Properties

Label 189.2.u.a.4.2
Level $189$
Weight $2$
Character 189.4
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(4,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([2, 12]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.u (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 4.2
Character \(\chi\) \(=\) 189.4
Dual form 189.2.u.a.142.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.460894 - 2.61386i) q^{2} +(-1.36647 + 1.06432i) q^{3} +(-4.74046 + 1.72539i) q^{4} +(-0.528985 + 0.192535i) q^{5} +(3.41177 + 3.08122i) q^{6} +(0.317729 + 2.62660i) q^{7} +(4.04059 + 6.99852i) q^{8} +(0.734460 - 2.90871i) q^{9} +O(q^{10})\) \(q+(-0.460894 - 2.61386i) q^{2} +(-1.36647 + 1.06432i) q^{3} +(-4.74046 + 1.72539i) q^{4} +(-0.528985 + 0.192535i) q^{5} +(3.41177 + 3.08122i) q^{6} +(0.317729 + 2.62660i) q^{7} +(4.04059 + 6.99852i) q^{8} +(0.734460 - 2.90871i) q^{9} +(0.747066 + 1.29396i) q^{10} +(2.28738 + 0.832537i) q^{11} +(4.64133 - 7.40304i) q^{12} +(-4.38166 + 1.59479i) q^{13} +(6.71914 - 2.04109i) q^{14} +(0.517923 - 0.826101i) q^{15} +(8.70194 - 7.30180i) q^{16} +(2.27552 + 3.94132i) q^{17} +(-7.94146 - 0.579170i) q^{18} +(-2.77342 + 4.80370i) q^{19} +(2.17544 - 1.82541i) q^{20} +(-3.22970 - 3.25100i) q^{21} +(1.12190 - 6.36260i) q^{22} +(0.147383 - 0.835851i) q^{23} +(-12.9700 - 5.26276i) q^{24} +(-3.58747 + 3.01024i) q^{25} +(6.18805 + 10.7180i) q^{26} +(2.09217 + 4.75635i) q^{27} +(-6.03809 - 11.9031i) q^{28} +(-8.04946 - 2.92976i) q^{29} +(-2.39802 - 0.973033i) q^{30} +(3.34529 - 1.21759i) q^{31} +(-10.7155 - 8.99134i) q^{32} +(-4.01171 + 1.29686i) q^{33} +(9.25328 - 7.76443i) q^{34} +(-0.673787 - 1.32826i) q^{35} +(1.53697 + 15.0558i) q^{36} +6.39173 q^{37} +(13.8345 + 5.03533i) q^{38} +(4.29002 - 6.84270i) q^{39} +(-3.48488 - 2.92416i) q^{40} +(-1.82749 + 0.665151i) q^{41} +(-7.00912 + 9.94037i) q^{42} +(0.400722 + 2.27261i) q^{43} -12.2797 q^{44} +(0.171509 + 1.68007i) q^{45} -2.25273 q^{46} +(1.68465 + 0.613164i) q^{47} +(-4.11948 + 19.2393i) q^{48} +(-6.79810 + 1.66910i) q^{49} +(9.52180 + 7.98974i) q^{50} +(-7.30423 - 2.96380i) q^{51} +(18.0195 - 15.1201i) q^{52} +(-0.397455 + 0.688413i) q^{53} +(11.4682 - 7.66082i) q^{54} -1.37028 q^{55} +(-17.0985 + 12.8367i) q^{56} +(-1.32288 - 9.51589i) q^{57} +(-3.94805 + 22.3905i) q^{58} +(-2.98565 - 2.50526i) q^{59} +(-1.02985 + 4.80972i) q^{60} +(-5.19296 - 1.89008i) q^{61} +(-4.72443 - 8.18295i) q^{62} +(7.87338 + 1.00495i) q^{63} +(-7.20384 + 12.4774i) q^{64} +(2.01078 - 1.68724i) q^{65} +(5.23879 + 9.88833i) q^{66} +(-0.764060 + 4.33320i) q^{67} +(-17.5873 - 14.7575i) q^{68} +(0.688216 + 1.29902i) q^{69} +(-3.16135 + 2.37337i) q^{70} +(8.29935 - 14.3749i) q^{71} +(23.3243 - 6.61277i) q^{72} -0.0300222 q^{73} +(-2.94591 - 16.7071i) q^{74} +(1.69830 - 7.93159i) q^{75} +(4.85904 - 27.5570i) q^{76} +(-1.45998 + 6.27256i) q^{77} +(-19.8631 - 8.05976i) q^{78} +(1.72084 + 9.75936i) q^{79} +(-3.19735 + 5.53797i) q^{80} +(-7.92114 - 4.27265i) q^{81} +(2.58089 + 4.47023i) q^{82} +(3.58129 + 1.30348i) q^{83} +(20.9195 + 9.83876i) q^{84} +(-1.96256 - 1.64678i) q^{85} +(5.75559 - 2.09487i) q^{86} +(14.1175 - 4.56375i) q^{87} +(3.41584 + 19.3722i) q^{88} +(5.09080 - 8.81753i) q^{89} +(4.31243 - 1.22264i) q^{90} +(-5.58107 - 11.0022i) q^{91} +(0.743503 + 4.21661i) q^{92} +(-3.27533 + 5.22424i) q^{93} +(0.826278 - 4.68605i) q^{94} +(0.542218 - 3.07507i) q^{95} +(24.2119 + 0.881717i) q^{96} +(2.32036 + 13.1594i) q^{97} +(7.49599 + 17.0000i) q^{98} +(4.10159 - 6.04184i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} - 15 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} - 15 q^{9} + 3 q^{10} - 15 q^{11} - 3 q^{12} - 12 q^{13} - 30 q^{14} + 9 q^{16} + 27 q^{17} - 3 q^{18} + 3 q^{19} - 18 q^{20} + 15 q^{21} - 12 q^{22} - 36 q^{23} - 72 q^{24} - 3 q^{25} + 30 q^{26} - 12 q^{27} - 12 q^{28} - 30 q^{29} - 3 q^{30} - 3 q^{31} - 75 q^{32} + 15 q^{33} - 18 q^{34} + 15 q^{35} - 60 q^{36} - 6 q^{37} + 69 q^{38} + 51 q^{39} + 51 q^{40} - 39 q^{42} - 12 q^{43} - 6 q^{44} - 21 q^{45} - 6 q^{46} - 21 q^{47} + 90 q^{48} - 42 q^{49} - 39 q^{50} + 33 q^{51} + 9 q^{52} + 9 q^{53} - 9 q^{54} - 24 q^{55} + 111 q^{56} - 18 q^{57} - 3 q^{58} + 27 q^{59} - 63 q^{60} - 21 q^{61} + 75 q^{62} + 63 q^{63} - 30 q^{64} - 90 q^{65} - 3 q^{66} - 3 q^{67} - 30 q^{68} - 6 q^{69} + 39 q^{70} - 18 q^{71} + 183 q^{72} - 42 q^{73} + 51 q^{74} - 45 q^{75} - 24 q^{76} + 15 q^{77} - 30 q^{78} + 15 q^{79} + 102 q^{80} - 87 q^{81} - 6 q^{82} - 42 q^{83} + 135 q^{84} - 63 q^{85} - 93 q^{86} + 75 q^{87} - 51 q^{88} + 75 q^{89} - 39 q^{90} - 21 q^{91} - 66 q^{92} + 81 q^{93} + 33 q^{94} + 15 q^{95} - 171 q^{96} - 12 q^{97} - 36 q^{98} + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.460894 2.61386i −0.325902 1.84828i −0.503263 0.864134i \(-0.667867\pi\)
0.177361 0.984146i \(-0.443244\pi\)
\(3\) −1.36647 + 1.06432i −0.788930 + 0.614484i
\(4\) −4.74046 + 1.72539i −2.37023 + 0.862694i
\(5\) −0.528985 + 0.192535i −0.236570 + 0.0861043i −0.457584 0.889166i \(-0.651285\pi\)
0.221015 + 0.975270i \(0.429063\pi\)
\(6\) 3.41177 + 3.08122i 1.39285 + 1.25790i
\(7\) 0.317729 + 2.62660i 0.120090 + 0.992763i
\(8\) 4.04059 + 6.99852i 1.42857 + 2.47435i
\(9\) 0.734460 2.90871i 0.244820 0.969569i
\(10\) 0.747066 + 1.29396i 0.236243 + 0.409185i
\(11\) 2.28738 + 0.832537i 0.689670 + 0.251019i 0.662994 0.748625i \(-0.269285\pi\)
0.0266762 + 0.999644i \(0.491508\pi\)
\(12\) 4.64133 7.40304i 1.33984 2.13707i
\(13\) −4.38166 + 1.59479i −1.21525 + 0.442316i −0.868523 0.495649i \(-0.834930\pi\)
−0.346730 + 0.937965i \(0.612708\pi\)
\(14\) 6.71914 2.04109i 1.79577 0.545503i
\(15\) 0.517923 0.826101i 0.133727 0.213298i
\(16\) 8.70194 7.30180i 2.17549 1.82545i
\(17\) 2.27552 + 3.94132i 0.551895 + 0.955910i 0.998138 + 0.0609981i \(0.0194284\pi\)
−0.446243 + 0.894912i \(0.647238\pi\)
\(18\) −7.94146 0.579170i −1.87182 0.136512i
\(19\) −2.77342 + 4.80370i −0.636266 + 1.10204i 0.349979 + 0.936757i \(0.386189\pi\)
−0.986245 + 0.165288i \(0.947145\pi\)
\(20\) 2.17544 1.82541i 0.486443 0.408174i
\(21\) −3.22970 3.25100i −0.704779 0.709427i
\(22\) 1.12190 6.36260i 0.239189 1.35651i
\(23\) 0.147383 0.835851i 0.0307315 0.174287i −0.965579 0.260110i \(-0.916241\pi\)
0.996310 + 0.0858236i \(0.0273521\pi\)
