Properties

Label 189.2.u.a.4.15
Level $189$
Weight $2$
Character 189.4
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(4,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([2, 12]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.u (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 4.15
Character \(\chi\) \(=\) 189.4
Dual form 189.2.u.a.142.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.101938 + 0.578121i) q^{2} +(-0.121715 + 1.72777i) q^{3} +(1.55555 - 0.566175i) q^{4} +(-3.06658 + 1.11614i) q^{5} +(-1.01127 + 0.105760i) q^{6} +(-1.48906 + 2.18694i) q^{7} +(1.07293 + 1.85836i) q^{8} +(-2.97037 - 0.420592i) q^{9} +O(q^{10})\) \(q+(0.101938 + 0.578121i) q^{2} +(-0.121715 + 1.72777i) q^{3} +(1.55555 - 0.566175i) q^{4} +(-3.06658 + 1.11614i) q^{5} +(-1.01127 + 0.105760i) q^{6} +(-1.48906 + 2.18694i) q^{7} +(1.07293 + 1.85836i) q^{8} +(-2.97037 - 0.420592i) q^{9} +(-0.957867 - 1.65908i) q^{10} +(-0.0905002 - 0.0329394i) q^{11} +(0.788885 + 2.75655i) q^{12} +(5.41990 - 1.97268i) q^{13} +(-1.41611 - 0.637921i) q^{14} +(-1.55519 - 5.43419i) q^{15} +(1.57121 - 1.31840i) q^{16} +(1.82060 + 3.15337i) q^{17} +(-0.0596416 - 1.76011i) q^{18} +(-2.60995 + 4.52056i) q^{19} +(-4.13830 + 3.47244i) q^{20} +(-3.59729 - 2.83893i) q^{21} +(0.00981750 - 0.0556778i) q^{22} +(0.920962 - 5.22304i) q^{23} +(-3.34141 + 1.62758i) q^{24} +(4.32791 - 3.63155i) q^{25} +(1.69294 + 2.93226i) q^{26} +(1.08822 - 5.08092i) q^{27} +(-1.07811 + 4.24497i) q^{28} +(2.72930 + 0.993386i) q^{29} +(2.98309 - 1.45304i) q^{30} +(-1.19084 + 0.433429i) q^{31} +(4.21000 + 3.53261i) q^{32} +(0.0679269 - 0.152354i) q^{33} +(-1.63744 + 1.37398i) q^{34} +(2.12537 - 8.36843i) q^{35} +(-4.85870 + 1.02750i) q^{36} +6.83261 q^{37} +(-2.87948 - 1.04805i) q^{38} +(2.74865 + 9.60444i) q^{39} +(-5.36442 - 4.50128i) q^{40} +(1.79913 - 0.654829i) q^{41} +(1.27454 - 2.36906i) q^{42} +(-0.580627 - 3.29290i) q^{43} -0.159427 q^{44} +(9.57832 - 2.02558i) q^{45} +3.11343 q^{46} +(5.57827 + 2.03032i) q^{47} +(2.08665 + 2.87516i) q^{48} +(-2.56543 - 6.51296i) q^{49} +(2.54065 + 2.13186i) q^{50} +(-5.66989 + 2.76176i) q^{51} +(7.31406 - 6.13722i) q^{52} +(1.47412 - 2.55324i) q^{53} +(3.04832 + 0.111185i) q^{54} +0.314291 q^{55} +(-5.66178 - 0.420779i) q^{56} +(-7.49281 - 5.05961i) q^{57} +(-0.296076 + 1.67913i) q^{58} +(-6.58528 - 5.52571i) q^{59} +(-5.49588 - 7.57267i) q^{60} +(0.557272 + 0.202830i) q^{61} +(-0.371966 - 0.644265i) q^{62} +(5.34286 - 5.86974i) q^{63} +(0.437956 - 0.758562i) q^{64} +(-14.4188 + 12.0988i) q^{65} +(0.0950034 + 0.0237392i) q^{66} +(0.948490 - 5.37916i) q^{67} +(4.61740 + 3.87446i) q^{68} +(8.91211 + 2.22693i) q^{69} +(5.05462 + 0.375655i) q^{70} +(-6.46106 + 11.1909i) q^{71} +(-2.40538 - 5.97129i) q^{72} -12.5093 q^{73} +(0.696504 + 3.95007i) q^{74} +(5.74771 + 7.91965i) q^{75} +(-1.50048 + 8.50966i) q^{76} +(0.206796 - 0.148870i) q^{77} +(-5.27233 + 2.56811i) q^{78} +(2.23377 + 12.6684i) q^{79} +(-3.34672 + 5.79668i) q^{80} +(8.64621 + 2.49863i) q^{81} +(0.561970 + 0.973361i) q^{82} +(-1.05332 - 0.383377i) q^{83} +(-7.20310 - 2.37941i) q^{84} +(-9.10264 - 7.63802i) q^{85} +(1.84451 - 0.671345i) q^{86} +(-2.04854 + 4.59470i) q^{87} +(-0.0358867 - 0.203524i) q^{88} +(8.03254 - 13.9128i) q^{89} +(2.14743 + 5.33094i) q^{90} +(-3.75639 + 14.7904i) q^{91} +(-1.52455 - 8.64614i) q^{92} +(-0.603923 - 2.11025i) q^{93} +(-0.605133 + 3.43188i) q^{94} +(2.95801 - 16.7757i) q^{95} +(-6.61596 + 6.84394i) q^{96} +(-0.629031 - 3.56741i) q^{97} +(3.50376 - 2.14705i) q^{98} +(0.254965 + 0.135906i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} - 15 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} - 15 q^{9} + 3 q^{10} - 15 q^{11} - 3 q^{12} - 12 q^{13} - 30 q^{14} + 9 q^{16} + 27 q^{17} - 3 q^{18} + 3 q^{19} - 18 q^{20} + 15 q^{21} - 12 q^{22} - 36 q^{23} - 72 q^{24} - 3 q^{25} + 30 q^{26} - 12 q^{27} - 12 q^{28} - 30 q^{29} - 3 q^{30} - 3 q^{31} - 75 q^{32} + 15 q^{33} - 18 q^{34} + 15 q^{35} - 60 q^{36} - 6 q^{37} + 69 q^{38} + 51 q^{39} + 51 q^{40} - 39 q^{42} - 12 q^{43} - 6 q^{44} - 21 q^{45} - 6 q^{46} - 21 q^{47} + 90 q^{48} - 42 q^{49} - 39 q^{50} + 33 q^{51} + 9 q^{52} + 9 q^{53} - 9 q^{54} - 24 q^{55} + 111 q^{56} - 18 q^{57} - 3 q^{58} + 27 q^{59} - 63 q^{60} - 21 q^{61} + 75 q^{62} + 63 q^{63} - 30 q^{64} - 90 q^{65} - 3 q^{66} - 3 q^{67} - 30 q^{68} - 6 q^{69} + 39 q^{70} - 18 q^{71} + 183 q^{72} - 42 q^{73} + 51 q^{74} - 45 q^{75} - 24 q^{76} + 15 q^{77} - 30 q^{78} + 15 q^{79} + 102 q^{80} - 87 q^{81} - 6 q^{82} - 42 q^{83} + 135 q^{84} - 63 q^{85} - 93 q^{86} + 75 q^{87} - 51 q^{88} + 75 q^{89} - 39 q^{90} - 21 q^{91} - 66 q^{92} + 81 q^{93} + 33 q^{94} + 15 q^{95} - 171 q^{96} - 12 q^{97} - 36 q^{98} + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.101938 + 0.578121i 0.0720812 + 0.408793i 0.999404 + 0.0345296i \(0.0109933\pi\)
−0.927322 + 0.374263i \(0.877896\pi\)
\(3\) −0.121715 + 1.72777i −0.0702724 + 0.997528i
\(4\) 1.55555 0.566175i 0.777777 0.283088i
\(5\) −3.06658 + 1.11614i −1.37142 + 0.499155i −0.919565 0.392939i \(-0.871459\pi\)
−0.451851 + 0.892093i \(0.649236\pi\)
\(6\) −1.01127 + 0.105760i −0.412848 + 0.0431762i
\(7\) −1.48906 + 2.18694i −0.562810 + 0.826586i
\(8\) 1.07293 + 1.85836i 0.379337 + 0.657031i
\(9\) −2.97037 0.420592i −0.990124 0.140197i
\(10\) −0.957867 1.65908i −0.302904 0.524646i
\(11\) −0.0905002 0.0329394i −0.0272868 0.00993159i 0.328341 0.944559i \(-0.393511\pi\)
−0.355628 + 0.934628i \(0.615733\pi\)
\(12\) 0.788885 + 2.75655i 0.227732 + 0.795747i
\(13\) 5.41990 1.97268i 1.50321 0.547123i 0.546320 0.837576i \(-0.316028\pi\)
0.956889 + 0.290453i \(0.0938060\pi\)
\(14\) −1.41611 0.637921i −0.378471 0.170491i
\(15\) −1.55519 5.43419i −0.401548 1.40310i
\(16\) 1.57121 1.31840i 0.392803 0.329601i
\(17\) 1.82060 + 3.15337i 0.441561 + 0.764805i 0.997806 0.0662131i \(-0.0210917\pi\)
−0.556245 + 0.831018i \(0.687758\pi\)
\(18\) −0.0596416 1.76011i −0.0140577 0.414861i
\(19\) −2.60995 + 4.52056i −0.598763 + 1.03709i 0.394241 + 0.919007i \(0.371007\pi\)
−0.993004 + 0.118081i \(0.962326\pi\)
\(20\) −4.13830 + 3.47244i −0.925351 + 0.776462i
\(21\) −3.59729 2.83893i −0.784993 0.619505i
\(22\) 0.00981750 0.0556778i 0.00209310 0.0118705i
\(23\) 0.920962 5.22304i 0.192034 1.08908i −0.724546 0.689227i \(-0.757950\pi\)
