Properties

Label 189.2.u.a.4.16
Level $189$
Weight $2$
Character 189.4
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(4,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([2, 12]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.u (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 4.16
Character \(\chi\) \(=\) 189.4
Dual form 189.2.u.a.142.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.241593 + 1.37014i) q^{2} +(1.22928 + 1.22020i) q^{3} +(0.0604707 - 0.0220095i) q^{4} +(-1.40760 + 0.512324i) q^{5} +(-1.37486 + 1.97907i) q^{6} +(1.17416 - 2.37094i) q^{7} +(1.43604 + 2.48730i) q^{8} +(0.0222396 + 2.99992i) q^{9} +O(q^{10})\) \(q+(0.241593 + 1.37014i) q^{2} +(1.22928 + 1.22020i) q^{3} +(0.0604707 - 0.0220095i) q^{4} +(-1.40760 + 0.512324i) q^{5} +(-1.37486 + 1.97907i) q^{6} +(1.17416 - 2.37094i) q^{7} +(1.43604 + 2.48730i) q^{8} +(0.0222396 + 2.99992i) q^{9} +(-1.04202 - 1.80483i) q^{10} +(-1.11103 - 0.404380i) q^{11} +(0.101191 + 0.0467304i) q^{12} +(-2.36114 + 0.859386i) q^{13} +(3.53219 + 1.03596i) q^{14} +(-2.35546 - 1.08776i) q^{15} +(-2.96241 + 2.48576i) q^{16} +(-2.10228 - 3.64126i) q^{17} +(-4.10493 + 0.755229i) q^{18} +(4.18978 - 7.25691i) q^{19} +(-0.0738425 + 0.0619612i) q^{20} +(4.33638 - 1.48184i) q^{21} +(0.285642 - 1.61995i) q^{22} +(0.276391 - 1.56749i) q^{23} +(-1.26970 + 4.80983i) q^{24} +(-2.11136 + 1.77165i) q^{25} +(-1.74791 - 3.02747i) q^{26} +(-3.63315 + 3.71486i) q^{27} +(0.0188188 - 0.169215i) q^{28} +(2.66110 + 0.968563i) q^{29} +(0.921320 - 3.49011i) q^{30} +(-1.89719 + 0.690519i) q^{31} +(0.278752 + 0.233901i) q^{32} +(-0.872334 - 1.85276i) q^{33} +(4.48114 - 3.76012i) q^{34} +(-0.438052 + 3.93888i) q^{35} +(0.0673717 + 0.180918i) q^{36} +8.10687 q^{37} +(10.9552 + 3.98737i) q^{38} +(-3.95112 - 1.82464i) q^{39} +(-3.29567 - 2.76540i) q^{40} +(-4.86408 + 1.77038i) q^{41} +(3.07796 + 5.58344i) q^{42} +(-0.529220 - 3.00136i) q^{43} -0.0760847 q^{44} +(-1.56823 - 4.21129i) q^{45} +2.21446 q^{46} +(8.50342 + 3.09499i) q^{47} +(-6.67474 - 0.559042i) q^{48} +(-4.24271 - 5.56771i) q^{49} +(-2.93749 - 2.46485i) q^{50} +(1.85877 - 7.04131i) q^{51} +(-0.123865 + 0.103935i) q^{52} +(4.30504 - 7.45655i) q^{53} +(-5.96762 - 4.08044i) q^{54} +1.77105 q^{55} +(7.58337 - 0.484292i) q^{56} +(14.0053 - 3.80839i) q^{57} +(-0.684163 + 3.88008i) q^{58} +(-5.52413 - 4.63529i) q^{59} +(-0.166378 - 0.0139349i) q^{60} +(-5.98346 - 2.17780i) q^{61} +(-1.40445 - 2.43258i) q^{62} +(7.13874 + 3.46964i) q^{63} +(-4.12029 + 7.13655i) q^{64} +(2.88326 - 2.41934i) q^{65} +(2.32780 - 1.64283i) q^{66} +(-2.67531 + 15.1724i) q^{67} +(-0.207269 - 0.173919i) q^{68} +(2.25241 - 1.58963i) q^{69} +(-5.50264 + 0.351412i) q^{70} +(-2.99948 + 5.19525i) q^{71} +(-7.42975 + 4.36332i) q^{72} +0.905792 q^{73} +(1.95856 + 11.1075i) q^{74} +(-4.75721 - 0.398439i) q^{75} +(0.0936377 - 0.531046i) q^{76} +(-2.26328 + 2.15937i) q^{77} +(1.54545 - 5.85440i) q^{78} +(0.449343 + 2.54835i) q^{79} +(2.89637 - 5.01667i) q^{80} +(-8.99901 + 0.133434i) q^{81} +(-3.60079 - 6.23676i) q^{82} +(-13.1011 - 4.76840i) q^{83} +(0.229609 - 0.185049i) q^{84} +(4.82467 + 4.04838i) q^{85} +(3.98442 - 1.45021i) q^{86} +(2.08939 + 4.43770i) q^{87} +(-0.589665 - 3.34416i) q^{88} +(-7.38758 + 12.7957i) q^{89} +(5.39117 - 3.16611i) q^{90} +(-0.734800 + 6.60718i) q^{91} +(-0.0177862 - 0.100871i) q^{92} +(-3.17473 - 1.46610i) q^{93} +(-2.18621 + 12.3986i) q^{94} +(-2.17964 + 12.3613i) q^{95} +(0.0572583 + 0.627661i) q^{96} +(0.482171 + 2.73453i) q^{97} +(6.60353 - 7.15822i) q^{98} +(1.18840 - 3.34198i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} - 15 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} - 15 q^{9} + 3 q^{10} - 15 q^{11} - 3 q^{12} - 12 q^{13} - 30 q^{14} + 9 q^{16} + 27 q^{17} - 3 q^{18} + 3 q^{19} - 18 q^{20} + 15 q^{21} - 12 q^{22} - 36 q^{23} - 72 q^{24} - 3 q^{25} + 30 q^{26} - 12 q^{27} - 12 q^{28} - 30 q^{29} - 3 q^{30} - 3 q^{31} - 75 q^{32} + 15 q^{33} - 18 q^{34} + 15 q^{35} - 60 q^{36} - 6 q^{37} + 69 q^{38} + 51 q^{39} + 51 q^{40} - 39 q^{42} - 12 q^{43} - 6 q^{44} - 21 q^{45} - 6 q^{46} - 21 q^{47} + 90 q^{48} - 42 q^{49} - 39 q^{50} + 33 q^{51} + 9 q^{52} + 9 q^{53} - 9 q^{54} - 24 q^{55} + 111 q^{56} - 18 q^{57} - 3 q^{58} + 27 q^{59} - 63 q^{60} - 21 q^{61} + 75 q^{62} + 63 q^{63} - 30 q^{64} - 90 q^{65} - 3 q^{66} - 3 q^{67} - 30 q^{68} - 6 q^{69} + 39 q^{70} - 18 q^{71} + 183 q^{72} - 42 q^{73} + 51 q^{74} - 45 q^{75} - 24 q^{76} + 15 q^{77} - 30 q^{78} + 15 q^{79} + 102 q^{80} - 87 q^{81} - 6 q^{82} - 42 q^{83} + 135 q^{84} - 63 q^{85} - 93 q^{86} + 75 q^{87} - 51 q^{88} + 75 q^{89} - 39 q^{90} - 21 q^{91} - 66 q^{92} + 81 q^{93} + 33 q^{94} + 15 q^{95} - 171 q^{96} - 12 q^{97} - 36 q^{98} + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.241593 + 1.37014i 0.170832 + 0.968835i 0.942846 + 0.333229i \(0.108138\pi\)
−0.772014 + 0.635605i \(0.780751\pi\)
\(3\) 1.22928 + 1.22020i 0.709723 + 0.704481i
\(4\) 0.0604707 0.0220095i 0.0302354 0.0110048i
\(5\) −1.40760 + 0.512324i −0.629497 + 0.229118i −0.637012 0.770854i \(-0.719830\pi\)
0.00751528 + 0.999972i \(0.497608\pi\)
\(6\) −1.37486 + 1.97907i −0.561282 + 0.807952i
\(7\) 1.17416 2.37094i 0.443790 0.896131i
\(8\) 1.43604 + 2.48730i 0.507717 + 0.879392i
\(9\) 0.0222396 + 2.99992i 0.00741321 + 0.999973i
\(10\) −1.04202 1.80483i −0.329516 0.570738i
\(11\) −1.11103 0.404380i −0.334987 0.121925i 0.169050 0.985608i \(-0.445930\pi\)
−0.504037 + 0.863682i \(0.668152\pi\)
\(12\) 0.101191 + 0.0467304i 0.0292114 + 0.0134899i
\(13\) −2.36114 + 0.859386i −0.654863 + 0.238351i −0.648017 0.761626i \(-0.724401\pi\)
−0.00684632 + 0.999977i \(0.502179\pi\)
\(14\) 3.53219 + 1.03596i 0.944016 + 0.276871i
\(15\) −2.35546 1.08776i −0.608178 0.280858i
\(16\) −2.96241 + 2.48576i −0.740603 + 0.621440i
\(17\) −2.10228 3.64126i −0.509878 0.883135i −0.999935 0.0114441i \(-0.996357\pi\)
0.490056 0.871691i \(-0.336976\pi\)
\(18\) −4.10493 + 0.755229i −0.967542 + 0.178009i
\(19\) 4.18978 7.25691i 0.961201 1.66485i 0.241709 0.970349i \(-0.422292\pi\)
0.719492 0.694500i \(-0.244375\pi\)
\(20\) −0.0738425 + 0.0619612i −0.0165117 + 0.0138549i
\(21\) 4.33638 1.48184i 0.946275 0.323363i
\(22\) 0.285642 1.61995i 0.0608990 0.345375i
\(23\) 0.276391 1.56749i 0.0576315 0.326845i −0.942338 0.334663i \(-0.891378\pi\)
0.999969 + 0.00781827i \(0.00248866\pi\)