\(24\) −12.9700 5.26276i −2.64748 1.07426i
\(25\) −3.58747 + 3.01024i −0.717493 + 0.602048i
\(26\) 6.18805 + 10.7180i 1.21358 + 2.10198i
\(27\) 2.09217 + 4.75635i 0.402638 + 0.915359i
\(28\) −6.03809 11.9031i −1.14109 2.24948i
\(29\) −8.04946 2.92976i −1.49475 0.544044i −0.540053 0.841631i \(-0.681596\pi\)
−0.954695 + 0.297588i \(0.903818\pi\)
\(30\) −2.39802 0.973033i −0.437817 0.177651i
\(31\) 3.34529 1.21759i 0.600832 0.218685i −0.0236551 0.999720i \(-0.507530\pi\)
0.624487 + 0.781035i \(0.285308\pi\)
\(32\) −10.7155 8.99134i −1.89424 1.58946i
\(33\) −4.01171 + 1.29686i −0.698349 + 0.225754i
\(34\) 9.25328 7.76443i 1.58693 1.33159i
\(35\) −0.673787 1.32826i −0.113891 0.224517i
\(36\) 1.53697 + 15.0558i 0.256161 + 2.50931i
\(37\) 6.39173 1.05079 0.525397 0.850857i \(-0.323917\pi\)
0.525397 + 0.850857i \(0.323917\pi\)
\(38\) 13.8345 + 5.03533i 2.24425 + 0.816839i
\(39\) 4.29002 6.84270i 0.686953 1.09571i
\(40\) −3.48488 2.92416i −0.551007 0.462350i
\(41\) −1.82749 + 0.665151i −0.285405 + 0.103879i −0.480756 0.876854i \(-0.659638\pi\)
0.195351 + 0.980733i \(0.437416\pi\)
\(42\) −7.00912 + 9.94037i −1.08153 + 1.53383i
\(43\) 0.400722 + 2.27261i 0.0611096 + 0.346570i 0.999997 + 0.00234593i \(0.000746734\pi\)
−0.938888 + 0.344224i \(0.888142\pi\)
\(44\) −12.2797 −1.85123
\(45\) 0.171509 + 1.68007i 0.0255671 + 0.250450i
\(46\) −2.25273 −0.332146
\(47\) 1.68465 + 0.613164i 0.245732 + 0.0894391i 0.461950 0.886906i \(-0.347150\pi\)
−0.216218 + 0.976345i \(0.569372\pi\)
\(48\) −4.11948 + 19.2393i −0.594596 + 2.77695i
\(49\) −6.79810 + 1.66910i −0.971157 + 0.238442i
\(50\) 9.52180 + 7.98974i 1.34659 + 1.12992i
\(51\) −7.30423 2.96380i −1.02280 0.415015i
\(52\) 18.0195 15.1201i 2.49885 2.09678i
\(53\) −0.397455 + 0.688413i −0.0545947 + 0.0945608i −0.892031 0.451974i \(-0.850720\pi\)
0.837436 + 0.546535i \(0.184053\pi\)
\(54\) 11.4682 7.66082i 1.56062 1.04250i
\(55\) −1.37028 −0.184769
\(56\) −17.0985 + 12.8367i −2.28489 + 1.71537i
\(57\) −1.32288 9.51589i −0.175219 1.26041i
\(58\) −3.94805 + 22.3905i −0.518404 + 2.94002i
\(59\) −2.98565 2.50526i −0.388698 0.326157i 0.427407 0.904059i \(-0.359427\pi\)
−0.816106 + 0.577902i \(0.803871\pi\)
\(60\) −1.02985 + 4.80972i −0.132953 + 0.620932i
\(61\) −5.19296 1.89008i −0.664890 0.242000i −0.0125441 0.999921i \(-0.503993\pi\)
−0.652346 + 0.757921i \(0.726215\pi\)
\(62\) −4.72443 8.18295i −0.600003 1.03924i
\(63\) 7.87338 + 1.00495i 0.991952 + 0.126612i
\(64\) −7.20384 + 12.4774i −0.900480 + 1.55968i
\(65\) 2.01078 1.68724i 0.249407 0.209277i
\(66\) 5.23879 + 9.88833i 0.644850 + 1.21717i
\(67\) −0.764060 + 4.33320i −0.0933448 + 0.529384i 0.901897 + 0.431951i \(0.142175\pi\)
−0.995242 + 0.0974338i \(0.968937\pi\)
\(68\) −17.5873 14.7575i −2.13278 1.78961i
\(69\) 0.688216 + 1.29902i 0.0828514 + 0.156384i
\(70\) −3.16135 + 2.37337i −0.377853 + 0.283673i
\(71\) 8.29935 14.3749i 0.984951 1.70599i 0.342799 0.939409i \(-0.388625\pi\)
0.642152 0.766577i \(-0.278042\pi\)
\(72\) 23.3243 6.61277i 2.74879 0.779323i
\(73\) −0.0300222 −0.00351383 −0.00175691 0.999998i \(-0.500559\pi\)
−0.00175691 + 0.999998i \(0.500559\pi\)
\(74\) −2.94591 16.7071i −0.342455 1.94216i
\(75\) 1.69830 7.93159i 0.196103 0.915862i
\(76\) 4.85904 27.5570i 0.557371 3.16101i
\(77\) −1.45998 + 6.27256i −0.166380 + 0.714824i
\(78\) −19.8631 8.05976i −2.24906 0.912588i
\(79\) 1.72084 + 9.75936i 0.193609 + 1.09801i 0.914385 + 0.404845i \(0.132675\pi\)
−0.720776 + 0.693168i \(0.756214\pi\)
\(80\) −3.19735 + 5.53797i −0.357475 + 0.619164i
\(81\) −7.92114 4.27265i −0.880126 0.474739i
\(82\) 2.58089 + 4.47023i 0.285012 + 0.493655i
\(83\) 3.58129 + 1.30348i 0.393098 + 0.143076i 0.531004 0.847370i \(-0.321815\pi\)
−0.137906 + 0.990445i \(0.544037\pi\)
\(84\) 20.9195 + 9.83876i 2.28251 + 1.07350i
\(85\) −1.96256 1.64678i −0.212869 0.178619i
\(86\) 5.75559 2.09487i 0.620642 0.225895i
\(87\) 14.1175 4.56375i 1.51356 0.489286i
\(88\) 3.41584 + 19.3722i 0.364130 + 2.06508i
\(89\) 5.09080 8.81753i 0.539624 0.934656i −0.459300 0.888281i \(-0.651900\pi\)
0.998924 0.0463749i \(-0.0147669\pi\)
\(90\) 4.31243 1.22264i 0.454570 0.128877i
\(91\) −5.58107 11.0022i −0.585055 1.15334i
\(92\) 0.743503 + 4.21661i 0.0775155 + 0.439612i
\(93\) −3.27533 + 5.22424i −0.339636 + 0.541728i
\(94\) 0.826278 4.68605i 0.0852240 0.483330i
\(95\) 0.542218 3.07507i 0.0556304 0.315495i
\(96\) 24.2119 + 0.881717i 2.47112 + 0.0899898i
\(97\) 2.32036 + 13.1594i 0.235597 + 1.33614i 0.841353 + 0.540486i \(0.181760\pi\)
−0.605756 + 0.795650i \(0.707129\pi\)
\(98\) 7.49599 + 17.0000i 0.757210 + 1.71726i
\(99\) 4.10159 6.04184i 0.412226 0.607228i
\(100\) 11.8124 20.4597i 1.18124 2.04597i
\(101\) 0.728943 + 4.13404i 0.0725325 + 0.411352i 0.999357 + 0.0358573i \(0.0114162\pi\)
−0.926824 + 0.375495i \(0.877473\pi\)
\(102\) −4.38049 + 20.4583i −0.433733 + 2.02567i
\(103\) 14.9851 5.45414i 1.47653 0.537413i 0.526664 0.850073i \(-0.323442\pi\)
0.949865 + 0.312661i \(0.101220\pi\)
\(104\) −28.8657 24.2212i −2.83051 2.37508i
\(105\) 2.33440 + 1.09790i 0.227814 + 0.107144i
\(106\) 1.98260 + 0.721608i 0.192567 + 0.0700887i
\(107\) −4.81591 8.34141i −0.465572 0.806394i 0.533655 0.845702i \(-0.320818\pi\)
−0.999227 + 0.0393080i \(0.987485\pi\)
\(108\) −18.1244 18.9375i −1.74402 1.82226i
\(109\) 1.19376 2.06765i 0.114341 0.198045i −0.803175 0.595743i \(-0.796858\pi\)
0.917516 + 0.397698i \(0.130191\pi\)
\(110\) 0.631555 + 3.58173i 0.0602164 + 0.341504i
\(111\) −8.73408 + 6.80282i −0.829002 + 0.645695i
\(112\) 21.9438 + 20.5366i 2.07349 + 1.94052i
\(113\) −0.482679 + 2.73741i −0.0454066 + 0.257514i −0.999058 0.0434007i \(-0.986181\pi\)
0.953651 + 0.300915i \(0.0972919\pi\)
\(114\) −24.2635 + 7.84364i −2.27249 + 0.734624i
\(115\) 0.0829670 + 0.470529i 0.00773671 + 0.0438771i
\(116\) 43.2132 4.01224
\(117\) 1.42063 + 13.9163i 0.131338 + 1.28656i
\(118\) −5.17233 + 8.95873i −0.476151 + 0.824718i
\(119\) −9.62928 + 7.22916i −0.882715 + 0.662696i
\(120\) 7.87419 + 0.286751i 0.718812 + 0.0261767i
\(121\) −3.88751 3.26201i −0.353410 0.296546i
\(122\) −2.54701 + 14.4448i −0.230595 + 1.30777i
\(123\) 1.78927 2.85393i 0.161333 0.257330i
\(124\) −13.7574 + 11.5438i −1.23545 + 1.03667i
\(125\) 2.72548 4.72067i 0.243774 0.422229i
