8423 −0.834033
\(567\) −6.50454 + 22.9061i −0.273165 + 0.961967i
\(568\) 2.30396 0.0966718
\(569\) 4.96317 + 28.1475i 0.208067 + 1.18001i 0.892540 + 0.450968i \(0.148921\pi\)
−0.684473 + 0.729038i \(0.739968\pi\)
\(570\) −1.15794 + 0.769087i −0.0485010 + 0.0322135i
\(571\) −15.5965 + 5.67666i −0.652693 + 0.237561i −0.647079 0.762423i \(-0.724009\pi\)
−0.00561479 + 0.999984i \(0.501787\pi\)
\(572\) 13.9004 5.05935i 0.581207 0.211542i
\(573\) −5.03282 5.28657i −0.210249 0.220850i
\(574\) 11.7199 20.1219i 0.489178 0.839873i
\(575\) 10.8365 + 18.7694i 0.451914 + 0.782737i
\(576\) 8.05562 + 10.6195i 0.335651 + 0.442479i
\(577\) −10.3149 17.8659i −0.429415 0.743768i 0.567407 0.823438i \(-0.307947\pi\)
−0.996821 + 0.0796698i \(0.974613\pi\)
\(578\) −21.8424 7.95000i −0.908526 0.330676i
\(579\) 18.1416 24.5990i 0.753940 1.02230i
\(580\) −0.712359 + 0.259278i −0.0295791 + 0.0107659i
\(581\) −3.15650 18.3091i −0.130954 0.759591i
\(582\) 17.0416 23.1074i 0.706397 0.957833i
\(583\) −26.6043 + 22.3237i −1.10184 + 0.924553i
\(584\) −6.57208 11.3832i −0.271955 0.471039i
\(585\) −1.05566 3.41390i −0.0436460 0.141147i
\(586\) 2.50642 4.34125i 0.103539 0.179336i
\(587\) −5.41973 + 4.54769i −0.223696 + 0.187703i −0.747747 0.663983i \(-0.768865\pi\)
0.524051 + 0.851687i \(0.324420\pi\)
\(588\) 2.81898 + 6.59155i 0.116253 + 0.271831i
\(589\) −2.58002 + 14.6320i −0.106308 + 0.602903i
\(590\) 0.854057 4.84360i 0.0351610 0.199408i
\(591\) 10.7221 + 5.32448i 0.441047 + 0.219020i
\(592\) −29.5135 + 24.7647i −1.21300 + 1.01782i
\(593\) 2.82966 + 4.90111i 0.116200 + 0.201265i 0.918259 0.395981i \(-0.129595\pi\)
−0.802059 + 0.597245i \(0.796262\pi\)
\(594\) −43.1473 + 0.583088i −1.77035 + 0.0239244i
\(595\) −0.184468 + 1.02335i −0.00756247 + 0.0419534i
\(596\) −1.86626 0.679265i −0.0764452 0.0278238i
\(597\) 9.01396 + 4.47625i 0.368917 + 0.183201i
\(598\) −32.1850 + 11.7144i −1.31614 + 0.479036i
\(599\) −9.79402 8.21816i −0.400173 0.335785i 0.420388 0.907345i \(-0.361894\pi\)
−0.820560 + 0.571560i \(0.806339\pi\)
\(600\) −18.8583 + 4.55931i −0.769886 + 0.186133i
\(601\) −27.4619 + 23.0433i −1.12019 + 0.939954i −0.998614 0.0526274i \(-0.983240\pi\)
−0.121580 + 0.992582i \(0.538796\pi\)
\(602\) 23.5360 + 19.9023i 0.959254 + 0.811159i
\(603\) 18.7982 + 12.1226i 0.765521 + 0.493669i
\(604\) −5.73422 −0.233322
\(605\) 3.60383 + 1.31169i 0.146517 + 0.0533277i
\(606\) 2.06214 2.79614i 0.0837685 0.113585i
\(607\) −31.8737 26.7452i −1.29371 1.08556i −0.991195 0.132412i \(-0.957728\pi\)
−0.302519 0.953143i \(-0.597828\pi\)
\(608\) −6.18851 + 2.25243i −0.250977 + 0.0913483i
\(609\) 16.4265 + 17.3869i 0.665636 + 0.704553i
\(610\) 0.230358 + 1.30642i 0.00932690 + 0.0528955i
\(611\) 10.6104 0.429250
\(612\) 2.52490 1.29666i 0.102063 0.0524146i
\(613\) 16.6078 0.670782 0.335391 0.942079i \(-0.391132\pi\)
0.335391 + 0.942079i \(0.391132\pi\)
\(614\) 26.3316 + 9.58391i 1.06266 + 0.386775i
\(615\) 0.657081 2.23134i 0.0264961 0.0899762i
