Properties

Label 189.2.u.a.4.18
Level $189$
Weight $2$
Character 189.4
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(4,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([2, 12]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.u (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 4.18
Character \(\chi\) \(=\) 189.4
Dual form 189.2.u.a.142.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.340870 + 1.93317i) q^{2} +(-0.913186 - 1.47176i) q^{3} +(-1.74157 + 0.633879i) q^{4} +(1.35943 - 0.494793i) q^{5} +(2.53389 - 2.26702i) q^{6} +(-0.147009 + 2.64166i) q^{7} +(0.143948 + 0.249325i) q^{8} +(-1.33218 + 2.68799i) q^{9} +O(q^{10})\) \(q+(0.340870 + 1.93317i) q^{2} +(-0.913186 - 1.47176i) q^{3} +(-1.74157 + 0.633879i) q^{4} +(1.35943 - 0.494793i) q^{5} +(2.53389 - 2.26702i) q^{6} +(-0.147009 + 2.64166i) q^{7} +(0.143948 + 0.249325i) q^{8} +(-1.33218 + 2.68799i) q^{9} +(1.41991 + 2.45935i) q^{10} +(5.77303 + 2.10121i) q^{11} +(2.52330 + 1.98433i) q^{12} +(1.44936 - 0.527524i) q^{13} +(-5.15690 + 0.616271i) q^{14} +(-1.96963 - 1.54893i) q^{15} +(-3.27240 + 2.74587i) q^{16} +(-3.07473 - 5.32559i) q^{17} +(-5.65044 - 1.65908i) q^{18} +(0.261335 - 0.452646i) q^{19} +(-2.05390 + 1.72343i) q^{20} +(4.02215 - 2.19597i) q^{21} +(-2.09415 + 11.8765i) q^{22} +(1.43536 - 8.14035i) q^{23} +(0.235496 - 0.439537i) q^{24} +(-2.22699 + 1.86866i) q^{25} +(1.51384 + 2.62204i) q^{26} +(5.17262 - 0.493980i) q^{27} +(-1.41847 - 4.69382i) q^{28} +(-4.17265 - 1.51872i) q^{29} +(2.32295 - 4.33562i) q^{30} +(-4.80431 + 1.74863i) q^{31} +(-5.98261 - 5.02001i) q^{32} +(-2.17937 - 10.4153i) q^{33} +(9.24719 - 7.75932i) q^{34} +(1.10723 + 3.66390i) q^{35} +(0.616224 - 5.52576i) q^{36} +0.210999 q^{37} +(0.964123 + 0.350912i) q^{38} +(-2.09993 - 1.65139i) q^{39} +(0.319051 + 0.267715i) q^{40} +(-3.94198 + 1.43476i) q^{41} +(5.61621 + 7.02697i) q^{42} +(-0.0927634 - 0.526087i) q^{43} -11.3860 q^{44} +(-0.481011 + 4.31329i) q^{45} +16.2259 q^{46} +(9.52785 + 3.46786i) q^{47} +(7.02958 + 2.30871i) q^{48} +(-6.95678 - 0.776696i) q^{49} +(-4.37156 - 3.66817i) q^{50} +(-5.03022 + 9.38854i) q^{51} +(-2.18977 + 1.83744i) q^{52} +(2.29554 - 3.97599i) q^{53} +(2.71814 + 9.83117i) q^{54} +8.88771 q^{55} +(-0.679793 + 0.343608i) q^{56} +(-0.904836 + 0.0287262i) q^{57} +(1.51361 - 8.58413i) q^{58} +(3.47012 + 2.91178i) q^{59} +(4.41208 + 1.44905i) q^{60} +(-5.25075 - 1.91112i) q^{61} +(-5.01804 - 8.69149i) q^{62} +(-6.90493 - 3.91433i) q^{63} +(3.39342 - 5.87758i) q^{64} +(1.70929 - 1.43427i) q^{65} +(19.3917 - 7.76336i) q^{66} +(1.91687 - 10.8711i) q^{67} +(8.73064 + 7.32588i) q^{68} +(-13.2914 + 5.32114i) q^{69} +(-6.70552 + 3.38937i) q^{70} +(0.605511 - 1.04878i) q^{71} +(-0.861946 + 0.0547843i) q^{72} -2.51612 q^{73} +(0.0719234 + 0.407898i) q^{74} +(4.78389 + 1.57116i) q^{75} +(-0.168211 + 0.953969i) q^{76} +(-6.39938 + 14.9415i) q^{77} +(2.47661 - 4.62243i) q^{78} +(0.432703 + 2.45398i) q^{79} +(-3.08997 + 5.35198i) q^{80} +(-5.45059 - 7.16178i) q^{81} +(-4.11734 - 7.13145i) q^{82} +(-2.29898 - 0.836760i) q^{83} +(-5.61288 + 6.37399i) q^{84} +(-6.81495 - 5.71843i) q^{85} +(0.985396 - 0.358655i) q^{86} +(1.57521 + 7.52803i) q^{87} +(0.307130 + 1.74182i) q^{88} +(2.13820 - 3.70347i) q^{89} +(-8.50229 + 0.540396i) q^{90} +(1.18047 + 3.90627i) q^{91} +(2.66021 + 15.0868i) q^{92} +(6.96079 + 5.47399i) q^{93} +(-3.45619 + 19.6010i) q^{94} +(0.131302 - 0.744648i) q^{95} +(-1.92503 + 13.3892i) q^{96} +(-2.30269 - 13.0592i) q^{97} +(-0.869871 - 13.7134i) q^{98} +(-13.3388 + 12.7187i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} - 15 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} - 15 q^{9} + 3 q^{10} - 15 q^{11} - 3 q^{12} - 12 q^{13} - 30 q^{14} + 9 q^{16} + 27 q^{17} - 3 q^{18} + 3 q^{19} - 18 q^{20} + 15 q^{21} - 12 q^{22} - 36 q^{23} - 72 q^{24} - 3 q^{25} + 30 q^{26} - 12 q^{27} - 12 q^{28} - 30 q^{29} - 3 q^{30} - 3 q^{31} - 75 q^{32} + 15 q^{33} - 18 q^{34} + 15 q^{35} - 60 q^{36} - 6 q^{37} + 69 q^{38} + 51 q^{39} + 51 q^{40} - 39 q^{42} - 12 q^{43} - 6 q^{44} - 21 q^{45} - 6 q^{46} - 21 q^{47} + 90 q^{48} - 42 q^{49} - 39 q^{50} + 33 q^{51} + 9 q^{52} + 9 q^{53} - 9 q^{54} - 24 q^{55} + 111 q^{56} - 18 q^{57} - 3 q^{58} + 27 q^{59} - 63 q^{60} - 21 q^{61} + 75 q^{62} + 63 q^{63} - 30 q^{64} - 90 q^{65} - 3 q^{66} - 3 q^{67} - 30 q^{68} - 6 q^{69} + 39 q^{70} - 18 q^{71} + 183 q^{72} - 42 q^{73} + 51 q^{74} - 45 q^{75} - 24 q^{76} + 15 q^{77} - 30 q^{78} + 15 q^{79} + 102 q^{80} - 87 q^{81} - 6 q^{82} - 42 q^{83} + 135 q^{84} - 63 q^{85} - 93 q^{86} + 75 q^{87} - 51 q^{88} + 75 q^{89} - 39 q^{90} - 21 q^{91} - 66 q^{92} + 81 q^{93} + 33 q^{94} + 15 q^{95} - 171 q^{96} - 12 q^{97} - 36 q^{98} + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.340870 + 1.93317i 0.241032 + 1.36696i 0.829531 + 0.558460i \(0.188608\pi\)
−0.588500 + 0.808497i \(0.700281\pi\)
\(3\) −0.913186 1.47176i −0.527228 0.849724i
\(4\) −1.74157 + 0.633879i −0.870784 + 0.316940i
\(5\) 1.35943 0.494793i 0.607956 0.221278i −0.0196525 0.999807i \(-0.506256\pi\)
0.627609 + 0.778529i \(0.284034\pi\)
\(6\) 2.53389 2.26702i 1.03446 0.925509i
\(7\) −0.147009 + 2.64166i −0.0555641 + 0.998455i
\(8\) 0.143948 + 0.249325i 0.0508932 + 0.0881495i
\(9\) −1.33218 + 2.68799i −0.444060 + 0.895997i
\(10\) 1.41991 + 2.45935i 0.449014 + 0.777715i
\(11\) 5.77303 + 2.10121i 1.74063 + 0.633539i 0.999293 0.0375885i \(-0.0119676\pi\)
0.741342 + 0.671128i \(0.234190\pi\)
\(12\) 2.52330 + 1.98433i 0.728413 + 0.572826i
\(13\) 1.44936 0.527524i 0.401980 0.146309i −0.133115 0.991101i \(-0.542498\pi\)
0.535095 + 0.844792i \(0.320276\pi\)
\(14\) −5.15690 + 0.616271i −1.37824 + 0.164705i
\(15\) −1.96963 1.54893i −0.508557 0.399931i
\(16\) −3.27240 + 2.74587i −0.818100 + 0.686467i
\(17\) −3.07473 5.32559i −0.745732 1.29165i −0.949852 0.312700i \(-0.898766\pi\)
0.204120 0.978946i \(-0.434567\pi\)
\(18\) −5.65044 1.65908i −1.33182 0.391048i
\(19\) 0.261335 0.452646i 0.0599545 0.103844i −0.834490 0.551023i \(-0.814238\pi\)
0.894445 + 0.447178i \(0.147571\pi\)
\(20\) −2.05390 + 1.72343i −0.459267 + 0.385371i
\(21\) 4.02215 2.19597i 0.877706 0.479200i
\(22\) −2.09415 + 11.8765i −0.446474 + 2.53208i
\(23\) 1.43536 8.14035i 0.299294 1.69738i −0.349925 0.936778i \(-0.613793\pi\)