\(24\) −1.26970 + 4.80983i −0.259176 + 0.981802i
\(25\) −2.11136 + 1.77165i −0.422273 + 0.354329i
\(26\) −1.74791 3.02747i −0.342794 0.593737i
\(27\) −3.63315 + 3.71486i −0.699200 + 0.714926i
\(28\) 0.0188188 0.169215i 0.00355642 0.0319787i
\(29\) 2.66110 + 0.968563i 0.494155 + 0.179858i 0.577063 0.816700i \(-0.304199\pi\)
−0.0829085 + 0.996557i \(0.526421\pi\)
\(30\) 0.921320 3.49011i 0.168209 0.637203i
\(31\) −1.89719 + 0.690519i −0.340745 + 0.124021i −0.506724 0.862108i \(-0.669144\pi\)
0.165979 + 0.986129i \(0.446921\pi\)
\(32\) 0.278752 + 0.233901i 0.0492769 + 0.0413482i
\(33\) −0.872334 1.85276i −0.151854 0.322525i
\(34\) 4.48114 3.76012i 0.768508 0.644855i
\(35\) −0.438052 + 3.93888i −0.0740443 + 0.665792i
\(36\) 0.0673717 + 0.180918i 0.0112286 + 0.0301530i
\(37\) 8.10687 1.33276 0.666381 0.745611i \(-0.267842\pi\)
0.666381 + 0.745611i \(0.267842\pi\)
\(38\) 10.9552 + 3.98737i 1.77717 + 0.646836i
\(39\) −3.95112 1.82464i −0.632685 0.292176i
\(40\) −3.29567 2.76540i −0.521091 0.437248i
\(41\) −4.86408 + 1.77038i −0.759642 + 0.276487i −0.692657 0.721267i \(-0.743560\pi\)
−0.0669848 + 0.997754i \(0.521338\pi\)
\(42\) 3.07796 + 5.58344i 0.474939 + 0.861543i
\(43\) −0.529220 3.00136i −0.0807054 0.457703i −0.998201 0.0599569i \(-0.980904\pi\)
0.917496 0.397746i \(-0.130207\pi\)
\(44\) −0.0760847 −0.0114702
\(45\) −1.56823 4.21129i −0.233779 0.627781i
\(46\) 2.21446 0.326504
\(47\) 8.50342 + 3.09499i 1.24035 + 0.451451i 0.877130 0.480252i \(-0.159455\pi\)
0.363221 + 0.931703i \(0.381677\pi\)
\(48\) −6.67474 0.559042i −0.963416 0.0806907i
\(49\) −4.24271 5.56771i −0.606102 0.795387i
\(50\) −2.93749 2.46485i −0.415424 0.348582i
\(51\) 1.85877 7.04131i 0.260279 0.985980i
\(52\) −0.123865 + 0.103935i −0.0171770 + 0.0144132i
\(53\) 4.30504 7.45655i 0.591343 1.02424i −0.402709 0.915328i \(-0.631931\pi\)
0.994052 0.108908i \(-0.0347353\pi\)
\(54\) −5.96762 4.08044i −0.812091 0.555277i
\(55\) 1.77105 0.238808
\(56\) 7.58337 0.484292i 1.01337 0.0647162i
\(57\) 14.0053 3.80839i 1.85504 0.504434i
\(58\) −0.684163 + 3.88008i −0.0898350 + 0.509479i
\(59\) −5.52413 4.63529i −0.719180 0.603464i 0.207978 0.978133i \(-0.433312\pi\)
−0.927158 + 0.374670i \(0.877756\pi\)
\(60\) −0.166378 0.0139349i −0.0214793 0.00179899i
\(61\) −5.98346 2.17780i −0.766103 0.278839i −0.0707377 0.997495i \(-0.522535\pi\)
−0.695366 + 0.718656i \(0.744758\pi\)
\(62\) −1.40445 2.43258i −0.178366 0.308939i
\(63\) 7.13874 + 3.46964i 0.899396 + 0.437134i
\(64\) −4.12029 + 7.13655i −0.515036 + 0.892068i
\(65\) 2.88326 2.41934i 0.357624 0.300082i
\(66\) 2.32780 1.64283i 0.286532 0.202219i
\(67\) −2.67531 + 15.1724i −0.326841 + 1.85361i 0.169570 + 0.985518i \(0.445762\pi\)
−0.496411 + 0.868088i \(0.665349\pi\)
\(68\) −0.207269 0.173919i −0.0251351 0.0210908i
\(69\) 2.25241 1.58963i 0.271158 0.191369i
\(70\) −5.50264 + 0.351412i −0.657692 + 0.0420017i
\(71\) −2.99948 + 5.19525i −0.355973 + 0.616563i −0.987284 0.158967i \(-0.949184\pi\)
0.631311 + 0.775530i \(0.282517\pi\)
\(72\) −7.42975 + 4.36332i −0.875604 + 0.514222i
\(73\) 0.905792 0.106015 0.0530075 0.998594i \(-0.483119\pi\)
0.0530075 + 0.998594i \(0.483119\pi\)
\(74\) 1.95856 + 11.1075i 0.227678 + 1.29123i
\(75\) −4.75721 0.398439i −0.549315 0.0460078i
\(76\) 0.0936377 0.531046i 0.0107410 0.0609151i
\(77\) −2.26328 + 2.15937i −0.257925 + 0.246083i
\(78\) 1.54545 5.85440i 0.174987 0.662880i
\(79\) 0.449343 + 2.54835i 0.0505551 + 0.286712i 0.999595 0.0284425i \(-0.00905474\pi\)
−0.949040 + 0.315155i \(0.897944\pi\)
\(80\) 2.89637 5.01667i 0.323824 0.560880i
\(81\) −8.99901 + 0.133434i −0.999890 + 0.0148260i
\(82\) −3.60079 6.23676i −0.397641 0.688735i
\(83\) −13.1011 4.76840i −1.43803 0.523400i −0.498808 0.866713i \(-0.666229\pi\)
−0.939221 + 0.343313i \(0.888451\pi\)
\(84\) 0.229609 0.185049i 0.0250524 0.0201906i
\(85\) 4.82467 + 4.04838i 0.523309 + 0.439108i
\(86\) 3.98442 1.45021i 0.429651 0.156380i
\(87\) 2.08939 + 4.43770i 0.224007 + 0.475771i
\(88\) −0.589665 3.34416i −0.0628585 0.356488i
\(89\) −7.38758 + 12.7957i −0.783082 + 1.35634i 0.147056 + 0.989128i \(0.453020\pi\)
−0.930138 + 0.367210i \(0.880313\pi\)
\(90\) 5.39117 3.16611i 0.568280 0.333738i
\(91\) −0.734800 + 6.60718i −0.0770280 + 0.692621i
\(92\) −0.0177862 0.100871i −0.00185434 0.0105165i
\(93\) −3.17473 1.46610i −0.329205 0.152028i
\(94\) −2.18621 + 12.3986i −0.225490 + 1.27882i
\(95\) −2.17964 + 12.3613i −0.223626 + 1.26825i
\(96\) 0.0572583 + 0.627661i 0.00584390 + 0.0640604i
\(97\) 0.482171 + 2.73453i 0.0489570 + 0.277649i 0.999452 0.0330897i \(-0.0105347\pi\)
−0.950495 + 0.310739i \(0.899424\pi\)
\(98\) 6.60353 7.15822i 0.667057 0.723090i
\(99\) 1.18840 3.34198i 0.119439 0.335881i
\(100\) −0.0886827 + 0.153603i −0.00886827 + 0.0153603i
\(101\) −0.751421 4.26152i −0.0747692 0.424037i −0.999099 0.0424424i \(-0.986486\pi\)
0.924330 0.381595i \(-0.124625\pi\)
\(102\) 10.0966 + 0.845642i 0.999716 + 0.0837311i
\(103\) 5.44529 1.98192i 0.536541 0.195285i −0.0595157 0.998227i \(-0.518956\pi\)
0.596056 + 0.802943i \(0.296733\pi\)
\(104\) −5.52825 4.63875i −0.542089 0.454867i
\(105\) −5.34470 + 4.30746i −0.521589 + 0.420365i
\(106\) 11.2566 + 4.09706i 1.09334 + 0.397941i
\(107\) −6.82838 11.8271i −0.660125 1.14337i −0.980583 0.196106i \(-0.937170\pi\)
0.320458 0.947263i \(-0.396163\pi\)
\(108\) −0.137937 + 0.304605i −0.0132730 + 0.0293106i
\(109\) 0.0243962 0.0422554i 0.00233673 0.00404733i −0.864855 0.502022i \(-0.832590\pi\)
0.867191 + 0.497975i \(0.165923\pi\)
\(110\) 0.427873 + 2.42659i 0.0407961 + 0.231366i
\(111\) 9.96559 + 9.89198i 0.945892 + 0.938905i
\(112\) 2.41525 + 9.94237i 0.228220 + 0.939466i
\(113\) −0.0236776 + 0.134282i −0.00222740 + 0.0126322i −0.985901 0.167328i \(-0.946486\pi\)
0.983674 + 0.179961i \(0.0575971\pi\)
\(114\) 8.60159 + 18.2691i 0.805613 + 1.71105i
\(115\) 0.414016 + 2.34800i 0.0386072 + 0.218952i
\(116\) 0.182237 0.0169202
\(117\) −2.63060 7.06412i −0.243199 0.653079i
\(118\) 5.01641 8.68868i 0.461798 0.799857i
\(119\) −11.1016 + 0.708975i −1.01768 + 0.0649916i
\(120\) −0.676962 7.42080i −0.0617979 0.677423i
\(121\) −7.35563 6.17211i −0.668694 0.561101i
\(122\) 1.53833 8.72431i 0.139274 0.789862i
\(123\) −8.13951 3.75885i −0.733915 0.338924i
\(124\) −0.0995262 + 0.0835124i −0.00893772 + 0.00749964i
\(125\) 5.80913 10.0617i 0.519585 0.899947i
