Properties

Label 189.2.u.a.4.20
Level $189$
Weight $2$
Character 189.4
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(4,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([2, 12]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.u (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 4.20
Character \(\chi\) \(=\) 189.4
Dual form 189.2.u.a.142.20

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.373934 + 2.12069i) q^{2} +(-1.62126 + 0.609530i) q^{3} +(-2.47810 + 0.901956i) q^{4} +(-1.18205 + 0.430229i) q^{5} +(-1.89887 - 3.21026i) q^{6} +(-2.62839 - 0.302569i) q^{7} +(-0.686013 - 1.18821i) q^{8} +(2.25695 - 1.97641i) q^{9} +O(q^{10})\) \(q+(0.373934 + 2.12069i) q^{2} +(-1.62126 + 0.609530i) q^{3} +(-2.47810 + 0.901956i) q^{4} +(-1.18205 + 0.430229i) q^{5} +(-1.89887 - 3.21026i) q^{6} +(-2.62839 - 0.302569i) q^{7} +(-0.686013 - 1.18821i) q^{8} +(2.25695 - 1.97641i) q^{9} +(-1.35439 - 2.34587i) q^{10} +(0.527955 + 0.192160i) q^{11} +(3.46787 - 2.97278i) q^{12} +(-3.76711 + 1.37111i) q^{13} +(-0.341193 - 5.68714i) q^{14} +(1.65416 - 1.41800i) q^{15} +(-1.77704 + 1.49111i) q^{16} +(1.82298 + 3.15749i) q^{17} +(5.03529 + 4.04723i) q^{18} +(1.32067 - 2.28747i) q^{19} +(2.54118 - 2.13231i) q^{20} +(4.44573 - 1.11154i) q^{21} +(-0.210090 + 1.19148i) q^{22} +(-0.669703 + 3.79808i) q^{23} +(1.83645 + 1.50825i) q^{24} +(-2.61809 + 2.19684i) q^{25} +(-4.31636 - 7.47615i) q^{26} +(-2.45441 + 4.57994i) q^{27} +(6.78634 - 1.62090i) q^{28} +(7.38407 + 2.68758i) q^{29} +(3.62569 + 2.97772i) q^{30} +(-7.43614 + 2.70653i) q^{31} +(-5.92875 - 4.97481i) q^{32} +(-0.973077 + 0.0102636i) q^{33} +(-6.01437 + 5.04666i) q^{34} +(3.23705 - 0.773162i) q^{35} +(-3.81032 + 6.93341i) q^{36} +6.30064 q^{37} +(5.34485 + 1.94537i) q^{38} +(5.27171 - 4.51909i) q^{39} +(1.32210 + 1.10938i) q^{40} +(2.95635 - 1.07602i) q^{41} +(4.01964 + 9.01235i) q^{42} +(0.190954 + 1.08296i) q^{43} -1.48165 q^{44} +(-1.81751 + 3.30721i) q^{45} -8.30496 q^{46} +(-7.72021 - 2.80993i) q^{47} +(1.97216 - 3.50064i) q^{48} +(6.81690 + 1.59054i) q^{49} +(-5.63780 - 4.73067i) q^{50} +(-4.88010 - 4.00794i) q^{51} +(8.09860 - 6.79553i) q^{52} +(-2.59291 + 4.49105i) q^{53} +(-10.6304 - 3.49245i) q^{54} -0.706739 q^{55} +(1.44360 + 3.33065i) q^{56} +(-0.746866 + 4.51356i) q^{57} +(-2.93836 + 16.6643i) q^{58} +(6.22586 + 5.22411i) q^{59} +(-2.82021 + 5.00594i) q^{60} +(9.96675 + 3.62760i) q^{61} +(-8.52034 - 14.7577i) q^{62} +(-6.53015 + 4.51190i) q^{63} +(6.01330 - 10.4153i) q^{64} +(3.86300 - 3.24144i) q^{65} +(-0.385633 - 2.05975i) q^{66} +(1.78355 - 10.1150i) q^{67} +(-7.36544 - 6.18034i) q^{68} +(-1.22928 - 6.56586i) q^{69} +(2.85008 + 6.57567i) q^{70} +(-4.01075 + 6.94683i) q^{71} +(-3.89668 - 1.32589i) q^{72} +3.24640 q^{73} +(2.35603 + 13.3617i) q^{74} +(2.90556 - 5.15744i) q^{75} +(-1.20956 + 6.85977i) q^{76} +(-1.32953 - 0.664814i) q^{77} +(11.5549 + 9.48981i) q^{78} +(-2.46342 - 13.9708i) q^{79} +(1.45902 - 2.52710i) q^{80} +(1.18762 - 8.92130i) q^{81} +(3.38739 + 5.86714i) q^{82} +(13.4275 + 4.88722i) q^{83} +(-10.0144 + 6.76437i) q^{84} +(-3.51329 - 2.94800i) q^{85} +(-2.22521 + 0.809909i) q^{86} +(-13.6096 + 0.143548i) q^{87} +(-0.133858 - 0.759145i) q^{88} +(3.34480 - 5.79337i) q^{89} +(-7.69319 - 2.61768i) q^{90} +(10.3163 - 2.46402i) q^{91} +(-1.76610 - 10.0161i) q^{92} +(10.4062 - 8.92053i) q^{93} +(3.07212 - 17.4229i) q^{94} +(-0.576956 + 3.27208i) q^{95} +(12.6443 + 4.45170i) q^{96} +(-0.378721 - 2.14784i) q^{97} +(-0.823964 + 15.0513i) q^{98} +(1.57135 - 0.609759i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} - 15 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} - 15 q^{9} + 3 q^{10} - 15 q^{11} - 3 q^{12} - 12 q^{13} - 30 q^{14} + 9 q^{16} + 27 q^{17} - 3 q^{18} + 3 q^{19} - 18 q^{20} + 15 q^{21} - 12 q^{22} - 36 q^{23} - 72 q^{24} - 3 q^{25} + 30 q^{26} - 12 q^{27} - 12 q^{28} - 30 q^{29} - 3 q^{30} - 3 q^{31} - 75 q^{32} + 15 q^{33} - 18 q^{34} + 15 q^{35} - 60 q^{36} - 6 q^{37} + 69 q^{38} + 51 q^{39} + 51 q^{40} - 39 q^{42} - 12 q^{43} - 6 q^{44} - 21 q^{45} - 6 q^{46} - 21 q^{47} + 90 q^{48} - 42 q^{49} - 39 q^{50} + 33 q^{51} + 9 q^{52} + 9 q^{53} - 9 q^{54} - 24 q^{55} + 111 q^{56} - 18 q^{57} - 3 q^{58} + 27 q^{59} - 63 q^{60} - 21 q^{61} + 75 q^{62} + 63 q^{63} - 30 q^{64} - 90 q^{65} - 3 q^{66} - 3 q^{67} - 30 q^{68} - 6 q^{69} + 39 q^{70} - 18 q^{71} + 183 q^{72} - 42 q^{73} + 51 q^{74} - 45 q^{75} - 24 q^{76} + 15 q^{77} - 30 q^{78} + 15 q^{79} + 102 q^{80} - 87 q^{81} - 6 q^{82} - 42 q^{83} + 135 q^{84} - 63 q^{85} - 93 q^{86} + 75 q^{87} - 51 q^{88} + 75 q^{89} - 39 q^{90} - 21 q^{91} - 66 q^{92} + 81 q^{93} + 33 q^{94} + 15 q^{95} - 171 q^{96} - 12 q^{97} - 36 q^{98} + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.373934 + 2.12069i 0.264412 + 1.49955i 0.770705 + 0.637192i \(0.219904\pi\)
−0.506294 + 0.862361i \(0.668985\pi\)
\(3\) −1.62126 + 0.609530i −0.936033 + 0.351912i
\(4\) −2.47810 + 0.901956i −1.23905 + 0.450978i
\(5\) −1.18205 + 0.430229i −0.528627 + 0.192404i −0.592525 0.805552i \(-0.701869\pi\)
0.0638983 + 0.997956i \(0.479647\pi\)
\(6\) −1.89887 3.21026i −0.775209 1.31058i
\(7\) −2.62839 0.302569i −0.993439 0.114360i
\(8\) −0.686013 1.18821i −0.242542 0.420096i
\(9\) 2.25695 1.97641i 0.752316 0.658803i
\(10\) −1.35439 2.34587i −0.428296 0.741830i
\(11\) 0.527955 + 0.192160i 0.159184 + 0.0579384i 0.420383 0.907347i \(-0.361896\pi\)
−0.261199 + 0.965285i \(0.584118\pi\)
\(12\) 3.46787 2.97278i 1.00109 0.858168i
\(13\) −3.76711 + 1.37111i −1.04481 + 0.380279i −0.806701 0.590960i \(-0.798749\pi\)
−0.238107 + 0.971239i \(0.576527\pi\)
\(14\) −0.341193 5.68714i −0.0911876 1.51995i
\(15\) 1.65416 1.41800i 0.427103 0.366127i
\(16\) −1.77704 + 1.49111i −0.444260 + 0.372778i
\(17\) 1.82298 + 3.15749i 0.442137 + 0.765803i 0.997848 0.0655721i \(-0.0208872\pi\)
−0.555711 + 0.831376i \(0.687554\pi\)
\(18\) 5.03529 + 4.04723i 1.18683 + 0.953942i
\(19\) 1.32067 2.28747i 0.302982 0.524781i −0.673828 0.738889i \(-0.735351\pi\)
0.976810 + 0.214108i \(0.0686843\pi\)
\(20\) 2.54118 2.13231i 0.568226 0.476798i
\(21\) 4.44573 1.11154i 0.970137 0.242558i
\(22\) −0.210090 + 1.19148i −0.0447914 + 0.254025i
\(23\) −0.669703 + 3.79808i −0.139643 + 0.791953i 0.831871 + 0.554969i \(0.187270\pi\)