\(126\) −1.00198 21.0431i −0.0892638 1.87467i
\(127\) 1.34977 + 2.33786i 0.119772 + 0.207452i 0.919677 0.392675i \(-0.128450\pi\)
−0.799905 + 0.600127i \(0.795117\pi\)
\(128\) 9.64555 + 3.51069i 0.852555 + 0.310304i
\(129\) −2.96635 2.67895i −0.261172 0.235868i
\(130\) −5.33698 4.47826i −0.468084 0.392769i
\(131\) −1.09104 + 6.18762i −0.0953250 + 0.540615i 0.899322 + 0.437286i \(0.144060\pi\)
−0.994647 + 0.103329i \(0.967051\pi\)
\(132\) 16.7798 13.0695i 1.46049 1.13755i
\(133\) −13.4986 5.75840i −1.17048 0.499316i
\(134\) 11.6785 1.00887
\(135\) −2.02249 2.11322i −0.174068 0.181877i
\(136\) −18.3889 + 31.8505i −1.57684 + 2.73116i
\(137\) −4.19064 + 3.51637i −0.358031 + 0.300424i −0.804005 0.594622i \(-0.797302\pi\)
0.445974 + 0.895046i \(0.352857\pi\)
\(138\) 3.07827 2.39761i 0.262040 0.204098i
\(139\) −7.02888 5.89793i −0.596182 0.500256i 0.294034 0.955795i \(-0.405002\pi\)
−0.890216 + 0.455539i \(0.849447\pi\)
\(140\) 5.48583 + 5.13403i 0.463637 + 0.433905i
\(141\) −2.95462 + 0.955137i −0.248824 + 0.0804371i
\(142\) −41.3991 15.0680i −3.47414 1.26448i
\(143\) −11.3502 −0.949154
\(144\) −14.8475 30.6743i −1.23730 2.55619i
\(145\) 4.82213 0.400456
\(146\) 0.0138370 + 0.0784738i 0.00114516 + 0.00649454i
\(147\) 7.51292 9.51609i 0.619655 0.784874i
\(148\) −30.2998 + 11.0282i −2.49062 + 0.906513i
\(149\) 18.0120 + 15.1139i 1.47560 + 1.23818i 0.910732 + 0.412998i \(0.135518\pi\)
0.564870 + 0.825180i \(0.308926\pi\)
\(150\) −21.5148 0.783497i −1.75668 0.0639722i
\(151\) 20.4408 + 7.43983i 1.66345 + 0.605445i 0.990899 0.134610i \(-0.0429782\pi\)
0.672547 + 0.740055i \(0.265200\pi\)
\(152\) −44.8251 −3.63579
\(153\) 13.1354 3.72408i 1.06194 0.301074i
\(154\) 17.0685 + 0.925199i 1.37542 + 0.0745546i
\(155\) −1.53518 + 1.28817i −0.123309 + 0.103468i
\(156\) −8.53038 + 39.8395i −0.682977 + 3.18972i
\(157\) 3.13115 + 2.62735i 0.249893 + 0.209685i 0.759126 0.650943i \(-0.225627\pi\)
−0.509233 + 0.860629i \(0.670071\pi\)
\(158\) 24.7165 8.99607i 1.96634 0.715689i
\(159\) −0.189580 1.36371i −0.0150347 0.108149i
\(160\) 7.39947 + 2.69319i 0.584979 + 0.212915i
\(161\) 2.24228 + 0.121543i 0.176716 + 0.00957891i
\(162\) −7.51732 + 22.6740i −0.590616 + 1.78144i
\(163\) 11.7265 + 20.3109i 0.918490 + 1.59087i 0.801710 + 0.597714i \(0.203924\pi\)
0.116780 + 0.993158i \(0.462743\pi\)
\(164\) 7.51549 6.30625i 0.586861 0.492435i
\(165\) 1.87244 1.45841i 0.145770 0.113537i
\(166\) 1.75653 9.96176i 0.136333 0.773183i
\(167\) −3.92040 + 22.2337i −0.303370 + 1.72049i 0.327712 + 0.944778i \(0.393722\pi\)
−0.631082 + 0.775716i \(0.717389\pi\)
\(168\) 9.70225 35.7391i 0.748545 2.75733i
\(169\) 6.69699 5.61944i 0.515153 0.432264i
\(170\) −3.39993 + 5.88885i −0.260763 + 0.451654i
\(171\) 11.9356 + 11.5952i 0.912738 + 0.886706i
\(172\) −5.82074 10.0818i −0.443827 0.768732i
\(173\) 4.70778 3.95029i 0.357926 0.300335i −0.446038 0.895014i \(-0.647165\pi\)
0.803963 + 0.594679i \(0.202721\pi\)
\(174\) −18.4357 34.7978i −1.39761 2.63802i
\(175\) −9.04655 8.46641i −0.683855 0.640001i
\(176\) 25.9836 9.45727i 1.95859 0.712869i
\(177\) 6.74618 + 0.245673i 0.507074 + 0.0184659i
\(178\) −25.3941 9.24270i −1.90337 0.692770i
\(179\) 5.53760 + 9.59140i 0.413900 + 0.716895i 0.995312 0.0967138i \(-0.0308331\pi\)
−0.581413 + 0.813609i \(0.697500\pi\)
\(180\) −3.71181 7.66840i −0.276662 0.571569i
\(181\) −3.75623 6.50598i −0.279198 0.483586i 0.691987 0.721910i \(-0.256735\pi\)
−0.971186 + 0.238324i \(0.923402\pi\)
\(182\) −26.1859 + 19.6590i −1.94103 + 1.45722i
\(183\) 9.10765 2.94422i 0.673257 0.217643i
\(184\) 6.44523 2.34587i 0.475149 0.172940i
\(185\) −3.38113 + 1.23063i −0.248586 + 0.0904778i
\(186\) 15.1650 + 6.15343i 1.11195 + 0.451192i
\(187\) 1.92368 + 10.9097i 0.140673 + 0.797799i
\(188\) −9.04398 −0.659600
\(189\) −11.8283 + 7.00653i −0.860382 + 0.509650i
\(190\) −8.28771 −0.601254
\(191\) −1.83788 10.4231i −0.132984 0.754191i −0.976242 0.216682i \(-0.930477\pi\)
0.843258 0.537509i \(-0.180635\pi\)
\(192\) −3.43612 24.7171i −0.247981 1.78381i
\(193\) 5.54928 2.01977i 0.399446 0.145386i −0.134483 0.990916i \(-0.542937\pi\)
0.533929 + 0.845529i \(0.320715\pi\)
\(194\) 33.3274 12.1302i 2.39277 0.870898i
\(195\) −0.951900 + 4.44567i −0.0681670 + 0.318361i
\(196\) 29.3463 19.6417i 2.09616 1.40298i
\(197\) −5.54422 9.60287i −0.395009 0.684176i 0.598093 0.801427i \(-0.295925\pi\)
−0.993102 + 0.117251i \(0.962592\pi\)
\(198\) −17.6829 7.93634i −1.25667 0.564011i
\(199\) 6.28273 + 10.8820i 0.445371 + 0.771405i 0.998078 0.0619706i \(-0.0197385\pi\)
−0.552707 + 0.833376i \(0.686405\pi\)
\(200\) −35.5627 12.9438i −2.51466 0.915263i
\(201\) −3.56783 6.73437i −0.251656 0.475006i
\(202\) 10.4698 3.81071i 0.736656 0.268121i
\(203\) 5.13778 22.0736i 0.360602 1.54926i
\(204\) 39.7392 + 1.44717i 2.78230 + 0.101322i
\(205\) 0.838649 0.703710i 0.0585738 0.0491493i
\(206\) −21.1629 36.6553i −1.47449 2.55390i
\(207\) −2.32300 1.04259i −0.161459 0.0724652i
\(208\) −26.4841 + 45.8718i −1.83634 + 3.18063i
\(209\) −10.3431 + 8.67891i −0.715448 + 0.600332i
\(210\) 1.79385 6.60781i 0.123788 0.455982i
\(211\) −1.19879 + 6.79870i −0.0825283 + 0.468041i 0.915334 + 0.402695i \(0.131926\pi\)
−0.997863 + 0.0653466i \(0.979185\pi\)
\(212\) 0.696344 3.94916i 0.0478251 0.271230i
\(213\) 3.95866 + 28.4759i 0.271243 + 1.95114i
\(214\) −19.5837 + 16.4326i −1.33871 + 1.12331i
\(215\) −0.649533 1.12502i −0.0442978 0.0767260i
\(216\) −24.8338 + 33.8606i −1.68972 + 2.30392i
\(217\) 4.26101 + 8.39989i 0.289256 + 0.570222i
\(218\) −5.95475 2.16735i −0.403306 0.146792i
\(219\) 0.0410243 0.0319531i 0.00277216 0.00215919i
\(220\) 6.49577 2.36427i 0.437945 0.159399i
\(221\) −16.2561 13.6405i −1.09351 0.917561i
\(222\) 21.8071 + 19.6943i 1.46360 + 1.32179i
\(223\) 8.27602 6.94440i 0.554203 0.465032i −0.322158 0.946686i \(-0.604408\pi\)
0.876361 + 0.481654i \(0.159964\pi\)
\(224\) 20.2121 31.0021i 1.35048 2.07141i
\(225\) 6.12106 + 12.6458i 0.408071 + 0.843052i
\(226\) 7.37768 0.490756
\(227\) −23.2433 8.45988i −1.54271 0.561502i −0.576019 0.817436i \(-0.695395\pi\)
−0.966694 + 0.255934i \(0.917617\pi\)
\(228\) 22.6897 + 42.8273i 1.50266 + 2.83631i
\(229\) −17.8752 14.9991i −1.18123 0.991166i −0.999970 0.00772977i \(-0.997540\pi\)
−0.181255 0.983436i \(-0.558016\pi\)