0.649219 0.760602i \(-0.275096\pi\)
\(24\) 0.235496 0.439537i 0.0480704 0.0897201i
\(25\) −2.22699 + 1.86866i −0.445398 + 0.373733i
\(26\) 1.51384 + 2.62204i 0.296888 + 0.514225i
\(27\) 5.17262 0.493980i 0.995471 0.0950664i
\(28\) −1.41847 4.69382i −0.268066 0.887050i
\(29\) −4.17265 1.51872i −0.774842 0.282019i −0.0758217 0.997121i \(-0.524158\pi\)
−0.699020 + 0.715102i \(0.746380\pi\)
\(30\) 2.32295 4.33562i 0.424110 0.791572i
\(31\) −4.80431 + 1.74863i −0.862879 + 0.314062i −0.735280 0.677763i \(-0.762949\pi\)
−0.127599 + 0.991826i \(0.540727\pi\)
\(32\) −5.98261 5.02001i −1.05759 0.887420i
\(33\) −2.17937 10.4153i −0.379379 1.81308i
\(34\) 9.24719 7.75932i 1.58588 1.33071i
\(35\) 1.10723 + 3.66390i 0.187156 + 0.619312i
\(36\) 0.616224 5.52576i 0.102704 0.920960i
\(37\) 0.210999 0.0346881 0.0173440 0.999850i \(-0.494479\pi\)
0.0173440 + 0.999850i \(0.494479\pi\)
\(38\) 0.964123 + 0.350912i 0.156401 + 0.0569255i
\(39\) −2.09993 1.65139i −0.336258 0.264434i
\(40\) 0.319051 + 0.267715i 0.0504464 + 0.0423295i
\(41\) −3.94198 + 1.43476i −0.615634 + 0.224072i −0.630966 0.775810i \(-0.717341\pi\)
0.0153328 + 0.999882i \(0.495119\pi\)
\(42\) 5.61621 + 7.02697i 0.866601 + 1.08428i
\(43\) −0.0927634 0.526087i −0.0141463 0.0802275i 0.976917 0.213618i \(-0.0685247\pi\)
−0.991064 + 0.133390i \(0.957414\pi\)
\(44\) −11.3860 −1.71651
\(45\) −0.481011 + 4.31329i −0.0717049 + 0.642988i
\(46\) 16.2259 2.39239
\(47\) 9.52785 + 3.46786i 1.38978 + 0.505839i 0.925128 0.379655i \(-0.123957\pi\)
0.464652 + 0.885493i \(0.346179\pi\)
\(48\) 7.02958 + 2.30871i 1.01463 + 0.333234i
\(49\) −6.95678 0.776696i −0.993825 0.110957i
\(50\) −4.37156 3.66817i −0.618232 0.518758i
\(51\) −5.03022 + 9.38854i −0.704371 + 1.31466i
\(52\) −2.18977 + 1.83744i −0.303667 + 0.254807i
\(53\) 2.29554 3.97599i 0.315316 0.546144i −0.664188 0.747565i \(-0.731223\pi\)
0.979505 + 0.201421i \(0.0645560\pi\)
\(54\) 2.71814 + 9.83117i 0.369892 + 1.33785i
\(55\) 8.88771 1.19842
\(56\) −0.679793 + 0.343608i −0.0908412 + 0.0459166i
\(57\) −0.904836 + 0.0287262i −0.119849 + 0.00380488i
\(58\) 1.51361 8.58413i 0.198747 1.12715i
\(59\) 3.47012 + 2.91178i 0.451771 + 0.379081i 0.840093 0.542443i \(-0.182501\pi\)
−0.388322 + 0.921524i \(0.626945\pi\)
\(60\) 4.41208 + 1.44905i 0.569597 + 0.187072i
\(61\) −5.25075 1.91112i −0.672290 0.244694i −0.0167566 0.999860i \(-0.505334\pi\)
−0.655534 + 0.755166i \(0.727556\pi\)
\(62\) −5.01804 8.69149i −0.637291 1.10382i
\(63\) −6.90493 3.91433i −0.869939 0.493160i
\(64\) 3.39342 5.87758i 0.424178 0.734697i
\(65\) 1.70929 1.43427i 0.212012 0.177899i
\(66\) 19.3917 7.76336i 2.38696 0.955604i
\(67\) 1.91687 10.8711i 0.234183 1.32812i −0.610144 0.792290i \(-0.708889\pi\)
0.844327 0.535828i \(-0.180000\pi\)
\(68\) 8.73064 + 7.32588i 1.05875 + 0.888393i
\(69\) −13.2914 + 5.32114i −1.60010 + 0.640590i
\(70\) −6.70552 + 3.38937i −0.801463 + 0.405107i
\(71\) 0.605511 1.04878i 0.0718610 0.124467i −0.827856 0.560941i \(-0.810440\pi\)
0.899717 + 0.436474i \(0.143773\pi\)
\(72\) −0.861946 + 0.0547843i −0.101581 + 0.00645639i
\(73\) −2.51612 −0.294490 −0.147245 0.989100i \(-0.547041\pi\)
−0.147245 + 0.989100i \(0.547041\pi\)
\(74\) 0.0719234 + 0.407898i 0.00836092 + 0.0474171i
\(75\) 4.78389 + 1.57116i 0.552396 + 0.181422i
\(76\) −0.168211 + 0.953969i −0.0192951 + 0.109428i
\(77\) −6.39938 + 14.9415i −0.729277 + 1.70274i
\(78\) 2.47661 4.62243i 0.280421 0.523387i
\(79\) 0.432703 + 2.45398i 0.0486829 + 0.276094i 0.999426 0.0338864i \(-0.0107885\pi\)
−0.950743 + 0.309981i \(0.899677\pi\)
\(80\) −3.08997 + 5.35198i −0.345469 + 0.598369i
\(81\) −5.45059 7.16178i −0.605621 0.795753i
\(82\) −4.11734 7.13145i −0.454684 0.787537i
\(83\) −2.29898 0.836760i −0.252346 0.0918464i 0.212750 0.977107i \(-0.431758\pi\)
−0.465096 + 0.885260i \(0.653980\pi\)
\(84\) −5.61288 + 6.37399i −0.612415 + 0.695459i
\(85\) −6.81495 5.71843i −0.739185 0.620250i
\(86\) 0.985396 0.358655i 0.106258 0.0386747i
\(87\) 1.57521 + 7.52803i 0.168880 + 0.807090i
\(88\) 0.307130 + 1.74182i 0.0327402 + 0.185679i
\(89\) 2.13820 3.70347i 0.226649 0.392567i −0.730164 0.683272i \(-0.760556\pi\)
0.956813 + 0.290705i \(0.0938897\pi\)
\(90\) −8.50229 + 0.540396i −0.896220 + 0.0569627i
\(91\) 1.18047 + 3.90627i 0.123747 + 0.409489i
\(92\) 2.66021 + 15.0868i 0.277346 + 1.57291i
\(93\) 6.96079 + 5.47399i 0.721801 + 0.567626i
\(94\) −3.45619 + 19.6010i −0.356479 + 2.02169i
\(95\) 0.131302 0.744648i 0.0134713 0.0763993i
\(96\) −1.92503 + 13.3892i −0.196472 + 1.36653i
\(97\) −2.30269 13.0592i −0.233803 1.32596i −0.845120 0.534577i \(-0.820471\pi\)
0.611317 0.791386i \(-0.290640\pi\)
\(98\) −0.869871 13.7134i −0.0878703 1.38526i
\(99\) −13.3388 + 12.7187i −1.34060 + 1.27827i
\(100\) 2.69394 4.66605i 0.269394 0.466605i
\(101\) −1.90749 10.8179i −0.189803 1.07643i −0.919628 0.392791i \(-0.871510\pi\)
0.729825 0.683634i \(-0.239602\pi\)
\(102\) −19.8643 6.52399i −1.96686 0.645971i
\(103\) 0.364941 0.132828i 0.0359588 0.0130879i −0.323978 0.946065i \(-0.605020\pi\)
0.359937 + 0.932977i \(0.382798\pi\)
\(104\) 0.340157 + 0.285425i 0.0333551 + 0.0279883i
\(105\) 4.38129 4.97540i 0.427570 0.485549i
\(106\) 8.46874 + 3.08237i 0.822557 + 0.299386i
\(107\) 1.52761 + 2.64590i 0.147680 + 0.255789i 0.930370 0.366623i \(-0.119486\pi\)
−0.782690 + 0.622412i \(0.786153\pi\)
\(108\) −8.69535 + 4.13911i −0.836710 + 0.398286i
\(109\) −4.74367 + 8.21628i −0.454361 + 0.786977i −0.998651 0.0519205i \(-0.983466\pi\)
0.544290 + 0.838897i \(0.316799\pi\)
\(110\) 3.02955 + 17.1814i 0.288857 + 1.63819i
\(111\) −0.192682 0.310541i −0.0182885 0.0294753i
\(112\) −6.77259 9.04824i −0.639950 0.854979i
\(113\) −1.14880 + 6.51516i −0.108070 + 0.612894i 0.881880 + 0.471474i \(0.156278\pi\)
−0.989950 + 0.141420i \(0.954833\pi\)
\(114\) −0.363964 1.73941i −0.0340884 0.162911i
\(115\) −2.07651 11.7764i −0.193635 1.09816i
\(116\) 8.22964 0.764103
\(117\) −0.512831 + 4.59863i −0.0474112 + 0.425143i
\(118\) −4.44610 + 7.70087i −0.409296 + 0.708922i
\(119\) 14.5204 7.33950i 1.33109 0.672811i
\(120\) 0.102661 0.714042i 0.00937164 0.0651828i
\(121\) 20.4863 + 17.1901i 1.86239 + 1.56273i
\(122\) 1.90469 10.8020i 0.172443 0.977971i
\(123\) 5.71139 + 4.49146i 0.514979 + 0.404981i
\(124\) 7.25862 6.09070i 0.651843 0.546961i
\(125\) −5.71953 + 9.90651i −0.511570 + 0.886065i