−0.971514 + 0.236984i \(0.923841\pi\)
\(24\) 1.83645 + 1.50825i 0.374864 + 0.307870i
\(25\) −2.61809 + 2.19684i −0.523618 + 0.439367i
\(26\) −4.31636 7.47615i −0.846507 1.46619i
\(27\) −2.45441 + 4.57994i −0.472352 + 0.881410i
\(28\) 6.78634 1.62090i 1.28250 0.306321i
\(29\) 7.38407 + 2.68758i 1.37119 + 0.499071i 0.919495 0.393102i \(-0.128598\pi\)
0.451693 + 0.892174i \(0.350820\pi\)
\(30\) 3.62569 + 2.97772i 0.661958 + 0.543655i
\(31\) −7.43614 + 2.70653i −1.33557 + 0.486107i −0.908414 0.418071i \(-0.862706\pi\)
−0.427155 + 0.904178i \(0.640484\pi\)
\(32\) −5.92875 4.97481i −1.04806 0.879431i
\(33\) −0.973077 + 0.0102636i −0.169391 + 0.00178666i
\(34\) −6.01437 + 5.04666i −1.03146 + 0.865495i
\(35\) 3.23705 0.773162i 0.547162 0.130688i
\(36\) −3.81032 + 6.93341i −0.635053 + 1.15557i
\(37\) 6.30064 1.03582 0.517910 0.855435i \(-0.326710\pi\)
0.517910 + 0.855435i \(0.326710\pi\)
\(38\) 5.34485 + 1.94537i 0.867049 + 0.315580i
\(39\) 5.27171 4.51909i 0.844150 0.723634i
\(40\) 1.32210 + 1.10938i 0.209043 + 0.175408i
\(41\) 2.95635 1.07602i 0.461705 0.168047i −0.100686 0.994918i \(-0.532104\pi\)
0.562391 + 0.826871i \(0.309882\pi\)
\(42\) 4.01964 + 9.01235i 0.620244 + 1.39064i
\(43\) 0.190954 + 1.08296i 0.0291203 + 0.165149i 0.995900 0.0904620i \(-0.0288344\pi\)
−0.966780 + 0.255611i \(0.917723\pi\)
\(44\) −1.48165 −0.223367
\(45\) −1.81751 + 3.30721i −0.270938 + 0.493010i
\(46\) −8.30496 −1.22450
\(47\) −7.72021 2.80993i −1.12611 0.409870i −0.289230 0.957260i \(-0.593399\pi\)
−0.836878 + 0.547390i \(0.815622\pi\)
\(48\) 1.97216 3.50064i 0.284657 0.505273i
\(49\) 6.81690 + 1.59054i 0.973843 + 0.227220i
\(50\) −5.63780 4.73067i −0.797305 0.669018i
\(51\) −4.88010 4.00794i −0.683350 0.561224i
\(52\) 8.09860 6.79553i 1.12307 0.942370i
\(53\) −2.59291 + 4.49105i −0.356163 + 0.616893i −0.987316 0.158765i \(-0.949249\pi\)
0.631153 + 0.775658i \(0.282582\pi\)
\(54\) −10.6304 3.49245i −1.44662 0.475262i
\(55\) −0.706739 −0.0952967
\(56\) 1.44360 + 3.33065i 0.192909 + 0.445077i
\(57\) −0.746866 + 4.51356i −0.0989248 + 0.597835i
\(58\) −2.93836 + 16.6643i −0.385826 + 2.18813i
\(59\) 6.22586 + 5.22411i 0.810538 + 0.680122i 0.950736 0.310002i \(-0.100330\pi\)
−0.140198 + 0.990123i \(0.544774\pi\)
\(60\) −2.82021 + 5.00594i −0.364087 + 0.646264i
\(61\) 9.96675 + 3.62760i 1.27611 + 0.464466i 0.889144 0.457627i \(-0.151301\pi\)
0.386967 + 0.922094i \(0.373523\pi\)
\(62\) −8.52034 14.7577i −1.08208 1.87422i
\(63\) −6.53015 + 4.51190i −0.822721 + 0.568445i
\(64\) 6.01330 10.4153i 0.751662 1.30192i
\(65\) 3.86300 3.24144i 0.479146 0.402051i
\(66\) −0.385633 2.05975i −0.0474681 0.253538i
\(67\) 1.78355 10.1150i 0.217896 1.23575i −0.657914 0.753093i \(-0.728561\pi\)
0.875810 0.482656i \(-0.160328\pi\)
\(68\) −7.36544 6.18034i −0.893191 0.749476i
\(69\) −1.22928 6.56586i −0.147988 0.790437i
\(70\) 2.85008 + 6.57567i 0.340650 + 0.785943i
\(71\) −4.01075 + 6.94683i −0.475989 + 0.824437i −0.999622 0.0275070i \(-0.991243\pi\)
0.523633 + 0.851944i \(0.324576\pi\)
\(72\) −3.89668 1.32589i −0.459229 0.156257i
\(73\) 3.24640 0.379963 0.189981 0.981788i \(-0.439157\pi\)
0.189981 + 0.981788i \(0.439157\pi\)
\(74\) 2.35603 + 13.3617i 0.273883 + 1.55327i
\(75\) 2.90556 5.15744i 0.335505 0.595530i
\(76\) −1.20956 + 6.85977i −0.138746 + 0.786869i
\(77\) −1.32953 0.664814i −0.151514 0.0757626i
\(78\) 11.5549 + 9.48981i 1.30833 + 1.07451i
\(79\) −2.46342 13.9708i −0.277156 1.57183i −0.732027 0.681275i \(-0.761426\pi\)
0.454871 0.890557i \(-0.349685\pi\)
\(80\) 1.45902 2.52710i 0.163124 0.282538i
\(81\) 1.18762 8.92130i 0.131958 0.991255i
\(82\) 3.38739 + 5.86714i 0.374075 + 0.647917i
\(83\) 13.4275 + 4.88722i 1.47386 + 0.536442i 0.949146 0.314835i \(-0.101949\pi\)
0.524716 + 0.851277i \(0.324172\pi\)
\(84\) −10.0144 + 6.76437i −1.09266 + 0.738053i
\(85\) −3.51329 2.94800i −0.381069 0.319755i
\(86\) −2.22521 + 0.809909i −0.239950 + 0.0873348i
\(87\) −13.6096 + 0.143548i −1.45911 + 0.0153900i
\(88\) −0.133858 0.759145i −0.0142693 0.0809251i
\(89\) 3.34480 5.79337i 0.354549 0.614096i −0.632492 0.774567i \(-0.717968\pi\)
0.987041 + 0.160471i \(0.0513012\pi\)
\(90\) −7.69319 2.61768i −0.810933 0.275928i
\(91\) 10.3163 2.46402i 1.08144 0.258299i
\(92\) −1.76610 10.0161i −0.184129 1.04425i
\(93\) 10.4062 8.92053i 1.07907 0.925016i
\(94\) 3.07212 17.4229i 0.316865 1.79703i
\(95\) −0.576956 + 3.27208i −0.0591944 + 0.335708i
\(96\) 12.6443 + 4.45170i 1.29051 + 0.454350i
\(97\) −0.378721 2.14784i −0.0384533 0.218080i 0.959526 0.281620i \(-0.0908719\pi\)
−0.997979 + 0.0635407i \(0.979761\pi\)
\(98\) −0.823964 + 15.0513i −0.0832329 + 1.52041i
\(99\) 1.57135 0.609759i 0.157927 0.0612831i
\(100\) 4.50644 7.80539i 0.450644 0.780539i
\(101\) −2.18580 12.3963i −0.217495 1.23347i −0.876524 0.481358i \(-0.840144\pi\)
0.659030 0.752117i \(-0.270967\pi\)
\(102\) 6.67476 11.8479i 0.660899 1.17311i
\(103\) 0.0637281 0.0231951i 0.00627932 0.00228548i −0.338879 0.940830i \(-0.610048\pi\)
0.345158 + 0.938545i \(0.387825\pi\)
\(104\) 4.21346 + 3.53551i 0.413163 + 0.346685i
\(105\) −4.77683 + 3.22657i −0.466171 + 0.314881i
\(106\) −10.4937 3.81939i −1.01924 0.370972i
\(107\) 2.34433 + 4.06050i 0.226635 + 0.392543i 0.956809 0.290718i \(-0.0938943\pi\)
−0.730174 + 0.683261i \(0.760561\pi\)
\(108\) 1.95138 13.5633i 0.187772 1.30513i
\(109\) −7.09903 + 12.2959i −0.679964 + 1.17773i 0.295027 + 0.955489i \(0.404671\pi\)
−0.974991 + 0.222243i \(0.928662\pi\)
\(110\) −0.264274 1.49877i −0.0251976 0.142902i
\(111\) −10.2150 + 3.84043i −0.969561 + 0.364517i
\(112\) 5.12193 3.38156i 0.483976 0.319527i
\(113\) −0.270466 + 1.53389i −0.0254433 + 0.144296i −0.994883 0.101033i \(-0.967785\pi\)
0.969440 + 0.245330i \(0.0788962\pi\)
\(114\) −9.85113 + 0.103905i −0.922643 + 0.00973163i
\(115\) −0.842424 4.77762i −0.0785564 0.445516i
\(116\) −20.7226 −1.92404
\(117\) −5.79228 + 10.5399i −0.535496 + 0.974412i
\(118\) −8.75065 + 15.1566i −0.805563 + 1.39528i
\(119\) −3.83614 8.85070i −0.351659 0.811342i
\(120\) −2.81966 0.992722i −0.257399 0.0906227i
\(121\) −8.18468 6.86776i −0.744062 0.624342i
\(122\) −3.96609 + 22.4928i −0.359073 + 2.03641i
\(123\) −4.13714 + 3.54650i −0.373033 + 0.319777i
\(124\) 15.9863 13.4141i 1.43562 1.20463i
\(125\) 5.29432 9.17003i 0.473539 0.820193i