0.916580 0.399852i \(-0.130938\pi\)
\(24\) −3.34141 + 1.62758i −0.682063 + 0.332228i
\(25\) 4.32791 3.63155i 0.865582 0.726310i
\(26\) 1.69294 + 2.93226i 0.332013 + 0.575064i
\(27\) 1.08822 5.08092i 0.209429 0.977824i
\(28\) −1.07811 + 4.24497i −0.203744 + 0.802224i
\(29\) 2.72930 + 0.993386i 0.506819 + 0.184467i 0.582759 0.812645i \(-0.301973\pi\)
−0.0759394 + 0.997112i \(0.524196\pi\)
\(30\) 2.98309 1.45304i 0.544634 0.265287i
\(31\) −1.19084 + 0.433429i −0.213881 + 0.0778462i −0.446738 0.894665i \(-0.647415\pi\)
0.232858 + 0.972511i \(0.425192\pi\)
\(32\) 4.21000 + 3.53261i 0.744230 + 0.624483i
\(33\) 0.0679269 0.152354i 0.0118246 0.0265215i
\(34\) −1.63744 + 1.37398i −0.280819 + 0.235635i
\(35\) 2.12537 8.36843i 0.359253 1.41452i
\(36\) −4.85870 + 1.02750i −0.809783 + 0.171249i
\(37\) 6.83261 1.12327 0.561637 0.827384i \(-0.310172\pi\)
0.561637 + 0.827384i \(0.310172\pi\)
\(38\) −2.87948 1.04805i −0.467114 0.170015i
\(39\) 2.74865 + 9.60444i 0.440137 + 1.53794i
\(40\) −5.36442 4.50128i −0.848189 0.711715i
\(41\) 1.79913 0.654829i 0.280977 0.102267i −0.197688 0.980265i \(-0.563343\pi\)
0.478665 + 0.877998i \(0.341121\pi\)
\(42\) 1.27454 2.36906i 0.196666 0.365554i
\(43\) −0.580627 3.29290i −0.0885448 0.502163i −0.996535 0.0831717i \(-0.973495\pi\)
0.907990 0.418991i \(-0.137616\pi\)
\(44\) −0.159427 −0.0240346
\(45\) 9.57832 2.02558i 1.42785 0.301956i
\(46\) 3.11343 0.459050
\(47\) 5.57827 + 2.03032i 0.813674 + 0.296153i 0.715141 0.698981i \(-0.246363\pi\)
0.0985334 + 0.995134i \(0.468585\pi\)
\(48\) 2.08665 + 2.87516i 0.301183 + 0.414994i
\(49\) −2.56543 6.51296i −0.366490 0.930422i
\(50\) 2.54065 + 2.13186i 0.359303 + 0.301491i
\(51\) −5.66989 + 2.76176i −0.793944 + 0.386724i
\(52\) 7.31406 6.13722i 1.01428 0.851080i
\(53\) 1.47412 2.55324i 0.202485 0.350715i −0.746843 0.665000i \(-0.768431\pi\)
0.949329 + 0.314285i \(0.101765\pi\)
\(54\) 3.04832 + 0.111185i 0.414823 + 0.0151304i
\(55\) 0.314291 0.0423790
\(56\) −5.66178 0.420779i −0.756587 0.0562289i
\(57\) −7.49281 5.05961i −0.992447 0.670161i
\(58\) −0.296076 + 1.67913i −0.0388767 + 0.220481i
\(59\) −6.58528 5.52571i −0.857331 0.719386i 0.104060 0.994571i \(-0.466816\pi\)
−0.961391 + 0.275185i \(0.911261\pi\)
\(60\) −5.49588 7.57267i −0.709516 0.977627i
\(61\) 0.557272 + 0.202830i 0.0713513 + 0.0259698i 0.377449 0.926030i \(-0.376801\pi\)
−0.306098 + 0.952000i \(0.599023\pi\)
\(62\) −0.371966 0.644265i −0.0472398 0.0818217i
\(63\) 5.34286 5.86974i 0.673137 0.739518i
\(64\) 0.437956 0.758562i 0.0547445 0.0948202i
\(65\) −14.4188 + 12.0988i −1.78843 + 1.50067i
\(66\) 0.0950034 + 0.0237392i 0.0116941 + 0.00292209i
\(67\) 0.948490 5.37916i 0.115877 0.657168i −0.870436 0.492282i \(-0.836163\pi\)
0.986312 0.164887i \(-0.0527259\pi\)
\(68\) 4.61740 + 3.87446i 0.559942 + 0.469847i
\(69\) 8.91211 + 2.22693i 1.07289 + 0.268091i
\(70\) 5.05462 + 0.375655i 0.604142 + 0.0448994i
\(71\) −6.46106 + 11.1909i −0.766787 + 1.32811i 0.172509 + 0.985008i \(0.444813\pi\)
−0.939296 + 0.343107i \(0.888521\pi\)
\(72\) −2.40538 5.97129i −0.283477 0.703724i
\(73\) −12.5093 −1.46410 −0.732050 0.681250i \(-0.761436\pi\)
−0.732050 + 0.681250i \(0.761436\pi\)
\(74\) 0.696504 + 3.95007i 0.0809670 + 0.459187i
\(75\) 5.74771 + 7.91965i 0.663688 + 0.914482i
\(76\) −1.50048 + 8.50966i −0.172117 + 0.976125i
\(77\) 0.206796 0.148870i 0.0235666 0.0169653i
\(78\) −5.27233 + 2.56811i −0.596974 + 0.290782i
\(79\) 2.23377 + 12.6684i 0.251319 + 1.42530i 0.805347 + 0.592803i \(0.201979\pi\)
−0.554028 + 0.832498i \(0.686910\pi\)
\(80\) −3.34672 + 5.79668i −0.374174 + 0.648089i
\(81\) 8.64621 + 2.49863i 0.960689 + 0.277625i
\(82\) 0.561970 + 0.973361i 0.0620592 + 0.107490i
\(83\) −1.05332 0.383377i −0.115617 0.0420811i 0.283564 0.958953i \(-0.408483\pi\)
−0.399181 + 0.916872i \(0.630705\pi\)
\(84\) −7.20310 2.37941i −0.785923 0.259615i
\(85\) −9.10264 7.63802i −0.987319 0.828459i
\(86\) 1.84451 0.671345i 0.198898 0.0723930i
\(87\) −2.04854 + 4.59470i −0.219626 + 0.492603i
\(88\) −0.0358867 0.203524i −0.00382554 0.0216957i
\(89\) 8.03254 13.9128i 0.851448 1.47475i −0.0284540 0.999595i \(-0.509058\pi\)
0.879902 0.475156i \(-0.157608\pi\)
\(90\) 2.14743 + 5.33094i 0.226359 + 0.561930i
\(91\) −3.75639 + 14.7904i −0.393777 + 1.55046i
\(92\) −1.52455 8.64614i −0.158945 0.901422i
\(93\) −0.603923 2.11025i −0.0626239 0.218822i
\(94\) −0.605133 + 3.43188i −0.0624147 + 0.353971i
\(95\) 2.95801 16.7757i 0.303486 1.72115i
\(96\) −6.61596 + 6.84394i −0.675238 + 0.698506i
\(97\) −0.629031 3.56741i −0.0638684 0.362216i −0.999946 0.0104214i \(-0.996683\pi\)
0.936077 0.351794i \(-0.114428\pi\)
\(98\) 3.50376 2.14705i 0.353933 0.216884i
\(99\) 0.254965 + 0.135906i 0.0256250 + 0.0136590i
\(100\) 4.67621 8.09942i 0.467621 0.809942i
\(101\) −2.08003 11.7964i −0.206971 1.17379i −0.894308 0.447451i \(-0.852332\pi\)
0.687337 0.726338i \(-0.258779\pi\)
\(102\) −2.17461 2.99635i −0.215319 0.296683i
\(103\) −10.9845 + 3.99804i −1.08234 + 0.393938i −0.820777 0.571249i \(-0.806459\pi\)
−0.261560 + 0.965187i \(0.584237\pi\)
\(104\) 9.48112 + 7.95560i 0.929700 + 0.780111i
\(105\) 14.2000 + 4.69071i 1.38578 + 0.457766i
\(106\) 1.62635 + 0.591943i 0.157965 + 0.0574946i
\(107\) 6.42815 + 11.1339i 0.621433 + 1.07635i 0.989219 + 0.146443i \(0.0467826\pi\)
−0.367786 + 0.929910i \(0.619884\pi\)
\(108\) −1.18390 8.51977i −0.113921 0.819815i
\(109\) −5.34505 + 9.25790i −0.511963 + 0.886746i 0.487941 + 0.872877i \(0.337748\pi\)
−0.999904 + 0.0138693i \(0.995585\pi\)
\(110\) 0.0320383 + 0.181698i 0.00305473 + 0.0173242i
\(111\) −0.831633 + 11.8052i −0.0789351 + 1.12050i
\(112\) 0.543649 + 5.39932i 0.0513700 + 0.510188i
\(113\) 0.507156 2.87623i 0.0477093 0.270573i −0.951616 0.307288i \(-0.900578\pi\)
0.999326 + 0.0367155i \(0.0116895\pi\)
\(114\) 2.16126 4.84752i 0.202420 0.454012i
\(115\) 3.00546 + 17.0448i 0.280260 + 1.58943i
\(116\) 4.80801 0.446412
\(117\) −16.9288 + 3.58003i −1.56507 + 0.330974i
\(118\) 2.52323 4.37037i 0.232282 0.402325i
\(119\) −9.60722 0.714000i −0.880692 0.0654523i
\(120\) 8.43010 8.72060i 0.769560 0.796078i
\(121\) −8.41938 7.06470i −0.765399 0.642246i
\(122\) −0.0604531 + 0.342846i −0.00547316 + 0.0310399i
\(123\) 0.912412 + 3.18818i 0.0822694 + 0.287469i
\(124\) −1.60701 + 1.34844i −0.144314 + 0.121094i
\(125\) −1.06009 + 1.83613i −0.0948175 + 0.164229i