\(126\) 5.21339 14.6827i 0.464446 1.30804i
\(127\) 5.10620 + 8.84420i 0.453102 + 0.784796i 0.998577 0.0533316i \(-0.0169840\pi\)
−0.545475 + 0.838127i \(0.683651\pi\)
\(128\) −2.15844 0.785610i −0.190781 0.0694387i
\(129\) −0.689566 + 0.616941i −0.0607129 + 0.0543187i
\(130\) 3.35533 + 2.81545i 0.294282 + 0.246932i
\(131\) −0.746289 + 4.23242i −0.0652036 + 0.369788i 0.934694 + 0.355454i \(0.115674\pi\)
−0.999897 + 0.0143337i \(0.995437\pi\)
\(132\) 10.3976 + 16.7576i 0.904994 + 1.45856i
\(133\) 1.15732 + 0.756903i 0.100352 + 0.0656318i
\(134\) 21.6691 1.87193
\(135\) 6.78740 3.23090i 0.584167 0.278072i
\(136\) 0.885201 1.53321i 0.0759054 0.131472i
\(137\) 15.8747 13.3204i 1.35627 1.13804i 0.379150 0.925335i \(-0.376217\pi\)
0.977116 0.212707i \(-0.0682279\pi\)
\(138\) −14.8173 23.8808i −1.26133 2.03287i
\(139\) −5.21632 4.37701i −0.442443 0.371254i 0.394180 0.919033i \(-0.371029\pi\)
−0.836623 + 0.547780i \(0.815473\pi\)
\(140\) −4.25078 5.67908i −0.359257 0.479970i
\(141\) −3.59684 17.1896i −0.302909 1.44762i
\(142\) 2.23386 + 0.813060i 0.187462 + 0.0682305i
\(143\) 9.47565 0.792393
\(144\) −3.02144 12.4542i −0.251787 1.03785i
\(145\) −6.42388 −0.533475
\(146\) −0.857671 4.86409i −0.0709814 0.402555i
\(147\) 5.20972 + 10.9480i 0.429691 + 0.902976i
\(148\) −0.367470 + 0.133748i −0.0302058 + 0.0109940i
\(149\) 10.0252 + 8.41218i 0.821300 + 0.689152i 0.953276 0.302101i \(-0.0976878\pi\)
−0.131976 + 0.991253i \(0.542132\pi\)
\(150\) −1.40664 + 9.78363i −0.114852 + 0.798830i
\(151\) −4.58320 1.66815i −0.372975 0.135752i 0.148730 0.988878i \(-0.452482\pi\)
−0.521705 + 0.853126i \(0.674704\pi\)
\(152\) 0.150474 0.0122051
\(153\) 18.4112 1.17020i 1.48846 0.0946049i
\(154\) −31.0658 7.27798i −2.50336 0.586476i
\(155\) −5.66592 + 4.75427i −0.455098 + 0.381872i
\(156\) 4.70395 + 1.54491i 0.376617 + 0.123692i
\(157\) 2.46848 + 2.07130i 0.197007 + 0.165308i 0.735955 0.677031i \(-0.236734\pi\)
−0.538948 + 0.842339i \(0.681178\pi\)
\(158\) −4.59647 + 1.67298i −0.365675 + 0.133095i
\(159\) −7.94797 + 0.252327i −0.630315 + 0.0200109i
\(160\) −10.6168 3.86420i −0.839333 0.305492i
\(161\) 21.2930 + 4.98845i 1.67813 + 0.393145i
\(162\) 11.9870 12.9781i 0.941787 1.01966i
\(163\) 2.56220 + 4.43785i 0.200687 + 0.347600i 0.948750 0.316028i \(-0.102349\pi\)
−0.748063 + 0.663628i \(0.769016\pi\)
\(164\) 5.95576 4.99748i 0.465067 0.390237i
\(165\) −8.11613 13.0806i −0.631840 1.01832i
\(166\) 0.833946 4.72955i 0.0647268 0.367084i
\(167\) −1.92645 + 10.9254i −0.149073 + 0.845434i 0.814933 + 0.579555i \(0.196774\pi\)
−0.964006 + 0.265880i \(0.914338\pi\)
\(168\) 1.12649 + 0.686717i 0.0869105 + 0.0529814i
\(169\) −8.13621 + 6.82709i −0.625863 + 0.525161i
\(170\) 8.73167 15.1237i 0.669689 1.15994i
\(171\) 0.868563 + 1.30547i 0.0664206 + 0.0998321i
\(172\) 0.495029 + 0.857416i 0.0377456 + 0.0653774i
\(173\) −11.8238 + 9.92137i −0.898949 + 0.754308i −0.969985 0.243166i \(-0.921814\pi\)
0.0710355 + 0.997474i \(0.477370\pi\)
\(174\) −14.0160 + 5.61123i −1.06255 + 0.425386i
\(175\) −4.60900 6.15766i −0.348407 0.465476i
\(176\) −24.6613 + 8.97599i −1.85892 + 0.676590i
\(177\) 1.11658 7.76619i 0.0839274 0.583743i
\(178\) 7.88829 + 2.87110i 0.591252 + 0.215198i
\(179\) −2.49789 4.32647i −0.186701 0.323376i 0.757447 0.652896i \(-0.226446\pi\)
−0.944148 + 0.329521i \(0.893113\pi\)
\(180\) −1.89639 7.81680i −0.141349 0.582630i
\(181\) 4.06394 + 7.03895i 0.302070 + 0.523201i 0.976605 0.215042i \(-0.0689890\pi\)
−0.674534 + 0.738243i \(0.735656\pi\)
\(182\) −7.14911 + 3.61359i −0.529927 + 0.267857i
\(183\) 1.98220 + 9.47308i 0.146529 + 0.700270i
\(184\) 2.23621 0.813912i 0.164855 0.0600024i
\(185\) 0.286839 0.104401i 0.0210888 0.00767571i
\(186\) −8.20943 + 15.3223i −0.601944 + 1.12349i
\(187\) −6.56033 37.2055i −0.479739 2.72074i
\(188\) −18.7916 −1.37052
\(189\) 0.544508 + 13.7369i 0.0396071 + 0.999215i
\(190\) 1.48429 0.107682
\(191\) −1.97463 11.1987i −0.142879 0.810308i −0.969046 0.246882i \(-0.920594\pi\)
0.826166 0.563426i \(-0.190517\pi\)
\(192\) −11.7492 + 0.373008i −0.847928 + 0.0269195i
\(193\) 1.10605 0.402570i 0.0796154 0.0289776i −0.301905 0.953338i \(-0.597623\pi\)
0.381521 + 0.924360i \(0.375400\pi\)
\(194\) 24.4608 8.90299i 1.75618 0.639198i
\(195\) −3.67180 1.20592i −0.262943 0.0863579i
\(196\) 12.6080 3.05709i 0.900574 0.218363i
\(197\) −1.20617 2.08915i −0.0859360 0.148846i 0.819854 0.572573i \(-0.194055\pi\)
−0.905790 + 0.423728i \(0.860721\pi\)
\(198\) −29.1341 21.4507i −2.07047 1.52443i
\(199\) 0.256961 + 0.445070i 0.0182155 + 0.0315501i 0.874989 0.484142i \(-0.160868\pi\)
−0.856774 + 0.515692i \(0.827535\pi\)
\(200\) −0.786474 0.286253i −0.0556121 0.0202411i
\(201\) −17.7502 + 7.10617i −1.25200 + 0.501231i
\(202\) 20.2627 7.37502i 1.42568 0.518905i
\(203\) 4.62537 10.7995i 0.324637 0.757975i
\(204\) 2.80926 19.5393i 0.196688 1.36803i
\(205\) −4.64894 + 3.90092i −0.324696 + 0.272452i
\(206\) 0.381176 + 0.660217i 0.0265578 + 0.0459995i
\(207\) 19.9690 + 14.7027i 1.38794 + 1.02191i
\(208\) −3.29437 + 5.70602i −0.228424 + 0.395642i
\(209\) 2.45980 2.06402i 0.170148 0.142771i
\(210\) 11.1117 + 6.77382i 0.766783 + 0.467438i
\(211\) −2.37333 + 13.4598i −0.163387 + 0.926611i 0.787326 + 0.616537i \(0.211465\pi\)
−0.950712 + 0.310074i \(0.899646\pi\)
\(212\) −1.47754 + 8.37955i −0.101478 + 0.575510i
\(213\) −2.09650 + 0.0665583i −0.143650 + 0.00456050i
\(214\) −4.59426 + 3.85504i −0.314057 + 0.263525i
\(215\) −0.386409 0.669281i −0.0263529 0.0456446i
\(216\) 0.867747 + 1.21855i 0.0590427 + 0.0829121i
\(217\) −3.91301 12.9484i −0.265632 0.878997i
\(218\) −17.5004 6.36964i −1.18528 0.431406i
\(219\) 2.29769 + 3.70314i 0.155263 + 0.250235i
\(220\) −15.4786 + 5.63373i −1.04356 + 0.379826i
\(221\) −7.26578 6.09671i −0.488749 0.410109i
\(222\) 0.534650 0.478341i 0.0358833 0.0321041i
\(223\) −15.5446 + 13.0435i −1.04094 + 0.873455i −0.992112 0.125352i \(-0.959994\pi\)
−0.0488311 + 0.998807i \(0.515550\pi\)
\(224\) 14.1407 15.0661i 0.944813 1.00664i
\(225\) −2.05620 8.47552i −0.137080 0.565035i
\(226\) −12.9865 −0.863849
\(227\) −19.7926 7.20391i −1.31368 0.478140i −0.412252 0.911070i \(-0.635258\pi\)
−0.901428 + 0.432929i \(0.857480\pi\)
\(228\) 1.55763 0.623586i 0.103156 0.0412980i
\(229\) 4.85440 + 4.07333i 0.320788 + 0.269173i 0.788934 0.614478i \(-0.210633\pi\)