\(126\) −12.0102 12.1612i −1.06995 1.08341i
\(127\) 4.37260 + 7.57356i 0.388005 + 0.672045i 0.992181 0.124806i \(-0.0398309\pi\)
−0.604176 + 0.796851i \(0.706498\pi\)
\(128\) 9.79088 + 3.56359i 0.865400 + 0.314980i
\(129\) −0.969680 1.63936i −0.0853756 0.144337i
\(130\) 8.31859 + 6.98012i 0.729588 + 0.612197i
\(131\) −3.14989 + 17.8639i −0.275207 + 1.56078i 0.463096 + 0.886308i \(0.346739\pi\)
−0.738303 + 0.674469i \(0.764372\pi\)
\(132\) 2.40213 0.903107i 0.209079 0.0786054i
\(133\) −4.16336 + 5.61277i −0.361009 + 0.486689i
\(134\) 22.1178 1.91068
\(135\) 0.930802 6.46966i 0.0801107 0.556820i
\(136\) 2.50117 4.33216i 0.214474 0.371479i
\(137\) −13.8684 + 11.6370i −1.18486 + 0.994215i −0.184925 + 0.982753i \(0.559204\pi\)
−0.999934 + 0.0114625i \(0.996351\pi\)
\(138\) 13.4645 5.06212i 1.14617 0.430916i
\(139\) −1.87847 1.57622i −0.159330 0.133693i 0.559637 0.828738i \(-0.310940\pi\)
−0.718967 + 0.695044i \(0.755385\pi\)
\(140\) −7.32440 + 4.83566i −0.619025 + 0.408688i
\(141\) 14.2292 0.150083i 1.19831 0.0126393i
\(142\) −16.2318 5.90790i −1.36214 0.495780i
\(143\) −2.25233 −0.188350
\(144\) −1.06364 + 6.87752i −0.0886365 + 0.573127i
\(145\) −9.88458 −0.820870
\(146\) 1.21394 + 6.88461i 0.100467 + 0.569774i
\(147\) −12.0214 + 1.57643i −0.991511 + 0.130022i
\(148\) −15.6136 + 5.68290i −1.28343 + 0.467132i
\(149\) 9.39990 + 7.88746i 0.770070 + 0.646166i 0.940727 0.339165i \(-0.110144\pi\)
−0.170657 + 0.985331i \(0.554589\pi\)
\(150\) 12.0238 + 4.23323i 0.981740 + 0.345642i
\(151\) −22.2462 8.09696i −1.81037 0.658921i −0.997020 0.0771470i \(-0.975419\pi\)
−0.813351 0.581774i \(-0.802359\pi\)
\(152\) −3.62399 −0.293944
\(153\) 10.3548 + 3.52334i 0.837140 + 0.284845i
\(154\) 0.912706 3.06812i 0.0735479 0.247236i
\(155\) 7.62542 6.39849i 0.612488 0.513939i
\(156\) −8.98783 + 15.9536i −0.719602 + 1.27731i
\(157\) 6.34814 + 5.32672i 0.506637 + 0.425119i 0.859944 0.510389i \(-0.170498\pi\)
−0.353307 + 0.935507i \(0.614943\pi\)
\(158\) 28.7064 10.4483i 2.28376 0.831222i
\(159\) 1.46634 8.86160i 0.116289 0.702770i
\(160\) 9.14836 + 3.32973i 0.723241 + 0.263238i
\(161\) 2.90942 9.78020i 0.229295 0.770788i
\(162\) 19.3634 0.817400i 1.52133 0.0642210i
\(163\) −9.36043 16.2127i −0.733165 1.26988i −0.955524 0.294915i \(-0.904709\pi\)
0.222358 0.974965i \(-0.428625\pi\)
\(164\) −6.35562 + 5.33300i −0.496291 + 0.416437i
\(165\) 1.14581 0.430778i 0.0892009 0.0335361i
\(166\) −5.34325 + 30.3031i −0.414717 + 2.35198i
\(167\) −3.09189 + 17.5350i −0.239258 + 1.35690i 0.594201 + 0.804316i \(0.297468\pi\)
−0.833459 + 0.552581i \(0.813643\pi\)
\(168\) −4.37057 4.51992i −0.337197 0.348720i
\(169\) 2.35256 1.97403i 0.180966 0.151848i
\(170\) 4.93804 8.55294i 0.378730 0.655980i
\(171\) −1.54029 7.77287i −0.117789 0.594407i
\(172\) −1.44998 2.51145i −0.110560 0.191496i
\(173\) −12.0380 + 10.1011i −0.915231 + 0.767970i −0.973107 0.230354i \(-0.926012\pi\)
0.0578763 + 0.998324i \(0.481567\pi\)
\(174\) −5.39353 28.8081i −0.408883 2.18394i
\(175\) 7.54606 4.98200i 0.570429 0.376604i
\(176\) −1.22473 + 0.445765i −0.0923174 + 0.0336008i
\(177\) −13.2780 4.67479i −0.998033 0.351379i
\(178\) 13.5367 + 4.92694i 1.01462 + 0.369290i
\(179\) 3.21640 + 5.57097i 0.240405 + 0.416394i 0.960830 0.277139i \(-0.0893863\pi\)
−0.720424 + 0.693533i \(0.756053\pi\)
\(180\) 1.52101 9.83492i 0.113370 0.733052i
\(181\) 4.24299 + 7.34908i 0.315379 + 0.546253i 0.979518 0.201357i \(-0.0645350\pi\)
−0.664139 + 0.747609i \(0.731202\pi\)
\(182\) 9.08303 + 20.9563i 0.673279 + 1.55338i
\(183\) −18.3698 + 0.193756i −1.35793 + 0.0143229i
\(184\) 4.97234 1.80978i 0.366565 0.133419i
\(185\) −7.44764 + 2.71072i −0.547562 + 0.199296i
\(186\) 22.8089 + 18.7326i 1.67243 + 1.37354i
\(187\) 0.355707 + 2.01731i 0.0260119 + 0.147521i
\(188\) 21.6659 1.58015
\(189\) 7.83691 11.2953i 0.570051 0.821609i
\(190\) −7.15480 −0.519064
\(191\) −2.76767 15.6962i −0.200262 1.13574i −0.904724 0.425999i \(-0.859923\pi\)
0.704462 0.709742i \(-0.251188\pi\)
\(192\) −3.40064 + 20.5512i −0.245420 + 1.48316i
\(193\) 19.0137 6.92041i 1.36863 0.498142i 0.449922 0.893068i \(-0.351452\pi\)
0.918713 + 0.394926i \(0.129230\pi\)
\(194\) 4.41327 1.60630i 0.316854 0.115326i
\(195\) −4.28716 + 7.60982i −0.307010 + 0.544950i
\(196\) −18.3276 + 2.20702i −1.30911 + 0.157645i
\(197\) 0.836616 + 1.44906i 0.0596065 + 0.103241i 0.894289 0.447490i \(-0.147682\pi\)
−0.834682 + 0.550732i \(0.814349\pi\)
\(198\) 1.88069 + 3.10434i 0.133655 + 0.220616i
\(199\) 9.34464 + 16.1854i 0.662424 + 1.14735i 0.979977 + 0.199112i \(0.0638057\pi\)
−0.317553 + 0.948241i \(0.602861\pi\)
\(200\) 4.40635 + 1.60378i 0.311576 + 0.113404i
\(201\) 3.27381 + 17.4862i 0.230917 + 1.23338i
\(202\) 25.4713 9.27078i 1.79215 0.652290i
\(203\) −18.5951 9.29821i −1.30512 0.652607i
\(204\) 15.7084 + 5.53046i 1.09981 + 0.387210i
\(205\) −3.03161 + 2.54382i −0.211736 + 0.177668i
\(206\) 0.0730198 + 0.126474i 0.00508753 + 0.00881186i
\(207\) 5.99506 + 9.89566i 0.416686 + 0.687796i
\(208\) 4.64981 8.05371i 0.322406 0.558424i
\(209\) 1.13681 0.953899i 0.0786350 0.0659826i
\(210\) −8.62878 8.92364i −0.595442 0.615790i
\(211\) −1.23023 + 6.97695i −0.0846922 + 0.480313i 0.912730 + 0.408562i \(0.133970\pi\)
−0.997423 + 0.0717509i \(0.977141\pi\)
\(212\) 2.37477 13.4680i 0.163100 0.924984i
\(213\) 2.26817 13.7073i 0.155412 0.939207i
\(214\) −7.73442 + 6.48995i −0.528714 + 0.443644i
\(215\) −0.691636 1.19795i −0.0471692 0.0816995i
\(216\) 7.12569 0.225543i 0.484842 0.0153462i
\(217\) 20.3640 4.86389i 1.38240 0.330182i
\(218\) −28.7303 10.4570i −1.94586 0.708236i
\(219\) −5.26325 + 1.97878i −0.355658 + 0.133713i
\(220\) 1.75137 0.637448i 0.118078 0.0429767i
\(221\) −11.1966 9.39508i −0.753167 0.631982i
\(222\) −11.9641 20.2267i −0.802976 1.35753i
\(223\) 18.1735 15.2493i 1.21698 1.02117i 0.218008 0.975947i \(-0.430044\pi\)
0.998977 0.0452241i \(-0.0144002\pi\)
\(224\) 14.0779 + 14.8696i 0.940617 + 0.993518i
\(225\) −1.56704 + 10.1326i −0.104469 + 0.675504i
\(226\) −3.35404 −0.223107
\(227\) 1.43364 + 0.521804i 0.0951543 + 0.0346333i 0.389159 0.921171i \(-0.372766\pi\)
−0.294004 + 0.955804i \(0.594988\pi\)
\(228\) −2.22022 11.8587i −0.147038 0.785362i
\(229\) 1.52233 + 1.27739i 0.100599 + 0.0844123i 0.691700 0.722185i \(-0.256862\pi\)