\(126\) 3.93806 + 2.49046i 0.350830 + 0.221868i
\(127\) 2.09216 + 3.62373i 0.185650 + 0.321554i 0.943795 0.330531i \(-0.107228\pi\)
−0.758146 + 0.652085i \(0.773894\pi\)
\(128\) 10.8118 + 3.93519i 0.955641 + 0.347825i
\(129\) 5.76004 0.602393i 0.507144 0.0530378i
\(130\) −8.46437 7.10245i −0.742374 0.622926i
\(131\) 2.46835 13.9987i 0.215661 1.22307i −0.664096 0.747648i \(-0.731183\pi\)
0.879756 0.475425i \(-0.157706\pi\)
\(132\) 0.0194047 0.275454i 0.00168897 0.0239752i
\(133\) −5.99984 12.4392i −0.520253 1.07861i
\(134\) 3.20649 0.276998
\(135\) 2.33391 + 16.7957i 0.200871 + 1.44554i
\(136\) −3.90674 + 6.76668i −0.335000 + 0.580238i
\(137\) −3.73856 + 3.13703i −0.319407 + 0.268014i −0.788367 0.615205i \(-0.789073\pi\)
0.468960 + 0.883219i \(0.344629\pi\)
\(138\) −0.378952 + 5.37928i −0.0322585 + 0.457915i
\(139\) −6.80377 5.70904i −0.577088 0.484235i 0.306901 0.951741i \(-0.400708\pi\)
−0.883989 + 0.467507i \(0.845152\pi\)
\(140\) −1.43188 14.2209i −0.121016 1.20188i
\(141\) −4.18689 + 9.39084i −0.352600 + 0.790851i
\(142\) −7.12831 2.59449i −0.598195 0.217725i
\(143\) −0.555481 −0.0464516
\(144\) −5.22159 + 3.25531i −0.435132 + 0.271276i
\(145\) −9.47839 −0.787137
\(146\) −1.27517 7.23187i −0.105534 0.598514i
\(147\) 11.5651 3.63974i 0.953876 0.300201i
\(148\) 10.6285 3.86845i 0.873656 0.317985i
\(149\) −16.1062 13.5147i −1.31947 1.10717i −0.986417 0.164258i \(-0.947477\pi\)
−0.333052 0.942909i \(-0.608078\pi\)
\(150\) −3.99260 + 4.13018i −0.325994 + 0.337228i
\(151\) 10.2784 + 3.74103i 0.836445 + 0.304441i 0.724501 0.689274i \(-0.242070\pi\)
0.111944 + 0.993715i \(0.464292\pi\)
\(152\) −11.2011 −0.908531
\(153\) −4.08158 10.1324i −0.329976 0.819157i
\(154\) 0.107145 + 0.104378i 0.00863401 + 0.00841099i
\(155\) 3.16803 2.65829i 0.254462 0.213519i
\(156\) 9.71347 + 13.3840i 0.777700 + 1.07158i
\(157\) 15.9298 + 13.3667i 1.27134 + 1.06678i 0.994377 + 0.105895i \(0.0337708\pi\)
0.276958 + 0.960882i \(0.410674\pi\)
\(158\) −7.09613 + 2.58278i −0.564538 + 0.205475i
\(159\) 4.23199 + 2.85770i 0.335619 + 0.226630i
\(160\) −16.8532 6.13406i −1.33236 0.484940i
\(161\) 10.0511 + 9.79148i 0.792139 + 0.771677i
\(162\) −0.563129 + 5.25325i −0.0442436 + 0.412735i
\(163\) −2.63629 4.56618i −0.206490 0.357651i 0.744117 0.668050i \(-0.232871\pi\)
−0.950606 + 0.310399i \(0.899537\pi\)
\(164\) 2.42789 2.03724i 0.189587 0.159082i
\(165\) −0.0382540 + 0.543022i −0.00297807 + 0.0422742i
\(166\) 0.114265 0.648026i 0.00886865 0.0502966i
\(167\) −2.10338 + 11.9289i −0.162764 + 0.923083i 0.788575 + 0.614938i \(0.210819\pi\)
−0.951340 + 0.308144i \(0.900292\pi\)
\(168\) 1.41613 9.73103i 0.109257 0.750766i
\(169\) 15.5252 13.0272i 1.19425 1.00209i
\(170\) 3.48779 6.04103i 0.267501 0.463326i
\(171\) 9.65382 12.3300i 0.738246 0.942900i
\(172\) −2.76756 4.79355i −0.211024 0.365504i
\(173\) 18.3911 15.4320i 1.39825 1.17327i 0.436385 0.899760i \(-0.356259\pi\)
0.961868 0.273514i \(-0.0881859\pi\)
\(174\) −2.86511 0.715927i −0.217204 0.0542743i
\(175\) 1.49748 + 14.8725i 0.113199 + 1.12425i
\(176\) −0.185622 + 0.0675610i −0.0139918 + 0.00509260i
\(177\) 10.3487 10.7053i 0.777854 0.804658i
\(178\) 8.86208 + 3.22553i 0.664241 + 0.241764i
\(179\) −6.39598 11.0782i −0.478058 0.828021i 0.521625 0.853175i \(-0.325326\pi\)
−0.999684 + 0.0251534i \(0.991993\pi\)
\(180\) 13.7528 8.57391i 1.02507 0.639061i
\(181\) 1.35421 + 2.34556i 0.100658 + 0.174344i 0.911956 0.410288i \(-0.134572\pi\)
−0.811298 + 0.584633i \(0.801239\pi\)
\(182\) −8.93357 0.663936i −0.662201 0.0492142i
\(183\) −0.418272 + 0.938149i −0.0309196 + 0.0693500i
\(184\) 10.6944 3.89245i 0.788404 0.286956i
\(185\) −20.9527 + 7.62618i −1.54048 + 0.560688i
\(186\) 1.15841 0.564255i 0.0849391 0.0413732i
\(187\) −0.0608946 0.345350i −0.00445305 0.0252545i
\(188\) 9.82681 0.716694
\(189\) 9.49125 + 9.94566i 0.690387 + 0.723440i
\(190\) 9.99993 0.725471
\(191\) 1.32139 + 7.49397i 0.0956123 + 0.542244i 0.994558 + 0.104184i \(0.0332232\pi\)
−0.898946 + 0.438060i \(0.855666\pi\)
\(192\) 1.25731 + 0.849015i 0.0907388 + 0.0612724i
\(193\) 12.7550 4.64244i 0.918124 0.334170i 0.160632 0.987014i \(-0.448647\pi\)
0.757492 + 0.652844i \(0.226424\pi\)
\(194\) 1.99827 0.727312i 0.143468 0.0522179i
\(195\) −19.1489 26.3849i −1.37128 1.88946i
\(196\) −7.67813 8.67877i −0.548438 0.619912i
\(197\) 0.798142 + 1.38242i 0.0568653 + 0.0984936i 0.893057 0.449944i \(-0.148556\pi\)
−0.836191 + 0.548438i \(0.815223\pi\)
\(198\) −0.0525792 + 0.161255i −0.00373664 + 0.0114599i
\(199\) −0.488401 0.845935i −0.0346218 0.0599668i 0.848195 0.529684i \(-0.177689\pi\)
−0.882817 + 0.469717i \(0.844356\pi\)
\(200\) 11.3923 + 4.14645i 0.805555 + 0.293198i
\(201\) 9.17849 + 2.29350i 0.647401 + 0.161771i
\(202\) 6.60773 2.40502i 0.464918 0.169216i
\(203\) −6.23656 + 4.48962i −0.437721 + 0.315110i
\(204\) −7.25618 + 7.50622i −0.508034 + 0.525541i
\(205\) −4.78629 + 4.01617i −0.334289 + 0.280502i
\(206\) −3.43109 5.94282i −0.239055 0.414056i
\(207\) −4.93237 + 15.1270i −0.342823 + 1.05140i
\(208\) 5.91502 10.2451i 0.410133 0.710370i
\(209\) 0.385105 0.323141i 0.0266383 0.0223522i
\(210\) −1.26427 + 8.68749i −0.0872429 + 0.599494i
\(211\) 0.797672 4.52382i 0.0549140 0.311433i −0.944962 0.327180i \(-0.893902\pi\)
0.999876 + 0.0157472i \(0.00501271\pi\)
\(212\) 0.847483 4.80631i 0.0582053 0.330099i
\(213\) −18.5489 12.5253i −1.27095 0.858221i
\(214\) −5.78146 + 4.85122i −0.395212 + 0.331622i
\(215\) 5.45589 + 9.44988i 0.372089 + 0.644476i
\(216\) 10.6098 3.42914i 0.721905 0.233323i
\(217\) 0.825338 3.24969i 0.0560276 0.220603i
\(218\) −5.89705 2.14635i −0.399398 0.145369i
\(219\) 1.52257 21.6131i 0.102886 1.46048i
\(220\) 0.488897 0.177944i 0.0329614 0.0119970i
\(221\) 16.0881 + 13.4995i 1.08220 + 0.908074i
\(222\) −6.90959 + 0.722614i −0.463741 + 0.0484987i
\(223\) 11.6447 9.77106i 0.779787 0.654319i −0.163408 0.986559i \(-0.552249\pi\)
0.943195 + 0.332240i \(0.107804\pi\)
\(224\) −13.9945 + 3.94677i −0.935049 + 0.263705i
\(225\) −14.3829 + 8.96676i −0.958860 + 0.597784i
\(226\) 1.71450 0.114047
\(227\) 20.5483 + 7.47896i 1.36384 + 0.496396i 0.917239 0.398338i \(-0.130413\pi\)
0.446599 + 0.894734i \(0.352635\pi\)
\(228\) −14.5201 3.62824i −0.961617 0.240286i
\(229\) −0.228822 0.192005i −0.0151210 0.0126880i 0.635196 0.772351i \(-0.280919\pi\)