\(126\) −3.02923 + 10.6193i −0.269865 + 0.946043i
\(127\) 11.0674 + 19.1693i 0.982072 + 1.70100i 0.654288 + 0.756245i \(0.272968\pi\)
0.327783 + 0.944753i \(0.393698\pi\)
\(128\) −10.0896 3.67232i −0.891804 0.324590i
\(129\) 3.01169 4.33525i 0.265164 0.381698i
\(130\) 4.01141 + 3.36597i 0.351824 + 0.295215i
\(131\) −3.61711 + 20.5137i −0.316029 + 1.79229i 0.250364 + 0.968152i \(0.419450\pi\)
−0.566392 + 0.824136i \(0.691661\pi\)
\(132\) −0.0935292 0.0928384i −0.00814067 0.00808054i
\(133\) −12.2862 18.4545i −1.06535 1.60020i
\(134\) −21.4347 −1.85167
\(135\) 3.21080 7.09039i 0.276342 0.610243i
\(136\) 6.03793 10.4580i 0.517748 0.896766i
\(137\) −3.17727 + 2.66604i −0.271452 + 0.227775i −0.768344 0.640037i \(-0.778919\pi\)
0.496892 + 0.867812i \(0.334475\pi\)
\(138\) 2.72218 + 2.70207i 0.231727 + 0.230016i
\(139\) 7.09184 + 5.95076i 0.601522 + 0.504737i 0.891935 0.452165i \(-0.149348\pi\)
−0.290412 + 0.956902i \(0.593792\pi\)
\(140\) 0.0602036 + 0.247828i 0.00508814 + 0.0209453i
\(141\) 6.67655 + 14.1804i 0.562267 + 1.19421i
\(142\) −7.84287 2.85457i −0.658159 0.239550i
\(143\) 2.97081 0.248432
\(144\) −7.52296 8.83171i −0.626913 0.735976i
\(145\) −4.24198 −0.352278
\(146\) 0.218833 + 1.24106i 0.0181107 + 0.102711i
\(147\) 1.57824 12.0212i 0.130171 0.991492i
\(148\) 0.490229 0.178429i 0.0402966 0.0146667i
\(149\) −3.48562 2.92478i −0.285553 0.239607i 0.488748 0.872425i \(-0.337454\pi\)
−0.774301 + 0.632818i \(0.781898\pi\)
\(150\) −0.603388 6.61429i −0.0492665 0.540055i
\(151\) 12.3342 + 4.48927i 1.00374 + 0.365332i 0.791026 0.611782i \(-0.209547\pi\)
0.212715 + 0.977114i \(0.431769\pi\)
\(152\) 24.0668 1.95207
\(153\) 10.8767 6.38765i 0.879331 0.516411i
\(154\) −3.50543 2.57932i −0.282475 0.207848i
\(155\) 2.31671 1.94395i 0.186082 0.156142i
\(156\) −0.279086 0.0233748i −0.0223448 0.00187149i
\(157\) −2.61344 2.19294i −0.208575 0.175015i 0.532516 0.846420i \(-0.321247\pi\)
−0.741091 + 0.671405i \(0.765691\pi\)
\(158\) −3.38304 + 1.23133i −0.269140 + 0.0979590i
\(159\) 14.3905 3.91316i 1.14124 0.310334i
\(160\) −0.512204 0.186427i −0.0404933 0.0147383i
\(161\) −3.39190 2.49579i −0.267319 0.196696i
\(162\) −2.35692 12.2977i −0.185177 0.966195i
\(163\) 3.87804 + 6.71697i 0.303752 + 0.526113i 0.976983 0.213319i \(-0.0684273\pi\)
−0.673231 + 0.739432i \(0.735094\pi\)
\(164\) −0.255169 + 0.214113i −0.0199254 + 0.0167194i
\(165\) 2.17711 + 2.16103i 0.169488 + 0.168236i
\(166\) 3.36825 19.1023i 0.261427 1.48263i
\(167\) −0.160402 + 0.909682i −0.0124122 + 0.0703933i −0.990385 0.138341i \(-0.955823\pi\)
0.977972 + 0.208734i \(0.0669343\pi\)
\(168\) 9.91298 + 8.65787i 0.764803 + 0.667969i
\(169\) −5.12212 + 4.29797i −0.394009 + 0.330613i
\(170\) −4.38124 + 7.58853i −0.336026 + 0.582014i
\(171\) 21.8633 + 12.4076i 1.67193 + 0.948833i
\(172\) −0.0980609 0.169846i −0.00747707 0.0129507i
\(173\) 12.2389 10.2697i 0.930509 0.780790i −0.0453998 0.998969i \(-0.514456\pi\)
0.975909 + 0.218179i \(0.0700117\pi\)
\(174\) −5.57549 + 3.93488i −0.422677 + 0.298302i
\(175\) 1.72139 + 7.08611i 0.130125 + 0.535659i
\(176\) 4.29651 1.56380i 0.323861 0.117876i
\(177\) −1.13471 12.4386i −0.0852899 0.934941i
\(178\) −19.3166 7.03068i −1.44784 0.526972i
\(179\) −1.95353 3.38361i −0.146014 0.252903i 0.783737 0.621093i \(-0.213311\pi\)
−0.929751 + 0.368190i \(0.879978\pi\)
\(180\) −0.187521 0.220143i −0.0139770 0.0164085i
\(181\) 3.48391 + 6.03431i 0.258957 + 0.448527i 0.965963 0.258681i \(-0.0832879\pi\)
−0.707006 + 0.707208i \(0.749955\pi\)
\(182\) −9.23028 + 0.589468i −0.684194 + 0.0436942i
\(183\) −4.69798 9.97811i −0.347284 0.737603i
\(184\) 4.29573 1.56352i 0.316685 0.115264i
\(185\) −11.4112 + 4.15335i −0.838970 + 0.305360i
\(186\) 1.24177 4.70403i 0.0910511 0.344916i
\(187\) 0.863235 + 4.89565i 0.0631260 + 0.358005i
\(188\) 0.582327 0.0424706
\(189\) 4.54183 + 12.9758i 0.330370 + 0.943852i
\(190\) −17.4633 −1.26692
\(191\) −3.45160 19.5750i −0.249749 1.41640i −0.809200 0.587533i \(-0.800099\pi\)
0.559451 0.828863i \(-0.311012\pi\)
\(192\) −13.7730 + 3.74523i −0.993978 + 0.270288i
\(193\) 3.54038 1.28859i 0.254842 0.0927550i −0.211440 0.977391i \(-0.567815\pi\)
0.466282 + 0.884636i \(0.345593\pi\)
\(194\) −3.63019 + 1.32128i −0.260633 + 0.0948625i
\(195\) 6.49639 + 0.544104i 0.465216 + 0.0389641i
\(196\) −0.379103 0.243303i −0.0270788 0.0173788i
\(197\) −8.94755 15.4976i −0.637487 1.10416i −0.985982 0.166849i \(-0.946641\pi\)
0.348496 0.937310i \(-0.386693\pi\)
\(198\) 4.86608 + 0.820874i 0.345817 + 0.0583370i
\(199\) 0.815532 + 1.41254i 0.0578115 + 0.100132i 0.893483 0.449098i \(-0.148254\pi\)
−0.835671 + 0.549230i \(0.814921\pi\)
\(200\) −7.43861 2.70743i −0.525989 0.191445i
\(201\) −21.8020 + 15.3867i −1.53780 + 1.08529i
\(202\) 5.65734 2.05910i 0.398049 0.144878i
\(203\) 5.42096 5.17207i 0.380477 0.363008i
\(204\) −0.0425750 0.466704i −0.00298085 0.0326758i
\(205\) 5.93967 4.98397i 0.414844 0.348096i
\(206\) 4.03106 + 6.98199i 0.280857 + 0.486458i
\(207\) 4.70849 + 0.794290i 0.327263 + 0.0552070i
\(208\) 4.85846 8.41509i 0.336873 0.583482i
\(209\) −7.58950 + 6.36835i −0.524977 + 0.440508i
\(210\) −7.19306 6.28233i −0.496368 0.433522i
\(211\) 2.81112 15.9427i 0.193526 1.09754i −0.720977 0.692959i \(-0.756307\pi\)
0.914503 0.404580i \(-0.132582\pi\)
\(212\) 0.0962137 0.545655i 0.00660798 0.0374757i
\(213\) −10.0264 + 2.72644i −0.686999 + 0.186813i
\(214\) 14.5551 12.2132i 0.994966 0.834875i
\(215\) 2.28260 + 3.95357i 0.155672 + 0.269632i
\(216\) −14.4573 3.70203i −0.983696 0.251891i
\(217\) −0.590414 + 5.30889i −0.0400799 + 0.360391i
\(218\) 0.0637897 + 0.0232176i 0.00432039 + 0.00157249i
\(219\) 1.11347 + 1.10524i 0.0752412 + 0.0746855i
\(220\) 0.107097 0.0389800i 0.00722046 0.00262803i
\(221\) 8.09303 + 6.79086i 0.544396 + 0.456803i
\(222\) −11.1458 + 16.0441i −0.748056 + 1.07681i
\(223\) −1.84110 + 1.54487i −0.123289 + 0.103452i −0.702348 0.711834i \(-0.747865\pi\)
0.579058 + 0.815286i \(0.303420\pi\)
\(224\) 0.881863 0.386268i 0.0589219 0.0258086i
\(225\) −5.36175 6.29452i −0.357450 0.419635i
\(226\) −0.189706 −0.0126190
\(227\) 16.0531 + 5.84287i 1.06548 + 0.387805i 0.814486 0.580183i \(-0.197019\pi\)
0.250998 + 0.967987i \(0.419241\pi\)
\(228\) 0.763087 0.538546i 0.0505367 0.0356661i
\(229\) −3.48723 2.92613i −0.230443 0.193364i 0.520254 0.854012i \(-0.325837\pi\)
−0.750696 + 0.660647i \(0.770282\pi\)