−0.591101 + 0.806597i \(0.701307\pi\)
\(230\) 9.81684 3.57304i 0.647303 0.235599i
\(231\) 2.56074 + 0.267446i 0.168484 + 0.0175967i
\(232\) −1.87216 10.6175i −0.122913 0.697076i
\(233\) 10.2291 0.670128 0.335064 0.942195i \(-0.391242\pi\)
0.335064 + 0.942195i \(0.391242\pi\)
\(234\) −24.5177 8.34240i −1.60277 0.545359i
\(235\) 10.3345 0.674152
\(236\) −20.1402 7.33045i −1.31102 0.477172i
\(237\) 12.5094 + 21.1487i 0.812574 + 1.37375i
\(238\) 17.3351 11.4448i 1.12367 0.741859i
\(239\) 4.61717 + 3.87426i 0.298660 + 0.250605i 0.779786 0.626046i \(-0.215328\pi\)
−0.481126 + 0.876651i \(0.659772\pi\)
\(240\) −0.825107 + 4.98639i −0.0532604 + 0.321870i
\(241\) −7.48242 + 6.27849i −0.481985 + 0.404433i −0.851143 0.524933i \(-0.824090\pi\)
0.369159 + 0.929366i \(0.379646\pi\)
\(242\) 11.5038 19.9252i 0.739495 1.28084i
\(243\) 3.51235 + 15.1876i 0.225317 + 0.974285i
\(244\) −27.9706 −1.79063
\(245\) −8.74219 + 1.05274i −0.558518 + 0.0672572i
\(246\) −9.06803 7.44742i −0.578156 0.474830i
\(247\) −1.83872 + 10.4279i −0.116995 + 0.663513i
\(248\) 8.31722 + 6.97897i 0.528144 + 0.443165i
\(249\) −24.7484 + 0.261035i −1.56836 + 0.0165424i
\(250\) 21.4265 + 7.79861i 1.35513 + 0.493227i
\(251\) −8.67976 15.0338i −0.547862 0.948924i −0.998421 0.0561775i \(-0.982109\pi\)
0.450559 0.892747i \(-0.351225\pi\)
\(252\) 12.1129 17.0709i 0.763038 1.07536i
\(253\) −1.08341 + 1.87652i −0.0681134 + 0.117976i
\(254\) −14.4261 + 12.1049i −0.905174 + 0.759531i
\(255\) 7.49283 + 2.63801i 0.469219 + 0.165198i
\(256\) 0.280681 1.59182i 0.0175426 0.0994888i
\(257\) −1.53786 1.29042i −0.0959292 0.0804942i 0.593562 0.804788i \(-0.297721\pi\)
−0.689491 + 0.724294i \(0.742166\pi\)
\(258\) 3.11397 2.66940i 0.193867 0.166190i
\(259\) −16.5606 1.90638i −1.02902 0.118457i
\(260\) −6.64927 + 11.5169i −0.412370 + 0.714247i
\(261\) 21.9772 8.52820i 1.36036 0.527883i
\(262\) −39.0616 −2.41324
\(263\) 0.152054 + 0.862344i 0.00937608 + 0.0531744i 0.989137 0.146998i \(-0.0469610\pi\)
−0.979761 + 0.200172i \(0.935850\pi\)
\(264\) 0.679739 + 1.14918i 0.0418351 + 0.0707271i
\(265\) 1.13275 6.42417i 0.0695845 0.394633i
\(266\) −13.4598 6.73037i −0.825270 0.412665i
\(267\) −1.89156 + 11.4313i −0.115761 + 0.699584i
\(268\) 4.70349 + 26.6748i 0.287311 + 1.62942i
\(269\) 1.56979 2.71895i 0.0957115 0.165777i −0.814194 0.580593i \(-0.802821\pi\)
0.909905 + 0.414816i \(0.136154\pi\)
\(270\) 14.0682 0.445287i 0.856162 0.0270993i
\(271\) 7.48337 + 12.9616i 0.454582 + 0.787360i 0.998664 0.0516725i \(-0.0164552\pi\)
−0.544082 + 0.839032i \(0.683122\pi\)
\(272\) −7.94768 2.89272i −0.481899 0.175397i
\(273\) −15.2235 + 10.2829i −0.921366 + 0.622349i
\(274\) −29.8643 25.0591i −1.80417 1.51388i
\(275\) −1.80438 + 0.656739i −0.108808 + 0.0396029i
\(276\) 8.96840 + 15.1621i 0.539834 + 0.912653i
\(277\) −2.72267 15.4410i −0.163589 0.927760i −0.950507 0.310703i \(-0.899436\pi\)
0.786918 0.617058i \(-0.211675\pi\)
\(278\) 2.64025 4.57305i 0.158352 0.274273i
\(279\) −11.4338 + 20.8053i −0.684521 + 1.24558i
\(280\) −3.13934 3.31590i −0.187612 0.198163i
\(281\) −3.33633 18.9213i −0.199029 1.12875i −0.906563 0.422070i \(-0.861304\pi\)
0.707535 0.706679i \(-0.249807\pi\)
\(282\) 5.63906 + 30.1195i 0.335801 + 1.79359i
\(283\) −0.775260 + 4.39672i −0.0460844 + 0.261358i −0.999141 0.0414337i \(-0.986807\pi\)
0.953057 + 0.302791i \(0.0979186\pi\)
\(284\) 3.67333 20.8325i 0.217972 1.23618i
\(285\) −1.05904 5.65655i −0.0627319 0.335065i
\(286\) −0.842225 4.77650i −0.0498018 0.282440i
\(287\) −8.09603 + 1.93371i −0.477893 + 0.114144i
\(288\) −23.2131 + 0.489738i −1.36785 + 0.0288581i
\(289\) 1.85351 3.21038i 0.109030 0.188846i
\(290\) −3.69619 20.9621i −0.217048 1.23094i
\(291\) 1.92317 + 3.25135i 0.112738 + 0.190598i
\(292\) −8.04492 + 2.92811i −0.470794 + 0.171355i
\(293\) −18.4319 15.4662i −1.07681 0.903547i −0.0811537 0.996702i \(-0.525860\pi\)
−0.995652 + 0.0931547i \(0.970305\pi\)
\(294\) −7.83834 24.9042i −0.457142 1.45244i
\(295\) −9.60681 3.49659i −0.559330 0.203580i
\(296\) −4.32232 7.48649i −0.251230 0.435143i
\(297\) −2.17590 + 1.94636i −0.126258 + 0.112939i
\(298\) −13.2119 + 22.8837i −0.765344 + 1.32561i
\(299\) −2.68475 15.2260i −0.155263 0.880542i
\(300\) −2.54849 + 15.4014i −0.147137 + 0.889198i
\(301\) −0.174234 2.90421i −0.0100427 0.167396i
\(302\) 8.85249 50.2050i 0.509404 2.88897i
\(303\) 11.0996 + 18.7652i 0.637657 + 1.07803i
\(304\) 1.06399 + 6.03419i 0.0610240 + 0.346084i
\(305\) −13.3418 −0.763952
\(306\) −3.59987 + 23.2769i −0.205791 + 1.33065i
\(307\) 6.54938 11.3439i 0.373793 0.647428i −0.616353 0.787470i \(-0.711390\pi\)
0.990146 + 0.140042i \(0.0447238\pi\)
\(308\) 3.89435 + 0.448300i 0.221901 + 0.0255443i
\(309\) −0.0891815 + 0.0764494i −0.00507336 + 0.00434906i
\(310\) 16.4206 + 13.7785i 0.932627 + 0.782567i
\(311\) 0.323474 1.83451i 0.0183425 0.104026i −0.974262 0.225419i \(-0.927625\pi\)
0.992605 + 0.121393i \(0.0387361\pi\)
\(312\) −8.98609 3.16374i −0.508737 0.179112i
\(313\) −16.3079 + 13.6840i −0.921778 + 0.773464i −0.974323 0.225155i \(-0.927711\pi\)
0.0525448 + 0.998619i \(0.483267\pi\)
\(314\) −8.92253 + 15.4543i −0.503528 + 0.872135i
\(315\) 5.77778 8.14273i 0.325541 0.458791i
\(316\) 18.7056 + 32.3991i 1.05227 + 1.82259i
\(317\) 16.7454 + 6.09481i 0.940513 + 0.342319i 0.766368 0.642401i \(-0.222062\pi\)
0.174144 + 0.984720i \(0.444284\pi\)
\(318\) 19.3410 0.204000i 1.08459 0.0114398i
\(319\) 3.38201 + 2.83784i 0.189356 + 0.158889i
\(320\) −2.62701 + 14.8985i −0.146854 + 0.832851i
\(321\) −6.27575 5.15417i −0.350278 0.287678i
\(322\) 21.8287 + 2.51282i 1.21647 + 0.140034i
\(323\) 9.63020 0.535839
\(324\) 5.10356 + 23.1791i 0.283531 + 1.28773i
\(325\) 6.85050 11.8654i 0.379997 0.658175i
\(326\) 30.8820 25.9130i 1.71039 1.43519i
\(327\) 4.01465 24.2619i 0.222011 1.34168i
\(328\) −3.30664 2.77460i −0.182579 0.153202i
\(329\) 19.4415 + 9.72148i 1.07185 + 0.535963i
\(330\) 1.34200 + 2.26881i 0.0738748 + 0.124894i
\(331\) 22.7316 + 8.27362i 1.24944 + 0.454759i 0.880213 0.474579i \(-0.157400\pi\)
0.369228 + 0.929339i \(0.379622\pi\)
\(332\) −37.6829 −2.06812
\(333\) 14.2202 12.4526i 0.779263 0.682400i
\(334\) −38.3424 −2.09800
\(335\) 2.24354 + 12.7238i 0.122578 + 0.695174i
\(336\) −6.24280 + 8.60434i −0.340573 + 0.469405i