−0.650317 + 0.759663i \(0.725364\pi\)
\(230\) −9.54757 + 3.47503i −0.629548 + 0.229137i
\(231\) 0.232043 + 0.375416i 0.0152673 + 0.0247006i
\(232\) 1.08227 + 6.13787i 0.0710547 + 0.402971i
\(233\) −9.08213 −0.594990 −0.297495 0.954723i \(-0.596151\pi\)
−0.297495 + 0.954723i \(0.596151\pi\)
\(234\) −3.79538 9.42195i −0.248112 0.615932i
\(235\) −19.3723 −1.26371
\(236\) −13.3723 4.86711i −0.870461 0.316822i
\(237\) −22.1599 + 2.31751i −1.43944 + 0.150538i
\(238\) −0.566565 5.62691i −0.0367249 0.364739i
\(239\) 9.43419 + 7.91623i 0.610247 + 0.512058i 0.894721 0.446626i \(-0.147374\pi\)
−0.284474 + 0.958684i \(0.591819\pi\)
\(240\) −9.60798 6.48790i −0.620193 0.418792i
\(241\) −16.5906 + 13.9212i −1.06869 + 0.896740i −0.994933 0.100536i \(-0.967944\pi\)
−0.0737601 + 0.997276i \(0.523500\pi\)
\(242\) 3.22599 5.58758i 0.207375 0.359183i
\(243\) −5.36943 + 14.6345i −0.344449 + 0.938805i
\(244\) 0.981703 0.0628471
\(245\) 15.1365 + 17.1091i 0.967034 + 1.09306i
\(246\) −1.75014 + 0.852482i −0.111585 + 0.0543523i
\(247\) −5.22802 + 29.6496i −0.332651 + 1.88656i
\(248\) −2.08315 1.74797i −0.132280 0.110996i
\(249\) 0.790592 1.77323i 0.0501017 0.112374i
\(250\) −1.16957 0.425689i −0.0739701 0.0269229i
\(251\) −11.0766 19.1853i −0.699152 1.21097i −0.968761 0.247997i \(-0.920228\pi\)
0.269609 0.962970i \(-0.413105\pi\)
\(252\) 4.98780 12.1557i 0.314202 0.765736i
\(253\) −0.255391 + 0.442350i −0.0160563 + 0.0278103i
\(254\) −1.88168 + 1.57892i −0.118067 + 0.0990703i
\(255\) 14.3047 14.7976i 0.895793 0.926661i
\(256\) −0.868673 + 4.92649i −0.0542921 + 0.307906i
\(257\) 13.1123 + 11.0025i 0.817920 + 0.686316i 0.952484 0.304588i \(-0.0985189\pi\)
−0.134564 + 0.990905i \(0.542963\pi\)
\(258\) 0.935425 + 3.26859i 0.0582370 + 0.203494i
\(259\) −10.1741 + 14.9425i −0.632190 + 0.928483i
\(260\) −15.5791 + 26.9838i −0.966176 + 1.67347i
\(261\) −7.68924 4.09865i −0.475952 0.253700i
\(262\) 8.34456 0.515528
\(263\) 1.76194 + 9.99245i 0.108646 + 0.616161i 0.989701 + 0.143148i \(0.0457225\pi\)
−0.881055 + 0.473013i \(0.843166\pi\)
\(264\) 0.356010 0.0372320i 0.0219109 0.00229147i
\(265\) −1.67071 + 9.47505i −0.102631 + 0.582048i
\(266\) 6.57972 4.73666i 0.403429 0.290423i
\(267\) 23.0604 + 15.5718i 1.41127 + 0.952977i
\(268\) −1.57012 8.90457i −0.0959101 0.543933i
\(269\) 7.74828 13.4204i 0.472421 0.818257i −0.527081 0.849815i \(-0.676714\pi\)
0.999502 + 0.0315578i \(0.0100468\pi\)
\(270\) −9.47201 + 3.06140i −0.576448 + 0.186311i
\(271\) −7.59076 13.1476i −0.461106 0.798659i 0.537911 0.843002i \(-0.319214\pi\)
−0.999016 + 0.0443433i \(0.985880\pi\)
\(272\) 7.01796 + 2.55433i 0.425527 + 0.154879i
\(273\) −25.0972 8.29040i −1.51895 0.501758i
\(274\) −2.19468 1.84156i −0.132586 0.111253i
\(275\) −0.511298 + 0.186097i −0.0308324 + 0.0112221i
\(276\) 15.1241 1.58170i 0.910363 0.0952071i
\(277\) −2.59581 14.7216i −0.155967 0.884533i −0.957896 0.287114i \(-0.907304\pi\)
0.801929 0.597419i \(-0.203807\pi\)
\(278\) 2.60695 4.51537i 0.156354 0.270814i
\(279\) 3.71953 0.786589i 0.222682 0.0470919i
\(280\) 17.8320 5.02901i 1.06566 0.300541i
\(281\) 2.25837 + 12.8079i 0.134723 + 0.764054i 0.975052 + 0.221977i \(0.0712509\pi\)
−0.840329 + 0.542077i \(0.817638\pi\)
\(282\) −5.85584 1.46324i −0.348710 0.0871348i
\(283\) 3.32897 18.8795i 0.197886 1.12227i −0.710361 0.703837i \(-0.751468\pi\)
0.908248 0.418433i \(-0.137420\pi\)
\(284\) −3.71453 + 21.0661i −0.220417 + 1.25004i
\(285\) 28.6246 + 7.15263i 1.69557 + 0.423685i
\(286\) −0.0566247 0.321135i −0.00334829 0.0189891i
\(287\) −1.24693 + 4.90967i −0.0736039 + 0.289808i
\(288\) −11.0195 12.2639i −0.649329 0.722655i
\(289\) 1.87083 3.24036i 0.110049 0.190610i
\(290\) −0.966211 5.47965i −0.0567378 0.321776i
\(291\) 6.24023 0.652612i 0.365809 0.0382568i
\(292\) −19.4589 + 7.08244i −1.13874 + 0.414469i
\(293\) −0.339856 0.285173i −0.0198546 0.0166600i 0.632806 0.774310i \(-0.281903\pi\)
−0.652661 + 0.757650i \(0.726347\pi\)
\(294\) 3.28314 + 6.31501i 0.191476 + 0.368299i
\(295\) 26.3618 + 9.59490i 1.53484 + 0.558637i
\(296\) 7.33089 + 12.6975i 0.426099 + 0.738026i
\(297\) −0.265847 + 0.423979i −0.0154260 + 0.0246017i
\(298\) 6.17128 10.6890i 0.357493 0.619196i
\(299\) −5.31187 30.1251i −0.307193 1.74218i
\(300\) 13.4248 + 9.06523i 0.775079 + 0.523381i
\(301\) 8.06597 + 3.63351i 0.464915 + 0.209432i
\(302\) −1.11501 + 6.32351i −0.0641614 + 0.363877i
\(303\) 20.6347 2.15801i 1.18543 0.123974i
\(304\) 1.85914 + 10.5437i 0.106629 + 0.604723i
\(305\) −1.93531 −0.110815
\(306\) 5.44169 3.39252i 0.311081 0.193938i
\(307\) 3.75570 6.50506i 0.214349 0.371263i −0.738722 0.674010i \(-0.764570\pi\)
0.953071 + 0.302747i \(0.0979037\pi\)
\(308\) 0.237396 0.348658i 0.0135269 0.0198666i
\(309\) −5.57070 19.4653i −0.316906 1.10734i
\(310\) 1.85976 + 1.56052i 0.105627 + 0.0886316i
\(311\) −3.98271 + 22.5871i −0.225839 + 1.28080i 0.635236 + 0.772318i \(0.280903\pi\)
−0.861075 + 0.508478i \(0.830208\pi\)
\(312\) −14.8994 + 15.4129i −0.843514 + 0.872581i
\(313\) 0.147493 0.123762i 0.00833682 0.00699542i −0.638610 0.769531i \(-0.720490\pi\)
0.646947 + 0.762535i \(0.276046\pi\)
\(314\) −6.10370 + 10.5719i −0.344452 + 0.596608i
\(315\) −9.83282 + 23.9634i −0.554017 + 1.35019i
\(316\) 10.6473 + 18.4416i 0.598955 + 1.03742i
\(317\) −14.9829 5.45333i −0.841523 0.306289i −0.114944 0.993372i \(-0.536669\pi\)
−0.726579 + 0.687083i \(0.758891\pi\)
\(318\) −1.22069 + 2.73791i −0.0684531 + 0.153534i
\(319\) −0.214281 0.179803i −0.0119974 0.0100670i
\(320\) −0.496362 + 2.81501i −0.0277475 + 0.157364i
\(321\) −20.0192 + 9.75120i −1.11736 + 0.544259i
\(322\) −4.63607 + 6.80888i −0.258358 + 0.379444i
\(323\) −19.0067 −1.05756
\(324\) 14.8643 1.00852i 0.825794 0.0560288i
\(325\) 16.2930 28.2202i 0.903770 1.56538i
\(326\) 2.37107 1.98956i 0.131321 0.110192i
\(327\) −15.3449 10.3618i −0.848577 0.573011i
\(328\) 3.14724 + 2.64085i 0.173777 + 0.145817i
\(329\) −12.7465 + 9.17608i −0.702740 + 0.505894i
\(330\) −0.317832 + 0.0332393i −0.0174961 + 0.00182976i
\(331\) 3.20535 + 1.16665i 0.176182 + 0.0641249i 0.428605 0.903492i \(-0.359005\pi\)
−0.252423 + 0.967617i \(0.581227\pi\)
\(332\) −1.85555 −0.101837
\(333\) −20.2954 2.87374i −1.11218 0.157480i
\(334\) −7.11073 −0.389082
\(335\) 3.09529 + 17.5543i 0.169114 + 0.959092i
\(336\) −9.39495 + 0.282119i −0.512537 + 0.0153909i