−0.468146 + 0.883651i \(0.655078\pi\)
\(230\) 22.0581 8.02848i 1.45447 0.529382i
\(231\) 27.8342 4.22601i 1.83136 0.278051i
\(232\) −0.221989 1.25896i −0.0145743 0.0826548i
\(233\) −4.85761 −0.318233 −0.159116 0.987260i \(-0.550864\pi\)
−0.159116 + 0.987260i \(0.550864\pi\)
\(234\) −9.06473 + 0.576144i −0.592580 + 0.0376637i
\(235\) 14.6683 0.956857
\(236\) −7.88916 2.87142i −0.513541 0.186914i
\(237\) 3.21654 2.87778i 0.208937 0.186932i
\(238\) 19.1381 + 25.5687i 1.24054 + 1.65737i
\(239\) 6.25548 + 5.24897i 0.404633 + 0.339528i 0.822281 0.569081i \(-0.192701\pi\)
−0.417648 + 0.908609i \(0.637145\pi\)
\(240\) 10.6986 0.339652i 0.690590 0.0219244i
\(241\) 18.3434 15.3919i 1.18160 0.991481i 0.181634 0.983366i \(-0.441861\pi\)
0.999967 0.00811480i \(-0.00258305\pi\)
\(242\) −26.2482 + 45.4631i −1.68730 + 2.92248i
\(243\) −5.56305 + 14.5620i −0.356870 + 0.934154i
\(244\) 10.3560 0.662973
\(245\) −9.84156 + 2.38630i −0.628755 + 0.152455i
\(246\) −6.73591 + 12.5721i −0.429466 + 0.801568i
\(247\) 0.139987 0.793908i 0.00890719 0.0505152i
\(248\) −1.12754 0.946122i −0.0715991 0.0600788i
\(249\) 0.867883 + 4.14767i 0.0549999 + 0.262848i
\(250\) −21.1006 7.67999i −1.33452 0.485725i
\(251\) 2.85033 + 4.93692i 0.179911 + 0.311616i 0.941850 0.336034i \(-0.109086\pi\)
−0.761939 + 0.647649i \(0.775752\pi\)
\(252\) 14.5066 + 2.44019i 0.913831 + 0.153718i
\(253\) 25.3910 43.9785i 1.59632 2.76490i
\(254\) −15.3568 + 12.8859i −0.963570 + 0.808532i
\(255\) −2.19285 + 15.2520i −0.137322 + 0.955117i
\(256\) 3.14001 17.8079i 0.196251 1.11299i
\(257\) −1.45089 1.21745i −0.0905043 0.0759422i 0.596413 0.802678i \(-0.296592\pi\)
−0.686917 + 0.726736i \(0.741037\pi\)
\(258\) −1.42771 1.12275i −0.0888850 0.0698995i
\(259\) −0.0310188 + 0.557389i −0.00192741 + 0.0346345i
\(260\) −2.06770 + 3.58136i −0.128233 + 0.222106i
\(261\) 9.64103 9.19283i 0.596765 0.569022i
\(262\) −8.43637 −0.521201
\(263\) 3.44586 + 19.5424i 0.212481 + 1.20504i 0.885225 + 0.465163i \(0.154004\pi\)
−0.672745 + 0.739875i \(0.734885\pi\)
\(264\) 2.28309 2.04263i 0.140514 0.125715i
\(265\) 1.15334 6.54090i 0.0708489 0.401804i
\(266\) −1.06873 + 2.49530i −0.0655278 + 0.152997i
\(267\) −7.40321 + 0.235033i −0.453069 + 0.0143838i
\(268\) 3.55261 + 20.1479i 0.217010 + 1.23073i
\(269\) −4.03933 + 6.99633i −0.246283 + 0.426574i −0.962491 0.271312i \(-0.912542\pi\)
0.716209 + 0.697886i \(0.245876\pi\)
\(270\) 8.55951 + 12.0199i 0.520915 + 0.731507i
\(271\) 15.1891 + 26.3082i 0.922670 + 1.59811i 0.795266 + 0.606260i \(0.207331\pi\)
0.127403 + 0.991851i \(0.459336\pi\)
\(272\) 24.6851 + 8.98465i 1.49676 + 0.544775i
\(273\) 4.67112 5.30453i 0.282709 0.321045i
\(274\) 31.1619 + 26.1479i 1.88256 + 1.57965i
\(275\) −16.7829 + 6.10849i −1.01205 + 0.368356i
\(276\) 19.7750 17.6923i 1.19031 1.06495i
\(277\) 1.59381 + 9.03893i 0.0957626 + 0.543097i 0.994511 + 0.104632i \(0.0333665\pi\)
−0.898748 + 0.438465i \(0.855522\pi\)
\(278\) 6.68343 11.5760i 0.400845 0.694284i
\(279\) 1.69992 15.2434i 0.101772 0.912600i
\(280\) −0.754118 + 0.803469i −0.0450671 + 0.0480164i
\(281\) −2.10895 11.9605i −0.125810 0.713502i −0.980824 0.194897i \(-0.937563\pi\)
0.855014 0.518605i \(-0.173548\pi\)
\(282\) 32.0043 12.8127i 1.90583 0.762986i
\(283\) 2.87589 16.3100i 0.170954 0.969526i −0.771758 0.635917i \(-0.780622\pi\)
0.942711 0.333610i \(-0.108267\pi\)
\(284\) −0.389742 + 2.21034i −0.0231269 + 0.131159i
\(285\) −1.21585 + 0.486758i −0.0720207 + 0.0288330i
\(286\) 3.22996 + 18.3180i 0.190992 + 1.08317i
\(287\) −3.21066 10.6243i −0.189519 0.627133i
\(288\) 21.4637 9.39365i 1.26476 0.553526i
\(289\) −10.4080 + 18.0271i −0.612233 + 1.06042i
\(290\) −2.18971 12.4185i −0.128584 0.729237i
\(291\) −17.1173 + 15.3145i −1.00343 + 0.897753i
\(292\) 4.38200 1.59492i 0.256437 0.0933355i
\(293\) −24.4096 20.4821i −1.42603 1.19658i −0.948016 0.318223i \(-0.896914\pi\)
−0.478010 0.878355i \(-0.658642\pi\)
\(294\) −19.3885 + 13.8031i −1.13076 + 0.805014i
\(295\) 6.15811 + 2.24137i 0.358539 + 0.130498i
\(296\) 0.0303729 + 0.0526073i 0.00176539 + 0.00305774i
\(297\) 30.8997 + 8.01701i 1.79298 + 0.465194i
\(298\) −12.8449 + 22.2480i −0.744083 + 1.28879i
\(299\) −2.21387 12.5555i −0.128031 0.726103i
\(300\) −9.32740 + 0.296121i −0.538518 + 0.0170965i
\(301\) 1.40338 0.167710i 0.0808896 0.00966665i
\(302\) 1.66254 9.42873i 0.0956684 0.542562i
\(303\) −14.1796 + 12.6862i −0.814595 + 0.728802i
\(304\) 0.387713 + 2.19883i 0.0222369 + 0.126112i
\(305\) −8.08365 −0.462868
\(306\) 8.53803 + 35.1932i 0.488087 + 2.01186i
\(307\) −13.1085 + 22.7045i −0.748139 + 1.29582i 0.200574 + 0.979678i \(0.435719\pi\)
−0.948714 + 0.316137i \(0.897614\pi\)
\(308\) 1.67385 30.0781i 0.0953764 1.71386i
\(309\) −0.528751 0.415811i −0.0300796 0.0236547i
\(310\) −11.1222 9.33260i −0.631696 0.530056i
\(311\) −3.99530 + 22.6585i −0.226553 + 1.28485i 0.633141 + 0.774036i \(0.281765\pi\)
−0.859694 + 0.510809i \(0.829346\pi\)
\(312\) 0.109452 0.761277i 0.00619652 0.0430988i
\(313\) 15.8934 13.3362i 0.898350 0.753806i −0.0715169 0.997439i \(-0.522784\pi\)
0.969867 + 0.243634i \(0.0783395\pi\)
\(314\) −3.16275 + 5.47805i −0.178484 + 0.309144i
\(315\) −11.3236 1.90476i −0.638010 0.107321i
\(316\) −2.30911 3.99950i −0.129898 0.224989i
\(317\) −8.95912 3.26085i −0.503194 0.183148i 0.0779359 0.996958i \(-0.475167\pi\)
−0.581130 + 0.813811i \(0.697389\pi\)
\(318\) −3.19702 15.2788i −0.179280 0.856791i
\(319\) −20.8977 17.5352i −1.17005 0.981785i
\(320\) 1.70494 9.66921i 0.0953092 0.540525i
\(321\) 2.49915 4.66449i 0.139489 0.260346i
\(322\) −2.38536 + 42.8635i −0.132931 + 2.38869i
\(323\) −3.21415 −0.178840
\(324\) 14.0323 + 9.01772i 0.779571 + 0.500984i
\(325\) −2.24194 + 3.88316i −0.124361 + 0.215399i
\(326\) −7.70575 + 6.46589i −0.426782 + 0.358113i
\(327\) 16.4243 0.521428i 0.908265 0.0288350i
\(328\) −0.925160 0.776301i −0.0510834 0.0428641i
\(329\) −10.5616 + 24.6596i −0.582279 + 1.35953i
\(330\) 22.5205 20.1487i 1.23971 1.10915i
\(331\) 8.09808 + 2.94746i 0.445110 + 0.162007i 0.554845 0.831954i \(-0.312778\pi\)
−0.109734 + 0.993961i \(0.535000\pi\)
\(332\) 4.53424 0.248849
\(333\) −0.281089 + 0.567164i −0.0154036 + 0.0310804i
\(334\) −21.7774 −1.19160
\(335\) −2.77309 15.7270i −0.151510 0.859257i