\(337\) −22.1062 + 8.04599i −1.20420 + 0.438293i −0.864689 0.502308i \(-0.832484\pi\)
−0.339512 + 0.940602i \(0.610262\pi\)
\(338\) 5.06600 + 4.25088i 0.275554 + 0.231217i
\(339\) −0.496456 2.65169i −0.0269638 0.144020i
\(340\) 11.3653 + 4.13661i 0.616367 + 0.224339i
\(341\) −4.44603 −0.240766
\(342\) 15.9079 6.17301i 0.860199 0.333798i
\(343\) −17.4363 6.24315i −0.941469 0.337098i
\(344\) 1.15578 0.969816i 0.0623156 0.0522890i
\(345\) 4.27789 + 7.23227i 0.230314 + 0.389372i
\(346\) −25.9226 21.7517i −1.39361 1.16938i
\(347\) 20.9104 7.61076i 1.12253 0.408567i 0.286954 0.957944i \(-0.407357\pi\)
0.835574 + 0.549377i \(0.185135\pi\)
\(348\) 33.5966 12.6310i 1.80097 0.677094i
\(349\) −7.49093 2.72647i −0.400980 0.145945i 0.133655 0.991028i \(-0.457329\pi\)
−0.534635 + 0.845083i \(0.679551\pi\)
\(350\) 13.3870 + 14.1399i 0.715565 + 0.755809i
\(351\) 2.96641 20.6184i 0.158335 1.10053i
\(352\) −2.17415 3.76574i −0.115883 0.200715i
\(353\) 22.9621 19.2675i 1.22215 1.02550i 0.223438 0.974718i \(-0.428272\pi\)
0.998710 0.0507858i \(-0.0161726\pi\)
\(354\) 4.94868 29.9065i 0.263019 1.58951i
\(355\) 1.75216 9.93701i 0.0929952 0.527402i
\(356\) −3.06341 + 17.3734i −0.162360 + 0.920791i
\(357\) 11.6141 + 12.0110i 0.614685 + 0.635690i
\(358\) −10.6116 + 8.90417i −0.560839 + 0.470600i
\(359\) −3.88481 + 6.72868i −0.205032 + 0.355126i −0.950143 0.311814i \(-0.899063\pi\)
0.745111 + 0.666941i \(0.232397\pi\)
\(360\) 5.17649 0.109211i 0.272825 0.00575592i
\(361\) 6.01166 + 10.4125i 0.316403 + 0.548027i
\(362\) −13.9985 + 11.7461i −0.735745 + 0.617363i
\(363\) 17.4556 + 6.14560i 0.916180 + 0.322560i
\(364\) −23.3424 + 15.4109i −1.22347 + 0.807753i
\(365\) −3.83739 + 1.39670i −0.200858 + 0.0731065i
\(366\) −7.27999 38.8841i −0.380531 2.03251i
\(367\) 30.1778 + 10.9838i 1.57527 + 0.573352i 0.974169 0.225821i \(-0.0725064\pi\)
0.601102 + 0.799173i \(0.294729\pi\)
\(368\) −4.47327 7.74794i −0.233185 0.403889i
\(369\) 4.54567 8.27149i 0.236638 0.430596i
\(370\) −8.53352 14.7805i −0.443637 0.768401i
\(371\) 8.17403 11.0197i 0.424375 0.572115i
\(372\) −17.7417 + 31.4919i −0.919862 + 1.63278i
\(373\) 9.31908 3.39187i 0.482524 0.175624i −0.0892935 0.996005i \(-0.528461\pi\)
0.571817 + 0.820381i \(0.306239\pi\)
\(374\) −4.14508 + 1.50869i −0.214337 + 0.0780123i
\(375\) −2.99405 + 18.0940i −0.154612 + 0.934371i
\(376\) 1.95738 + 11.1009i 0.100944 + 0.572484i
\(377\) −31.5016 −1.62241
\(378\) 26.8842 + 12.3960i 1.38277 + 0.637579i
\(379\) 20.2706 1.04123 0.520614 0.853792i \(-0.325703\pi\)
0.520614 + 0.853792i \(0.325703\pi\)
\(380\) −1.52152 8.62895i −0.0780521 0.442656i
\(381\) −11.7054 9.61346i −0.599686 0.492512i
\(382\) 32.2519 11.7387i 1.65015 0.600606i
\(383\) 33.5257 12.2024i 1.71308 0.623511i 0.715879 0.698225i \(-0.246026\pi\)
0.997205 + 0.0747134i \(0.0238042\pi\)
\(384\) −18.0456 + 0.190337i −0.920888 + 0.00971312i
\(385\) 1.85759 + 0.213837i 0.0946715 + 0.0108982i
\(386\) 21.7859 + 37.7343i 1.10887 + 1.92063i
\(387\) 2.57134 + 2.06677i 0.130708 + 0.105060i
\(388\) 2.87576 + 4.98097i 0.145995 + 0.252870i
\(389\) 8.00687 + 2.91426i 0.405964 + 0.147759i 0.536928 0.843628i \(-0.319585\pi\)
−0.130963 + 0.991387i \(0.541807\pi\)
\(390\) −17.7412 6.24615i −0.898359 0.316286i
\(391\) −13.2132 + 4.80922i −0.668222 + 0.243213i
\(392\) −2.78659 9.19104i −0.140744 0.464218i
\(393\) −5.78180 30.8820i −0.291653 1.55779i
\(394\) −2.76017 + 2.31606i −0.139055 + 0.116681i
\(395\) 8.92250 + 15.4542i 0.448940 + 0.777587i
\(396\) −3.34400 + 2.92834i −0.168042 + 0.147155i
\(397\) −5.28373 + 9.15168i −0.265183 + 0.459310i −0.967611 0.252444i \(-0.918766\pi\)
0.702429 + 0.711754i \(0.252099\pi\)
\(398\) −30.8299 + 25.8693i −1.54536 + 1.29671i
\(399\) 3.32872 11.6374i 0.166644 0.582600i
\(400\) 1.37671 7.80773i 0.0688357 0.390387i
\(401\) −2.24904 + 12.7549i −0.112312 + 0.636951i 0.875735 + 0.482793i \(0.160378\pi\)
−0.988046 + 0.154158i \(0.950733\pi\)
\(402\) −35.8586 + 13.4814i −1.78846 + 0.672393i
\(403\) 24.3017 20.3916i 1.21056 1.01578i
\(404\) 16.5975 + 28.7477i 0.825757 + 1.43025i
\(405\) 2.43438 + 11.0563i 0.120965 + 0.549393i
\(406\) 12.7653 42.9113i 0.633530 2.12965i
\(407\) 3.32645 + 1.21073i 0.164886 + 0.0600137i
\(408\) −1.41447 + 8.54808i −0.0700265 + 0.423193i
\(409\) −2.79886 + 1.01870i −0.138395 + 0.0503715i −0.410289 0.911956i \(-0.634572\pi\)
0.271894 + 0.962327i \(0.412350\pi\)
\(410\) −6.52827 5.47787i −0.322408 0.270533i
\(411\) 15.3912 27.3198i 0.759191 1.34758i
\(412\) −0.137004 + 0.114960i −0.00674970 + 0.00566367i
\(413\) −14.7833 15.6148i −0.727441 0.768353i
\(414\) −18.7439 + 16.4140i −0.921210 + 0.806703i
\(415\) −17.9746 −0.882337
\(416\) 29.1553 + 10.6116i 1.42945 + 0.520279i
\(417\) 4.00623 + 1.41048i 0.196186 + 0.0690715i
\(418\) 2.44802 + 2.05413i 0.119736 + 0.100471i
\(419\) 28.4030 10.3378i 1.38758 0.505036i 0.463110 0.886301i \(-0.346734\pi\)
0.924466 + 0.381265i \(0.124511\pi\)
\(420\) 8.92726 12.3043i 0.435606 0.600387i
\(421\) 2.47000 + 14.0081i 0.120380 + 0.682711i 0.983945 + 0.178473i \(0.0571156\pi\)
−0.863564 + 0.504238i \(0.831773\pi\)
\(422\) −15.2560 −0.742649
\(423\) −22.9777 + 8.91642i −1.11721 + 0.433531i
\(424\) 7.11508 0.345539
\(425\) −11.7092 4.26180i −0.567980 0.206728i
\(426\) 29.9170 0.315551i 1.44948 0.0152885i
\(427\) −25.0989 12.5504i −1.21462 0.607356i
\(428\) −9.47188 7.94785i −0.457841 0.384174i
\(429\) 3.65161 1.37286i 0.176302 0.0662825i
\(430\) 2.28185 1.91470i 0.110041 0.0923350i
\(431\) −6.53397 + 11.3172i −0.314730 + 0.545129i −0.979380 0.202026i \(-0.935247\pi\)
0.664650 + 0.747155i \(0.268581\pi\)
\(432\) −2.46762 11.7985i −0.118724 0.567658i
\(433\) −4.56247 −0.219258 −0.109629 0.993973i \(-0.534966\pi\)
−0.109629 + 0.993973i \(0.534966\pi\)
\(434\) 17.9296 + 41.3669i 0.860648 + 1.98568i
\(435\) 16.0254 6.02495i 0.768361 0.288874i
\(436\) 6.50179 36.8735i 0.311379 1.76592i
\(437\) 7.80351 + 6.54793i 0.373293 + 0.313230i
\(438\) −6.16448 10.4218i −0.294550 0.497972i
\(439\) −4.12263 1.50051i −0.196762 0.0716156i 0.241759 0.970336i \(-0.422276\pi\)
−0.438522 + 0.898721i \(0.644498\pi\)
\(440\) 0.484832 + 0.839754i 0.0231135 + 0.0400337i
\(441\) 18.5290 9.88322i 0.882331 0.470629i
\(442\) 15.7372 27.2577i 0.748544 1.29652i
\(443\) −23.1955 + 19.4633i −1.10205 + 0.924730i −0.997561 0.0697956i \(-0.977765\pi\)