\(230\) −3.11706 + 1.13452i −0.205533 + 0.0748080i
\(231\) −5.41705 0.107185i −0.356416 0.00705228i
\(232\) 1.41235 + 8.00985i 0.0927255 + 0.525872i
\(233\) 20.0330 1.31241 0.656203 0.754584i \(-0.272161\pi\)
0.656203 + 0.754584i \(0.272161\pi\)
\(234\) 9.04330 5.31093i 0.591179 0.347186i
\(235\) −13.5550 −0.884233
\(236\) −0.436069 0.158716i −0.0283857 0.0103315i
\(237\) −2.55713 + 3.68092i −0.166103 + 0.239101i
\(238\) −3.65346 15.0395i −0.236819 0.974864i
\(239\) 12.5959 + 10.5692i 0.814758 + 0.683663i 0.951738 0.306911i \(-0.0992953\pi\)
−0.136980 + 0.990574i \(0.543740\pi\)
\(240\) 9.68176 2.63272i 0.624955 0.169942i
\(241\) −13.7434 + 11.5321i −0.885292 + 0.742848i −0.967260 0.253787i \(-0.918324\pi\)
0.0819685 + 0.996635i \(0.473879\pi\)
\(242\) 6.67958 11.5694i 0.429380 0.743708i
\(243\) −11.2251 10.8165i −0.720090 0.693881i
\(244\) −0.409757 −0.0262320
\(245\) 8.82451 + 5.66346i 0.563777 + 0.361825i
\(246\) 3.18370 12.0604i 0.202985 0.768942i
\(247\) −3.65618 + 20.7352i −0.232637 + 1.31935i
\(248\) −4.44196 3.72725i −0.282065 0.236681i
\(249\) −10.2864 21.8476i −0.651877 1.38453i
\(250\) 15.1894 + 5.52849i 0.960662 + 0.349652i
\(251\) 14.3169 + 24.7975i 0.903672 + 1.56521i 0.822690 + 0.568490i \(0.192472\pi\)
0.0809817 + 0.996716i \(0.474194\pi\)
\(252\) 0.508050 + 0.0526916i 0.0320041 + 0.00331926i
\(253\) −0.940940 + 1.62976i −0.0591564 + 0.102462i
\(254\) −23.5908 + 19.7950i −1.48022 + 1.24205i
\(255\) 0.991033 + 10.8636i 0.0620609 + 0.680307i
\(256\) −0.267908 + 1.51938i −0.0167443 + 0.0949615i
\(257\) 5.25101 + 4.40612i 0.327549 + 0.274846i 0.791700 0.610910i \(-0.209196\pi\)
−0.464151 + 0.885756i \(0.653641\pi\)
\(258\) 6.66750 + 3.07907i 0.415100 + 0.191695i
\(259\) 9.51874 19.2209i 0.591466 1.19433i
\(260\) 0.121104 0.209759i 0.00751056 0.0130087i
\(261\) −2.84643 + 8.00463i −0.176189 + 0.495474i
\(262\) −28.9805 −1.79042
\(263\) −2.76530 15.6828i −0.170516 0.967043i −0.943193 0.332244i \(-0.892194\pi\)
0.772678 0.634799i \(-0.218917\pi\)
\(264\) 3.35567 4.83040i 0.206527 0.297290i
\(265\) −2.23960 + 12.7014i −0.137578 + 0.780241i
\(266\) 22.3169 21.2923i 1.36834 1.30552i
\(267\) −24.6946 + 6.71511i −1.51129 + 0.410958i
\(268\) 0.172160 + 0.976370i 0.0105164 + 0.0596413i
\(269\) 6.07914 10.5294i 0.370652 0.641988i −0.619014 0.785380i \(-0.712468\pi\)
0.989666 + 0.143392i \(0.0458009\pi\)
\(270\) 10.4905 + 2.68626i 0.638433 + 0.163481i
\(271\) 13.6112 + 23.5753i 0.826822 + 1.43210i 0.900519 + 0.434817i \(0.143187\pi\)
−0.0736971 + 0.997281i \(0.523480\pi\)
\(272\) 15.2791 + 5.56114i 0.926433 + 0.337194i
\(273\) −8.96534 + 7.22545i −0.542607 + 0.437304i
\(274\) −4.42045 3.70920i −0.267049 0.224081i
\(275\) 3.06220 1.11455i 0.184657 0.0672098i
\(276\) 0.101218 0.145701i 0.00609260 0.00877014i
\(277\) −0.937620 5.31751i −0.0563361 0.319498i 0.943597 0.331097i \(-0.107419\pi\)
−0.999933 + 0.0115993i \(0.996308\pi\)
\(278\) −6.44004 + 11.1545i −0.386248 + 0.669001i
\(279\) −2.11369 5.67604i −0.126544 0.339816i
\(280\) −10.4262 + 4.56683i −0.623086 + 0.272920i
\(281\) −0.0216404 0.122729i −0.00129096 0.00732137i 0.984155 0.177308i \(-0.0567388\pi\)
−0.985446 + 0.169986i \(0.945628\pi\)
\(282\) −17.8162 + 12.5737i −1.06094 + 0.748753i
\(283\) 4.54984 25.8034i 0.270460 1.53385i −0.482564 0.875861i \(-0.660294\pi\)
0.753024 0.657994i \(-0.228595\pi\)
\(284\) −0.0670357 + 0.380178i −0.00397783 + 0.0225594i
\(285\) −17.7626 + 12.5359i −1.05217 + 0.742563i
\(286\) 0.717725 + 4.07042i 0.0424400 + 0.240689i
\(287\) −1.51373 + 13.6112i −0.0893525 + 0.803441i
\(288\) −0.695483 + 0.841435i −0.0409818 + 0.0495820i
\(289\) −0.339174 + 0.587466i −0.0199514 + 0.0345568i
\(290\) −1.02483 5.81211i −0.0601802 0.341299i
\(291\) −2.74394 + 3.94983i −0.160853 + 0.231543i
\(292\) 0.0547739 0.0199361i 0.00320540 0.00116667i
\(293\) 12.4678 + 10.4618i 0.728378 + 0.611182i 0.929689 0.368345i \(-0.120076\pi\)
−0.201311 + 0.979527i \(0.564520\pi\)
\(294\) 16.8520 0.741826i 0.982829 0.0432642i
\(295\) 10.1505 + 3.69449i 0.590986 + 0.215101i
\(296\) 11.6418 + 20.1642i 0.676666 + 1.17202i
\(297\) 5.53874 2.65813i 0.321390 0.154241i
\(298\) 3.16526 5.48238i 0.183358 0.317586i
\(299\) 0.694482 + 3.93860i 0.0401629 + 0.227775i
\(300\) −0.296441 + 0.0806101i −0.0171150 + 0.00465402i
\(301\) −7.73743 2.26932i −0.445978 0.130801i
\(302\) −3.17108 + 17.9841i −0.182475 + 1.03487i
\(303\) 4.27619 6.15547i 0.245661 0.353622i
\(304\) 5.62708 + 31.9127i 0.322735 + 1.83032i
\(305\) 9.53804 0.546147
\(306\) 11.3797 + 13.3594i 0.650534 + 0.763707i
\(307\) 1.64814 2.85466i 0.0940643 0.162924i −0.815153 0.579245i \(-0.803347\pi\)
0.909218 + 0.416321i \(0.136681\pi\)
\(308\) −0.0893354 + 0.180392i −0.00509036 + 0.0102788i
\(309\) 9.11211 + 4.20800i 0.518370 + 0.239385i
\(310\) 3.22318 + 2.70457i 0.183064 + 0.153609i
\(311\) −0.534692 + 3.03239i −0.0303196 + 0.171951i −0.996207 0.0870097i \(-0.972269\pi\)
0.965888 + 0.258961i \(0.0833800\pi\)
\(312\) −1.13555 12.4479i −0.0642881 0.704721i
\(313\) 6.02411 5.05483i 0.340503 0.285716i −0.456460 0.889744i \(-0.650883\pi\)
0.796963 + 0.604028i \(0.206438\pi\)
\(314\) 2.37324 4.11057i 0.133930 0.231973i
\(315\) −11.8261 1.22652i −0.666323 0.0691066i
\(316\) 0.0832602 + 0.144211i 0.00468375 + 0.00811250i
\(317\) 25.7274 + 9.36401i 1.44500 + 0.525935i 0.941189 0.337881i \(-0.109710\pi\)
0.503806 + 0.863817i \(0.331932\pi\)
\(318\) 8.83822 + 18.7717i 0.495623 + 1.05266i
\(319\) −2.56489 2.15219i −0.143606 0.120500i
\(320\) 2.14349 12.1563i 0.119825 0.679559i
\(321\) 6.03743 22.8707i 0.336976 1.27652i
\(322\) 2.60012 5.25034i 0.144899 0.292590i
\(323\) −35.2324 −1.96038
\(324\) −0.541240 + 0.206133i −0.0300689 + 0.0114518i
\(325\) 3.46271 5.99759i 0.192077 0.332686i
\(326\) −8.26627 + 6.93623i −0.457826 + 0.384162i
\(327\) 0.0815496 0.0221754i 0.00450970 0.00122630i
\(328\) −11.3885 9.55608i −0.628824 0.527646i
\(329\) 17.3224 16.5271i 0.955014 0.911168i
\(330\) −2.43494 + 3.50503i −0.134039 + 0.192946i
\(331\) −10.9089 3.97050i −0.599606 0.218239i 0.0243434 0.999704i \(-0.492251\pi\)
−0.623949 + 0.781465i \(0.714473\pi\)
\(332\) −0.897181 −0.0492392
\(333\) 0.180294 + 24.3200i 0.00988004 + 1.33273i
\(334\) −1.28514 −0.0703199
\(335\) −4.00744 22.7273i −0.218950 1.24172i
\(336\) −9.16265 + 15.1690i −0.499863 + 0.827537i