\(336\) −7.13225 + 18.2304i −0.389096 + 0.994549i
\(337\) 3.05610 1.11233i 0.166476 0.0605924i −0.257437 0.966295i \(-0.582878\pi\)
0.423914 + 0.905703i \(0.360656\pi\)
\(338\) −15.9713 13.4015i −0.868725 0.728947i
\(339\) 10.6378 4.25879i 0.577768 0.231306i
\(340\) 15.4935 + 5.63917i 0.840253 + 0.305827i
\(341\) −31.4097 −1.70093
\(342\) −2.22764 + 2.12408i −0.120457 + 0.114857i
\(343\) 3.07448 18.2633i 0.166006 0.986125i
\(344\) 0.117813 0.0988572i 0.00635207 0.00533002i
\(345\) −15.4359 + 13.8102i −0.831042 + 0.743517i
\(346\) −23.2101 19.4756i −1.24778 1.04701i
\(347\) 14.2496 5.18644i 0.764960 0.278423i 0.0700734 0.997542i \(-0.477677\pi\)
0.694887 + 0.719119i \(0.255454\pi\)
\(348\) −7.51520 12.1121i −0.402857 0.649276i
\(349\) 19.8864 + 7.23804i 1.06449 + 0.387443i 0.814114 0.580705i \(-0.197223\pi\)
0.250378 + 0.968148i \(0.419445\pi\)
\(350\) 10.3327 11.0089i 0.552308 0.588453i
\(351\) 7.23640 3.44464i 0.386251 0.183861i
\(352\) −23.9897 41.5514i −1.27866 2.21470i
\(353\) −18.6692 + 15.6653i −0.993662 + 0.833781i −0.986094 0.166190i \(-0.946854\pi\)
−0.00756826 + 0.999971i \(0.502409\pi\)
\(354\) 15.3940 0.488719i 0.818181 0.0259751i
\(355\) 0.304224 1.72534i 0.0161466 0.0915717i
\(356\) −1.37627 + 7.80521i −0.0729421 + 0.413675i
\(357\) −24.0619 14.6683i −1.27349 0.776331i
\(358\) 7.51235 6.30361i 0.397040 0.333156i
\(359\) 3.21333 5.56566i 0.169593 0.293744i −0.768684 0.639629i \(-0.779088\pi\)
0.938277 + 0.345885i \(0.112421\pi\)
\(360\) −1.14465 + 0.500960i −0.0603284 + 0.0264029i
\(361\) 9.36341 + 16.2179i 0.492811 + 0.853574i
\(362\) −12.2222 + 10.2557i −0.642385 + 0.539025i
\(363\) 6.59190 45.8488i 0.345985 2.40644i
\(364\) −4.53198 6.05477i −0.237540 0.317356i
\(365\) −3.42050 + 1.24496i −0.179037 + 0.0651641i
\(366\) −17.6374 + 7.06102i −0.921922 + 0.369086i
\(367\) −15.2406 5.54713i −0.795554 0.289558i −0.0879112 0.996128i \(-0.528019\pi\)
−0.707643 + 0.706570i \(0.750241\pi\)
\(368\) 17.6552 + 30.5798i 0.920343 + 1.59408i
\(369\) 1.39480 12.5074i 0.0726104 0.651107i
\(370\) 0.299600 + 0.518922i 0.0155754 + 0.0269775i
\(371\) 10.1658 + 6.64854i 0.527780 + 0.345175i
\(372\) −15.5926 5.12103i −0.808436 0.265513i
\(373\) −9.09507 + 3.31034i −0.470925 + 0.171403i −0.566571 0.824013i \(-0.691730\pi\)
0.0956463 + 0.995415i \(0.469508\pi\)
\(374\) 69.6883 25.3645i 3.60350 1.31157i
\(375\) 19.8030 0.628695i 1.02263 0.0324657i
\(376\) 0.506890 + 2.87472i 0.0261409 + 0.148252i
\(377\) −6.84884 −0.352733
\(378\) −26.3702 + 5.73514i −1.35634 + 0.294984i
\(379\) −19.2837 −0.990539 −0.495269 0.868739i \(-0.664931\pi\)
−0.495269 + 0.868739i \(0.664931\pi\)
\(380\) 0.243346 + 1.38009i 0.0124834 + 0.0707969i
\(381\) 8.35366 15.5915i 0.427971 0.798778i
\(382\) 20.9759 7.63459i 1.07322 0.390620i
\(383\) 26.6245 9.69053i 1.36045 0.495163i 0.444256 0.895900i \(-0.353468\pi\)
0.916193 + 0.400737i \(0.131246\pi\)
\(384\) 0.814830 + 3.89413i 0.0415816 + 0.198722i
\(385\) −1.30657 + 23.4783i −0.0665891 + 1.19657i
\(386\) 1.15526 + 2.00096i 0.0588010 + 0.101846i
\(387\) 1.53769 + 0.451496i 0.0781654 + 0.0229508i
\(388\) 12.2883 + 21.2839i 0.623842 + 1.08053i
\(389\) 10.9284 + 3.97762i 0.554094 + 0.201674i 0.603864 0.797087i \(-0.293627\pi\)
−0.0497708 + 0.998761i \(0.515849\pi\)
\(390\) 1.07965 7.50928i 0.0546700 0.380247i
\(391\) −47.7655 + 17.3852i −2.41561 + 0.879209i
\(392\) −0.807762 1.84630i −0.0407981 0.0932522i
\(393\) 6.91062 2.76662i 0.348595 0.139558i
\(394\) 3.62753 3.04386i 0.182752 0.153347i
\(395\) 1.80244 + 3.12192i 0.0906907 + 0.157081i
\(396\) 15.1683 30.6056i 0.762235 1.53799i
\(397\) 12.8424 22.2437i 0.644543 1.11638i −0.339864 0.940475i \(-0.610381\pi\)
0.984407 0.175907i \(-0.0562857\pi\)
\(398\) −0.772805 + 0.648460i −0.0387372 + 0.0325044i
\(399\) 0.0571340 2.39450i 0.00286028 0.119875i
\(400\) 2.15648 12.2300i 0.107824 0.611502i
\(401\) −2.27770 + 12.9175i −0.113743 + 0.645068i 0.873622 + 0.486605i \(0.161765\pi\)
−0.987365 + 0.158463i \(0.949346\pi\)
\(402\) −19.7879 31.8918i −0.986933 1.59062i
\(403\) −6.04073 + 5.06878i −0.300910 + 0.252494i
\(404\) 10.1793 + 17.6311i 0.506439 + 0.877178i
\(405\) −10.9533 7.03904i −0.544274 0.349773i
\(406\) 22.4539 + 5.26040i 1.11437 + 0.261069i
\(407\) 1.21811 + 0.443354i 0.0603793 + 0.0219763i
\(408\) −3.06488 + 0.0973020i −0.151734 + 0.00481717i
\(409\) −0.778401 + 0.283315i −0.0384894 + 0.0140090i −0.361193 0.932491i \(-0.617630\pi\)
0.322704 + 0.946500i \(0.395408\pi\)
\(410\) −9.12583 7.65748i −0.450693 0.378176i
\(411\) −34.1011 11.1997i −1.68208 0.552443i
\(412\) −0.551374 + 0.462658i −0.0271642 + 0.0227935i
\(413\) −8.20207 + 8.73883i −0.403597 + 0.430010i
\(414\) −21.6159 + 43.6152i −1.06236 + 2.14357i
\(415\) −3.53933 −0.173739
\(416\) −11.3191 4.11983i −0.554966 0.201991i
\(417\) −1.67846 + 11.6742i −0.0821945 + 0.571689i
\(418\) 4.82858 + 4.05166i 0.236173 + 0.198173i
\(419\) 32.0519 11.6659i 1.56584 0.569918i 0.593772 0.804633i \(-0.297638\pi\)
0.972064 + 0.234716i \(0.0754160\pi\)
\(420\) −4.47652 + 11.4422i −0.218432 + 0.558323i
\(421\) 5.69948 + 32.3233i 0.277776 + 1.57534i 0.730005 + 0.683442i \(0.239518\pi\)
−0.452230 + 0.891902i \(0.649371\pi\)
\(422\) −26.8291 −1.30602
\(423\) −22.0144 + 20.9910i −1.07038 + 1.02062i
\(424\) 1.32175 0.0641898
\(425\) 16.7991 + 6.11439i 0.814878 + 0.296591i
\(426\) −0.843301 4.03020i −0.0408581 0.195264i
\(427\) 5.82044 13.5898i 0.281671 0.657655i
\(428\) −4.33762 3.63970i −0.209667 0.175931i
\(429\) −8.65303 13.9459i −0.417772 0.673315i
\(430\) 1.16212 0.975133i 0.0560423 0.0470251i
\(431\) −5.99431 + 10.3825i −0.288736 + 0.500105i −0.973508 0.228652i \(-0.926568\pi\)
0.684772 + 0.728757i \(0.259902\pi\)
\(432\) −15.5705 + 15.8198i −0.749134 + 0.761132i
\(433\) −39.2151 −1.88456 −0.942279 0.334829i \(-0.891321\pi\)
−0.942279 + 0.334829i \(0.891321\pi\)
\(434\) 23.6977 11.9782i 1.13753 0.574974i
\(435\) 5.86620 + 9.45444i 0.281263 + 0.453306i
\(436\) 3.05330 17.3161i 0.146227 0.829292i
\(437\) −3.30959 2.77707i −0.158319 0.132845i
\(438\) −6.37559 + 5.70411i −0.304637 + 0.272553i
\(439\) 27.5030 + 10.0103i 1.31264 + 0.477764i 0.901094 0.433623i \(-0.142765\pi\)
0.411551 + 0.911387i \(0.364987\pi\)
\(440\) 1.27936 + 2.21592i 0.0609913 + 0.105640i
\(441\) 11.3554 17.6651i 0.540735 0.841193i
\(442\) 9.30929 16.1242i 0.442798 0.766948i