−0.104489 + 0.994526i \(0.533321\pi\)
\(444\) 21.8498 18.7304i 1.03695 0.888907i
\(445\) −1.46123 + 8.28706i −0.0692691 + 0.392844i
\(446\) 39.1348 + 32.8380i 1.85308 + 1.55492i
\(447\) −20.0473 7.05807i −0.948205 0.333835i
\(448\) −18.9567 + 25.5562i −0.895618 + 1.20742i
\(449\) −8.20302 + 14.2081i −0.387125 + 0.670519i −0.992061 0.125754i \(-0.959865\pi\)
0.604937 + 0.796273i \(0.293198\pi\)
\(450\) −22.0740 + 0.465704i −1.04058 + 0.0219535i
\(451\) 1.76759 0.0832325
\(452\) −0.713258 4.04509i −0.0335488 0.190265i
\(453\) 41.0021 0.432472i 1.92645 0.0203193i
\(454\) −0.570494 + 3.23543i −0.0267746 + 0.151846i
\(455\) −11.1342 + 7.35096i −0.521981 + 0.344618i
\(456\) 5.87541 2.20893i 0.275142 0.103443i
\(457\) −2.35879 13.3774i −0.110340 0.625767i −0.988953 0.148232i \(-0.952642\pi\)
0.878613 0.477534i \(-0.158469\pi\)
\(458\) −2.13969 + 3.70606i −0.0999813 + 0.173173i
\(459\) −18.9354 + 0.599346i −0.883831 + 0.0279751i
\(460\) 6.39682 + 11.0796i 0.298253 + 0.516590i
\(461\) −0.559614 0.203683i −0.0260638 0.00948646i 0.328955 0.944345i \(-0.393303\pi\)
−0.355019 + 0.934859i \(0.615526\pi\)
\(462\) 0.390377 + 5.53053i 0.0181620 + 0.257303i
\(463\) −5.41109 4.54044i −0.251475 0.211012i 0.508332 0.861161i \(-0.330262\pi\)
−0.759807 + 0.650149i \(0.774707\pi\)
\(464\) −17.1293 + 6.23455i −0.795207 + 0.289432i
\(465\) −8.46270 + 15.0215i −0.392448 + 0.696606i
\(466\) 3.82500 + 21.6926i 0.177190 + 1.00489i
\(467\) −6.15178 + 10.6552i −0.284670 + 0.493063i −0.972529 0.232781i \(-0.925217\pi\)
0.687859 + 0.725844i \(0.258551\pi\)
\(468\) 4.84737 31.3433i 0.224070 1.44884i
\(469\) −7.74838 + 26.0467i −0.357787 + 1.20272i
\(470\) 3.86444 + 21.9163i 0.178253 + 1.01093i
\(471\) −13.5388 4.76661i −0.623833 0.219634i
\(472\) 1.93632 10.9814i 0.0891265 0.505462i
\(473\) −0.107285 + 0.608446i −0.00493299 + 0.0279764i
\(474\) −40.1720 + 34.4368i −1.84516 + 1.58173i
\(475\) 1.56756 + 8.89009i 0.0719247 + 0.407905i
\(476\) 17.4893 + 18.4729i 0.801621 + 0.846705i
\(477\) 3.02409 + 15.2607i 0.138463 + 0.698740i
\(478\) −6.48959 + 11.2403i −0.296827 + 0.514119i
\(479\) −1.22758 6.96196i −0.0560896 0.318100i 0.943834 0.330419i \(-0.107190\pi\)
−0.999924 + 0.0123185i \(0.996079\pi\)
\(480\) −16.8614 + 0.177847i −0.769615 + 0.00811756i
\(481\) −23.7352 + 8.63890i −1.08223 + 0.393900i
\(482\) −16.1127 13.5201i −0.733911 0.615825i
\(483\) 1.24440 + 17.6296i 0.0566222 + 0.802175i
\(484\) 26.4769 + 9.63681i 1.20350 + 0.438037i
\(485\) 1.37173 + 2.37590i 0.0622869 + 0.107884i
\(486\) −30.8948 + 13.1278i −1.40142 + 0.595488i
\(487\) −12.5927 + 21.8113i −0.570632 + 0.988363i 0.425869 + 0.904785i \(0.359968\pi\)
−0.996501 + 0.0835787i \(0.973365\pi\)
\(488\) −2.52697 14.3312i −0.114391 0.648741i
\(489\) 25.0578 + 20.5796i 1.13315 + 0.930640i
\(490\) −5.50154 18.1458i −0.248534 0.819743i
\(491\) 0.552850 3.13537i 0.0249498 0.141497i −0.969788 0.243948i \(-0.921557\pi\)
0.994738 + 0.102451i \(0.0326685\pi\)
\(492\) 7.05347 12.5201i 0.317995 0.564450i
\(493\) 4.97498 + 28.2145i 0.224062 + 1.27072i
\(494\) −22.8019 −1.02591
\(495\) −1.59507 + 1.39680i −0.0716932 + 0.0627817i
\(496\) 9.17856 15.8977i 0.412130 0.713830i
\(497\) 12.6437 17.0455i 0.567149 0.764594i
\(498\) −9.80784 52.3860i −0.439500 2.34747i
\(499\) 11.3551 + 9.52808i 0.508325 + 0.426536i 0.860539 0.509384i \(-0.170127\pi\)
−0.352214 + 0.935919i \(0.614571\pi\)
\(500\) −4.84891 + 27.4995i −0.216850 + 1.22982i
\(501\) −5.67534 30.3133i −0.253556 1.35430i
\(502\) 28.6363 24.0287i 1.27810 1.07245i
\(503\) −10.8253 + 18.7499i −0.482674 + 0.836017i −0.999802 0.0198916i \(-0.993668\pi\)
0.517128 + 0.855908i \(0.327001\pi\)
\(504\) 9.84085 + 4.66396i 0.438346 + 0.207749i
\(505\) 7.91695 + 13.7126i 0.352300 + 0.610201i
\(506\) −4.38464 1.59588i −0.194921 0.0709455i
\(507\) −2.61087 + 4.63436i −0.115953 + 0.205819i
\(508\) −17.6668 14.8242i −0.783836 0.657717i
\(509\) −1.60162 + 9.08323i −0.0709905 + 0.402607i 0.928519 + 0.371285i \(0.121083\pi\)
−0.999509 + 0.0313219i \(0.990028\pi\)
\(510\) −2.79256 + 16.8764i −0.123657 + 0.747299i
\(511\) −8.53282 0.982260i −0.377470 0.0434526i
\(512\) 24.3192 1.07477
\(513\) 7.23499 + 11.6630i 0.319433 + 0.514933i
\(514\) 2.16152 3.74386i 0.0953405 0.165135i
\(515\) −0.0653503 + 0.0548354i −0.00287968 + 0.00241634i
\(516\) 3.88160 + 3.18789i 0.170878 + 0.140339i
\(517\) −3.53596 2.96703i −0.155512 0.130490i
\(518\) −2.14973 35.8327i −0.0944539 1.57440i
\(519\) 13.3598 23.7139i 0.586428 1.04093i
\(520\) −6.50158 2.36638i −0.285113 0.103773i
\(521\) 13.1565 0.576397 0.288199 0.957571i \(-0.406944\pi\)
0.288199 + 0.957571i \(0.406944\pi\)
\(522\) 26.3037 + 43.4178i 1.15128 + 1.90035i
\(523\) −25.5674 −1.11799 −0.558993 0.829172i \(-0.688812\pi\)
−0.558993 + 0.829172i \(0.688812\pi\)
\(524\) −8.30671 47.1097i −0.362880 2.05800i
\(525\) −9.19743 + 12.6766i −0.401409 + 0.553254i
\(526\) −1.77190 + 0.644920i −0.0772587 + 0.0281199i
\(527\) −22.1017 18.5456i −0.962767 0.807857i
\(528\) 1.71389 1.46921i 0.0745876 0.0639390i
\(529\) 7.63606 + 2.77930i 0.332002 + 0.120839i
\(530\) 14.0472 0.610173
\(531\) 24.3764 0.514280i 1.05785 0.0223179i
\(532\) 5.25476 17.6642i 0.227823 0.765840i
\(533\) −9.66154 + 8.10699i −0.418488 + 0.351153i
\(534\) −24.9495 + 0.263157i −1.07967 + 0.0113879i
\(535\) −4.51805 3.79109i −0.195332 0.163903i
\(536\) −13.2423 + 4.81981i −0.571982 + 0.208184i
\(537\) −8.61029 7.07149i −0.371561 0.305157i
\(538\) 6.35304 + 2.31232i 0.273899 + 0.0996910i
\(539\) 3.29338 + 2.14967i 0.141856 + 0.0925928i
\(540\) 3.52872 + 16.8720i 0.151852 + 0.726057i
\(541\) −16.0161 27.7407i −0.688587 1.19267i −0.972295 0.233757i \(-0.924898\pi\)
0.283708 0.958911i \(-0.408435\pi\)
\(542\) −24.6892 + 20.7167i −1.06049 + 0.889857i
\(543\) −11.3585 9.32851i −0.487438 0.400325i
\(544\) 4.89994 27.7889i 0.210083 1.19144i
\(545\) 3.10133 17.5885i 0.132846 0.753409i
\(546\) −27.4994 28.4391i −1.17687 1.21708i
\(547\) 2.92116 2.45114i 0.124900 0.104803i −0.578198 0.815896i \(-0.696244\pi\)
0.703098 + 0.711093i \(0.251800\pi\)
\(548\) 23.8713 41.3464i 1.01973 1.76623i
\(549\) 29.6640 11.5111i 1.26603 0.491280i
\(550\) −2.06746 3.58094i −0.0881566 0.152692i
\(551\) 15.8997 13.3414i 0.677349 0.568363i