\(337\) −23.5993 + 8.58946i −1.28554 + 0.467898i −0.892260 0.451522i \(-0.850881\pi\)
−0.393278 + 0.919420i \(0.628659\pi\)
\(338\) 9.11393 + 7.64749i 0.495732 + 0.415969i
\(339\) 4.90773 + 1.22633i 0.266551 + 0.0666051i
\(340\) −18.4841 6.72766i −1.00244 0.364858i
\(341\) 0.122048 0.00660926
\(342\) 8.11233 + 4.32417i 0.438665 + 0.233824i
\(343\) 18.0635 + 4.08771i 0.975338 + 0.220716i
\(344\) 5.49644 4.61206i 0.296348 0.248666i
\(345\) −29.8153 + 3.11812i −1.60520 + 0.167874i
\(346\) 10.7963 + 9.05919i 0.580414 + 0.487025i
\(347\) −14.2348 + 5.18104i −0.764163 + 0.278133i −0.694553 0.719442i \(-0.744398\pi\)
−0.0696102 + 0.997574i \(0.522176\pi\)
\(348\) −0.585208 + 8.30713i −0.0313704 + 0.445309i
\(349\) 13.1750 + 4.79529i 0.705239 + 0.256686i 0.669646 0.742680i \(-0.266446\pi\)
0.0355929 + 0.999366i \(0.488668\pi\)
\(350\) −8.44543 + 2.38180i −0.451427 + 0.127313i
\(351\) −4.12497 29.6848i −0.220175 1.58446i
\(352\) −0.264644 0.458377i −0.0141056 0.0244316i
\(353\) −20.1070 + 16.8717i −1.07019 + 0.897992i −0.995069 0.0991824i \(-0.968377\pi\)
−0.0751164 + 0.997175i \(0.523933\pi\)
\(354\) 7.24387 + 4.89151i 0.385007 + 0.259981i
\(355\) 7.32273 41.5292i 0.388650 2.20414i
\(356\) 4.61798 26.1899i 0.244753 1.38806i
\(357\) 2.40297 16.5121i 0.127179 0.873916i
\(358\) 5.75252 4.82694i 0.304030 0.255112i
\(359\) 10.1476 17.5761i 0.535567 0.927630i −0.463568 0.886061i \(-0.653431\pi\)
0.999136 0.0415688i \(-0.0132356\pi\)
\(360\) 14.0411 + 15.6267i 0.740031 + 0.823599i
\(361\) −4.12364 7.14236i −0.217034 0.375913i
\(362\) −1.21797 + 1.02200i −0.0640152 + 0.0537151i
\(363\) 13.2309 13.6869i 0.694444 0.718374i
\(364\) 2.53071 + 25.1341i 0.132645 + 1.31738i
\(365\) 38.3607 13.9622i 2.00789 0.730813i
\(366\) −0.585001 0.146179i −0.0305785 0.00764088i
\(367\) −18.8888 6.87495i −0.985986 0.358870i −0.201821 0.979422i \(-0.564686\pi\)
−0.784165 + 0.620553i \(0.786908\pi\)
\(368\) −5.43904 9.42069i −0.283530 0.491088i
\(369\) −5.61949 + 1.18839i −0.292539 + 0.0618649i
\(370\) −6.54474 11.3358i −0.340245 0.589321i
\(371\) 3.38875 + 7.02572i 0.175935 + 0.364757i
\(372\) −2.13420 2.94068i −0.110653 0.152467i
\(373\) 30.6252 11.1467i 1.58571 0.577152i 0.609275 0.792959i \(-0.291460\pi\)
0.976436 + 0.215807i \(0.0692382\pi\)
\(374\) 0.193447 0.0704088i 0.0100029 0.00364075i
\(375\) −3.04338 2.05508i −0.157160 0.106124i
\(376\) 2.21199 + 12.5448i 0.114075 + 0.646951i
\(377\) 16.7522 0.862781
\(378\) −4.78227 + 6.50093i −0.245973 + 0.334372i
\(379\) −13.7037 −0.703914 −0.351957 0.936016i \(-0.614484\pi\)
−0.351957 + 0.936016i \(0.614484\pi\)
\(380\) −4.89665 27.7703i −0.251193 1.42459i
\(381\) −6.51562 + 3.17371i −0.333806 + 0.162594i
\(382\) −4.19772 + 1.52784i −0.214774 + 0.0781713i
\(383\) −8.31613 + 3.02683i −0.424935 + 0.154664i −0.545630 0.838026i \(-0.683710\pi\)
0.120696 + 0.992690i \(0.461487\pi\)
\(384\) −8.11507 + 18.2014i −0.414120 + 0.928836i
\(385\) −0.467997 + 0.687336i −0.0238513 + 0.0350299i
\(386\) 3.98411 + 6.90068i 0.202786 + 0.351235i
\(387\) 0.339711 + 10.0253i 0.0172685 + 0.509617i
\(388\) −2.99827 5.19316i −0.152214 0.263643i
\(389\) −13.9400 5.07373i −0.706784 0.257248i −0.0364792 0.999334i \(-0.511614\pi\)
−0.670304 + 0.742086i \(0.733836\pi\)
\(390\) 13.3016 13.7600i 0.673555 0.696765i
\(391\) 18.1469 6.60493i 0.917728 0.334026i
\(392\) 9.35093 11.7554i 0.472293 0.593738i
\(393\) 23.8861 + 5.96859i 1.20489 + 0.301076i
\(394\) −0.717846 + 0.602344i −0.0361646 + 0.0303457i
\(395\) −20.9897 36.3553i −1.05611 1.82923i
\(396\) 0.473558 + 0.0670538i 0.0237972 + 0.00336958i
\(397\) 2.74774 4.75923i 0.137905 0.238859i −0.788798 0.614652i \(-0.789296\pi\)
0.926704 + 0.375793i \(0.122630\pi\)
\(398\) 0.439266 0.368588i 0.0220184 0.0184756i
\(399\) 22.2223 8.85231i 1.11251 0.443170i
\(400\) 2.01222 11.4119i 0.100611 0.570593i
\(401\) −1.51394 + 8.58600i −0.0756027 + 0.428764i 0.923389 + 0.383866i \(0.125408\pi\)
−0.998992 + 0.0448984i \(0.985704\pi\)
\(402\) −0.390279 + 5.54007i −0.0194653 + 0.276314i
\(403\) −5.59920 + 4.69829i −0.278916 + 0.234038i
\(404\) −9.91445 17.1723i −0.493262 0.854355i
\(405\) −29.3031 + 1.98817i −1.45608 + 0.0987929i
\(406\) −3.23129 3.14782i −0.160366 0.156224i
\(407\) −0.618352 0.225062i −0.0306506 0.0111559i
\(408\) −11.2157 7.57356i −0.555262 0.374947i
\(409\) 8.60119 3.13058i 0.425301 0.154797i −0.120497 0.992714i \(-0.538449\pi\)
0.545798 + 0.837917i \(0.316227\pi\)
\(410\) −2.80974 2.35765i −0.138763 0.116436i
\(411\) −4.96502 6.84120i −0.244906 0.337451i
\(412\) −14.8234 + 12.4383i −0.730297 + 0.612792i
\(413\) 21.8903 6.17354i 1.07715 0.303780i
\(414\) −9.24803 1.30948i −0.454516 0.0643575i
\(415\) 3.65799 0.179564
\(416\) 29.7865 + 10.8414i 1.46040 + 0.531543i
\(417\) 10.6920 11.0605i 0.523591 0.541633i
\(418\) 0.226072 + 0.189697i 0.0110575 + 0.00927837i
\(419\) −22.0176 + 8.01376i −1.07563 + 0.391498i −0.818280 0.574820i \(-0.805072\pi\)
−0.257352 + 0.966318i \(0.582850\pi\)
\(420\) 24.7447 0.743053i 1.20742 0.0362573i
\(421\) −7.02955 39.8665i −0.342599 1.94298i −0.332721 0.943025i \(-0.607967\pi\)
−0.00987782 0.999951i \(-0.503144\pi\)
\(422\) 2.69663 0.131270
\(423\) −15.7156 8.37699i −0.764118 0.407303i
\(424\) 6.32647 0.307241
\(425\) 19.3310 + 7.03592i 0.937693 + 0.341292i
\(426\) 5.35031 12.0003i 0.259223 0.581416i
\(427\) −1.27339 + 0.916695i −0.0616235 + 0.0443620i
\(428\) 16.3031 + 13.6799i 0.788038 + 0.661243i
\(429\) 0.0676105 0.959742i 0.00326427 0.0463368i
\(430\) −4.90701 + 4.11747i −0.236637 + 0.198562i
\(431\) −8.08832 + 14.0094i −0.389601 + 0.674808i −0.992396 0.123088i \(-0.960720\pi\)
0.602795 + 0.797896i \(0.294054\pi\)
\(432\) −4.98887 9.41792i −0.240027 0.453120i
\(433\) 3.63457 0.174666 0.0873332 0.996179i \(-0.472166\pi\)
0.0873332 + 0.996179i \(0.472166\pi\)
\(434\) 1.96285 + 0.145877i 0.0942197 + 0.00700233i
\(435\) 1.15367 16.3765i 0.0553140 0.785192i
\(436\) −3.07292 + 17.4274i −0.147166 + 0.834621i
\(437\) 21.2074 + 17.7951i 1.01449 + 0.851256i
\(438\) 12.6502 1.32298i 0.604451 0.0632143i
\(439\) −2.31491 0.842557i −0.110484 0.0402130i 0.286186 0.958174i \(-0.407612\pi\)
−0.396671 + 0.917961i \(0.629835\pi\)
\(440\) 0.337211 + 0.584067i 0.0160759 + 0.0278443i
\(441\) 4.88097 + 20.4249i 0.232427 + 0.972614i
\(442\) −6.16435 + 10.6770i −0.293208 + 0.507851i