\(443\) 18.3069 15.3613i 0.869788 0.729839i −0.0942654 0.995547i \(-0.530050\pi\)
0.964053 + 0.265708i \(0.0856058\pi\)
\(444\) 0.532414 + 0.418692i 0.0252673 + 0.0198702i
\(445\) 1.07429 6.09258i 0.0509261 0.288816i
\(446\) −30.5139 25.6042i −1.44488 1.21240i
\(447\) 3.22583 22.4367i 0.152576 1.06122i
\(448\) 15.0277 + 9.82834i 0.709993 + 0.464345i
\(449\) 13.9265 24.1213i 0.657231 1.13836i −0.324099 0.946023i \(-0.605061\pi\)
0.981330 0.192334i \(-0.0616056\pi\)
\(450\) 15.6837 6.86404i 0.739338 0.323574i
\(451\) −25.7719 −1.21355
\(452\) −2.12911 12.0748i −0.100145 0.567950i
\(453\) 1.73019 + 8.26872i 0.0812916 + 0.388498i
\(454\) 7.17969 40.7180i 0.336959 1.91099i
\(455\) 3.53757 + 4.72622i 0.165844 + 0.221569i
\(456\) −0.137411 0.221463i −0.00643487 0.0103709i
\(457\) −2.05518 11.6555i −0.0961373 0.545222i −0.994393 0.105749i \(-0.966276\pi\)
0.898256 0.439473i \(-0.144835\pi\)
\(458\) −6.21971 + 10.7729i −0.290628 + 0.503383i
\(459\) −18.5352 26.0284i −0.865147 1.21490i
\(460\) 11.0812 + 19.1932i 0.516665 + 0.894889i
\(461\) 18.8632 + 6.86563i 0.878545 + 0.319764i 0.741622 0.670818i \(-0.234057\pi\)
0.136923 + 0.990582i \(0.456279\pi\)
\(462\) 17.6574 + 52.3678i 0.821498 + 2.43637i
\(463\) 17.8497 + 14.9777i 0.829548 + 0.696073i 0.955187 0.296003i \(-0.0956537\pi\)
−0.125639 + 0.992076i \(0.540098\pi\)
\(464\) 17.8248 6.48769i 0.827495 0.301183i
\(465\) 12.1712 + 3.99737i 0.564427 + 0.185373i
\(466\) −1.65581 9.39059i −0.0767041 0.435011i
\(467\) 1.77483 3.07409i 0.0821292 0.142252i −0.822035 0.569437i \(-0.807161\pi\)
0.904164 + 0.427185i \(0.140495\pi\)
\(468\) −2.02184 8.33389i −0.0934597 0.385234i
\(469\) 28.4360 + 6.66188i 1.31305 + 0.307617i
\(470\) 5.00000 + 28.3564i 0.230633 + 1.30798i
\(471\) 0.794286 5.52451i 0.0365988 0.254556i
\(472\) −0.226462 + 1.28433i −0.0104238 + 0.0591160i
\(473\) 0.569895 3.23203i 0.0262038 0.148609i
\(474\) 6.65966 + 5.23718i 0.305888 + 0.240552i
\(475\) 0.263853 + 1.49639i 0.0121064 + 0.0686589i
\(476\) −20.6360 + 21.9865i −0.945849 + 1.00775i
\(477\) 7.62935 + 11.4671i 0.349324 + 0.525043i
\(478\) −8.01485 + 13.8821i −0.366591 + 0.634953i
\(479\) −4.85253 27.5201i −0.221718 1.25742i −0.868861 0.495056i \(-0.835148\pi\)
0.647143 0.762369i \(-0.275964\pi\)
\(480\) 4.00793 + 19.1542i 0.182936 + 0.874265i
\(481\) 0.305814 0.111307i 0.0139439 0.00507517i
\(482\) 36.0079 + 30.2142i 1.64012 + 1.37622i
\(483\) −12.1027 35.8937i −0.550692 1.63322i
\(484\) −46.5748 16.9518i −2.11704 0.770538i
\(485\) −9.59196 16.6138i −0.435548 0.754392i
\(486\) −30.0471 5.79057i −1.36297 0.262666i
\(487\) 17.2087 29.8064i 0.779801 1.35066i −0.152255 0.988341i \(-0.548653\pi\)
0.932056 0.362314i \(-0.118013\pi\)
\(488\) −0.279345 1.58424i −0.0126453 0.0717153i
\(489\) 4.19171 7.82354i 0.189556 0.353793i
\(490\) −7.96781 18.2120i −0.359949 0.822734i
\(491\) 2.16203 12.2615i 0.0975709 0.553352i −0.896358 0.443330i \(-0.853797\pi\)
0.993929 0.110022i \(-0.0350921\pi\)
\(492\) −12.7938 4.20185i −0.576790 0.189434i
\(493\) 4.74170 + 26.8915i 0.213555 + 1.21113i
\(494\) 1.58248 0.0711990
\(495\) −11.8400 + 23.8901i −0.532170 + 1.07378i
\(496\) 10.9201 18.9142i 0.490328 0.849273i
\(497\) 2.68150 + 1.75374i 0.120282 + 0.0786659i
\(498\) −7.72233 + 3.09158i −0.346046 + 0.138537i
\(499\) −17.8874 15.0093i −0.800750 0.671909i 0.147631 0.989043i \(-0.452835\pi\)
−0.948381 + 0.317133i \(0.897280\pi\)
\(500\) 3.68142 20.8784i 0.164638 0.933709i
\(501\) 17.8388 7.14167i 0.796981 0.319066i
\(502\) −8.57231 + 7.19302i −0.382601 + 0.321040i
\(503\) −8.13524 + 14.0907i −0.362733 + 0.628271i −0.988410 0.151811i \(-0.951489\pi\)
0.625677 + 0.780082i \(0.284823\pi\)
\(504\) −0.0180080 2.28503i −0.000802142 0.101783i
\(505\) −7.94575 13.7624i −0.353581 0.612420i
\(506\) 93.6729 + 34.0942i 4.16427 + 1.51567i
\(507\) 17.4778 + 5.74018i 0.776214 + 0.254930i
\(508\) −14.4989 12.1661i −0.643287 0.539782i
\(509\) 5.00564 28.3884i 0.221871 1.25829i −0.646706 0.762739i \(-0.723854\pi\)
0.868577 0.495554i \(-0.165035\pi\)
\(510\) −30.2322 + 0.959793i −1.33870 + 0.0425003i
\(511\) 0.369892 6.64675i 0.0163631 0.294035i
\(512\) 30.9021 1.36569
\(513\) 1.12819 2.47046i 0.0498108 0.109073i
\(514\) 1.85896 3.21982i 0.0819953 0.142020i
\(515\) 0.430391 0.361141i 0.0189653 0.0159138i
\(516\) 0.809860 1.51155i 0.0356521 0.0665422i
\(517\) 47.7179 + 40.0401i 2.09863 + 1.76096i
\(518\) −1.08810 + 0.130033i −0.0478085 + 0.00571331i
\(519\) 25.3993 + 8.34183i 1.11490 + 0.366166i
\(520\) 0.603646 + 0.219709i 0.0264716 + 0.00963489i
\(521\) −30.1743 −1.32196 −0.660981 0.750403i \(-0.729860\pi\)
−0.660981 + 0.750403i \(0.729860\pi\)
\(522\) 21.0576 + 15.5042i 0.921668 + 0.678600i
\(523\) −26.5611 −1.16144 −0.580718 0.814105i \(-0.697228\pi\)
−0.580718 + 0.814105i \(0.697228\pi\)
\(524\) −1.38313 7.84410i −0.0604222 0.342671i
\(525\) −4.85376 + 12.4065i −0.211835 + 0.541462i
\(526\) −36.6042 + 13.3229i −1.59602 + 0.580904i
\(527\) 24.0844 + 20.2092i 1.04913 + 0.880328i
\(528\) 35.7309 + 28.0989i 1.55499 + 1.22285i
\(529\) −42.5920 15.5022i −1.85183 0.674010i
\(530\) 13.0378 0.566326
\(531\) −12.4497 + 5.44863i −0.540269 + 0.236451i
\(532\) −2.49534 0.584598i −0.108187 0.0253455i
\(533\) −4.95648 + 4.15898i −0.214689 + 0.180145i
\(534\) −2.97789 14.2316i −0.128866 0.615859i
\(535\) 3.38586 + 2.84107i 0.146383 + 0.122830i
\(536\) 2.98636 1.08695i 0.128991 0.0469490i
\(537\) −4.08651 + 7.62718i −0.176346 + 0.329137i
\(538\) −14.9020 5.42388i −0.642470 0.233840i
\(539\) −38.5297 19.1016i −1.65959 0.822762i
\(540\) −9.77273 + 9.92924i −0.420551 + 0.427286i
\(541\) 15.4672 + 26.7899i 0.664985 + 1.15179i 0.979289 + 0.202466i \(0.0648954\pi\)
−0.314304 + 0.949322i \(0.601771\pi\)
\(542\) −45.6808 + 38.3307i −1.96216 + 1.64645i
\(543\) 6.64854 12.4090i 0.285316 0.532523i
\(544\) −8.33959 + 47.2962i −0.357557 + 2.02781i
\(545\) −2.38334 + 13.5166i −0.102091 + 0.578987i
\(546\) 11.8468 + 7.22192i 0.506997 + 0.309070i
\(547\) 11.6176 9.74829i 0.496731 0.416807i −0.359700 0.933068i \(-0.617121\pi\)
0.856431 + 0.516261i \(0.172677\pi\)
\(548\) −19.2033 + 33.2611i −0.820324 + 1.42084i
\(549\) 12.1320 11.5680i 0.517782 0.493711i
\(550\) −17.5295 30.3621i −0.747462 1.29464i
\(551\) −1.77790 + 1.49184i −0.0757413 + 0.0635545i