\(616\) 23.7858 19.8047i 0.958359 0.797955i
\(617\) 13.0354 + 10.9380i 0.524785 + 0.440347i 0.866296 0.499531i \(-0.166494\pi\)
−0.341511 + 0.939878i \(0.610939\pi\)
\(618\) −14.5953 7.24791i −0.587110 0.291554i
\(619\) 8.97501 7.53093i 0.360736 0.302694i −0.444348 0.895854i \(-0.646565\pi\)
0.805084 + 0.593161i \(0.202120\pi\)
\(620\) −0.531554 + 0.920678i −0.0213477 + 0.0369753i
\(621\) 22.7963 0.308066i 0.914783 0.0123623i
\(622\) 41.7987 1.67597
\(623\) 41.1897 + 0.156965i 1.65023 + 0.00628868i
\(624\) −2.54284 40.5142i −0.101795 1.62187i
\(625\) 4.18469 23.7326i 0.167388 0.949302i
\(626\) 32.4467 + 27.2260i 1.29683 + 1.08817i
\(627\) −5.12342 + 17.3982i −0.204609 + 0.694819i
\(628\) 1.25351 + 0.456239i 0.0500204 + 0.0182059i
\(629\) −6.37781 11.0467i −0.254300 0.440461i
\(630\) 1.88715 + 2.50756i 0.0751857 + 0.0999036i
\(631\) −3.25090 + 5.63073i −0.129416 + 0.224156i −0.923451 0.383717i \(-0.874644\pi\)
0.794034 + 0.607873i \(0.207977\pi\)
\(632\) −14.4549 + 12.1291i −0.574984 + 0.482469i
\(633\) −6.09327 13.9526i −0.242186 0.554567i
\(634\) 0.747326 4.23830i 0.0296801 0.168324i
\(635\) −2.25422 1.89151i −0.0894559 0.0750624i
\(636\) −2.75930 6.31836i −0.109413 0.250539i
\(637\) −6.14924 + 33.3842i −0.243642 + 1.32273i
\(638\) −21.6731 + 37.5389i −0.858046 + 1.48618i
\(639\) 1.84210 + 2.42838i 0.0728722 + 0.0960653i
\(640\) 3.35062 0.132445
\(641\) 1.73512 + 9.84038i 0.0685333 + 0.388672i 0.999710 + 0.0241022i \(0.00767271\pi\)
−0.931176 + 0.364569i \(0.881216\pi\)
\(642\) 1.09814 3.72911i 0.0433403 0.147176i
\(643\) −2.03715 + 11.5532i −0.0803373 + 0.455615i 0.917928 + 0.396746i \(0.129861\pi\)
−0.998266 + 0.0588693i \(0.981250\pi\)
\(644\) 5.27485 4.39198i 0.207858 0.173068i
\(645\) 2.75761 + 1.36941i 0.108581 + 0.0539203i
\(646\) −0.907877 5.14883i −0.0357199 0.202578i
\(647\) −12.6777 + 21.9584i −0.498411 + 0.863274i −0.999998 0.00183352i \(-0.999416\pi\)
0.501587 + 0.865107i \(0.332750\pi\)
\(648\) −5.50016 + 19.6539i −0.216067 + 0.772078i
\(649\) −32.0856 55.5738i −1.25947 2.18146i
\(650\) 36.2351 + 13.1885i 1.42126 + 0.517295i
\(651\) 33.3197 + 3.87110i 1.30590 + 0.151720i
\(652\) 0.764037 + 0.641103i 0.0299220 + 0.0251075i
\(653\) −24.3880 + 8.87651i −0.954376 + 0.347365i −0.771827 0.635832i \(-0.780657\pi\)
−0.182549 + 0.983197i \(0.558435\pi\)
\(654\) 41.8324 10.1137i 1.63578 0.395476i
\(655\) −0.663782 3.76450i −0.0259361 0.147091i
\(656\) 13.2122 22.8842i 0.515849 0.893476i
\(657\) 6.74332 16.0283i 0.263082 0.625323i
\(658\) −8.76871 + 3.15376i −0.341840 + 0.122946i
\(659\) 0.938027 + 5.31981i 0.0365403 + 0.207230i 0.997612 0.0690691i \(-0.0220029\pi\)
−0.961072 + 0.276300i \(0.910892\pi\)
\(660\) −0.770260 + 1.04443i −0.0299823 + 0.0406543i
\(661\) −1.04141 + 5.90614i −0.0405062 + 0.229722i −0.998340 0.0576020i \(-0.981655\pi\)
0.957833 + 0.287324i \(0.0927657\pi\)
\(662\) −5.74960 + 32.6076i −0.223464 + 1.26733i