\(337\) 14.9687 5.44815i 0.815395 0.296780i 0.0995447 0.995033i \(-0.468261\pi\)
0.715851 + 0.698253i \(0.246039\pi\)
\(338\) −7.12629 5.97966i −0.387619 0.325251i
\(339\) −0.192957 + 0.136179i −0.0104800 + 0.00739621i
\(340\) 0.380854 + 0.138620i 0.0206547 + 0.00751771i
\(341\) 2.38705 0.129266
\(342\) −11.7181 + 32.9534i −0.633644 + 1.78191i
\(343\) −18.1823 + 3.52185i −0.981753 + 0.190162i
\(344\) 6.70529 5.62640i 0.361525 0.303355i
\(345\) −2.35608 + 3.39152i −0.126847 + 0.182593i
\(346\) 17.0277 + 14.2880i 0.915417 + 0.768126i
\(347\) 22.0682 8.03219i 1.18469 0.431190i 0.326831 0.945083i \(-0.394019\pi\)
0.857855 + 0.513892i \(0.171797\pi\)
\(348\) 0.224019 + 0.222364i 0.0120087 + 0.0119200i
\(349\) −16.1149 5.86535i −0.862612 0.313965i −0.127440 0.991846i \(-0.540676\pi\)
−0.735171 + 0.677881i \(0.762898\pi\)
\(350\) −9.29308 + 4.07050i −0.496736 + 0.217577i
\(351\) 5.38589 11.8936i 0.287478 0.634834i
\(352\) −0.215116 0.372591i −0.0114657 0.0198592i
\(353\) −5.04422 + 4.23260i −0.268477 + 0.225279i −0.767080 0.641552i \(-0.778291\pi\)
0.498603 + 0.866830i \(0.333847\pi\)
\(354\) 16.7684 4.55978i 0.891233 0.242349i
\(355\) 1.56041 8.84954i 0.0828181 0.469685i
\(356\) −0.165106 + 0.936361i −0.00875059 + 0.0496270i
\(357\) −14.5120 12.6746i −0.768058 0.670812i
\(358\) 4.16406 3.49406i 0.220078 0.184667i
\(359\) −15.0217 + 26.0183i −0.792813 + 1.37319i 0.131405 + 0.991329i \(0.458051\pi\)
−0.924218 + 0.381864i \(0.875282\pi\)
\(360\) 8.22267 9.94824i 0.433373 0.524318i
\(361\) −25.6085 44.3552i −1.34782 2.33448i
\(362\) −7.42616 + 6.23129i −0.390310 + 0.327509i
\(363\) −1.51092 16.5626i −0.0793026 0.869308i
\(364\) 0.100987 + 0.415714i 0.00529317 + 0.0217893i
\(365\) −1.27499 + 0.464059i −0.0667361 + 0.0242900i
\(366\) 12.5364 8.84752i 0.655289 0.462467i
\(367\) −10.3248 3.75791i −0.538949 0.196162i 0.0581805 0.998306i \(-0.481470\pi\)
−0.597130 + 0.802145i \(0.703692\pi\)
\(368\) 3.07762 + 5.33060i 0.160432 + 0.277877i
\(369\) −5.41917 14.5525i −0.282111 0.757572i
\(370\) −8.44753 14.6315i −0.439166 0.760658i
\(371\) −12.6242 18.9621i −0.655418 0.984466i
\(372\) −0.224247 0.0187818i −0.0116267 0.000973789i
\(373\) −20.2756 + 7.37970i −1.04983 + 0.382106i −0.808598 0.588362i \(-0.799773\pi\)
−0.241230 + 0.970468i \(0.577551\pi\)
\(374\) −6.49917 + 2.36551i −0.336064 + 0.122317i
\(375\) 19.4183 5.28034i 1.00276 0.272676i
\(376\) 4.51310 + 25.5951i 0.232745 + 1.31996i
\(377\) −7.11562 −0.366473
\(378\) −16.6814 + 9.35780i −0.857999 + 0.481313i
\(379\) −15.1400 −0.777690 −0.388845 0.921303i \(-0.627126\pi\)
−0.388845 + 0.921303i \(0.627126\pi\)
\(380\) 0.140263 + 0.795472i 0.00719535 + 0.0408069i
\(381\) −9.78541 + 37.0687i −0.501322 + 1.89909i
\(382\) 25.9866 9.45834i 1.32959 0.483931i
\(383\) −15.4247 + 5.61413i −0.788165 + 0.286869i −0.704573 0.709631i \(-0.748861\pi\)
−0.0835919 + 0.996500i \(0.526639\pi\)
\(384\) −7.92197 16.8256i −0.404266 0.858628i
\(385\) 2.07949 4.19906i 0.105981 0.214004i
\(386\) 2.62088 + 4.53950i 0.133399 + 0.231054i
\(387\) 8.99206 1.65437i 0.457092 0.0840962i
\(388\) 0.0893429 + 0.154746i 0.00453570 + 0.00785606i
\(389\) −16.6939 6.07609i −0.846415 0.308070i −0.117837 0.993033i \(-0.537596\pi\)
−0.728578 + 0.684963i \(0.759818\pi\)
\(390\) 0.823981 + 9.03241i 0.0417239 + 0.457374i
\(391\) −6.28869 + 2.28890i −0.318033 + 0.115755i
\(392\) 7.75584 18.5483i 0.391729 0.936833i
\(393\) −29.4771 + 20.8034i −1.48693 + 1.04939i
\(394\) 19.0722 16.0035i 0.960845 0.806245i
\(395\) −1.93808 3.35685i −0.0975153 0.168901i
\(396\) −0.00169210 0.228248i −8.50310e−5 0.0114699i
\(397\) 17.9394 31.0719i 0.900351 1.55945i 0.0733119 0.997309i \(-0.476643\pi\)
0.827039 0.562144i \(-0.190024\pi\)
\(398\) −1.73835 + 1.45865i −0.0871358 + 0.0731156i
\(399\) 7.41490 37.6773i 0.371209 1.88622i
\(400\) 1.85085 10.4967i 0.0925425 0.524835i
\(401\) 6.89398 39.0977i 0.344269 1.95245i 0.0423895 0.999101i \(-0.486503\pi\)
0.301880 0.953346i \(-0.402386\pi\)
\(402\) −26.3491 26.1545i −1.31417 1.30447i
\(403\) 3.88611 3.26083i 0.193581 0.162434i
\(404\) −0.139233 0.241159i −0.00692711 0.0119981i
\(405\) 12.5986 4.79823i 0.626031 0.238426i
\(406\) 8.39612 + 6.17793i 0.416693 + 0.306606i
\(407\) −9.00694 3.27826i −0.446458 0.162497i
\(408\) 20.1831 5.48830i 0.999212 0.271712i
\(409\) 27.5620 10.0318i 1.36285 0.496039i 0.445919 0.895073i \(-0.352877\pi\)
0.916936 + 0.399035i \(0.130655\pi\)
\(410\) 8.26371 + 6.93408i 0.408116 + 0.342450i
\(411\) −7.15883 0.599587i −0.353119 0.0295754i
\(412\) 0.285660 0.239697i 0.0140734 0.0118090i
\(413\) −17.4762 + 7.65481i −0.859947 + 0.376669i
\(414\) 0.0492487 + 6.64319i 0.00242044 + 0.326495i
\(415\) 20.8840 1.02516
\(416\) −0.859184 0.312718i −0.0421250 0.0153322i
\(417\) 1.45673 + 15.9686i 0.0713364 + 0.781984i
\(418\) −10.5591 8.86013i −0.516462 0.433363i
\(419\) 1.85671 0.675787i 0.0907062 0.0330143i −0.296268 0.955105i \(-0.595742\pi\)
0.386975 + 0.922090i \(0.373520\pi\)
\(420\) −0.228392 + 0.378110i −0.0111444 + 0.0184499i
\(421\) 1.75257 + 9.93930i 0.0854148 + 0.484412i 0.997266 + 0.0738913i \(0.0235418\pi\)
−0.911851 + 0.410520i \(0.865347\pi\)
\(422\) 22.5228 1.09639
\(423\) −9.09561 + 25.5784i −0.442244 + 1.24366i
\(424\) 24.7289 1.20094
\(425\) 10.8897 + 3.96353i 0.528228 + 0.192259i
\(426\) −6.15792 13.0789i −0.298352 0.633675i
\(427\) −12.1890 + 11.6293i −0.589865 + 0.562783i
\(428\) −0.673226 0.564904i −0.0325416 0.0273057i
\(429\) 3.65194 + 3.62497i 0.176318 + 0.175015i
\(430\) −4.86549 + 4.08263i −0.234635 + 0.196882i
\(431\) −4.32476 + 7.49071i −0.208317 + 0.360815i −0.951184 0.308623i \(-0.900132\pi\)
0.742868 + 0.669438i \(0.233465\pi\)
\(432\) 1.52864 20.0361i 0.0735465 0.963987i
\(433\) −1.05611 −0.0507535 −0.0253768 0.999678i \(-0.508079\pi\)
−0.0253768 + 0.999678i \(0.508079\pi\)
\(434\) −7.41656 + 0.473639i −0.356006 + 0.0227354i
\(435\) −5.21457 5.17605i −0.250019 0.248173i
\(436\) 0.000545232 0.00309216i 2.61119e−5 0.000148088i
\(437\) −10.2171 8.57319i −0.488752 0.410111i
\(438\) −1.24533 + 1.79263i −0.0595043 + 0.0856550i
\(439\) 13.2198 + 4.81162i 0.630948 + 0.229646i 0.637644 0.770331i \(-0.279909\pi\)
−0.00669596 + 0.999978i \(0.502131\pi\)
\(440\) 2.54330 + 4.40513i 0.121247 + 0.210006i
\(441\) 16.6083 12.8516i 0.790872 0.611981i
\(442\) −7.34921 + 12.7292i −0.349566 + 0.605467i
\(443\) −13.0670 + 10.9645i −0.620832 + 0.520940i −0.898065 0.439863i \(-0.855027\pi\)