\(552\) −3.23996 2.54791i −0.137902 0.108446i
\(553\) −6.54620 + 0.782299i −0.278373 + 0.0332667i
\(554\) −16.9305 + 6.16220i −0.719308 + 0.261807i
\(555\) −0.415591 0.326822i −0.0176409 0.0138728i
\(556\) 11.8591 + 4.31635i 0.502937 + 0.183054i
\(557\) 2.13863 + 3.70421i 0.0906165 + 0.156952i 0.907771 0.419467i \(-0.137783\pi\)
−0.817154 + 0.576419i \(0.804450\pi\)
\(558\) 30.0476 1.90979i 1.27202 0.0808479i
\(559\) −0.411971 0.713555i −0.0174245 0.0301802i
\(560\) −13.6839 8.94944i −0.578249 0.378183i
\(561\) −48.7669 + 43.6308i −2.05894 + 1.84209i
\(562\) 22.4027 8.15393i 0.945003 0.343953i
\(563\) −19.9668 + 7.26732i −0.841500 + 0.306281i −0.726570 0.687093i \(-0.758887\pi\)
−0.114930 + 0.993374i \(0.536664\pi\)
\(564\) 17.1602 + 27.6568i 0.722577 + 1.16456i
\(565\) 1.66194 + 9.42532i 0.0699183 + 0.396526i
\(566\) 32.5102 1.36651
\(567\) 19.7203 13.3458i 0.828175 0.560470i
\(568\) 0.348648 0.0146289
\(569\) 0.0271387 + 0.153911i 0.00113771 + 0.00645230i 0.985371 0.170421i \(-0.0545128\pi\)
−0.984234 + 0.176873i \(0.943402\pi\)
\(570\) −1.35543 2.18452i −0.0567728 0.0914996i
\(571\) −43.7965 + 15.9406i −1.83283 + 0.667095i −0.840757 + 0.541412i \(0.817890\pi\)
−0.992071 + 0.125682i \(0.959888\pi\)
\(572\) −16.5025 + 6.00642i −0.690004 + 0.251141i
\(573\) −14.6786 + 13.1327i −0.613208 + 0.548625i
\(574\) 19.4442 9.82825i 0.811584 0.410223i
\(575\) 12.0150 + 20.8107i 0.501062 + 0.867865i
\(576\) 11.2782 + 16.9515i 0.469926 + 0.706312i
\(577\) 18.6484 + 32.2999i 0.776341 + 1.34466i 0.934038 + 0.357174i \(0.116260\pi\)
−0.157697 + 0.987488i \(0.550407\pi\)
\(578\) −38.3973 13.9755i −1.59712 0.581303i
\(579\) −1.60252 1.26023i −0.0665985 0.0523732i
\(580\) 11.1876 4.07197i 0.464541 0.169079i
\(581\) 2.54841 5.95012i 0.105726 0.246853i
\(582\) −35.4404 27.8704i −1.46905 1.15527i
\(583\) 21.6066 18.1301i 0.894854 0.750872i
\(584\) −0.362190 0.627331i −0.0149875 0.0259592i
\(585\) 1.57821 + 6.50526i 0.0652508 + 0.268959i
\(586\) 31.2749 54.1697i 1.29195 2.23773i
\(587\) −12.5480 + 10.5290i −0.517912 + 0.434580i −0.863903 0.503658i \(-0.831987\pi\)
0.345991 + 0.938238i \(0.387543\pi\)
\(588\) −16.0128 15.7644i −0.660357 0.650112i
\(589\) −0.464027 + 2.63163i −0.0191199 + 0.108434i
\(590\) −2.23383 + 12.6687i −0.0919654 + 0.521562i
\(591\) −1.97327 + 3.68298i −0.0811697 + 0.151497i
\(592\) −0.690474 + 0.579377i −0.0283783 + 0.0238122i
\(593\) 14.8230 + 25.6742i 0.608708 + 1.05431i 0.991454 + 0.130460i \(0.0416453\pi\)
−0.382745 + 0.923854i \(0.625021\pi\)
\(594\) −4.96547 + 62.4670i −0.203736 + 2.56305i
\(595\) 16.1080 17.1622i 0.660364 0.703580i
\(596\) −22.7919 8.29559i −0.933595 0.339801i
\(597\) 0.420384 0.784618i 0.0172052 0.0321123i
\(598\) 23.5172 8.55958i 0.961692 0.350027i
\(599\) −14.0234 11.7670i −0.572979 0.480786i 0.309654 0.950849i \(-0.399787\pi\)
−0.882633 + 0.470063i \(0.844231\pi\)
\(600\) 0.296900 + 1.41891i 0.0121209 + 0.0579266i
\(601\) 8.60000 7.21625i 0.350801 0.294357i −0.450310 0.892872i \(-0.648687\pi\)
0.801112 + 0.598515i \(0.204242\pi\)
\(602\) 0.802583 + 2.65581i 0.0327109 + 0.108243i
\(603\) 26.6678 + 19.6348i 1.08600 + 0.799592i
\(604\) 9.03936 0.367806
\(605\) 36.3553 + 13.2322i 1.47805 + 0.537967i
\(606\) −29.3579 23.0872i −1.19258 0.937852i
\(607\) 1.84308 + 1.54652i 0.0748081 + 0.0627715i 0.679425 0.733745i \(-0.262229\pi\)
−0.604617 + 0.796516i \(0.706674\pi\)
\(608\) −3.83576 + 1.39610i −0.155560 + 0.0566194i
\(609\) −20.1181 + 3.05448i −0.815227 + 0.123774i
\(610\) −2.75547 15.6271i −0.111566 0.632721i
\(611\) 15.6387 0.632673
\(612\) −31.3227 + 13.7085i −1.26614 + 0.554133i
\(613\) 13.5830 0.548614 0.274307 0.961642i \(-0.411552\pi\)
0.274307 + 0.961642i \(0.411552\pi\)
\(614\) −48.3600 17.6016i −1.95165 0.710342i
\(615\) 9.98659 + 3.27987i 0.402698 + 0.132257i
\(616\) −4.64646 + 0.555272i −0.187211 + 0.0223725i
\(617\) −28.2255 23.6840i −1.13631 0.953481i −0.137002 0.990571i \(-0.543747\pi\)
−0.999312 + 0.0370902i \(0.988191\pi\)
\(618\) 0.623599 1.16390i 0.0250848 0.0468190i
\(619\) 22.2143 18.6400i 0.892869 0.749206i −0.0759143 0.997114i \(-0.524188\pi\)
0.968784 + 0.247908i \(0.0797431\pi\)
\(620\) 6.85396 11.8714i 0.275262 0.476767i
\(621\) 3.40342 42.8159i 0.136574 1.71814i
\(622\) −45.1646 −1.81094
\(623\) 9.46899 + 6.19285i 0.379367 + 0.248111i
\(624\) 11.4063 0.362120i 0.456617 0.0144964i
\(625\) −0.349551 + 1.98240i −0.0139820 + 0.0792961i
\(626\) 31.1987 + 26.1788i 1.24695 + 1.04632i
\(627\) −5.28401 1.73542i −0.211023 0.0693058i
\(628\) −5.61199 2.04260i −0.223943 0.0815085i
\(629\) −0.648767 1.12370i −0.0258680 0.0448047i
\(630\) −0.177632 22.5396i −0.00707704 0.898001i
\(631\) 8.05903 13.9586i 0.320825 0.555685i −0.659834 0.751412i \(-0.729373\pi\)
0.980658 + 0.195727i \(0.0627066\pi\)
\(632\) −0.549551 + 0.461128i −0.0218600 + 0.0183427i
\(633\) 21.9770 8.79833i 0.873506 0.349702i
\(634\) 3.24989 18.4310i 0.129070 0.731990i
\(635\) 11.3176 + 9.49657i 0.449124 + 0.376860i
\(636\) 13.6820 5.47750i 0.542526 0.217197i
\(637\) −10.4926 + 2.54416i −0.415732 + 0.100803i
\(638\) 26.7752 46.3760i 1.06004 1.83604i
\(639\) 2.01245 + 3.02477i 0.0796113 + 0.119658i
\(640\) −3.32297 −0.131352
\(641\) −4.87697 27.6587i −0.192629 1.09245i −0.915755 0.401737i \(-0.868407\pi\)
0.723126 0.690716i \(-0.242704\pi\)
\(642\) 9.86913 + 3.24130i 0.389504 + 0.127924i
\(643\) −2.43658 + 13.8185i −0.0960894 + 0.544950i 0.898319 + 0.439344i \(0.144789\pi\)
−0.994408 + 0.105606i \(0.966322\pi\)
\(644\) −40.2454 + 4.80949i −1.58589 + 0.189521i
\(645\) −0.632160 + 1.17988i −0.0248913 + 0.0464578i
\(646\) −1.09561 6.21349i −0.0431060 0.244467i
\(647\) 1.57354 2.72544i 0.0618621 0.107148i −0.833436 0.552616i \(-0.813629\pi\)
0.895298 + 0.445468i \(0.146963\pi\)
\(648\) 1.00101 2.38989i 0.0393233 0.0938836i
\(649\) 13.9149 + 24.1012i 0.546206 + 0.946056i
\(650\) −8.27102 3.01040i −0.324416 0.118078i
\(651\) −15.4837 + 17.5834i −0.606856 + 0.689146i
\(652\) −7.27530 6.10470i −0.284923 0.239079i
\(653\) −15.3598 + 5.59049i −0.601074 + 0.218773i −0.624593 0.780950i \(-0.714735\pi\)
0.0235193 + 0.999723i \(0.492513\pi\)
\(654\) 6.60655 + 31.5732i 0.258337 + 1.23461i
\(655\) 1.07964 + 6.12294i 0.0421850 + 0.239243i
\(656\) 8.96006 15.5193i 0.349831 0.605926i
\(657\) 3.35193 6.76332i 0.130771 0.263862i