\(663\) 13.3559 + 1.50013i 0.518701 + 0.0582604i
\(664\) −2.76521 15.6823i −0.107311 0.608591i
\(665\) 1.24124 0.446425i 0.0481332 0.0173116i
\(666\) −37.5383 8.54032i −1.45458 0.330931i
\(667\) 11.4507 19.8332i 0.443372 0.767943i
\(668\) −1.47881 8.38675i −0.0572169 0.324493i
\(669\) 4.86653 16.5259i 0.188151 0.638928i
\(670\) 2.77027 1.00830i 0.107025 0.0389539i
\(671\) 13.2590 + 11.1256i 0.511856 + 0.429498i
\(672\) 5.89848 + 13.6482i 0.227539 + 0.526490i
\(673\) 11.3701 + 4.13838i 0.438285 + 0.159523i 0.551732 0.834021i \(-0.313967\pi\)
−0.113447 + 0.993544i \(0.536189\pi\)
\(674\) 22.8120 + 39.5115i 0.878685 + 1.52193i
\(675\) −19.8834 16.2314i −0.765313 0.624747i
\(676\) −3.10920 + 5.38529i −0.119585 + 0.207127i
\(677\) −7.27638 41.2664i −0.279654 1.58600i −0.723779 0.690032i \(-0.757597\pi\)
0.444125 0.895965i \(-0.353515\pi\)
\(678\) 21.2429 14.1092i 0.815829 0.541859i
\(679\) −20.9377 + 17.4333i −0.803514 + 0.669027i
\(680\) −0.154764 + 0.877709i −0.00593492 + 0.0336586i
\(681\) −33.0456 + 7.98932i −1.26631 + 0.306151i
\(682\) 10.5556 + 59.8640i 0.404197 + 2.29231i
\(683\) −8.33047 −0.318757 −0.159378 0.987218i \(-0.550949\pi\)
−0.159378 + 0.987218i \(0.550949\pi\)
\(684\) −3.02595 1.95138i −0.115700 0.0746127i
\(685\) 2.02281 3.50362i 0.0772878 0.133866i
\(686\) −4.84098 29.4173i −0.184830 1.12316i
\(687\) −16.2314 1.82310i −0.619265 0.0695557i
\(688\) 26.7936 + 22.4825i 1.02150 + 0.857139i
\(689\) 5.66896 32.1503i 0.215970 1.22483i
\(690\) 1.78345 2.41826i 0.0678949 0.0920615i
\(691\) 28.1849 23.6500i 1.07221 0.899687i 0.0769548 0.997035i \(-0.475480\pi\)
0.995250 + 0.0973475i \(0.0310358\pi\)
\(692\) −0.522111 + 0.904323i −0.0198477 + 0.0343772i
\(693\) 39.8919 + 9.23582i 1.51537 + 0.350840i
\(694\) 2.77947 + 4.81418i 0.105507 + 0.182744i
\(695\) −2.83501 1.03186i −0.107538 0.0391406i
\(696\) 14.1358 + 14.8485i 0.535816 + 0.562831i
\(697\) 6.70183 + 5.62351i 0.253850 + 0.213005i
\(698\) 3.98678 22.6102i 0.150902 0.855807i
\(699\) −15.1333 + 10.0513i −0.572394 + 0.380174i
\(700\) −7.72762 0.0294484i −0.292077 0.00111304i
\(701\) −51.6323 −1.95013 −0.975063 0.221930i \(-0.928764\pi\)
−0.975063 + 0.221930i \(0.928764\pi\)
\(702\) 30.7177 26.4907i 1.15937 0.999829i
\(703\) −8.09047 + 14.0131i −0.305138 + 0.528514i
\(704\) 17.5586 14.7334i 0.661763 0.555285i
\(705\) −0.775395 + 0.515004i −0.0292031 + 0.0193962i
\(706\) 29.9218 + 25.1074i 1.12612 + 0.944929i
\(707\) −2.53358 + 2.10953i −0.0952852 + 0.0793370i
\(708\) 12.3827 2.99372i 0.465369 0.112511i
\(709\) 8.18015 + 2.97733i 0.307212 + 0.111816i 0.491026 0.871145i \(-0.336622\pi\)
−0.183814 + 0.982961i \(0.558844\pi\)
\(710\) 0.401721 0.0150763
\(711\) −24.3413 5.53788i −0.912871 0.207687i
\(712\) 35.3038 1.32307
\(713\) −5.57693 31.6283i −0.208858 1.18449i
\(714\) −11.4836 + 2.73007i −0.429762 + 0.102170i
\(715\) −5.77428 + 2.10167i −0.215946 + 0.0785979i
\(716\) −8.45451 7.09417i −0.315960 0.265122i
\(717\) −13.0282 1.46333i −0.486548 0.0546489i