0.277233 + 0.960803i \(0.410583\pi\)
\(444\) 0.820345 + 0.378837i 0.0389318 + 0.0179788i
\(445\) 3.84322 21.7960i 0.182186 1.03323i
\(446\) −2.56148 2.14934i −0.121290 0.101774i
\(447\) −0.715979 7.84850i −0.0338646 0.371221i
\(448\) 12.0825 + 18.1484i 0.570843 + 0.857430i
\(449\) −4.77255 + 8.26630i −0.225231 + 0.390111i −0.956389 0.292097i \(-0.905647\pi\)
0.731158 + 0.682208i \(0.238980\pi\)
\(450\) 7.32901 8.86705i 0.345493 0.417997i
\(451\) 6.12003 0.288181
\(452\) 0.00152369 + 0.00864128i 7.16684e−5 + 0.000406452i
\(453\) 9.68431 + 20.5687i 0.455009 + 0.966401i
\(454\) −4.12722 + 23.4066i −0.193700 + 1.09853i
\(455\) −2.35071 9.67672i −0.110203 0.453651i
\(456\) 29.5847 + 29.3662i 1.38543 + 1.37520i
\(457\) 0.305035 + 1.72994i 0.0142689 + 0.0809232i 0.991111 0.133040i \(-0.0424739\pi\)
−0.976842 + 0.213963i \(0.931363\pi\)
\(458\) 3.16672 5.48492i 0.147971 0.256294i
\(459\) 21.1647 + 5.41955i 0.987883 + 0.252963i
\(460\) 0.0767143 + 0.132873i 0.00357682 + 0.00619524i
\(461\) 29.5905 + 10.7700i 1.37816 + 0.501611i 0.921621 0.388090i \(-0.126865\pi\)
0.456543 + 0.889701i \(0.349087\pi\)
\(462\) −1.16186 7.44801i −0.0540546 0.346513i
\(463\) −26.1835 21.9706i −1.21685 1.02106i −0.998983 0.0450813i \(-0.985645\pi\)
−0.217868 0.975978i \(-0.569910\pi\)
\(464\) −10.2909 + 3.74558i −0.477743 + 0.173884i
\(465\) 5.21987 + 0.437189i 0.242066 + 0.0202742i
\(466\) 4.83983 + 27.4480i 0.224201 + 1.27151i
\(467\) 11.5411 19.9898i 0.534059 0.925017i −0.465150 0.885232i \(-0.653999\pi\)
0.999208 0.0397847i \(-0.0126672\pi\)
\(468\) −0.314552 0.369275i −0.0145402 0.0170697i
\(469\) 32.8317 + 24.1578i 1.51603 + 1.11550i
\(470\) −3.27480 18.5723i −0.151055 0.856676i
\(471\) −0.536825 5.88463i −0.0247356 0.271150i
\(472\) 3.59647 20.3966i 0.165541 0.938830i
\(473\) −0.625712 + 3.54859i −0.0287703 + 0.163164i
\(474\) −5.66115 2.61434i −0.260025 0.120080i
\(475\) 4.01052 + 22.7448i 0.184015 + 1.04360i
\(476\) −0.655718 + 0.287214i −0.0300548 + 0.0131644i
\(477\) 22.4648 + 12.7489i 1.02859 + 0.583734i
\(478\) −11.4382 + 19.8115i −0.523170 + 0.906157i
\(479\) 0.733041 + 4.15728i 0.0334935 + 0.189951i 0.996964 0.0778632i \(-0.0248097\pi\)
−0.963471 + 0.267814i \(0.913699\pi\)
\(480\) −0.402162 0.854159i −0.0183561 0.0389869i
\(481\) −19.1415 + 6.96693i −0.872777 + 0.317665i
\(482\) −19.1209 16.0443i −0.870933 0.730799i
\(483\) −1.12423 7.20680i −0.0511544 0.327921i
\(484\) −0.580646 0.211338i −0.0263930 0.00960627i
\(485\) −2.07967 3.60209i −0.0944328 0.163562i
\(486\) 12.1083 17.9931i 0.549242 0.816185i
\(487\) −6.00383 + 10.3989i −0.272060 + 0.471221i −0.969389 0.245530i \(-0.921038\pi\)
0.697330 + 0.716751i \(0.254371\pi\)
\(488\) −3.17566 18.0100i −0.143755 0.815276i
\(489\) −3.42884 + 12.9890i −0.155057 + 0.587382i
\(490\) −5.62779 + 13.4590i −0.254238 + 0.608018i
\(491\) 2.09395 11.8754i 0.0944985 0.535927i −0.900401 0.435060i \(-0.856727\pi\)
0.994900 0.100867i \(-0.0321618\pi\)
\(492\) −0.574933 0.0481534i −0.0259200 0.00217092i
\(493\) −2.06760 11.7260i −0.0931201 0.528111i
\(494\) −29.2935 −1.31798
\(495\) 0.0393875 + 5.31301i 0.00177034 + 0.238802i
\(496\) 3.90378 6.76155i 0.175285 0.303603i
\(497\) 8.79577 + 13.2116i 0.394544 + 0.592623i
\(498\) 27.4491 19.3721i 1.23002 0.868083i
\(499\) −24.6105 20.6507i −1.10172 0.924451i −0.104178 0.994559i \(-0.533221\pi\)
−0.997539 + 0.0701078i \(0.977666\pi\)
\(500\) 0.129829 0.736296i 0.00580612 0.0329282i
\(501\) −1.30717 + 0.922529i −0.0584000 + 0.0412156i
\(502\) −30.5172 + 25.6070i −1.36205 + 1.14290i
\(503\) −1.09621 + 1.89869i −0.0488776 + 0.0846585i −0.889429 0.457073i \(-0.848898\pi\)
0.840552 + 0.541732i \(0.182231\pi\)
\(504\) 1.62149 + 22.7387i 0.0722267 + 1.01286i
\(505\) 3.24098 + 5.61354i 0.144222 + 0.249799i
\(506\) −2.46032 0.895482i −0.109374 0.0398090i
\(507\) −11.5409 0.966604i −0.512548 0.0429284i
\(508\) 1.09116 + 0.915592i 0.0484124 + 0.0406228i
\(509\) −1.10374 + 6.25962i −0.0489224 + 0.277453i −0.999449 0.0331902i \(-0.989433\pi\)
0.950527 + 0.310643i \(0.100544\pi\)
\(510\) −14.6453 + 3.98242i −0.648503 + 0.176345i
\(511\) 1.06354 2.14758i 0.0470483 0.0950033i
\(512\) −23.6208 −1.04390
\(513\) 11.7363 + 41.9299i 0.518172 + 1.85125i
\(514\) −4.76839 + 8.25909i −0.210325 + 0.364293i
\(515\) −6.64940 + 5.57951i −0.293008 + 0.245863i
\(516\) 0.0867022 0.328442i 0.00381685 0.0144588i
\(517\) −8.19596 6.87723i −0.360458 0.302460i
\(518\) 28.6350 + 8.39837i 1.25815 + 0.369003i
\(519\) 27.5761 + 2.30963i 1.21045 + 0.101381i
\(520\) 10.1581 + 3.69724i 0.445462 + 0.162135i
\(521\) −3.47193 −0.152108 −0.0760541 0.997104i \(-0.524232\pi\)
−0.0760541 + 0.997104i \(0.524232\pi\)
\(522\) −11.6551 1.96614i −0.510131 0.0860556i
\(523\) −20.1799 −0.882406 −0.441203 0.897407i \(-0.645448\pi\)
−0.441203 + 0.897407i \(0.645448\pi\)
\(524\) 0.232767 + 1.32009i 0.0101685 + 0.0576683i
\(525\) −6.53038 + 10.8112i −0.285009 + 0.471840i
\(526\) 20.8195 7.57769i 0.907775 0.330403i
\(527\) 6.50278 + 5.45648i 0.283265 + 0.237688i
\(528\) 7.18974 + 3.32024i 0.312893 + 0.144495i
\(529\) 19.2323 + 6.99998i 0.836187 + 0.304347i
\(530\) −17.9438 −0.779427
\(531\) 13.7826 16.6750i 0.598116 0.723634i
\(532\) −1.14913 0.845540i −0.0498212 0.0366588i
\(533\) 9.96336 8.36025i 0.431561 0.362123i
\(534\) −15.1667 32.2127i −0.656326 1.39398i
\(535\) 15.6709 + 13.1495i 0.677513 + 0.568501i
\(536\) −41.5802 + 15.1339i −1.79599 + 0.653687i
\(537\) 1.72725 6.54309i 0.0745362 0.282355i
\(538\) 15.8954 + 5.78545i 0.685299 + 0.249429i
\(539\) 2.46229 + 7.90154i 0.106058 + 0.340343i
\(540\) 0.0381035 0.499429i 0.00163971 0.0214920i
\(541\) −6.85818 11.8787i −0.294856 0.510706i 0.680095 0.733124i \(-0.261938\pi\)
−0.974951 + 0.222418i \(0.928605\pi\)
\(542\) −29.0131 + 24.3449i −1.24622 + 1.04570i
\(543\) −3.08036 + 11.6689i −0.132191 + 0.500760i
\(544\) 0.265678 1.50673i 0.0113908 0.0646006i
\(545\) −0.0126916 + 0.0719774i −0.000543647 + 0.00308317i
\(546\) −12.0658 10.5381i −0.516370 0.450991i
\(547\) 33.7869 28.3506i 1.44463 1.21218i 0.508238 0.861217i \(-0.330297\pi\)
0.936387 0.350968i \(-0.114147\pi\)
\(548\) −0.133453 + 0.231148i −0.00570084 + 0.00987414i
\(549\) 6.40015 17.9983i 0.273152 0.768149i
\(550\) 2.26689 + 3.92637i 0.0966606 + 0.167421i
\(551\) 18.1782 15.2533i 0.774418 0.649814i
\(552\) 7.18843 + 3.31964i 0.305960 + 0.141293i