\(552\) −6.95832 + 5.96491i −0.296166 + 0.253883i
\(553\) 2.24772 + 37.4660i 0.0955829 + 1.59322i
\(554\) 31.7275 11.5478i 1.34797 0.490621i
\(555\) 10.4223 8.93433i 0.442401 0.379241i
\(556\) 6.07672 + 2.21175i 0.257710 + 0.0937989i
\(557\) −20.8040 36.0337i −0.881495 1.52679i −0.849679 0.527301i \(-0.823204\pi\)
−0.0318169 0.999494i \(-0.510129\pi\)
\(558\) −48.3971 16.4676i −2.04881 0.697129i
\(559\) −2.20420 3.81779i −0.0932278 0.161475i
\(560\) −4.59950 + 6.20076i −0.194364 + 0.262030i
\(561\) −1.80630 3.05377i −0.0762622 0.128930i
\(562\) 38.8785 14.1506i 1.63999 0.596908i
\(563\) 38.6210 14.0569i 1.62768 0.592428i 0.642858 0.765985i \(-0.277749\pi\)
0.984824 + 0.173558i \(0.0555263\pi\)
\(564\) −35.1260 + 13.2060i −1.47907 + 0.556073i
\(565\) −0.340221 1.92949i −0.0143132 0.0811742i
\(566\) −9.61396 −0.404105
\(567\) −5.82085 + 23.0893i −0.244453 + 0.969661i
\(568\) 11.0057 0.461790
\(569\) 4.09993 + 23.2519i 0.171878 + 0.974769i 0.941686 + 0.336493i \(0.109241\pi\)
−0.769808 + 0.638276i \(0.779648\pi\)
\(570\) 11.5998 4.36106i 0.485861 0.182665i
\(571\) −19.2801 + 7.01738i −0.806847 + 0.293668i −0.712321 0.701854i \(-0.752356\pi\)
−0.0945261 + 0.995522i \(0.530134\pi\)
\(572\) 5.58152 2.03151i 0.233375 0.0849416i
\(573\) 14.0544 + 23.7607i 0.587132 + 0.992616i
\(574\) −7.12819 16.4461i −0.297525 0.686445i
\(575\) −6.59041 11.4149i −0.274839 0.476035i
\(576\) −7.01326 35.3916i −0.292219 1.47465i
\(577\) −15.2320 26.3826i −0.634116 1.09832i −0.986702 0.162541i \(-0.948031\pi\)
0.352586 0.935779i \(-0.385302\pi\)
\(578\) 7.50130 + 2.73025i 0.312013 + 0.113563i
\(579\) −26.6079 + 22.8092i −1.10579 + 0.947917i
\(580\) 24.4950 8.91546i 1.01710 0.370194i
\(581\) −33.8141 16.9083i −1.40285 0.701474i
\(582\) −6.17596 + 5.29424i −0.256002 + 0.219453i
\(583\) −2.23194 + 1.87282i −0.0924374 + 0.0775642i
\(584\) −2.22708 3.85741i −0.0921570 0.159621i
\(585\) 2.31218 14.9506i 0.0955967 0.618132i
\(586\) 25.9067 44.8717i 1.07020 1.85363i
\(587\) −1.75988 + 1.47672i −0.0726382 + 0.0609507i −0.678384 0.734708i \(-0.737319\pi\)
0.605746 + 0.795658i \(0.292875\pi\)
\(588\) 28.3685 14.7494i 1.16990 0.608254i
\(589\) −3.62958 + 20.5843i −0.149554 + 0.848163i
\(590\) 3.82287 21.6805i 0.157385 0.892574i
\(591\) −2.23962 1.83936i −0.0921255 0.0756611i
\(592\) −11.1965 + 9.39497i −0.460173 + 0.386131i
\(593\) −5.24746 9.08887i −0.215487 0.373235i 0.737936 0.674871i \(-0.235801\pi\)
−0.953423 + 0.301636i \(0.902467\pi\)
\(594\) −4.94127 3.88659i −0.202743 0.159469i
\(595\) 8.34232 + 8.81151i 0.342002 + 0.361236i
\(596\) −30.4081 11.0676i −1.24556 0.453348i
\(597\) −25.0155 20.5448i −1.02382 0.840845i
\(598\) 31.2857 11.3870i 1.27937 0.465651i
\(599\) 19.4788 + 16.3447i 0.795883 + 0.667825i 0.947194 0.320661i \(-0.103905\pi\)
−0.151311 + 0.988486i \(0.548349\pi\)
\(600\) −8.12137 + 0.0856606i −0.331554 + 0.00349708i
\(601\) −8.19333 + 6.87502i −0.334213 + 0.280438i −0.794414 0.607377i \(-0.792222\pi\)
0.460201 + 0.887815i \(0.347777\pi\)
\(602\) 6.09377 1.45548i 0.248364 0.0593210i
\(603\) −15.9661 26.3541i −0.650188 1.07322i
\(604\) 62.4315 2.54030
\(605\) 12.6294 + 4.59672i 0.513457 + 0.186883i
\(606\) −35.6446 + 30.5558i −1.44796 + 1.24124i
\(607\) 12.5731 + 10.5501i 0.510325 + 0.428214i 0.861244 0.508192i \(-0.169686\pi\)
−0.350918 + 0.936406i \(0.614131\pi\)
\(608\) −19.2096 + 6.99174i −0.779054 + 0.283552i
\(609\) 35.8149 + 3.74055i 1.45129 + 0.151575i
\(610\) −4.98898 28.2939i −0.201998 1.14559i
\(611\) 32.9356 1.33243
\(612\) −28.8383 + 0.608415i −1.16572 + 0.0245937i
\(613\) 28.6417 1.15683 0.578413 0.815744i \(-0.303672\pi\)
0.578413 + 0.815744i \(0.303672\pi\)
\(614\) 26.5058 + 9.64733i 1.06969 + 0.389335i
\(615\) 3.36448 5.97204i 0.135669 0.240816i
\(616\) 0.122137 + 2.03583i 0.00492105 + 0.0820261i
\(617\) −1.12125 0.940841i −0.0451399 0.0378768i 0.619939 0.784650i \(-0.287157\pi\)
−0.665078 + 0.746773i \(0.731602\pi\)
\(618\) −0.195473 0.160539i −0.00786309 0.00645783i
\(619\) 11.9651 10.0399i 0.480917 0.403537i −0.369841 0.929095i \(-0.620588\pi\)
0.850758 + 0.525558i \(0.176143\pi\)
\(620\) −13.1254 + 22.7339i −0.527130 + 0.913016i
\(621\) −15.7512 12.3892i −0.632075 0.497163i
\(622\) 4.01139 0.160842
\(623\) −10.5444 + 14.2152i −0.422451 + 0.569521i
\(624\) −2.62956 + 15.8913i −0.105267 + 0.636162i
\(625\) 0.654451 3.71158i 0.0261781 0.148463i
\(626\) −35.1175 29.4671i −1.40358 1.17774i
\(627\) −1.26164 + 2.23944i −0.0503849 + 0.0894345i
\(628\) −20.5358 7.47443i −0.819469 0.298262i
\(629\) 11.4859 + 19.8942i 0.457974 + 0.793234i
\(630\) 19.4287 + 9.20802i 0.774057 + 0.366856i
\(631\) 15.8431 27.4411i 0.630705 1.09241i −0.356703 0.934218i \(-0.616099\pi\)
0.987408 0.158195i \(-0.0505673\pi\)
\(632\) −14.9102 + 12.5112i −0.593098 + 0.497668i
\(633\) −2.25815 12.0613i −0.0897533 0.479393i
\(634\) −6.66352 + 37.7907i −0.264642 + 1.50086i
\(635\) −8.42698 7.07107i −0.334414 0.280607i
\(636\) 4.35902 + 23.2825i 0.172846 + 0.923213i
\(637\) −27.8608 + 3.35502i −1.10389 + 0.132931i
\(638\) −4.75353 + 8.23335i −0.188194 + 0.325962i
\(639\) 4.67771 + 23.6055i 0.185047 + 0.933820i
\(640\) −13.1064 −0.518077
\(641\) 5.56536 + 31.5627i 0.219819 + 1.24665i 0.872346 + 0.488888i \(0.162597\pi\)
−0.652528 + 0.757765i \(0.726291\pi\)
\(642\) 8.58367 15.2362i 0.338770 0.601326i
\(643\) 4.23474 24.0164i 0.167002 0.947115i −0.779974 0.625811i \(-0.784768\pi\)
0.946976 0.321303i \(-0.104121\pi\)
\(644\) 1.61146 + 26.8605i 0.0635006 + 1.05845i
\(645\) 1.85151 + 1.52061i 0.0729030 + 0.0598740i
\(646\) 3.60106 + 20.4226i 0.141682 + 0.803518i
\(647\) −2.24162 + 3.88259i −0.0881271 + 0.152641i −0.906719 0.421734i \(-0.861421\pi\)
0.818592 + 0.574375i \(0.194755\pi\)
\(648\) −11.4151 + 4.70898i −0.448427 + 0.184986i
\(649\) 2.28311 + 3.95445i 0.0896197 + 0.155226i
\(650\) 27.7245 + 10.0909i 1.08744 + 0.395797i
\(651\) −30.0506 + 20.2981i −1.17778 + 0.795544i
\(652\) 37.8193 + 31.7342i 1.48112 + 1.24281i
\(653\) −33.5381 + 12.2069i −1.31245 + 0.477692i −0.901031 0.433755i \(-0.857188\pi\)
−0.411417 + 0.911447i \(0.634966\pi\)
\(654\) 52.9530 0.558525i 2.07063 0.0218401i
\(655\) −3.96227 22.4711i −0.154819 0.878020i
\(656\) −3.64908 + 6.32039i −0.142473 + 0.246770i
\(657\) 7.32696 6.41621i 0.285852 0.250320i
\(658\) −13.3464 + 44.8646i −0.520296 + 1.74901i