\(443\) 2.87842 2.41528i 0.136758 0.114754i −0.571843 0.820363i \(-0.693771\pi\)
0.708601 + 0.705610i \(0.249327\pi\)
\(444\) 5.39014 + 18.8344i 0.255805 + 0.893842i
\(445\) −9.10378 + 51.6301i −0.431560 + 2.44750i
\(446\) 6.83589 + 5.73599i 0.323689 + 0.271607i
\(447\) 25.3106 26.1828i 1.19715 1.23840i
\(448\) 1.00679 + 2.08732i 0.0475663 + 0.0986168i
\(449\) −0.189743 + 0.328645i −0.00895453 + 0.0155097i −0.870468 0.492225i \(-0.836184\pi\)
0.861513 + 0.507735i \(0.169517\pi\)
\(450\) −6.65004 7.40100i −0.313486 0.348886i
\(451\) −0.184391 −0.00868264
\(452\) −0.839539 4.76126i −0.0394886 0.223951i
\(453\) −7.71468 + 17.3034i −0.362467 + 0.812983i
\(454\) −2.22909 + 12.6418i −0.104616 + 0.593308i
\(455\) −4.98898 49.5487i −0.233887 2.32288i
\(456\) 1.36335 19.3530i 0.0638446 0.906285i
\(457\) −3.56540 20.2204i −0.166782 0.945869i −0.947208 0.320620i \(-0.896109\pi\)
0.780426 0.625249i \(-0.215002\pi\)
\(458\) 0.0876762 0.151860i 0.00409684 0.00709593i
\(459\) 18.0033 5.81875i 0.840320 0.271596i
\(460\) 14.3255 + 24.8125i 0.667929 + 1.15689i
\(461\) 9.70572 + 3.53259i 0.452041 + 0.164529i 0.558000 0.829841i \(-0.311569\pi\)
−0.105959 + 0.994370i \(0.533791\pi\)
\(462\) −0.193382 + 0.172418i −0.00899693 + 0.00802161i
\(463\) −16.6071 13.9350i −0.771797 0.647615i 0.169371 0.985552i \(-0.445826\pi\)
−0.941169 + 0.337938i \(0.890271\pi\)
\(464\) 5.59800 2.03750i 0.259880 0.0945887i
\(465\) 4.20732 + 5.79718i 0.195110 + 0.268838i
\(466\) −0.925817 5.25057i −0.0428876 0.243228i
\(467\) −6.01844 + 10.4243i −0.278500 + 0.482377i −0.971012 0.239030i \(-0.923171\pi\)
0.692512 + 0.721406i \(0.256504\pi\)
\(468\) −24.3067 + 15.1536i −1.12358 + 0.700475i
\(469\) 10.3515 + 10.0842i 0.477990 + 0.465643i
\(470\) −1.97478 11.1995i −0.0910899 0.516597i
\(471\) −25.0334 + 25.8961i −1.15348 + 1.19323i
\(472\) 3.20325 18.1665i 0.147442 0.836182i
\(473\) −0.0559192 + 0.317134i −0.00257117 + 0.0145818i
\(474\) −3.59874 12.5748i −0.165296 0.577581i
\(475\) 5.12102 + 29.0427i 0.234968 + 1.33257i
\(476\) −15.3488 + 4.32870i −0.703511 + 0.198406i
\(477\) −5.45254 + 6.96408i −0.249655 + 0.318863i
\(478\) −3.61483 + 6.26107i −0.165338 + 0.286374i
\(479\) −1.76841 10.0292i −0.0808007 0.458244i −0.998184 0.0602388i \(-0.980814\pi\)
0.917383 0.398005i \(-0.130297\pi\)
\(480\) 12.6495 28.3718i 0.577370 1.29499i
\(481\) 37.0321 13.4786i 1.68852 0.614570i
\(482\) −9.73932 8.17226i −0.443614 0.372236i
\(483\) −18.1408 + 16.1742i −0.825435 + 0.735953i
\(484\) −17.0967 6.22267i −0.777121 0.282849i
\(485\) 5.91072 + 10.2377i 0.268392 + 0.464868i
\(486\) −9.00787 1.61236i −0.408605 0.0731380i
\(487\) −2.52733 + 4.37746i −0.114524 + 0.198362i −0.917589 0.397529i \(-0.869868\pi\)
0.803065 + 0.595891i \(0.203201\pi\)
\(488\) 0.220979 + 1.25324i 0.0100033 + 0.0567313i
\(489\) 8.21018 3.99912i 0.371277 0.180846i
\(490\) −8.34814 + 10.4948i −0.377131 + 0.474106i
\(491\) −4.49122 + 25.4710i −0.202686 + 1.14949i 0.698354 + 0.715753i \(0.253916\pi\)
−0.901040 + 0.433736i \(0.857195\pi\)
\(492\) 3.22437 + 4.44280i 0.145366 + 0.200297i
\(493\) 1.83646 + 10.4151i 0.0827099 + 0.469071i
\(494\) −17.6740 −0.795189
\(495\) −0.933561 0.132188i −0.0419604 0.00594142i
\(496\) −1.29962 + 2.25101i −0.0583548 + 0.101073i
\(497\) −14.8529 30.7938i −0.666246 1.38129i
\(498\) 1.10573 + 0.276297i 0.0495490 + 0.0123812i
\(499\) 11.1820 + 9.38282i 0.500576 + 0.420033i 0.857798 0.513986i \(-0.171832\pi\)
−0.357223 + 0.934019i \(0.616276\pi\)
\(500\) −0.609456 + 3.45640i −0.0272557 + 0.154575i
\(501\) −20.3543 5.08608i −0.909363 0.227229i
\(502\) 9.96229 8.35936i 0.444639 0.373096i
\(503\) 7.08301 12.2681i 0.315816 0.547009i −0.663795 0.747915i \(-0.731055\pi\)
0.979611 + 0.200906i \(0.0643884\pi\)
\(504\) 16.6406 + 3.63117i 0.741232 + 0.161745i
\(505\) 19.5451 + 33.8531i 0.869746 + 1.50644i
\(506\) −0.281766 0.102554i −0.0125260 0.00455910i
\(507\) 20.6184 + 28.4097i 0.915694 + 1.26172i
\(508\) 5.30614 + 4.45238i 0.235422 + 0.197542i
\(509\) −6.86956 + 38.9592i −0.304488 + 1.72684i 0.321418 + 0.946938i \(0.395841\pi\)
−0.625906 + 0.779899i \(0.715270\pi\)
\(510\) 10.0130 + 6.76138i 0.443382 + 0.299399i
\(511\) 18.6270 27.3571i 0.824011 1.21021i
\(512\) 20.0748 0.887189
\(513\) 20.1284 + 18.1803i 0.888691 + 0.802681i
\(514\) −5.02413 + 8.70204i −0.221605 + 0.383831i
\(515\) 29.2225 24.5206i 1.28770 1.08051i
\(516\) 8.61899 4.19825i 0.379430 0.184818i
\(517\) −0.437957 0.367489i −0.0192613 0.0161622i
\(518\) −9.67571 4.35866i −0.425126 0.191509i
\(519\) 24.4245 + 33.6540i 1.07211 + 1.47725i
\(520\) −37.9542 13.8142i −1.66440 0.605793i
\(521\) −28.3116 −1.24035 −0.620177 0.784462i \(-0.712939\pi\)
−0.620177 + 0.784462i \(0.712939\pi\)
\(522\) 1.58568 4.86311i 0.0694035 0.212853i
\(523\) −44.4149 −1.94213 −0.971064 0.238819i \(-0.923240\pi\)
−0.971064 + 0.238819i \(0.923240\pi\)
\(524\) −4.08607 23.1732i −0.178501 1.01233i
\(525\) −25.8785 + 0.777100i −1.12943 + 0.0339154i
\(526\) −5.59723 + 2.03723i −0.244051 + 0.0888273i
\(527\) −3.53480 2.96605i −0.153978 0.129203i
\(528\) −0.0941367 0.328936i −0.00409677 0.0143151i
\(529\) −4.81902 1.75398i −0.209523 0.0762600i
\(530\) −5.64803 −0.245335
\(531\) 17.2367 + 19.1831i 0.748008 + 0.832476i
\(532\) −16.3758 15.9528i −0.709982 0.691643i
\(533\) 8.45932 7.09821i 0.366414 0.307458i
\(534\) −6.65163 + 14.9190i −0.287844 + 0.645610i
\(535\) −32.1395 26.9682i −1.38951 1.16594i
\(536\) 11.0141 4.00880i 0.475736 0.173154i
\(537\) 19.9190 9.70240i 0.859569 0.418689i
\(538\) 8.54847 + 3.11139i 0.368551 + 0.134141i
\(539\) 0.0176389 + 0.673927i 0.000759762 + 0.0290281i
\(540\) 13.1398 + 24.8052i 0.565447 + 1.06744i
\(541\) −1.22108 2.11497i −0.0524983 0.0909298i 0.838582 0.544775i \(-0.183385\pi\)
−0.891080 + 0.453846i \(0.850052\pi\)
\(542\) 6.82710 5.72861i 0.293249 0.246065i
\(543\) −4.21742 + 2.05427i −0.180987 + 0.0881573i
\(544\) −3.47491 + 19.7072i −0.148985 + 0.844938i
\(545\) 6.05788 34.3559i 0.259491 1.47165i
\(546\) 2.23448 15.3543i 0.0956269 0.657105i
\(547\) −20.8943 + 17.5324i −0.893375 + 0.749630i −0.968884 0.247515i \(-0.920386\pi\)
0.0755094 + 0.997145i \(0.475942\pi\)
\(548\) −4.03943 + 6.99649i −0.172556 + 0.298875i
\(549\) −1.56999 0.836865i −0.0670057 0.0357165i
\(550\) −0.159707 0.276621i −0.00680995 0.0117952i
\(551\) −11.6140 + 9.74530i −0.494773 + 0.415164i
\(552\) 5.42359 + 18.9513i 0.230843 + 0.806620i