\(553\) 6.56959 + 1.92680i 0.279367 + 0.0819359i
\(554\) 7.05920 2.56934i 0.299917 0.109161i
\(555\) −19.0954 8.81833i −0.810556 0.374317i
\(556\) 0.559822 + 0.203759i 0.0237418 + 0.00864129i
\(557\) 2.53989 + 4.39922i 0.107619 + 0.186401i 0.914805 0.403896i \(-0.132344\pi\)
−0.807186 + 0.590297i \(0.799011\pi\)
\(558\) 7.26632 4.26734i 0.307608 0.180651i
\(559\) 3.82889 + 6.63183i 0.161945 + 0.280497i
\(560\) −8.49342 12.7575i −0.358912 0.539102i
\(561\) −4.91250 + 7.07142i −0.207406 + 0.298556i
\(562\) 0.162927 0.0593006i 0.00687266 0.00250144i
\(563\) 14.8345 5.39933i 0.625201 0.227554i −0.00994033 0.999951i \(-0.503164\pi\)
0.635141 + 0.772396i \(0.280942\pi\)
\(564\) 0.715841 + 0.710554i 0.0301424 + 0.0299197i
\(565\) −0.0354675 0.201146i −0.00149213 0.00846228i
\(566\) 36.4535 1.53225
\(567\) −10.2499 + 21.4928i −0.430455 + 0.902612i
\(568\) −17.2295 −0.722934
\(569\) −5.08899 28.8611i −0.213342 1.20992i −0.883761 0.467938i \(-0.844997\pi\)
0.670420 0.741982i \(-0.266114\pi\)
\(570\) −21.4673 21.3087i −0.899165 0.892524i
\(571\) −26.6981 + 9.71730i −1.11728 + 0.406656i −0.833658 0.552280i \(-0.813758\pi\)
−0.283620 + 0.958937i \(0.591536\pi\)
\(572\) 0.179647 0.0653862i 0.00751142 0.00273393i
\(573\) 19.6424 28.2747i 0.820572 1.18119i
\(574\) −19.0149 + 1.21433i −0.793666 + 0.0506854i
\(575\) 2.19348 + 3.79921i 0.0914743 + 0.158438i
\(576\) −21.5007 12.2018i −0.895862 0.508409i
\(577\) 3.35621 + 5.81313i 0.139721 + 0.242004i 0.927391 0.374094i \(-0.122046\pi\)
−0.787670 + 0.616097i \(0.788713\pi\)
\(578\) −0.886852 0.322788i −0.0368882 0.0134262i
\(579\) 5.92444 + 2.73592i 0.246211 + 0.113701i
\(580\) −0.256516 + 0.0933641i −0.0106512 + 0.00387673i
\(581\) −26.6883 + 25.4630i −1.10722 + 1.05638i
\(582\) −6.07473 2.80533i −0.251806 0.116285i
\(583\) −7.79829 + 6.54354i −0.322972 + 0.271006i
\(584\) 1.30075 + 2.25297i 0.0538256 + 0.0932287i
\(585\) 7.32195 + 8.59573i 0.302725 + 0.355390i
\(586\) −11.3219 + 19.6101i −0.467704 + 0.810088i
\(587\) −29.4619 + 24.7214i −1.21602 + 1.02036i −0.216998 + 0.976172i \(0.569626\pi\)
−0.999023 + 0.0441907i \(0.985929\pi\)
\(588\) −0.169144 0.761667i −0.00697538 0.0314106i
\(589\) −2.93775 + 16.6608i −0.121048 + 0.686497i
\(590\) −2.60967 + 14.8002i −0.107439 + 0.609314i
\(591\) 7.91113 29.9686i 0.325420 1.23274i
\(592\) −24.0159 + 20.1517i −0.987048 + 0.828232i
\(593\) −5.11127 8.85299i −0.209895 0.363549i 0.741786 0.670636i \(-0.233979\pi\)
−0.951681 + 0.307088i \(0.900646\pi\)
\(594\) 4.98013 + 6.94666i 0.204337 + 0.285025i
\(595\) 15.2634 6.68557i 0.625738 0.274082i
\(596\) −0.275151 0.100147i −0.0112706 0.00410217i
\(597\) −0.721066 + 2.73151i −0.0295113 + 0.111793i
\(598\) −5.22865 + 1.90307i −0.213815 + 0.0778224i
\(599\) −13.7117 11.5055i −0.560247 0.470103i 0.318146 0.948042i \(-0.396940\pi\)
−0.878393 + 0.477939i \(0.841384\pi\)
\(600\) −5.84051 12.4048i −0.238438 0.506422i
\(601\) −24.1774 + 20.2873i −0.986217 + 0.827534i −0.985016 0.172465i \(-0.944827\pi\)
−0.00120136 + 0.999999i \(0.500382\pi\)
\(602\) 1.23997 11.1496i 0.0505375 0.454424i
\(603\) −45.5755 7.68827i −1.85598 0.313091i
\(604\) 0.844664 0.0343689
\(605\) 13.5159 + 4.91939i 0.549499 + 0.200001i
\(606\) 9.46694 + 4.37186i 0.384568 + 0.177595i
\(607\) 28.8780 + 24.2315i 1.17212 + 0.983527i 0.999999 0.00154846i \(-0.000492889\pi\)
0.172123 + 0.985075i \(0.444937\pi\)
\(608\) 2.86531 1.04289i 0.116203 0.0422946i
\(609\) 12.9748 + 0.256728i 0.525765 + 0.0104031i
\(610\) 2.30432 + 13.0684i 0.0932992 + 0.529126i
\(611\) −22.7376 −0.919864
\(612\) 0.517134 0.625658i 0.0209039 0.0252907i
\(613\) −43.5292 −1.75813 −0.879063 0.476705i \(-0.841831\pi\)
−0.879063 + 0.476705i \(0.841831\pi\)
\(614\) 4.30946 + 1.56852i 0.173916 + 0.0633001i
\(615\) 13.3829 + 1.12088i 0.539651 + 0.0451984i
\(616\) −8.62115 2.52850i −0.347356 0.101876i
\(617\) 32.1635 + 26.9884i 1.29486 + 1.08651i 0.991010 + 0.133791i \(0.0427152\pi\)
0.303846 + 0.952721i \(0.401729\pi\)
\(618\) −3.56412 + 13.5015i −0.143370 + 0.543109i
\(619\) −7.64938 + 6.41859i −0.307455 + 0.257985i −0.783439 0.621469i \(-0.786536\pi\)
0.475984 + 0.879454i \(0.342092\pi\)
\(620\) 0.0973075 0.168542i 0.00390796 0.00676879i
\(621\) 4.81885 + 6.72169i 0.193374 + 0.269732i
\(622\) −4.28397 −0.171772
\(623\) 21.6636 + 32.5396i 0.867933 + 1.30367i
\(624\) 16.2405 4.41620i 0.650138 0.176789i
\(625\) −0.629033 + 3.56742i −0.0251613 + 0.142697i
\(626\) 8.38120 + 7.03267i 0.334980 + 0.281082i
\(627\) −17.1002 1.43223i −0.682917 0.0571976i
\(628\) −0.206302 0.0750878i −0.00823235 0.00299633i
\(629\) −17.0429 29.5192i −0.679546 1.17701i
\(630\) −1.17658 16.4997i −0.0468762 0.657362i
\(631\) 7.43447 12.8769i 0.295962 0.512621i −0.679246 0.733910i \(-0.737693\pi\)
0.975208 + 0.221290i \(0.0710266\pi\)
\(632\) −5.69323 + 4.77719i −0.226465 + 0.190026i
\(633\) 22.9089 16.1678i 0.910545 0.642614i
\(634\) −6.61445 + 37.5124i −0.262693 + 1.48981i
\(635\) −25.3993 21.3126i −1.00794 0.845763i
\(636\) 0.784080 0.553361i 0.0310908 0.0219422i
\(637\) 14.8025 + 9.50004i 0.586495 + 0.376405i
\(638\) 2.32915 4.03421i 0.0922119 0.159716i
\(639\) −15.6520 8.88266i −0.619185 0.351392i
\(640\) 16.0835 0.635758
\(641\) 5.34482 + 30.3120i 0.211108 + 1.19725i 0.887535 + 0.460741i \(0.152416\pi\)
−0.676427 + 0.736510i \(0.736473\pi\)
\(642\) 32.7947 + 2.74672i 1.29430 + 0.108404i
\(643\) −3.77799 + 21.4260i −0.148989 + 0.844960i 0.815088 + 0.579338i \(0.196689\pi\)
−0.964077 + 0.265623i \(0.914422\pi\)
\(644\) −0.260042 0.0762679i −0.0102471 0.00300538i
\(645\) −2.01820 + 7.64525i −0.0794664 + 0.301032i
\(646\) −8.51188 48.2733i −0.334895 1.89929i
\(647\) 7.94373 13.7589i 0.312300 0.540920i −0.666560 0.745452i \(-0.732234\pi\)
0.978860 + 0.204532i \(0.0655671\pi\)
\(648\) −13.2548 22.1916i −0.520699 0.871768i
\(649\) 4.26302 + 7.38378i 0.167338 + 0.289839i
\(650\) 9.05409 + 3.29542i 0.355131 + 0.129257i
\(651\) −7.20367 + 5.80567i −0.282334 + 0.227542i
\(652\) 0.382345 + 0.320826i 0.0149738 + 0.0125645i
\(653\) 30.4461 11.0815i 1.19145 0.433652i 0.331216 0.943555i \(-0.392541\pi\)
0.860232 + 0.509903i \(0.170319\pi\)
\(654\) 0.0500852 + 0.106377i 0.00195849 + 0.00415966i
\(655\) −5.41820 30.7281i −0.211707 1.20065i
\(656\) 10.0087 17.3355i 0.390773 0.676839i
\(657\) 0.0201445 + 2.71730i 0.000785911 + 0.106012i
\(658\) 26.8294 + 19.7413i 1.04592 + 0.769594i