\(230\) 1.19166 0.433729i 0.0785757 0.0285992i
\(231\) −4.68097 10.1251i −0.307985 0.666184i
\(232\) −12.0206 68.1723i −0.789192 4.47573i
\(233\) −2.09530 −0.137268 −0.0686339 0.997642i \(-0.521864\pi\)
−0.0686339 + 0.997642i \(0.521864\pi\)
\(234\) 35.7204 10.1273i 2.33512 0.662040i
\(235\) −1.00921 −0.0658338
\(236\) 18.4759 + 6.72468i 1.20268 + 0.437739i
\(237\) −12.7385 11.5043i −0.827456 0.747286i
\(238\) 23.3341 + 21.8377i 1.51253 + 1.41553i
\(239\) 0.304194 + 0.255249i 0.0196767 + 0.0165107i 0.652573 0.757726i \(-0.273690\pi\)
−0.632896 + 0.774237i \(0.718134\pi\)
\(240\) −1.52509 10.9704i −0.0984439 0.708139i
\(241\) 10.3303 8.66818i 0.665435 0.558366i −0.246275 0.969200i \(-0.579207\pi\)
0.911710 + 0.410834i \(0.134762\pi\)
\(242\) −6.73471 + 11.6649i −0.432924 + 0.749846i
\(243\) 15.3714 2.59216i 0.986077 0.166287i
\(244\) 27.8782 1.78472
\(245\) 3.27473 2.19180i 0.209215 0.140029i
\(246\) −8.28444 3.36154i −0.528197 0.214324i
\(247\) 4.49126 25.4712i 0.285772 1.62069i
\(248\) 22.0383 + 18.4923i 1.39943 + 1.17426i
\(249\) −6.28103 + 2.03046i −0.398044 + 0.128675i
\(250\) −13.5953 4.94829i −0.859844 0.312958i
\(251\) 8.35309 + 14.4680i 0.527242 + 0.913210i 0.999496 + 0.0317475i \(0.0101072\pi\)
−0.472254 + 0.881463i \(0.656559\pi\)
\(252\) −39.0574 + 8.82068i −2.46039 + 0.555651i
\(253\) 1.03300 1.78920i 0.0649440 0.112486i
\(254\) 5.48875 4.60561i 0.344395 0.288982i
\(255\) 4.43447 + 0.161488i 0.277697 + 0.0101128i
\(256\) −0.272847 + 1.54739i −0.0170530 + 0.0967122i
\(257\) −10.6419 8.92963i −0.663825 0.557015i 0.247406 0.968912i \(-0.420422\pi\)
−0.911230 + 0.411897i \(0.864866\pi\)
\(258\) −5.63523 + 8.98834i −0.350834 + 0.559590i
\(259\) 2.03084 + 16.7885i 0.126190 + 1.04319i
\(260\) −6.62088 + 11.4677i −0.410610 + 0.711197i
\(261\) −14.4338 + 21.2617i −0.893431 + 1.31607i
\(262\) 16.6764 1.03027
\(263\) 0.703397 + 3.98916i 0.0433733 + 0.245982i 0.998784 0.0492975i \(-0.0156982\pi\)
−0.955411 + 0.295280i \(0.904587\pi\)
\(264\) −25.2858 22.8359i −1.55623 1.40545i
\(265\) 0.0777046 0.440684i 0.00477335 0.0270710i
\(266\) −8.83022 + 37.9375i −0.541415 + 2.32610i
\(267\) 2.42823 + 17.4671i 0.148605 + 1.06897i
\(268\) −3.85445 21.8597i −0.235448 1.33529i
\(269\) 4.85557 8.41009i 0.296049 0.512772i −0.679179 0.733972i \(-0.737664\pi\)
0.975228 + 0.221200i \(0.0709975\pi\)
\(270\) −4.59152 + 6.26048i −0.279431 + 0.381001i
\(271\) −5.09488 8.82460i −0.309492 0.536056i 0.668759 0.743479i \(-0.266826\pi\)
−0.978251 + 0.207423i \(0.933492\pi\)
\(272\) 48.5801 + 17.6817i 2.94560 + 1.07211i
\(273\) 19.3361 + 9.09406i 1.17028 + 0.550398i
\(274\) 11.1227 + 9.33309i 0.671949 + 0.563833i
\(275\) −10.7120 + 3.89886i −0.645960 + 0.235110i
\(276\) −5.50378 4.97054i −0.331289 0.299191i
\(277\) −0.278011 1.57668i −0.0167040 0.0947333i 0.975316 0.220814i \(-0.0708713\pi\)
−0.992020 + 0.126081i \(0.959760\pi\)
\(278\) −12.1768 + 21.0908i −0.730316 + 1.26494i
\(279\) −1.08462 10.6247i −0.0649344 0.636086i
\(280\) 6.57336 10.0825i 0.392833 0.602543i
\(281\) 0.636375 + 3.60906i 0.0379629 + 0.215298i 0.997888 0.0649584i \(-0.0206915\pi\)
−0.959925 + 0.280257i \(0.909580\pi\)
\(282\) 3.85836 + 7.28276i 0.229762 + 0.433682i
\(283\) 1.11488 6.32282i 0.0662730 0.375853i −0.933574 0.358384i \(-0.883328\pi\)
0.999847 0.0174692i \(-0.00556091\pi\)
\(284\) −14.5405 + 82.4633i −0.862820 + 4.89329i
\(285\) 2.53193 + 4.77907i 0.149978 + 0.283088i
\(286\) 5.23126 + 29.6679i 0.309331 + 1.75430i
\(287\) −2.32773 4.58875i −0.137402 0.270865i
\(288\) −34.0232 + 24.5643i −2.00484 + 1.44747i
\(289\) −1.85599 + 3.21467i −0.109176 + 0.189098i
\(290\) −2.22249 12.6044i −0.130509 0.740155i
\(291\) −17.1765 15.5123i −1.00690 0.909347i
\(292\) 0.142319 0.0517999i 0.00832859 0.00303136i
\(293\) 4.27136 + 3.58410i 0.249536 + 0.209385i 0.758972 0.651123i \(-0.225702\pi\)
−0.509437 + 0.860508i \(0.670146\pi\)
\(294\) −28.3364 15.2518i −1.65261 0.889504i
\(295\) 2.06171 + 0.750403i 0.120038 + 0.0436901i
\(296\) 25.8264 + 44.7326i 1.50113 + 2.60003i
\(297\) 0.825747 + 12.6214i 0.0479147 + 0.732366i
\(298\) 31.2040 54.0468i 1.80760 3.13085i
\(299\) 0.687227 + 3.89746i 0.0397434 + 0.225396i
\(300\) 5.63434 + 40.5297i 0.325299 + 2.33998i
\(301\) −5.84192 + 1.77461i −0.336723 + 0.102287i
\(302\) 10.0257 56.8583i 0.576911 3.27183i
\(303\) −5.39600 4.87320i −0.309992 0.279958i
\(304\) 10.9415 + 62.0525i 0.627540 + 3.55895i
\(305\) 3.11091 0.178130
\(306\) −15.7883 32.6177i −0.902555 1.86463i
\(307\) −6.29501 + 10.9033i −0.359275 + 0.622283i −0.987840 0.155474i \(-0.950309\pi\)
0.628565 + 0.777757i \(0.283643\pi\)
\(308\) −3.90161 32.2539i −0.222315 1.83783i
\(309\) −14.6717 + 23.4018i −0.834646 + 1.33128i
\(310\) 4.07466 + 3.41904i 0.231425 + 0.194189i
\(311\) −0.850542 + 4.82367i −0.0482298 + 0.273525i −0.999380 0.0352031i \(-0.988792\pi\)
0.951150 + 0.308728i \(0.0999033\pi\)
\(312\) 65.2230 + 2.37520i 3.69253 + 0.134469i
\(313\) 6.30960 5.29438i 0.356640 0.299256i −0.446810 0.894629i \(-0.647440\pi\)
0.803450 + 0.595373i \(0.202996\pi\)
\(314\) 5.42439 9.39532i 0.306116 0.530209i
\(315\) −4.35839 + 0.984294i −0.245568 + 0.0554587i
\(316\) −24.9963 43.2948i −1.40615 2.43552i
\(317\) 18.0998 + 6.58777i 1.01658 + 0.370006i 0.795958 0.605353i \(-0.206968\pi\)
0.220626 + 0.975359i \(0.429190\pi\)
\(318\) −3.47718 + 1.12406i −0.194990 + 0.0630343i
\(319\) −15.9730 13.4030i −0.894317 0.750421i
\(320\) 1.40839 7.98737i 0.0787313 0.446507i
\(321\) 15.4587 + 6.27259i 0.862819 + 0.350102i
\(322\) −0.715757 5.91702i −0.0398876 0.329743i
\(323\) −25.2439 −1.40461
\(324\) 44.9219 + 6.58733i 2.49566 + 0.365963i
\(325\) 10.9183 18.9111i 0.605640 1.04900i
\(326\) 47.6852 40.0126i 2.64104 2.21609i
\(327\) 0.569404 + 4.09591i 0.0314881 + 0.226504i
\(328\) −12.0392 10.1021i −0.664754 0.557795i
\(329\) −1.07527 + 4.61974i −0.0592818 + 0.254694i
\(330\) −4.67509 4.22213i −0.257355 0.232421i
\(331\) −1.10885 0.403590i −0.0609481 0.0221833i 0.311366 0.950290i \(-0.399213\pi\)
−0.372314 + 0.928107i \(0.621436\pi\)
\(332\) −19.2260 −1.05516
\(333\) 4.69447 18.5917i 0.257255 1.01882i
\(334\) 59.9227 3.27882
\(335\) −0.430116 2.43931i −0.0234997 0.133274i
\(336\) −51.8428 4.70738i −2.82826 0.256808i
\(337\) 14.3722 5.23106i 0.782905 0.284954i 0.0805215 0.996753i \(-0.474341\pi\)