\(553\) −31.0312 13.9788i −1.31958 0.594437i
\(554\) 8.24623 3.00138i 0.350349 0.127516i
\(555\) −10.6260 37.1297i −0.451049 1.57607i
\(556\) −13.8159 5.02859i −0.585926 0.213260i
\(557\) 6.71021 + 11.6224i 0.284321 + 0.492458i 0.972444 0.233136i \(-0.0748987\pi\)
−0.688124 + 0.725593i \(0.741565\pi\)
\(558\) 0.833905 + 2.07015i 0.0353020 + 0.0876365i
\(559\) −9.64279 16.7018i −0.407846 0.706411i
\(560\) −7.69356 15.9507i −0.325112 0.674038i
\(561\) 0.604097 0.0631773i 0.0255050 0.00266735i
\(562\) −7.17428 + 2.61123i −0.302629 + 0.110148i
\(563\) −10.0960 + 3.67466i −0.425498 + 0.154868i −0.545888 0.837858i \(-0.683808\pi\)
0.120390 + 0.992727i \(0.461585\pi\)
\(564\) −1.19607 + 16.9785i −0.0503638 + 0.714922i
\(565\) 1.65505 + 9.38624i 0.0696284 + 0.394882i
\(566\) 11.2540 0.473040
\(567\) −18.3390 + 15.1882i −0.770167 + 0.637842i
\(568\) −27.7290 −1.16348
\(569\) 1.32694 + 7.52545i 0.0556282 + 0.315483i 0.999907 0.0136646i \(-0.00434970\pi\)
−0.944278 + 0.329148i \(0.893239\pi\)
\(570\) −1.21714 + 17.2776i −0.0509806 + 0.723678i
\(571\) 23.1959 8.44260i 0.970717 0.353312i 0.192492 0.981298i \(-0.438343\pi\)
0.778224 + 0.627986i \(0.216121\pi\)
\(572\) −0.864080 + 0.314499i −0.0361290 + 0.0131499i
\(573\) −13.1087 + 1.37092i −0.547623 + 0.0572712i
\(574\) −2.96549 0.220393i −0.123777 0.00919901i
\(575\) −14.9819 25.9494i −0.624787 1.08216i
\(576\) −1.61994 + 2.06901i −0.0674973 + 0.0862087i
\(577\) 3.47770 + 6.02355i 0.144778 + 0.250764i 0.929290 0.369350i \(-0.120420\pi\)
−0.784512 + 0.620114i \(0.787086\pi\)
\(578\) 2.06403 + 0.751246i 0.0858523 + 0.0312477i
\(579\) 6.46858 + 22.6027i 0.268825 + 0.939338i
\(580\) −14.7441 + 5.36643i −0.612217 + 0.222829i
\(581\) 2.40687 1.73268i 0.0998539 0.0718836i
\(582\) 1.01341 + 3.54108i 0.0420070 + 0.146782i
\(583\) −0.217510 + 0.182512i −0.00900834 + 0.00755889i
\(584\) −13.4215 23.2468i −0.555388 0.961959i
\(585\) 47.9177 29.8734i 1.98115 1.23511i
\(586\) 0.130220 0.225548i 0.00537935 0.00931730i
\(587\) −23.5728 + 19.7799i −0.972953 + 0.816405i −0.983011 0.183545i \(-0.941243\pi\)
0.0100583 + 0.999949i \(0.496798\pi\)
\(588\) 15.9295 12.2097i 0.656920 0.503519i
\(589\) 1.14868 6.51448i 0.0473305 0.268424i
\(590\) −2.85974 + 16.2184i −0.117734 + 0.667700i
\(591\) −2.48565 + 1.21074i −0.102246 + 0.0498033i
\(592\) 10.7355 9.00813i 0.441225 0.370232i
\(593\) 0.193094 + 0.334449i 0.00792943 + 0.0137342i 0.869963 0.493117i \(-0.164143\pi\)
−0.862033 + 0.506851i \(0.830809\pi\)
\(594\) −0.272211 0.110472i −0.0111689 0.00453272i
\(595\) 30.2582 8.53350i 1.24047 0.349839i
\(596\) −32.7057 11.9039i −1.33968 0.487603i
\(597\) 1.52103 0.740881i 0.0622515 0.0303222i
\(598\) 16.8745 6.14180i 0.690048 0.251157i
\(599\) −8.77714 7.36490i −0.358624 0.300922i 0.445618 0.895223i \(-0.352984\pi\)
−0.804242 + 0.594302i \(0.797428\pi\)
\(600\) −8.55072 + 19.1785i −0.349082 + 0.782960i
\(601\) −15.5980 + 13.0882i −0.636254 + 0.533881i −0.902865 0.429924i \(-0.858541\pi\)
0.266611 + 0.963804i \(0.414096\pi\)
\(602\) −1.27838 + 5.03350i −0.0521028 + 0.205150i
\(603\) −5.07980 + 15.5792i −0.206865 + 0.634432i
\(604\) 18.1067 0.736751
\(605\) 33.7039 + 12.2672i 1.37026 + 0.498734i
\(606\) 3.35105 + 11.7094i 0.136127 + 0.475660i
\(607\) 12.2197 + 10.2536i 0.495984 + 0.416180i 0.856165 0.516703i \(-0.172841\pi\)
−0.360181 + 0.932882i \(0.617285\pi\)
\(608\) −26.9573 + 9.81164i −1.09326 + 0.397914i
\(609\) −6.99795 11.3218i −0.283571 0.458782i
\(610\) −0.197282 1.11884i −0.00798770 0.0453005i
\(611\) 34.2388 1.38515
\(612\) −12.0858 13.4506i −0.488541 0.543709i
\(613\) 7.96647 0.321763 0.160881 0.986974i \(-0.448566\pi\)
0.160881 + 0.986974i \(0.448566\pi\)
\(614\) 4.14356 + 1.50813i 0.167220 + 0.0608632i
\(615\) −6.35645 8.75843i −0.256317 0.353174i
\(616\) 0.498532 + 0.224576i 0.0200864 + 0.00904843i
\(617\) −26.1777 21.9657i −1.05387 0.884306i −0.0603792 0.998176i \(-0.519231\pi\)
−0.993496 + 0.113869i \(0.963675\pi\)
\(618\) 10.6854 5.20480i 0.429831 0.209368i
\(619\) −26.7530 + 22.4484i −1.07529 + 0.902279i −0.995522 0.0945346i \(-0.969864\pi\)
−0.0797721 + 0.996813i \(0.525419\pi\)
\(620\) 3.42298 5.92877i 0.137470 0.238105i
\(621\) −25.5356 10.3632i −1.02471 0.415860i
\(622\) −13.4641 −0.539859
\(623\) 18.4655 + 38.2836i 0.739805 + 1.53380i
\(624\) 16.9812 + 11.4668i 0.679793 + 0.459038i
\(625\) −3.70382 + 21.0054i −0.148153 + 0.840217i
\(626\) 0.0865844 + 0.0726530i 0.00346061 + 0.00290380i
\(627\) 0.511441 + 0.704704i 0.0204250 + 0.0281432i
\(628\) 32.3475 + 11.7735i 1.29081 + 0.469815i
\(629\) 12.4395 + 21.5458i 0.495994 + 0.859086i
\(630\) −14.8561 3.24177i −0.591881 0.129155i
\(631\) −7.65980 + 13.2672i −0.304932 + 0.528157i −0.977246 0.212108i \(-0.931967\pi\)
0.672314 + 0.740266i \(0.265300\pi\)
\(632\) −21.1457 + 17.7434i −0.841132 + 0.705794i
\(633\) 7.71904 + 1.92881i 0.306804 + 0.0766634i
\(634\) 1.62535 9.21782i 0.0645509 0.366087i
\(635\) −10.4604 8.77732i −0.415108 0.348317i
\(636\) 8.20105 + 2.04926i 0.325193 + 0.0812583i
\(637\) −26.7523 30.2388i −1.05997 1.19810i
\(638\) 0.0821045 0.142209i 0.00325055 0.00563011i
\(639\) 23.8986 30.5236i 0.945412 1.20750i
\(640\) −37.5476 −1.48420
\(641\) 3.41750 + 19.3816i 0.134983 + 0.765528i 0.974871 + 0.222769i \(0.0715095\pi\)
−0.839888 + 0.542760i \(0.817379\pi\)
\(642\) −7.67809 10.5795i −0.303030 0.417539i
\(643\) −1.40911 + 7.99147i −0.0555700 + 0.315153i −0.999904 0.0138344i \(-0.995596\pi\)
0.944334 + 0.328987i \(0.106707\pi\)
\(644\) 21.1787 + 9.54049i 0.834559 + 0.375948i
\(645\) −16.9913 + 8.27632i −0.669031 + 0.325880i
\(646\) −1.93751 10.9882i −0.0762302 0.432323i
\(647\) 9.47724 16.4151i 0.372589 0.645343i −0.617374 0.786670i \(-0.711804\pi\)
0.989963 + 0.141327i \(0.0451369\pi\)
\(648\) 4.63339 + 18.7486i 0.182017 + 0.736516i
\(649\) 0.413956 + 0.716993i 0.0162492 + 0.0281444i
\(650\) 17.9756 + 6.54257i 0.705060 + 0.256621i
\(651\) 5.51426 + 1.82153i 0.216121 + 0.0713914i
\(652\) −6.68614 5.61034i −0.261850 0.219718i
\(653\) −11.8795 + 4.32379i −0.464881 + 0.169203i −0.563832 0.825889i \(-0.690673\pi\)
0.0989511 + 0.995092i \(0.468451\pi\)
\(654\) 4.42616 9.92749i 0.173076 0.388196i
\(655\) 8.05518 + 45.6832i 0.314742 + 1.78499i
\(656\) 1.96348 3.40085i 0.0766611 0.132781i
\(657\) 37.1572 + 5.26130i 1.44964 + 0.205263i