\(659\) 4.96812 + 28.1756i 0.193531 + 1.09757i 0.914496 + 0.404595i \(0.132588\pi\)
−0.720965 + 0.692971i \(0.756301\pi\)
\(660\) −2.45088 + 2.10098i −0.0954005 + 0.0817805i
\(661\) −2.79990 + 15.8790i −0.108903 + 0.617622i 0.880686 + 0.473701i \(0.157082\pi\)
−0.989589 + 0.143921i \(0.954029\pi\)
\(662\) −9.04564 + 51.3004i −0.351569 + 1.99385i
\(663\) 23.8792 + 8.40717i 0.927391 + 0.326507i
\(664\) −3.40442 19.3074i −0.132117 0.749273i
\(665\) 2.50650 8.42575i 0.0971978 0.326736i
\(666\) 31.7256 + 25.5002i 1.22934 + 0.988112i
\(667\) −15.1528 + 26.2454i −0.586718 + 1.01623i
\(668\) −8.15376 46.2423i −0.315478 1.78917i
\(669\) −20.1689 + 35.8003i −0.779775 + 1.38412i
\(670\) −26.1442 + 9.51571i −1.01004 + 0.367624i
\(671\) 4.56491 + 3.83042i 0.176226 + 0.147872i
\(672\) −31.8873 15.5266i −1.23008 0.598951i
\(673\) −11.1747 4.06725i −0.430752 0.156781i 0.117539 0.993068i \(-0.462499\pi\)
−0.548292 + 0.836287i \(0.684722\pi\)
\(674\) −25.3293 43.8716i −0.975648 1.68987i
\(675\) −3.63551 17.3826i −0.139931 0.669058i
\(676\) −4.04939 + 7.01375i −0.155746 + 0.269760i
\(677\) 0.695464 + 3.94417i 0.0267288 + 0.151587i 0.995251 0.0973397i \(-0.0310333\pi\)
−0.968522 + 0.248927i \(0.919922\pi\)
\(678\) 5.43775 2.04438i 0.208836 0.0785141i
\(679\) 0.345560 + 5.75995i 0.0132614 + 0.221046i
\(680\) −1.09268 + 6.19689i −0.0419023 + 0.237640i
\(681\) −2.64236 + 0.0278704i −0.101255 + 0.00106800i
\(682\) −1.66252 9.42864i −0.0636613 0.361041i
\(683\) 21.1456 0.809112 0.404556 0.914513i \(-0.367426\pi\)
0.404556 + 0.914513i \(0.367426\pi\)
\(684\) 10.8278 + 17.8727i 0.414011 + 0.683381i
\(685\) 11.3865 19.7221i 0.435057 0.753541i
\(686\) 6.71975 39.3114i 0.256561 1.50092i
\(687\) −3.24670 1.14307i −0.123869 0.0436108i
\(688\) −1.95414 1.63972i −0.0745011 0.0625138i
\(689\) 3.61002 20.4734i 0.137531 0.779975i
\(690\) −13.7377 + 11.7765i −0.522987 + 0.448322i
\(691\) 4.34782 3.64825i 0.165399 0.138786i −0.556332 0.830960i \(-0.687792\pi\)
0.721730 + 0.692174i \(0.243347\pi\)
\(692\) 20.7207 35.8892i 0.787681 1.36430i
\(693\) −4.31463 + 1.12724i −0.163899 + 0.0428205i
\(694\) 23.9592 + 41.4985i 0.909477 + 1.57526i
\(695\) 2.89857 + 1.05499i 0.109949 + 0.0400182i
\(696\) 9.50696 + 16.0726i 0.360360 + 0.609231i
\(697\) 8.78689 + 7.37308i 0.332827 + 0.279275i
\(698\) 2.98089 16.9054i 0.112828 0.639880i
\(699\) −16.5839 + 6.23492i −0.627262 + 0.235826i
\(700\) −14.2064 + 19.1521i −0.536951 + 0.723882i
\(701\) −30.0373 −1.13449 −0.567246 0.823548i \(-0.691991\pi\)
−0.567246 + 0.823548i \(0.691991\pi\)
\(702\) 44.8344 1.41910i 1.69217 0.0535606i
\(703\) 8.32107 14.4125i 0.313835 0.543578i
\(704\) 5.17616 4.34331i 0.195084 0.163695i
\(705\) −16.7550 + 6.29921i −0.631028 + 0.237242i
\(706\) 49.4466 + 41.4906i 1.86095 + 1.56152i
\(707\) 1.99441 + 33.2436i 0.0750074 + 1.25025i
\(708\) 37.1206 0.391532i 1.39508 0.0147147i
\(709\) 27.2178 + 9.90647i 1.02219 + 0.372045i 0.798101 0.602524i \(-0.205838\pi\)
0.224086 + 0.974569i \(0.428060\pi\)
\(710\) 21.7285 0.815456
\(711\) −33.1717 26.6625i −1.24404 0.999923i
\(712\) −9.17832 −0.343972
\(713\) −5.29961 30.0556i −0.198472 1.12559i
\(714\) −21.1287 + 29.1213i −0.790721 + 1.08984i
\(715\) 2.66236 0.969020i 0.0995667 0.0362393i
\(716\) −12.9954 10.9044i −0.485659 0.407517i
\(717\) −9.84709 3.46688i −0.367746 0.129473i
\(718\) −15.7221 5.72238i −0.586744 0.213557i
\(719\) −11.3334 −0.422663 −0.211331 0.977414i \(-0.567780\pi\)
−0.211331 + 0.977414i \(0.567780\pi\)
\(720\) −1.70164 8.58715i −0.0634165 0.320024i
\(721\) −0.174521 + 0.0416838i −0.00649949 + 0.00155239i
\(722\) −19.8337 + 16.6425i −0.738134 + 0.619368i
\(723\) 8.30399 14.7398i 0.308829 0.548179i
\(724\) −17.1431 14.3848i −0.637119 0.534606i
\(725\) −25.2363 + 9.18527i −0.937254 + 0.341132i
\(726\) −6.50566 + 39.3159i −0.241448 + 1.45915i
\(727\) −15.0125 5.46412i −0.556785 0.202653i 0.0482737 0.998834i \(-0.484628\pi\)
−0.605058 + 0.796181i \(0.706850\pi\)
\(728\) −10.0049 10.5676i −0.370806 0.391660i
\(729\) −14.9517 22.4821i −0.553767 0.832671i
\(730\) −4.39689 7.61564i −0.162736 0.281868i
\(731\) −3.07132 + 2.57714i −0.113597 + 0.0953190i
\(732\) 45.3475 17.0489i 1.67609 0.630145i
\(733\) 2.71416 15.3928i 0.100250 0.568546i −0.892762 0.450529i \(-0.851235\pi\)
0.993012 0.118017i \(-0.0376536\pi\)
\(734\) −12.0088 + 68.1050i −0.443251 + 2.51380i
\(735\) 13.5317 7.03539i 0.499123 0.259504i
\(736\) 22.8652 19.1862i 0.842823 0.707212i
\(737\) 2.88534 4.99755i 0.106283 0.184087i
\(738\) 19.2410 + 6.54695i 0.708272 + 0.240997i
\(739\) 3.91928 + 6.78840i 0.144173 + 0.249715i 0.929064 0.369919i \(-0.120614\pi\)
−0.784891 + 0.619634i \(0.787281\pi\)
\(740\) 16.0111 13.4349i 0.588579 0.493877i
\(741\) −3.37508 18.0271i −0.123987 0.662242i
\(742\) 26.4259 + 13.2139i 0.970126 + 0.485098i
\(743\) −15.2292 + 5.54298i −0.558705 + 0.203352i −0.605910 0.795533i \(-0.707191\pi\)
0.0472049 + 0.998885i \(0.484969\pi\)
\(744\) −17.7382 6.24512i −0.650315 0.228957i
\(745\) −14.5045 5.27922i −0.531405 0.193416i
\(746\) 10.6778 + 18.4945i 0.390943 + 0.677132i
\(747\) 39.9644 15.5081i 1.46222 0.567410i
\(748\) −2.70101 4.67828i −0.0987586 0.171055i
\(749\) −4.93324 11.3819i −0.180257 0.415886i
\(750\) −39.4914 + 0.416537i −1.44202 + 0.0152098i
\(751\) −31.5364 + 11.4783i −1.15078 + 0.418850i −0.845795 0.533507i \(-0.820874\pi\)
−0.304985 + 0.952357i \(0.598651\pi\)
\(752\) 17.9090 6.51836i 0.653075 0.237700i
\(753\) 23.2357 + 19.0831i 0.846754 + 0.695425i
\(754\) −11.7795 66.8050i −0.428985 2.43289i
\(755\) 29.7796 1.08379
\(756\) −9.23285 + 35.0594i −0.335796 + 1.27510i
\(757\) −45.5849 −1.65681 −0.828405 0.560129i \(-0.810752\pi\)
−0.828405 + 0.560129i \(0.810752\pi\)
\(758\) 7.57986 + 42.9875i 0.275313 + 1.56138i
\(759\) 0.612691 3.70269i 0.0222393 0.134399i
\(760\) 4.28372 1.55915i 0.155387 0.0565562i
\(761\) 1.89014 0.687955i 0.0685175 0.0249383i −0.307534 0.951537i \(-0.599504\pi\)
0.376052 + 0.926599i \(0.377282\pi\)
\(762\) 16.0101 28.4183i 0.579984 1.02949i
\(763\) 22.3794 30.1705i 0.810189 1.09224i
\(764\) 21.0159 + 36.4006i 0.760329 + 1.31693i
\(765\) −13.7557 + 0.290211i −0.497340 + 0.0104926i
\(766\) 38.4138 + 66.5347i 1.38795 + 2.40400i
\(767\) −30.6163 11.1434i −1.10549 0.402366i
\(768\) 0.515206