0.702383 + 0.711799i \(0.252119\pi\)
\(338\) −17.7750 14.9150i −0.966835 0.811271i
\(339\) −2.25391 4.25430i −0.122415 0.231062i
\(340\) 12.1448 + 4.42034i 0.658643 + 0.239727i
\(341\) 8.66563 0.469270
\(342\) 24.8072 36.5421i 1.34142 1.97597i
\(343\) −6.54401 17.3256i −0.353343 0.935494i
\(344\) −14.2857 + 11.9872i −0.770235 + 0.646304i
\(345\) −0.614164 0.554659i −0.0330655 0.0298618i
\(346\) −12.4953 10.4848i −0.671752 0.563667i
\(347\) −15.9812 + 5.81669i −0.857918 + 0.312256i −0.733264 0.679944i \(-0.762004\pi\)
−0.124653 + 0.992200i \(0.539782\pi\)
\(348\) −59.0493 + 45.9925i −3.16538 + 2.46546i
\(349\) −31.9958 11.6455i −1.71270 0.623371i −0.715530 0.698582i \(-0.753815\pi\)
−0.997168 + 0.0752106i \(0.976037\pi\)
\(350\) −17.9605 + 27.5486i −0.960030 + 1.47253i
\(351\) −16.7526 17.5041i −0.894186 0.934300i
\(352\) −17.0247 29.4876i −0.907418 1.57169i
\(353\) −10.0557 + 8.43773i −0.535210 + 0.449095i −0.869896 0.493235i \(-0.835814\pi\)
0.334686 + 0.942330i \(0.391370\pi\)
\(354\) −2.46712 17.7468i −0.131126 0.943232i
\(355\) −1.62257 + 9.20202i −0.0861168 + 0.488393i
\(356\) −8.91911 + 50.5828i −0.472712 + 2.68088i
\(357\) 5.46397 20.1270i 0.289184 1.06523i
\(358\) 22.5184 18.8951i 1.19013 0.998639i
\(359\) 14.2851 24.7425i 0.753937 1.30586i −0.191964 0.981402i \(-0.561486\pi\)
0.945901 0.324455i \(-0.105181\pi\)
\(360\) −11.0650 + 7.98880i −0.583177 + 0.421047i
\(361\) −5.88371 10.1909i −0.309669 0.536362i
\(362\) −15.2745 + 12.8168i −0.802810 + 0.673638i
\(363\) 8.78397 + 0.319882i 0.461039 + 0.0167895i
\(364\) 45.4399 + 42.5259i 2.38170 + 2.22896i
\(365\) 0.0158813 0.00578032i 0.000831265 0.000302556i
\(366\) −11.8935 22.4492i −0.621681 1.17344i
\(367\) 12.0012 + 4.36809i 0.626459 + 0.228012i 0.635689 0.771945i \(-0.280716\pi\)
−0.00923054 + 0.999957i \(0.502938\pi\)
\(368\) −4.82069 8.34968i −0.251296 0.435257i
\(369\) 0.592512 + 5.80415i 0.0308450 + 0.302152i
\(370\) 4.77504 + 8.27062i 0.248243 + 0.429969i
\(371\) −1.93447 0.825229i −0.100433 0.0428437i
\(372\) 6.51274 30.4165i 0.337670 1.57702i
\(373\) 9.32009 3.39224i 0.482576 0.175643i −0.0892647 0.996008i \(-0.528452\pi\)
0.571841 + 0.820365i \(0.306229\pi\)
\(374\) 27.6299 10.0565i 1.42871 0.520008i
\(375\) 1.30001 + 9.35140i 0.0671322 + 0.482904i
\(376\) 2.51577 + 14.2676i 0.129741 + 0.735796i
\(377\) 39.9424 2.05714
\(378\) 23.7657 + 27.6883i 1.22238 + 1.42413i
\(379\) 0.780021 0.0400670 0.0200335 0.999799i \(-0.493623\pi\)
0.0200335 + 0.999799i \(0.493623\pi\)
\(380\) 2.73532 + 15.5128i 0.140319 + 0.795790i
\(381\) −4.33263 1.75803i −0.221968 0.0900667i
\(382\) −26.3975 + 9.60792i −1.35062 + 0.491584i
\(383\) −15.4877 + 5.63705i −0.791382 + 0.288040i −0.705911 0.708301i \(-0.749462\pi\)
−0.0854718 + 0.996341i \(0.527240\pi\)
\(384\) −16.9168 + 5.46868i −0.863283 + 0.279072i
\(385\) −0.435378 3.59919i −0.0221889 0.183432i
\(386\) −7.83704 13.5742i −0.398895 0.690906i
\(387\) 6.90466 + 0.503557i 0.350984 + 0.0255972i
\(388\) −33.7047 58.3782i −1.71110 2.96370i
\(389\) 10.4312 + 3.79663i 0.528881 + 0.192497i 0.592639 0.805468i \(-0.298086\pi\)
−0.0637575 + 0.997965i \(0.520308\pi\)
\(390\) 12.0591 + 0.439151i 0.610636 + 0.0222373i
\(391\) 3.62973 1.32111i 0.183563 0.0668115i
\(392\) −39.1496 40.8324i −1.97735 2.06235i
\(393\) −5.09471 9.61639i −0.256994 0.485083i
\(394\) −22.5453 + 18.9177i −1.13581 + 0.953061i
\(395\) −2.78932 4.83124i −0.140346 0.243086i
\(396\) −9.01893 + 35.7180i −0.453218 + 1.79490i
\(397\) −13.1577 + 22.7899i −0.660368 + 1.14379i 0.320151 + 0.947367i \(0.396267\pi\)
−0.980519 + 0.196425i \(0.937067\pi\)
\(398\) 25.5484 21.4376i 1.28062 1.07457i
\(399\) 24.5742 6.49815i 1.23025 0.325315i
\(400\) −9.23775 + 52.3899i −0.461888 + 2.61949i
\(401\) 5.76116 32.6732i 0.287699 1.63162i −0.407785 0.913078i \(-0.633699\pi\)
0.695484 0.718542i \(-0.255190\pi\)
\(402\) −15.9583 + 12.4297i −0.795929 + 0.619935i
\(403\) −12.7161 + 10.6701i −0.633435 + 0.531515i
\(404\) −10.5884 18.3396i −0.526790 0.912427i
\(405\) 5.01280 + 0.735076i 0.249088 + 0.0365262i
\(406\) −60.0654 3.25585i −2.98099 0.161585i
\(407\) 14.6203 + 5.32135i 0.724701 + 0.263770i
\(408\) −8.77123 63.0943i −0.434240 3.12363i
\(409\) 8.54894 3.11156i 0.422718 0.153857i −0.121897 0.992543i \(-0.538898\pi\)
0.544615 + 0.838686i \(0.316676\pi\)
\(410\) −2.22593 1.86778i −0.109931 0.0922429i
\(411\) 1.98384 9.26517i 0.0978558 0.457017i
\(412\) −61.6260 + 51.7104i −3.03610 + 2.54759i
\(413\) 5.63169 8.63811i 0.277117 0.425054i
\(414\) −1.65454 + 6.55252i −0.0813160 + 0.322039i
\(415\) −2.14542 −0.105314
\(416\) 61.2908 + 22.3080i 3.00503 + 1.09374i
\(417\) 15.8820 + 0.578368i 0.777745 + 0.0283228i
\(418\) 27.4525 + 23.0354i 1.34275 + 1.12670i
\(419\) 21.8222 7.94262i 1.06608 0.388023i 0.251373 0.967890i \(-0.419118\pi\)
0.814711 + 0.579868i \(0.196896\pi\)
\(420\) −12.9604 1.17682i −0.632405 0.0574229i
\(421\) 1.25756 + 7.13197i 0.0612897 + 0.347591i 0.999996 + 0.00287270i \(0.000914411\pi\)
−0.938706 + 0.344718i \(0.887974\pi\)
\(422\) 18.3234 0.891968
\(423\) 3.02082 4.44982i 0.146877 0.216357i
\(424\) −6.42382 −0.311968
\(425\) −20.0277 7.28948i −0.971485 0.353592i
\(426\) 72.6076 23.4718i 3.51785 1.13721i
\(427\) 3.31455 14.2404i 0.160402 0.689141i
\(428\) 37.2218 + 31.2328i 1.79919 + 1.50970i
\(429\) 15.5097 12.0802i 0.748816 0.583239i
\(430\) −2.64129 + 2.21631i −0.127374 + 0.106880i
\(431\) 6.96860 12.0700i 0.335666 0.581390i −0.647947 0.761686i \(-0.724372\pi\)
0.983612 + 0.180296i \(0.0577054\pi\)
\(432\) 52.9358 + 26.1128i 2.54687 + 1.25635i
\(433\) −21.7275 −1.04416 −0.522079 0.852897i \(-0.674843\pi\)
−0.522079 + 0.852897i \(0.674843\pi\)
\(434\) 19.9923 15.0092i 0.959660 0.720463i
\(435\) −6.58928 + 5.13227i −0.315932 + 0.246074i
\(436\) −2.09147 + 11.8613i −0.100163 + 0.568054i
\(437\) 3.60642 + 3.02615i 0.172519 + 0.144760i
\(438\) −0.102429 0.0925048i −0.00489424 0.00442005i
\(439\) 21.5003 + 7.82545i 1.02615 + 0.373489i 0.799614 0.600514i \(-0.205037\pi\)
0.226537 + 0.974003i \(0.427260\pi\)
\(440\) −5.53675 9.58994i −0.263954 0.457182i
\(441\) −0.138016 + 20.9995i −0.00657220 + 0.999978i
\(442\) −28.1621 + 48.7781i −1.33953 + 2.32014i
\(443\) −11.5538 + 9.69476i −0.548936 + 0.460612i −0.874580 0.484880i \(-0.838863\pi\)