\(658\) −51.2713 12.0116i −1.99876 0.468262i
\(659\) 0.934608 + 5.30042i 0.0364071 + 0.206475i 0.997585 0.0694538i \(-0.0221256\pi\)
−0.961178 + 0.275929i \(0.911015\pi\)
\(660\) 22.4263 + 17.6361i 0.872944 + 0.686486i
\(661\) 0.528407 2.99675i 0.0205527 0.116560i −0.972805 0.231624i \(-0.925596\pi\)
0.993358 + 0.115064i \(0.0367073\pi\)
\(662\) −2.93755 + 16.6597i −0.114171 + 0.647496i
\(663\) −2.33791 + 16.2609i −0.0907970 + 0.631523i
\(664\) −0.122308 0.693642i −0.00474646 0.0269185i
\(665\) 1.94781 + 0.456325i 0.0755328 + 0.0176955i
\(666\) −1.19224 0.350064i −0.0461984 0.0135647i
\(667\) −18.3522 + 31.7869i −0.710599 + 1.23079i
\(668\) −3.57036 20.2485i −0.138141 0.783438i
\(669\) 33.3920 + 10.9669i 1.29101 + 0.424004i
\(670\) 29.4577 10.7217i 1.13805 0.414216i
\(671\) −26.2971 22.0659i −1.01519 0.851845i
\(672\) −35.0868 7.05361i −1.35350 0.272099i
\(673\) −17.9522 6.53405i −0.692005 0.251869i −0.0280114 0.999608i \(-0.508917\pi\)
−0.663993 + 0.747738i \(0.731140\pi\)
\(674\) 3.19205 + 5.52880i 0.122953 + 0.212961i
\(675\) −10.5963 + 10.7660i −0.407851 + 0.414383i
\(676\) 9.84222 17.0472i 0.378547 0.655663i
\(677\) 6.31989 + 35.8419i 0.242893 + 1.37752i 0.825335 + 0.564643i \(0.190986\pi\)
−0.582442 + 0.812872i \(0.697903\pi\)
\(678\) 11.8591 + 19.1131i 0.455446 + 0.734033i
\(679\) 34.8366 4.16312i 1.33691 0.159766i
\(680\) 0.444748 2.52229i 0.0170553 0.0967254i
\(681\) 7.47186 + 35.7085i 0.286322 + 1.36835i
\(682\) −10.7066 60.7202i −0.409977 2.32510i
\(683\) −10.7367 −0.410827 −0.205413 0.978675i \(-0.565854\pi\)
−0.205413 + 0.978675i \(0.565854\pi\)
\(684\) −2.34017 1.72301i −0.0894788 0.0658809i
\(685\) 14.9897 25.9629i 0.572727 0.991992i
\(686\) 36.3540 0.281919i 1.38800 0.0107637i
\(687\) 1.56200 10.8642i 0.0595942 0.414497i
\(688\) 1.74812 + 1.46685i 0.0666466 + 0.0559232i
\(689\) 1.22963 6.97359i 0.0468453 0.265673i
\(690\) −31.9591 25.1328i −1.21666 0.956788i
\(691\) −14.4709 + 12.1425i −0.550498 + 0.461923i −0.875110 0.483925i \(-0.839211\pi\)
0.324612 + 0.945847i \(0.394766\pi\)
\(692\) 14.3031 24.7736i 0.543721 0.941752i
\(693\) −31.6375 37.1063i −1.20181 1.40955i
\(694\) 14.8835 + 25.7791i 0.564972 + 0.978560i
\(695\) −9.25695 3.36925i −0.351136 0.127803i
\(696\) −1.65018 + 1.47638i −0.0625498 + 0.0559621i
\(697\) 19.7615 + 16.5819i 0.748520 + 0.628083i
\(698\) −7.21370 + 40.9109i −0.273043 + 1.54850i
\(699\) 4.43590 + 7.14926i 0.167781 + 0.270410i
\(700\) 11.9301 + 7.80245i 0.450915 + 0.294905i
\(701\) 4.93738 0.186482 0.0932412 0.995644i \(-0.470277\pi\)
0.0932412 + 0.995644i \(0.470277\pi\)
\(702\) 9.12574 + 12.8150i 0.344429 + 0.483672i
\(703\) 0.0551416 0.0955081i 0.00207970 0.00360215i
\(704\) 31.9404 26.8012i 1.20380 1.01011i
\(705\) −13.3949 21.5883i −0.504482 0.813064i
\(706\) −36.6475 30.7509i −1.37925 1.15733i
\(707\) 28.8578 3.44863i 1.08531 0.129699i
\(708\) 2.97822 + 14.2331i 0.111928 + 0.534914i
\(709\) −21.9821 8.00085i −0.825557 0.300478i −0.105523 0.994417i \(-0.533652\pi\)
−0.720034 + 0.693939i \(0.755874\pi\)
\(710\) 3.43908 0.129066
\(711\) −7.17272 2.10605i −0.268998 0.0789829i
\(712\) 1.23116 0.0461395
\(713\) 7.33849 + 41.6187i 0.274829 + 1.55863i
\(714\) 20.1544 51.5157i 0.754260 1.92793i
\(715\) 12.8815 4.68848i 0.481741 0.175339i
\(716\) 7.09271 + 5.95149i 0.265067 + 0.222418i
\(717\) 2.01283 13.9999i 0.0751705 0.522835i
\(718\) 11.8547 + 4.31475i 0.442413 + 0.161025i
\(719\) 0.637405 0.0237712 0.0118856 0.999929i \(-0.496217\pi\)
0.0118856 + 0.999929i \(0.496217\pi\)
\(720\) −10.2697 15.4356i −0.382728 0.575251i
\(721\) 0.297237 + 0.983580i 0.0110697 + 0.0366304i
\(722\) −28.1602 + 23.6293i −1.04802 + 0.879390i
\(723\) −39.4042 12.9414i −1.46546 0.481297i
\(724\) −11.5395 9.68277i −0.428861 0.359857i
\(725\) 12.1304 4.41511i 0.450513 0.163973i
\(726\) 90.8805 2.88522i 3.37289 0.107081i
\(727\) 35.4958 + 12.9194i 1.31647 + 0.479155i 0.902324 0.431058i \(-0.141859\pi\)
0.414142 + 0.910212i \(0.364082\pi\)
\(728\) −0.804004 + 0.856620i −0.0297984 + 0.0317484i
\(729\) 26.5120 5.11034i 0.981925 0.189272i
\(730\) −3.57266 6.18803i −0.132230 0.229029i
\(731\) −2.51650 + 2.11160i −0.0930763 + 0.0781003i
\(732\) −9.45693 15.2415i −0.349538 0.563344i
\(733\) −2.12578 + 12.0559i −0.0785175 + 0.445295i 0.920051 + 0.391799i \(0.128147\pi\)
−0.998568 + 0.0534952i \(0.982964\pi\)
\(734\) 5.52848 31.3536i 0.204060 1.15728i
\(735\) 12.4992 + 12.3053i 0.461042 + 0.453889i
\(736\) −49.4518 + 41.4950i −1.82282 + 1.52953i
\(737\) 33.9087 58.7316i 1.24904 2.16340i
\(738\) 24.6543 1.56700i 0.907538 0.0576821i
\(739\) 0.258871 + 0.448377i 0.00952271 + 0.0164938i 0.870747 0.491730i \(-0.163635\pi\)
−0.861225 + 0.508224i \(0.830302\pi\)
\(740\) −0.433373 + 0.363643i −0.0159311 + 0.0133678i
\(741\) −1.29628 + 0.518958i −0.0476201 + 0.0190644i
\(742\) −9.38756 + 21.9184i −0.344628 + 0.804651i
\(743\) 34.2634 12.4709i 1.25700 0.457512i 0.374241 0.927332i \(-0.377903\pi\)
0.882762 + 0.469820i \(0.155681\pi\)
\(744\) −0.362811 + 2.52346i −0.0133013 + 0.0925147i
\(745\) 17.7909 + 6.47536i 0.651809 + 0.237239i
\(746\) −9.49968 16.4539i −0.347808 0.602421i
\(747\) 5.31186 5.06492i 0.194351 0.185316i
\(748\) 35.0091 + 60.6375i 1.28006 + 2.21713i
\(749\) −7.21416 + 3.64647i −0.263600 + 0.133239i
\(750\) 7.96564 + 38.0684i 0.290864 + 1.39006i
\(751\) 31.9475 11.6279i 1.16578 0.424310i 0.314622 0.949217i \(-0.398122\pi\)
0.851159 + 0.524908i \(0.175900\pi\)
\(752\) −40.7012 + 14.8140i −1.48422 + 0.540212i
\(753\) 4.66310 8.70334i 0.169933 0.317167i
\(754\) −2.33456 13.2400i −0.0850198 0.482171i
\(755\) −7.05593 −0.256792
\(756\) −9.65586 23.5787i −0.351180 0.857548i
\(757\) −19.3280 −0.702488 −0.351244 0.936284i \(-0.614241\pi\)
−0.351244 + 0.936284i \(0.614241\pi\)
\(758\) −6.57325 37.2787i −0.238751 1.35402i
\(759\) −87.9127 + 2.79100i −3.19103 + 0.101307i
\(760\) 0.204560 0.0744536i 0.00742016 0.00270072i
\(761\) −3.16678 + 1.15261i −0.114796 + 0.0417823i −0.398779 0.917047i \(-0.630566\pi\)
0.283984 + 0.958829i \(0.408344\pi\)
\(762\) 32.9886 + 10.8344i 1.19505 + 0.392488i
\(763\) −21.0073 13.7390i −0.760515 0.497387i
\(764\) 10.5376 + 18.2516i 0.381236 + 0.660320i
\(765\) 24.4498 10.7006i 0.883985 0.386879i
\(766\) 27.8089 + 48.1665i 1.00478 + 1.74033i
\(767\) 6.56549 + 2.38964i 0.237066 + 0.0862849i
\(768\) −29.0765