\(718\) 6.86835 + 2.49987i 0.256324 + 0.0932945i
\(719\) 37.2254 1.38827 0.694137 0.719843i \(-0.255786\pi\)
0.694137 + 0.719843i \(0.255786\pi\)
\(720\) 2.15230 + 2.83731i 0.0802113 + 0.105740i
\(721\) 11.8078 + 9.98482i 0.439744 + 0.371854i
\(722\) 18.3491 15.3967i 0.682882 0.573006i
\(723\) −4.59003 + 15.5870i −0.170705 + 0.579685i
\(724\) −3.13009 2.62645i −0.116329 0.0976114i
\(725\) −24.2283 + 8.81839i −0.899817 + 0.327507i
\(726\) 2.72699 + 43.4482i 0.101208 + 1.61252i
\(727\) −13.2093 4.80779i −0.489905 0.178311i 0.0852428 0.996360i \(-0.472833\pi\)
−0.575148 + 0.818049i \(0.695056\pi\)
\(728\) −5.16141 + 28.6333i −0.191295 + 1.06122i
\(729\) −25.1129 + 9.91679i −0.930107 + 0.367288i
\(730\) −1.14592 1.98479i −0.0424123 0.0734603i
\(731\) −8.87089 + 7.44356i −0.328102 + 0.275310i
\(732\) −2.86228 + 1.90108i −0.105793 + 0.0702658i
\(733\) −3.26371 + 18.5094i −0.120548 + 0.683661i 0.863305 + 0.504682i \(0.168390\pi\)
−0.983853 + 0.178978i \(0.942721\pi\)
\(734\) −2.58562 + 14.6638i −0.0954369 + 0.541250i
\(735\) −1.17101 2.73815i −0.0431934 0.100998i
\(736\) 10.9050 9.15038i 0.401964 0.337288i
\(737\) 19.2322 33.3112i 0.708428 1.22703i
\(738\) 26.1968 3.30146i 0.964319 0.121528i
\(739\) 8.36238 + 14.4841i 0.307615 + 0.532805i 0.977840 0.209353i \(-0.0671357\pi\)
−0.670225 + 0.742158i \(0.733802\pi\)
\(740\) −0.886913 + 0.744209i −0.0326036 + 0.0273577i
\(741\) −6.82320 15.6241i −0.250657 0.573965i
\(742\) 4.87114 + 28.2548i 0.178825 + 1.03727i
\(743\) −6.60496 + 2.40401i −0.242313 + 0.0881945i −0.460322 0.887752i \(-0.652266\pi\)
0.218009 + 0.975947i \(0.430044\pi\)
\(744\) 28.5707 + 3.20905i 1.04745 + 0.117650i
\(745\) 0.775251 + 0.282168i 0.0284030 + 0.0103379i
\(746\) −30.6473 53.0827i −1.12208 1.94350i
\(747\) 14.3183 15.4531i 0.523881 0.565400i
\(748\) −2.44047 4.22702i −0.0892324 0.154555i
\(749\) −1.85660 + 3.18761i −0.0678386 + 0.116473i
\(750\) −6.61648 + 1.59965i −0.241600 + 0.0584108i
\(751\) 8.78339 3.19689i 0.320510 0.116656i −0.176755 0.984255i \(-0.556560\pi\)
0.497265 + 0.867599i \(0.334338\pi\)
\(752\) −9.93671 + 3.61667i −0.362355 + 0.131886i
\(753\) −32.6053 16.1915i −1.18820 0.590051i
\(754\) −7.07547 40.1270i −0.257674 1.46134i
\(755\) 2.38201 0.0866903
\(756\) −3.99597 + 7.07896i −0.145332 + 0.257459i
\(757\) 34.6375 1.25892 0.629461 0.777032i \(-0.283276\pi\)
0.629461 + 0.777032i \(0.283276\pi\)
\(758\) −8.88376 50.3823i −0.322673 1.82997i
\(759\) −2.45580 39.1274i −0.0891400 1.42024i
\(760\) 1.06240 0.386681i 0.0385372 0.0140264i
\(761\) 12.5940 4.58385i 0.456533 0.166165i −0.103509 0.994629i \(-0.533007\pi\)
0.560042 + 0.828464i \(0.310785\pi\)
\(762\) 9.43593 32.0428i 0.341828 1.16079i
\(763\) −40.8390 0.155629i −1.47847 0.00563415i
\(764\) −1.24590 2.15796i −0.0450750 0.0780721i
\(765\) −1.04885 + 0.538638i −0.0379212 + 0.0194745i
\(766\) −30.4330 52.7115i −1.09959 1.90455i
\(767\) 56.6840 + 20.6313i 2.04674 + 0.744952i
\(768\)