0.325645 + 0.945492i \(0.394419\pi\)
\(444\) 29.6661 47.3182i 1.40789 2.24562i
\(445\) −0.995278 + 5.64450i −0.0471807 + 0.267575i
\(446\) −21.9661 18.4317i −1.04012 0.872768i
\(447\) −40.6988 1.48211i −1.92499 0.0701014i
\(448\) −35.0621 14.9572i −1.65653 0.706661i
\(449\) −10.0220 + 17.3586i −0.472966 + 0.819201i −0.999521 0.0309396i \(-0.990150\pi\)
0.526555 + 0.850141i \(0.323483\pi\)
\(450\) 30.2332 21.8280i 1.42521 1.02898i
\(451\) −4.73391 −0.222911
\(452\) −2.43497 13.8094i −0.114531 0.649540i
\(453\) −35.8499 + 11.5892i −1.68438 + 0.544507i
\(454\) −11.4002 + 64.6539i −0.535039 + 3.03436i
\(455\) 5.07061 + 4.74544i 0.237714 + 0.222469i
\(456\) 61.2519 47.7081i 2.86838 2.23413i
\(457\) 2.15773 + 12.2371i 0.100934 + 0.572426i 0.992767 + 0.120060i \(0.0383087\pi\)
−0.891832 + 0.452366i \(0.850580\pi\)
\(458\) −30.9669 + 53.6362i −1.44699 + 2.50626i
\(459\) −13.9855 + 19.0691i −0.652787 + 0.890068i
\(460\) −1.20515 2.08738i −0.0561903 0.0973244i
\(461\) −5.08266 1.84994i −0.236723 0.0861601i 0.220935 0.975289i \(-0.429089\pi\)
−0.457658 + 0.889128i \(0.651311\pi\)
\(462\) −24.3082 + 16.9020i −1.13092 + 0.786353i
\(463\) 17.1441 + 14.3856i 0.796753 + 0.668555i 0.947407 0.320031i \(-0.103693\pi\)
−0.150654 + 0.988587i \(0.548138\pi\)
\(464\) −91.4385 + 33.2809i −4.24492 + 1.54503i
\(465\) 0.726753 3.39416i 0.0337023 0.157400i
\(466\) 0.965713 + 5.47683i 0.0447358 + 0.253709i
\(467\) −9.11920 + 15.7949i −0.421986 + 0.730902i −0.996134 0.0878502i \(-0.972000\pi\)
0.574147 + 0.818752i \(0.305334\pi\)
\(468\) −30.7454 63.5184i −1.42121 2.93614i
\(469\) −11.6244 0.630099i −0.536763 0.0290953i
\(470\) 0.465140 + 2.63794i 0.0214553 + 0.121679i
\(471\) −7.07494 0.257645i −0.325996 0.0118717i
\(472\) 5.46928 31.0178i 0.251744 1.42771i
\(473\) −0.975428 + 5.53193i −0.0448502 + 0.254358i
\(474\) −24.1996 + 38.5990i −1.11152 + 1.77291i
\(475\) −4.51076 25.5818i −0.206968 1.17377i
\(476\) 33.1742 50.8838i 1.52053 2.33226i
\(477\) 1.71048 + 1.66169i 0.0783173 + 0.0760836i
\(478\) 0.526984 0.912764i 0.0241037 0.0417488i
\(479\) 4.17270 + 23.6646i 0.190655 + 1.08126i 0.918471 + 0.395488i \(0.129425\pi\)
−0.727816 + 0.685773i \(0.759464\pi\)
\(480\) −12.9775 + 4.19523i −0.592340 + 0.191485i
\(481\) −28.0064 + 10.1935i −1.27698 + 0.464783i
\(482\) −27.4186 23.0069i −1.24888 1.04794i
\(483\) −3.19335 + 2.22041i −0.145303 + 0.101032i
\(484\) 24.0568 + 8.75598i 1.09349 + 0.397999i
\(485\) −3.76108 6.51439i −0.170782 0.295803i
\(486\) −13.8602 38.9841i −0.628709 1.76835i
\(487\) 1.13219 1.96102i 0.0513046 0.0888622i −0.839233 0.543773i \(-0.816995\pi\)
0.890537 + 0.454910i \(0.150329\pi\)
\(488\) −7.75487 43.9801i −0.351047 1.99088i
\(489\) −37.6411 15.2734i −1.70219 0.690689i
\(490\) −7.23837 7.54952i −0.326996 0.341052i
\(491\) −3.20818 + 18.1945i −0.144783 + 0.821106i 0.822758 + 0.568392i \(0.192434\pi\)
−0.967541 + 0.252714i \(0.918677\pi\)
\(492\) −3.55782 + 16.6161i −0.160399 + 0.749113i
\(493\) −6.76958 38.3922i −0.304887 1.72910i
\(494\) −68.6482 −3.08863
\(495\) −1.00642 + 3.98575i −0.0452351 + 0.179146i
\(496\) 20.2200 35.0220i 0.907903 1.57253i
\(497\) 40.3941 + 17.2318i 1.81192 + 0.772951i
\(498\) 8.20223 + 15.4819i 0.367551 + 0.693761i
\(499\) 21.2450 + 17.8266i 0.951055 + 0.798030i 0.979475 0.201566i \(-0.0646031\pi\)
−0.0284198 + 0.999596i \(0.509048\pi\)
\(500\) −4.77505 + 27.0807i −0.213547 + 1.21108i
\(501\) −18.3066 34.5541i −0.817878 1.54376i
\(502\) 33.9674 28.5020i 1.51604 1.27211i
\(503\) −12.7588 + 22.0989i −0.568888 + 0.985343i 0.427789 + 0.903879i \(0.359293\pi\)
−0.996676 + 0.0814637i \(0.974041\pi\)
\(504\) 24.7799 + 59.1626i 1.10379 + 2.63531i
\(505\) −1.18155 2.04650i −0.0525782 0.0910681i
\(506\) −5.15283 1.87548i −0.229071 0.0833752i
\(507\) −3.17034 + 14.8065i −0.140800 + 0.657579i
\(508\) −10.4322 8.75368i −0.462856 0.388382i
\(509\) 3.84749 21.8202i 0.170537 0.967163i −0.772633 0.634853i \(-0.781061\pi\)
0.943170 0.332311i \(-0.107828\pi\)
\(510\) −1.62171 11.6655i −0.0718107 0.516558i
\(511\) −0.00953891 0.0788563i −0.000421977 0.00348840i
\(512\) 24.6996 1.09158
\(513\) −28.6505 3.14118i −1.26495 0.138686i
\(514\) −18.4360 + 31.9321i −0.813178 + 1.40847i
\(515\) −6.87681 + 5.77033i −0.303028 + 0.254271i
\(516\) 18.6841 + 7.58135i 0.822522 + 0.333751i
\(517\) 3.34296 + 2.80507i 0.147023 + 0.123367i
\(518\) 42.9469 13.0461i 1.88698 0.573211i
\(519\) −2.22865 + 10.4085i −0.0978270 + 0.456883i
\(520\) 19.9330 + 7.25500i 0.874118 + 0.318153i
\(521\) 17.2128 0.754105 0.377052 0.926192i \(-0.376938\pi\)
0.377052 + 0.926192i \(0.376938\pi\)
\(522\) 62.2277 + 27.9286i 2.72363 + 1.22240i
\(523\) −13.0146 −0.569089 −0.284544 0.958663i \(-0.591842\pi\)
−0.284544 + 0.958663i \(0.591842\pi\)
\(524\) −5.50399 31.2147i −0.240443 1.36362i
\(525\) 21.3728 + 1.94067i 0.932784 + 0.0846976i
\(526\) 10.1029 3.67717i 0.440509 0.160332i
\(527\) 12.4112 + 10.4142i 0.540639 + 0.453650i
\(528\) −25.4402 + 40.5779i −1.10714 + 1.76592i
\(529\) 20.9360 + 7.62008i 0.910261 + 0.331308i
\(530\) −1.18770 −0.0515905
\(531\) −9.47990 + 6.84437i −0.411392 + 0.297020i
\(532\) 73.9252 + 4.00712i 3.20506 + 0.173731i
\(533\) 6.94664 5.82893i 0.300893 0.252479i
\(534\) 44.5374 14.3975i 1.92732 0.623043i
\(535\) 4.15356 + 3.48525i 0.179574 + 0.150681i
\(536\) −33.4132 + 12.1614i −1.44323 + 0.525293i
\(537\) −17.7752 7.21257i −0.767058 0.311245i
\(538\) −24.2207 8.81562i −1.04423 0.380068i
\(539\) −16.9394 1.84181i −0.729631 0.0793325i
\(540\) 13.2337 + 6.52807i 0.569487 + 0.280924i
\(541\) 12.1459 + 21.0374i 0.522195 + 0.904468i 0.999667 + 0.0258208i \(0.00821994\pi\)
−0.477472 + 0.878647i \(0.658447\pi\)
\(542\) −20.7181 + 17.3845i −0.889917 + 0.746729i
\(543\) 12.0572 + 4.89238i 0.517423 + 0.209952i
\(544\) 11.0545 62.6930i 0.473956 2.68794i
\(545\) −0.233386 + 1.32360i −0.00999715 + 0.0566967i
\(546\) 14.8587 54.7334i 0.635894 2.34237i
\(547\) 5.97669 5.01504i 0.255545 0.214427i −0.506011 0.862527i \(-0.668880\pi\)
0.761556 + 0.648100i \(0.224436\pi\)
\(548\) 13.7985 23.8997i 0.589443 1.02094i
\(549\) −9.31172 + 13.7166i −0.397414 + 0.585410i
\(550\) 15.1282 + 26.2028i 0.645068 + 1.11729i
\(551\) 36.3982 30.5418i 1.55062 1.30112i
\(552\) −6.31044 + 10.0653i −0.268590 + 0.428408i