\(659\) 0.0439021 + 0.248981i 0.00171018 + 0.00969892i 0.985651 0.168797i \(-0.0539881\pi\)
−0.983941 + 0.178496i \(0.942877\pi\)
\(660\) 0.179215 + 0.0827619i 0.00697593 + 0.00322150i
\(661\) −2.33884 + 13.2642i −0.0909704 + 0.515919i 0.904938 + 0.425544i \(0.139917\pi\)
−0.995908 + 0.0903741i \(0.971194\pi\)
\(662\) 2.80464 15.9059i 0.109005 0.618201i
\(663\) 1.66239 + 18.2229i 0.0645617 + 0.707720i
\(664\) −6.95325 39.4338i −0.269838 1.53033i
\(665\) 26.7488 + 19.6819i 1.03727 + 0.763233i
\(666\) −33.2782 + 6.12255i −1.28950 + 0.237244i
\(667\) 2.25372 3.90356i 0.0872644 0.151146i
\(668\) 0.0103221 + 0.0585395i 0.000399374 + 0.00226496i
\(669\) −4.14827 0.347437i −0.160381 0.0134327i
\(670\) 30.1714 10.9815i 1.16562 0.424252i
\(671\) 5.76711 + 4.83918i 0.222637 + 0.186815i
\(672\) 1.55538 + 0.601216i 0.0599999 + 0.0231924i
\(673\) 3.17733 + 1.15645i 0.122477 + 0.0445780i 0.402532 0.915406i \(-0.368130\pi\)
−0.280055 + 0.959984i \(0.590353\pi\)
\(674\) 11.0810 + 19.1929i 0.426826 + 0.739284i
\(675\) 1.08949 14.2801i 0.0419343 0.549641i
\(676\) −0.215142 + 0.372637i −0.00827470 + 0.0143322i
\(677\) −4.50614 25.5556i −0.173185 0.982180i −0.940218 0.340573i \(-0.889379\pi\)
0.767033 0.641607i \(-0.221732\pi\)
\(678\) −0.233201 0.231478i −0.00895602 0.00888987i
\(679\) 7.04954 + 2.06756i 0.270537 + 0.0793458i
\(680\) −3.14109 + 17.8140i −0.120455 + 0.683137i
\(681\) 12.6043 + 26.7705i 0.482998 + 1.02585i
\(682\) 0.576694 + 3.27060i 0.0220828 + 0.125238i
\(683\) 40.9371 1.56641 0.783207 0.621761i \(-0.213583\pi\)
0.783207 + 0.621761i \(0.213583\pi\)
\(684\) 1.59518 + 0.269095i 0.0609931 + 0.0102891i
\(685\) 3.10644 5.38051i 0.118691 0.205579i
\(686\) −9.21814 24.0614i −0.351950 0.918670i
\(687\) −0.716310 7.85213i −0.0273289 0.299578i
\(688\) 9.02842 + 7.57575i 0.344205 + 0.288823i
\(689\) −3.75677 + 21.3057i −0.143121 + 0.811682i
\(690\) −5.21607 2.40880i −0.198572 0.0917013i
\(691\) 13.9178 11.6785i 0.529460 0.444270i −0.338455 0.940983i \(-0.609904\pi\)
0.867915 + 0.496713i \(0.165460\pi\)
\(692\) 0.514066 0.890389i 0.0195419 0.0338475i
\(693\) −6.52826 6.74163i −0.247988 0.256093i
\(694\) 16.3367 + 28.2961i 0.620134 + 1.07410i
\(695\) −13.0312 4.74296i −0.494301 0.179911i
\(696\) −8.03742 + 11.5697i −0.304658 + 0.438547i
\(697\) 16.6721 + 13.9895i 0.631500 + 0.529892i
\(698\) 4.14310 23.4967i 0.156819 0.889364i
\(699\) 24.6261 + 24.4442i 0.931445 + 0.924566i
\(700\) 0.260056 + 0.390615i 0.00982919 + 0.0147639i
\(701\) 34.1406 1.28947 0.644736 0.764405i \(-0.276967\pi\)
0.644736 + 0.764405i \(0.276967\pi\)
\(702\) 17.5971 + 4.50601i 0.664159 + 0.170068i
\(703\) 33.9660 58.8309i 1.28105 2.21885i
\(704\) 7.46362 6.26272i 0.281296 0.236035i
\(705\) −16.6629 16.5398i −0.627561 0.622925i
\(706\) −7.01790 5.88872i −0.264122 0.221625i
\(707\) −10.9861 3.22212i −0.413175 0.121180i
\(708\) −0.342384 0.727196i −0.0128676 0.0273297i
\(709\) −4.62717 1.68415i −0.173777 0.0632496i 0.253666 0.967292i \(-0.418363\pi\)
−0.427443 + 0.904042i \(0.640586\pi\)
\(710\) 12.5021 0.469195
\(711\) −7.63486 + 1.40467i −0.286329 + 0.0526792i
\(712\) −42.4355 −1.59034
\(713\) 0.558018 + 3.16468i 0.0208979 + 0.118518i
\(714\) 13.8600 22.9456i 0.518698 0.858718i
\(715\) −4.18171 + 1.52202i −0.156387 + 0.0569202i
\(716\) −0.192603 0.161613i −0.00719792 0.00603977i
\(717\) 2.58731 + 28.3618i 0.0966248 + 1.05919i
\(718\) −39.2778 14.2960i −1.46583 0.533520i
\(719\) −32.3183 −1.20527 −0.602635 0.798017i \(-0.705883\pi\)
−0.602635 + 0.798017i \(0.705883\pi\)
\(720\) 15.1140 + 8.57731i 0.563266 + 0.319658i
\(721\) 1.69460 15.2376i 0.0631103 0.567476i
\(722\) 54.5860 45.8031i 2.03148 1.70461i
\(723\) −30.9659 2.59354i −1.15163 0.0964549i
\(724\) 0.343487 + 0.288220i 0.0127656 + 0.0107116i
\(725\) −7.33451 + 2.66954i −0.272397 + 0.0991444i
\(726\) 22.3280 6.07155i 0.828669 0.225337i
\(727\) −7.03337 2.55994i −0.260853 0.0949428i 0.208283 0.978069i \(-0.433212\pi\)
−0.469136 + 0.883126i \(0.655435\pi\)
\(728\) −17.4892 + 7.66052i −0.648194 + 0.283918i
\(729\) −0.600426 26.9933i −0.0222380 0.999753i
\(730\) −0.943854 1.63480i −0.0349336 0.0605068i
\(731\) −9.81615 + 8.23673i −0.363063 + 0.304646i
\(732\) −0.503704 0.499984i −0.0186174 0.0184799i
\(733\) −0.160809 + 0.911991i −0.00593960 + 0.0336852i −0.987634 0.156780i \(-0.949889\pi\)
0.981694 + 0.190465i \(0.0609997\pi\)
\(734\) 2.65448 15.0543i 0.0979785 0.555663i
\(735\) 3.93722 + 17.7296i 0.145227 + 0.653966i
\(736\) 0.443682 0.372293i 0.0163543 0.0137229i
\(737\) 9.10776 15.7751i 0.335489 0.581083i
\(738\) 18.6297 10.9408i 0.685768 0.402736i
\(739\) 6.25043 + 10.8261i 0.229926 + 0.398243i 0.957786 0.287482i \(-0.0928183\pi\)
−0.727860 + 0.685726i \(0.759485\pi\)
\(740\) −0.598632 + 0.502312i −0.0220061 + 0.0184653i
\(741\) −29.7955 + 21.0281i −1.09457 + 0.772486i
\(742\) 22.9309 21.8781i 0.841818 0.803169i
\(743\) 17.4978 6.36868i 0.641932 0.233644i −0.000484263 1.00000i \(-0.500154\pi\)
0.642417 + 0.766356i \(0.277932\pi\)
\(744\) −0.912421 10.0019i −0.0334510 0.366687i
\(745\) 6.40478 + 2.33115i 0.234653 + 0.0854067i
\(746\) −15.0096 25.9975i −0.549542 0.951834i
\(747\) 14.0134 39.4082i 0.512725 1.44187i
\(748\) 0.159952 + 0.277044i 0.00584841 + 0.0101297i
\(749\) −36.0589 + 2.30281i −1.31756 + 0.0841428i
\(750\) 11.9261 + 25.3301i 0.435480 + 0.924924i
\(751\) 0.207541 0.0755387i 0.00757328 0.00275645i −0.338231 0.941063i \(-0.609828\pi\)
0.345804 + 0.938307i \(0.387606\pi\)
\(752\) −32.8840 + 11.9688i −1.19916 + 0.436458i
\(753\) −12.6585 + 47.9524i −0.461301 + 1.74748i
\(754\) −1.71908 9.74939i −0.0626052 0.355052i
\(755\) −19.6615 −0.715556
\(756\) 0.560240 + 0.684694i 0.0203757 + 0.0249021i
\(757\) −47.1721 −1.71450 −0.857250 0.514900i \(-0.827829\pi\)
−0.857250 + 0.514900i \(0.827829\pi\)
\(758\) −3.65771 20.7439i −0.132854 0.753453i
\(759\) −3.14530 + 0.855288i −0.114167 + 0.0310450i
\(760\) −33.8764 + 12.3300i −1.22882 + 0.447256i
\(761\) −12.6984 + 4.62185i −0.460318 + 0.167542i −0.561761 0.827299i \(-0.689876\pi\)
0.101443 + 0.994841i \(0.467654\pi\)
\(762\) −53.1534 4.45185i −1.92554 0.161274i
\(763\) −0.0715401 0.107456i −0.00258993 0.00389018i
\(764\) −0.639557 1.10775i −0.0231384 0.0400768i
\(765\) −12.0375 + 14.5637i −0.435217 + 0.526550i
\(766\) −11.4186 19.7776i −0.412572 0.714595i
\(767\) 17.0268 + 6.19724i 0.614801 +