\(658\) −6.60424 6.43365i −0.257460 0.250810i
\(659\) −3.99230 22.6415i −0.155518 0.881987i −0.958311 0.285728i \(-0.907765\pi\)
0.802793 0.596258i \(-0.203347\pi\)
\(660\) 0.247940 + 0.866359i 0.00965103 + 0.0337230i
\(661\) 4.37526 24.8133i 0.170178 0.965127i −0.773386 0.633936i \(-0.781438\pi\)
0.943564 0.331191i \(-0.107450\pi\)
\(662\) −0.347717 + 1.97200i −0.0135144 + 0.0766441i
\(663\) −25.2822 + 26.1534i −0.981878 + 1.01571i
\(664\) −0.417681 2.36879i −0.0162092 0.0919267i
\(665\) 32.2829 + 31.4490i 1.25188 + 1.21954i
\(666\) −0.407508 12.0261i −0.0157906 0.466003i
\(667\) 7.70208 13.3404i 0.298226 0.516542i
\(668\) 3.48190 + 19.7469i 0.134719 + 0.764029i
\(669\) 15.4648 + 21.3086i 0.597904 + 0.823839i
\(670\) −9.83295 + 3.57890i −0.379880 + 0.138265i
\(671\) −0.0437521 0.0367124i −0.00168903 0.00141726i
\(672\) −5.11576 24.6597i −0.197345 0.951269i
\(673\) 15.1371 + 5.50946i 0.583493 + 0.212374i 0.616865 0.787069i \(-0.288402\pi\)
−0.0333723 + 0.999443i \(0.510625\pi\)
\(674\) −7.37142 12.7677i −0.283936 0.491792i
\(675\) −13.7419 25.9417i −0.528925 0.998498i
\(676\) 16.7747 29.0546i 0.645179 1.11748i
\(677\) 0.849819 + 4.81956i 0.0326612 + 0.185231i 0.996774 0.0802631i \(-0.0255761\pi\)
−0.964113 + 0.265494i \(0.914465\pi\)
\(678\) −0.208681 + 2.96227i −0.00801436 + 0.113765i
\(679\) 8.73839 + 3.93642i 0.335348 + 0.151066i
\(680\) 4.42775 25.1110i 0.169797 0.962965i
\(681\) −15.4230 + 34.5924i −0.591009 + 1.32558i
\(682\) 0.0124413 + 0.0705584i 0.000476404 + 0.00270182i
\(683\) 29.0638 1.11209 0.556047 0.831151i \(-0.312317\pi\)
0.556047 + 0.831151i \(0.312317\pi\)
\(684\) 8.03608 24.6457i 0.307267 0.942354i
\(685\) 7.96323 13.7927i 0.304259 0.526993i
\(686\) −0.521829 + 10.8596i −0.0199235 + 0.414621i
\(687\) 0.359591 0.371982i 0.0137193 0.0141920i
\(688\) −5.25366 4.40834i −0.200294 0.168066i
\(689\) 2.95282 16.7463i 0.112493 0.637982i
\(690\) −4.84197 16.9190i −0.184331 0.644094i
\(691\) −2.46249 + 2.06627i −0.0936774 + 0.0786047i −0.688424 0.725309i \(-0.741697\pi\)
0.594746 + 0.803913i \(0.297253\pi\)
\(692\) 19.8712 34.4179i 0.755389 1.30837i
\(693\) −0.676875 + 0.355222i −0.0257124 + 0.0134938i
\(694\) −4.44633 7.70127i −0.168780 0.292336i
\(695\) 27.2364 + 9.91324i 1.03314 + 0.376031i
\(696\) −10.7366 + 1.12284i −0.406968 + 0.0425613i
\(697\) 5.34041 + 4.48114i 0.202283 + 0.169735i
\(698\) −1.42922 + 8.10553i −0.0540969 + 0.306799i
\(699\) 1.10543 15.6918i 0.0418114 0.593520i
\(700\) 10.7498 + 22.2871i 0.406306 + 0.842372i
\(701\) −19.4165 −0.733351 −0.366675 0.930349i \(-0.619504\pi\)
−0.366675 + 0.930349i \(0.619504\pi\)
\(702\) 16.7409 5.41075i 0.631845 0.204216i
\(703\) −17.8327 + 30.8872i −0.672575 + 1.16493i
\(704\) −0.0646216 + 0.0542240i −0.00243552 + 0.00204364i
\(705\) 2.35791 33.4709i 0.0888040 1.26059i
\(706\) −11.8036 9.90437i −0.444233 0.372756i
\(707\) 28.8954 + 13.0167i 1.08672 + 0.489542i
\(708\) 10.0369 22.5118i 0.377208 0.846045i
\(709\) 16.3562 + 5.95319i 0.614272 + 0.223577i 0.630371 0.776294i \(-0.282903\pi\)
−0.0160996 + 0.999870i \(0.505125\pi\)
\(710\) 24.7554 0.929053
\(711\) −1.30693 38.5692i −0.0490136 1.44646i
\(712\) 34.4733 1.29194
\(713\) 1.16710 + 6.61896i 0.0437083 + 0.247882i
\(714\) 9.79097 0.294011i 0.366418 0.0110031i
\(715\) 1.70343 0.619996i 0.0637045 0.0231865i
\(716\) −16.2215 13.6114i −0.606225 0.508683i
\(717\) −14.8257 + 15.3366i −0.553676 + 0.572755i
\(718\) 11.1955 + 4.07484i 0.417813 + 0.152072i
\(719\) −24.3736 −0.908980 −0.454490 0.890752i \(-0.650179\pi\)
−0.454490 + 0.890752i \(0.650179\pi\)
\(720\) 12.3790 15.8107i 0.461339 0.589230i
\(721\) 7.61308 29.9758i 0.283526 1.11636i
\(722\) 3.70879 3.11204i 0.138027 0.115818i
\(723\) −22.0332 30.3591i −0.819424 1.12907i
\(724\) 3.43455 + 2.88193i 0.127644 + 0.107106i
\(725\) 15.4197 5.61232i 0.572674 0.208436i
\(726\) 9.26140 + 6.25386i 0.343723 + 0.232103i
\(727\) 14.0755 + 5.12306i 0.522031 + 0.190004i 0.589577 0.807712i \(-0.299295\pi\)
−0.0675456 + 0.997716i \(0.521517\pi\)
\(728\) −31.5163 + 8.88831i −1.16807 + 0.329423i
\(729\) −24.6315 11.0584i −0.912279 0.409569i
\(730\) 11.9822 + 20.7538i 0.443482 + 0.768134i
\(731\) 9.32666 7.82599i 0.344959 0.289455i
\(732\) −0.119488 + 1.69616i −0.00441641 + 0.0626917i
\(733\) −1.73526 + 9.84113i −0.0640932 + 0.363490i 0.935845 + 0.352411i \(0.114638\pi\)
−0.999939 + 0.0110797i \(0.996473\pi\)
\(734\) 2.04906 11.6208i 0.0756323 0.428932i
\(735\) −31.4029 + 24.0699i −1.15831 + 0.887832i
\(736\) 22.3282 18.7356i 0.823029 0.690603i
\(737\) −0.263025 + 0.455572i −0.00968863 + 0.0167812i
\(738\) −1.25987 3.12760i −0.0463765 0.115129i
\(739\) −8.47592 14.6807i −0.311792 0.540039i 0.666958 0.745095i \(-0.267596\pi\)
−0.978750 + 0.205056i \(0.934263\pi\)
\(740\) −28.2754 + 23.7258i −1.03942 + 0.872179i
\(741\) −50.5913 12.6416i −1.85852 0.464401i
\(742\) −3.71627 + 2.67530i −0.136429 + 0.0982133i
\(743\) 4.70157 1.71123i 0.172484 0.0627790i −0.254335 0.967116i \(-0.581857\pi\)
0.426819 + 0.904337i \(0.359634\pi\)
\(744\) 3.27364 3.38645i 0.120018 0.124153i
\(745\) 64.4752 + 23.4671i 2.36219 + 0.859766i
\(746\) 9.56599 + 16.5688i 0.350236 + 0.606626i
\(747\) 2.96750 + 1.58179i 0.108575 + 0.0578746i
\(748\) −0.290253 0.502734i −0.0106127 0.0183818i
\(749\) −33.9210 2.52098i −1.23945 0.0921147i
\(750\) 0.877846 1.96893i 0.0320544 0.0718953i
\(751\) −46.4009 + 16.8886i −1.69319 + 0.616272i −0.995022 0.0996584i \(-0.968225\pi\)
−0.698172 + 0.715930i \(0.746003\pi\)
\(752\) 11.4414 4.16434i 0.417226 0.151858i
\(753\) 34.4960 16.8027i 1.25710 0.612326i
\(754\) 1.70769 + 9.68478i 0.0621904 + 0.352699i
\(755\) −35.6951 −1.29908
\(756\) 20.3951 + 10.0973i 0.741764 + 0.367235i
\(757\) 25.2822 0.918897 0.459449 0.888204i \(-0.348047\pi\)
0.459449 + 0.888204i \(0.348047\pi\)
\(758\) −1.39694 7.92242i −0.0507390 0.287755i
\(759\) −0.733193 0.495097i −0.0266132 0.0179709i
\(760\) 34.3491 12.5021i 1.24597 0.453498i
\(761\) −5.31141 + 1.93320i −0.192538 + 0.0700783i −0.436490 0.899709i \(-0.643779\pi\)
0.243951 + 0.969787i \(0.421556\pi\)
\(762\) −2.49898 3.44329i −0.0905285 0.124737i
\(763\) −12.2874 25.4748i −0.444834 0.922251i
\(764\) 6.29839 + 10.9091i 0.227868 + 0.394678i
\(765\) 23.8257 + 26.5162i 0.861421 + 0.958697i
\(766\) −2.59760 4.49918i −0.0938552 0.162562i
\(767\) −46.5920 16.9581i −1.68234 0.612322i