\(553\) −25.0872 + 7.62079i −1.06682 + 0.324069i
\(554\) −3.99308 + 1.45336i −0.169650 + 0.0617475i
\(555\) 3.31042 5.28021i 0.140520 0.224132i
\(556\) 43.4964 + 15.8314i 1.84466 + 0.671400i
\(557\) 9.49050 + 16.4380i 0.402125 + 0.696502i 0.993982 0.109541i \(-0.0349382\pi\)
−0.591857 + 0.806043i \(0.701605\pi\)
\(558\) −27.2717 + 7.73192i −1.15450 + 0.327318i
\(559\) −5.38017 9.31873i −0.227557 0.394140i
\(560\) −15.5619 6.63860i −0.657612 0.280532i
\(561\) −14.2401 12.8604i −0.601216 0.542966i
\(562\) 9.14028 3.32679i 0.385560 0.140332i
\(563\) −11.2457 + 4.09310i −0.473950 + 0.172504i −0.567941 0.823069i \(-0.692260\pi\)
0.0939907 + 0.995573i \(0.470038\pi\)
\(564\) 12.3583 9.62566i 0.520378 0.405314i
\(565\) −0.271717 1.54098i −0.0114312 0.0648296i
\(566\) −17.0408 −0.716280
\(567\) 8.70579 22.1632i 0.365609 0.930769i
\(568\) 134.137 5.62827
\(569\) 5.91878 + 33.5671i 0.248128 + 1.40720i 0.813114 + 0.582104i \(0.197770\pi\)
−0.564986 + 0.825101i \(0.691118\pi\)
\(570\) 11.3249 8.82075i 0.474347 0.369461i
\(571\) −22.3650 + 8.14020i −0.935947 + 0.340657i −0.764564 0.644548i \(-0.777046\pi\)
−0.171383 + 0.985204i \(0.554824\pi\)
\(572\) 53.8054 19.5836i 2.24972 0.818829i
\(573\) 13.6049 + 12.2868i 0.568353 + 0.513287i
\(574\) −10.9215 + 8.19930i −0.455855 + 0.342232i
\(575\) 1.98738 + 3.44224i 0.0828795 + 0.143551i
\(576\) 31.0022 + 30.1180i 1.29176 + 1.25492i
\(577\) −17.0352 29.5058i −0.709183 1.22834i −0.965161 0.261658i \(-0.915731\pi\)
0.255977 0.966683i \(-0.417603\pi\)
\(578\) 9.25811 + 3.36968i 0.385087 + 0.140160i
\(579\) −5.43323 + 8.66615i −0.225797 + 0.360153i
\(580\) −22.8591 + 8.32005i −0.949174 + 0.345471i
\(581\) −2.28585 + 9.82078i −0.0948331 + 0.407435i
\(582\) −32.6305 + 52.0465i −1.35258 + 2.15740i
\(583\) −1.48226 + 1.24376i −0.0613889 + 0.0515114i
\(584\) −0.121307 0.210111i −0.00501974 0.00869444i
\(585\) −3.43086 7.08798i −0.141849 0.293052i
\(586\) 7.39969 12.8166i 0.305679 0.529451i
\(587\) 28.6230 24.0176i 1.18140 0.991311i 0.181430 0.983404i \(-0.441927\pi\)
0.999969 0.00790754i \(-0.00251707\pi\)
\(588\) −19.1958 + 58.0734i −0.791621 + 2.39491i
\(589\) −3.42897 + 19.4467i −0.141288 + 0.801285i
\(590\) 1.01122 5.73489i 0.0416311 0.236102i
\(591\) 17.7965 + 7.22119i 0.732049 + 0.297040i
\(592\) 55.6204 46.6711i 2.28599 1.91817i
\(593\) 7.60816 + 13.1777i 0.312430 + 0.541144i 0.978888 0.204398i \(-0.0655238\pi\)
−0.666458 + 0.745542i \(0.732190\pi\)
\(594\) 32.6099 7.97550i 1.33800 0.327239i
\(595\) 3.70188 5.67810i 0.151762 0.232779i
\(596\) −111.463 40.5691i −4.56569 1.66177i
\(597\) −20.1670 8.18308i −0.825382 0.334911i
\(598\) 9.87067 3.59263i 0.403642 0.146914i
\(599\) −18.6723 15.6679i −0.762930 0.640174i 0.175958 0.984398i \(-0.443698\pi\)
−0.938888 + 0.344224i \(0.888142\pi\)
\(600\) 62.3715 20.1628i 2.54631 0.823142i
\(601\) 23.9529 20.0989i 0.977060 0.819851i −0.00658341 0.999978i \(-0.502096\pi\)
0.983643 + 0.180128i \(0.0576511\pi\)
\(602\) 7.33110 + 14.4521i 0.298793 + 0.589022i
\(603\) 12.0428 + 5.40499i 0.490422 + 0.220108i
\(604\) −109.735 −4.46507
\(605\) 2.68449 + 0.977074i 0.109140 + 0.0397237i
\(606\) −10.2509 + 16.3504i −0.416414 + 0.664191i
\(607\) 25.5652 + 21.4517i 1.03766 + 0.870698i 0.991742 0.128247i \(-0.0409350\pi\)
0.0459155 + 0.998945i \(0.485379\pi\)
\(608\) 72.9102 26.5371i 2.95690 1.07622i
\(609\) 16.4727 + 35.6311i 0.667508 + 1.44384i
\(610\) −1.43380 8.13148i −0.0580529 0.329234i
\(611\) −8.35944 −0.338187
\(612\) −55.8425 + 40.3176i −2.25730 + 1.62974i
\(613\) 13.3332 0.538522 0.269261 0.963067i \(-0.413221\pi\)
0.269261 + 0.963067i \(0.413221\pi\)
\(614\) 31.4010 + 11.4290i 1.26724 + 0.461238i
\(615\) −0.397015 + 1.85418i −0.0160092 + 0.0747679i
\(616\) −49.7978 + 15.1272i −2.00641 + 0.609491i
\(617\) −17.8838 15.0063i −0.719975 0.604130i 0.207404 0.978255i \(-0.433499\pi\)
−0.927378 + 0.374125i \(0.877943\pi\)
\(618\) 67.9313 + 27.5641i 2.73260 + 1.10879i
\(619\) −32.4401 + 27.2205i −1.30388 + 1.09408i −0.314417 + 0.949285i \(0.601809\pi\)
−0.989461 + 0.144798i \(0.953747\pi\)
\(620\) 5.05488 8.75531i 0.203009 0.351622i
\(621\) 4.28394 1.04774i 0.171909 0.0420442i
\(622\) 13.0004 0.521269
\(623\) 24.7776 + 10.5699i 0.992695 + 0.423476i
\(624\) −12.6325 90.8697i −0.505704 3.63770i
\(625\) 3.53322 20.0379i 0.141329 0.801515i
\(626\) −16.7468 14.0523i −0.669338 0.561642i
\(627\) 4.89642 22.8678i 0.195544 0.913251i
\(628\) −19.3763 7.05240i −0.773199 0.281421i
\(629\) 14.5445 + 25.1918i 0.579928 + 1.00446i
\(630\) 4.58157 + 10.9386i 0.182534 + 0.435803i
\(631\) −5.49193 + 9.51231i −0.218630 + 0.378679i −0.954389 0.298564i \(-0.903492\pi\)
0.735759 + 0.677243i \(0.236826\pi\)
\(632\) −61.3478 + 51.4769i −2.44029 + 2.04764i
\(633\) −5.59785 10.5661i −0.222495 0.419964i
\(634\) 8.87745 50.3465i 0.352569 1.99952i
\(635\) −1.16413 0.976818i −0.0461970 0.0387638i
\(636\) 3.25163 + 6.13753i 0.128935 + 0.243369i
\(637\) 27.1251 18.1550i 1.07473 0.719326i
\(638\) −27.6716 + 47.9286i −1.09553 + 1.89751i
\(639\) −35.7168 34.6981i −1.41293 1.37264i
\(640\) −5.77829 −0.228407
\(641\) 0.755116 + 4.28248i 0.0298253 + 0.169148i 0.996082 0.0884328i \(-0.0281859\pi\)
−0.966257 + 0.257581i \(0.917075\pi\)
\(642\) 9.27087 43.2979i 0.365892 1.70883i
\(643\) −1.71985 + 9.75374i −0.0678241 + 0.384650i 0.931933 + 0.362629i \(0.118121\pi\)
−0.999758 + 0.0220203i \(0.992990\pi\)
\(644\) −10.8391 + 3.29263i −0.427122 + 0.129748i
\(645\) 2.08495 + 0.845999i 0.0820947 + 0.0333112i
\(646\) 11.6348 + 65.9840i 0.457764 + 2.59611i
\(647\) 2.17379 3.76512i 0.0854607 0.148022i −0.820127 0.572182i \(-0.806097\pi\)
0.905587 + 0.424160i \(0.139430\pi\)
\(648\) −2.10387 72.7003i −0.0826478 2.85594i
\(649\) −4.74359 8.21613i −0.186202 0.322511i
\(650\) −54.4632 19.8230i −2.13622 0.777522i
\(651\) −14.7627 6.94310i −0.578595 0.272121i
\(652\) −90.6332 76.0503i −3.54947 2.97836i
\(653\) 41.1969 14.9944i 1.61216 0.586777i 0.630292 0.776358i \(-0.282935\pi\)
0.981865 + 0.189580i \(0.0607128\pi\)
\(654\) 10.4437 3.37613i 0.408381 0.132017i
\(655\) −0.614187 3.48323i −0.0239983 0.136101i
\(656\) −11.0459 + 19.1320i −0.431269 + 0.746981i
\(657\) −0.0220501 + 0.0873256i −0.000860255 + 0.00340690i
\(658\) 12.5709 + 0.681409i 0.490066 + 0.0265641i
\(659\) −2.06386 11.7047i −0.0803965 0.455951i −0.998255 0.0590442i \(-0.981195\pi\)
0.917859 0.396907i \(-0.129916\pi\)
\(660\) −6.35992 + 10.1443i −0.247560 + 0.394865i
\(661\) 6.52142 36.9848i 0.253654 1.43854i −0.545851 0.837882i \(-0.683794\pi\)
0.799505 0.600659i \(-0.205095\pi\)
\(662\) −0.543863 + 3.08440i −0.0211378 + 0.119879i
\(663\) 36.7313 + 1.33763i 1.42653 + 0.0519492i
\(664\) 5.34809 + 30.3305i 0.207546 + 1.17705i
\(665\) 8.24927 + 0.447152i 0.319893 + 0.0173398i
\(666\) −50.7597 3.70190i −1.96690 0.143446i
\(667\) −3.63520 + 6.29635i −0.140755 + 0.243796i
\(668\) −19.7772 112.162i −0.765204 4.33969i
\(669\) −3.91785 + 18.2976i −0.151473 + 0.707426i
\(670\) −6.17778 + 2.24853i −0.238668 + 0.0868681i
\(671\) −10.3047 8.64667i −0.397808 0.333801i
\(672\) 5.37692 + 63.8753i 0.207419 + 2.46404i
\(673\) −30.1366 10.9688i −1.16168 0.422817i −0.311983 0.950088i \(-0.600993\pi\)
−0.849698 + 0.527270i \(0.823216\pi\)
\(674\) −20.2973 35.1560i −0.781825 1.35416i
\(675\) −21.8233 10.7653i −0.839981 0.414356i
\(676\) −22.0511 + 38.1936i −0.848120 + 1.46899i
\(677\) −3.38426 19.1931i −0.130068 0.737651i −0.978168 0.207816i \(-0.933365\pi\)
0.848100 0.529836i \(-0.177746\pi\)
\(678\) −10.0813 + 7.85218i −0.387172 + 0.301561i
\(679\) −33.8273 + 10.2758i −1.29817 + 0.394349i
\(680\) 3.59513 20.3890i 0.137867 0.781882i
\(681\) 40.7652 13.1781i 1.56213 0.504987i
\(682\) −3.99394 22.6507i −0.152936 0.867342i
\(683\) 7.73217 0.295863 0.147932 0.988998i \(-0.452738\pi\)
0.147932 + 0.988998i \(0.452738\pi\)
\(684\) −76.5865 34.3730i −2.92836 1.31429i
\(685\) 1.53977 2.66695i 0.0588314 0.101899i
\(686\) −42.2706 + 25.0904i −1.61390 + 0.957956i
\(687\) 40.3896 + 1.47085i 1.54096 + 0.0561165i
\(688\) 20.0812 + 16.8501i 0.765588 + 0.642405i
\(689\) 0.643637 3.65025i 0.0245206 0.139063i
\(690\) −1.16674 + 1.86098i −0.0444169 + 0.0708462i
\(691\) −29.9066 + 25.0946i −1.13770 + 0.954643i −0.999361 0.0357421i \(-0.988621\pi\)
−0.138338 + 0.990385i \(0.544176\pi\)
\(692\) −15.5013 + 26.8490i −0.589269 + 1.02064i
\(693\) 17.1727 + 8.85359i 0.652338 + 0.336320i
\(694\) 22.5697 + 39.0919i 0.856734 + 1.48391i
\(695\) 4.85373 + 1.76661i 0.184113 + 0.0670115i
\(696\) 88.9826 + 80.3614i 3.37288 + 3.04609i
\(697\) −6.78005 5.68914i −0.256813 0.215492i
\(698\) −15.6931 + 89.0001i −0.593993 + 3.36870i
\(699\) 2.86316 2.23007i 0.108295 0.0843489i
\(700\) 57.4927 + 24.5259i 2.17302 + 0.926992i
\(701\) 9.51546 0.359394 0.179697 0.983722i \(-0.442488\pi\)
0.179697 + 0.983722i \(0.442488\pi\)
\(702\) −38.0321 + 51.8564i −1.43543 + 1.95719i
\(703\) −17.7269 + 30.7040i −0.668584 + 1.15802i
\(704\) −26.8658 + 22.5431i −1.01254 + 0.849625i
\(705\) 1.37905 1.07412i 0.0519382 0.0404538i
\(706\) 26.6897 + 22.3953i 1.00448 + 0.842858i
\(707\) −10.6269 + 3.22815i −0.399665 + 0.121407i
\(708\) −32.4039 + 10.4752i −1.21781 + 0.393681i
\(709\) 19.8575 + 7.22754i 0.745765 + 0.271436i 0.686822 0.726825i \(-0.259005\pi\)
0.0589422 + 0.998261i \(0.481227\pi\)
\(710\) 24.8007 0.930752
\(711\) 29.6510 + 2.16244i 1.11200 + 0.0810980i
\(712\) 82.2795 3.08355
\(713\) −0.524681 2.97561i −0.0196495 0.111438i
\(714\) −55.1275 5.00563i −2.06310 0.187331i
\(715\) 6.00411 2.18532i 0.224541 0.0817262i
\(716\) −42.7997 35.9132i −1.59950 1.34214i
\(717\) −0.687337 0.0250305i −0.0256691 0.000934779i
\(718\) −71.2573 25.9355i −2.65930 0.967905i
\(719\) −16.4199 −0.612359 −0.306179 0.951974i \(-0.599051\pi\)
−0.306179 + 0.951974i \(0.599051\pi\)
\(720\) 13.7600 + 13.3676i 0.512805 + 0.498180i
\(721\) 19.0871 + 37.6271i 0.710840 + 1.40131i
\(722\) −23.9258 + 20.0761i −0.890425 + 0.747156i
\(723\) −4.89036 + 22.8395i −0.181875 + 0.849411i
\(724\) 29.0316 + 24.3604i 1.07895 + 0.905348i
\(725\) 37.6965 13.7204i 1.40001 0.509563i
\(726\) −3.21235 23.1075i −0.119222 0.857600i
\(727\) −0.636341 0.231609i −0.0236006 0.00858990i 0.330193 0.943913i \(-0.392886\pi\)
−0.353793 + 0.935324i \(0.615108\pi\)
\(728\) 54.4480 83.5145i 2.01798 3.09525i
\(729\) −18.2457 + 19.9022i −0.675765 + 0.737117i
\(730\) −0.0224285 0.0388474i −0.000830118 0.00143781i
\(731\) −8.04522 + 6.75074i −0.297563 + 0.249685i
\(732\) −38.0946 + 29.6712i −1.40802 + 1.09668i
\(733\) −1.37234 + 7.78291i −0.0506884 + 0.287468i −0.999606 0.0280545i \(-0.991069\pi\)
0.948918 + 0.315523i \(0.102180\pi\)
\(734\) 5.88628 33.3828i 0.217267 1.23218i
\(735\) −2.14205 + 6.48037i −0.0790105 + 0.239032i
\(736\) −9.09469 + 7.63135i −0.335235 + 0.281295i
\(737\) −5.35524 + 9.27555i −0.197263 + 0.341669i
\(738\) 14.8982 4.22384i 0.548409 0.155482i
\(739\) 12.5276 + 21.6984i 0.460834 + 0.798188i 0.999003 0.0446492i \(-0.0142170\pi\)
−0.538169 + 0.842837i \(0.680884\pi\)
\(740\) 13.9048 11.6675i 0.511151 0.428907i
\(741\) 20.9723 + 39.5857i 0.770436 + 1.45422i
\(742\) −1.26545 + 5.43678i −0.0464560 + 0.199591i
\(743\) −28.7605 + 10.4680i −1.05512 + 0.384033i −0.810594 0.585609i \(-0.800855\pi\)
−0.244529 + 0.969642i \(0.578633\pi\)
\(744\) −49.7962 1.81341i −1.82562 0.0664827i
\(745\) −12.4380 4.52708i −0.455695 0.165859i
\(746\) −13.1624 22.7980i −0.481910 0.834693i
\(747\) 6.42176 9.45956i 0.234960 0.346107i
\(748\) −27.9427 48.3981i −1.02169 1.76961i
\(749\) 20.3794 15.2998i 0.744648 0.559043i
\(750\) 23.8441 7.70806i 0.870663 0.281458i
\(751\) −10.3432 + 3.76462i −0.377429 + 0.137373i −0.523767 0.851862i \(-0.675474\pi\)
0.146338 + 0.989235i \(0.453251\pi\)
\(752\) 19.1369 6.96528i 0.697853 0.253998i
\(753\) −26.8127 10.8797i −0.977109 0.396477i
\(754\) −18.4092 104.404i −0.670424 3.80216i
\(755\) −12.2453 −0.445652
\(756\) 43.9826 53.6226i 1.59963 1.95024i
\(757\) 3.80963 0.138464 0.0692318 0.997601i \(-0.477945\pi\)
0.0692318 + 0.997601i \(0.477945\pi\)
\(758\) −0.359507 2.03887i −0.0130579 0.0740550i
\(759\) 0.492724 + 3.54432i 0.0178847 + 0.128651i
\(760\) 23.7118 8.63039i 0.860117 0.313057i
\(761\) 24.2958 8.84296i 0.880723 0.320557i 0.138221 0.990401i \(-0.455861\pi\)
0.742501 + 0.669844i \(0.233639\pi\)
\(762\) −2.59837 + 12.1352i −0.0941288 + 0.439611i
\(763\) 5.81019 + 2.47858i 0.210343 + 0.0897305i
\(764\) 26.6963 + 46.2394i 0.965839 + 1.67288i
\(765\) −6.23143 + 4.49901i −0.225298 + 0.162662i
\(766\) 21.8726 + 37.8845i 0.790290 + 1.36882i
\(767\) 17.0775 + 6.21569i 0.616631 + 0.224435i
\(768\) −1.27408