Properties

Label 189.2.u.a.4.13
Level $189$
Weight $2$
Character 189.4
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(4,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([2, 12]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.u (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 4.13
Character \(\chi\) \(=\) 189.4
Dual form 189.2.u.a.142.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0570934 + 0.323793i) q^{2} +(-0.691412 - 1.58806i) q^{3} +(1.77780 - 0.647067i) q^{4} +(1.85642 - 0.675680i) q^{5} +(0.474729 - 0.314543i) q^{6} +(-2.33644 - 1.24140i) q^{7} +(0.639805 + 1.10817i) q^{8} +(-2.04390 + 2.19601i) q^{9} +O(q^{10})\) \(q+(0.0570934 + 0.323793i) q^{2} +(-0.691412 - 1.58806i) q^{3} +(1.77780 - 0.647067i) q^{4} +(1.85642 - 0.675680i) q^{5} +(0.474729 - 0.314543i) q^{6} +(-2.33644 - 1.24140i) q^{7} +(0.639805 + 1.10817i) q^{8} +(-2.04390 + 2.19601i) q^{9} +(0.324770 + 0.562517i) q^{10} +(-3.32802 - 1.21130i) q^{11} +(-2.25678 - 2.37588i) q^{12} +(3.07096 - 1.11774i) q^{13} +(0.268561 - 0.827397i) q^{14} +(-2.35657 - 2.48093i) q^{15} +(2.57627 - 2.16174i) q^{16} +(3.33900 + 5.78332i) q^{17} +(-0.827747 - 0.536422i) q^{18} +(3.31187 - 5.73632i) q^{19} +(2.86313 - 2.40245i) q^{20} +(-0.355980 + 4.56873i) q^{21} +(0.202202 - 1.14675i) q^{22} +(-1.04852 + 5.94644i) q^{23} +(1.31748 - 1.78226i) q^{24} +(-0.840487 + 0.705253i) q^{25} +(0.537247 + 0.930538i) q^{26} +(4.90059 + 1.72749i) q^{27} +(-4.95699 - 0.695130i) q^{28} +(-4.03401 - 1.46826i) q^{29} +(0.668764 - 0.904687i) q^{30} +(-3.97516 + 1.44684i) q^{31} +(2.80752 + 2.35579i) q^{32} +(0.377410 + 6.12261i) q^{33} +(-1.68196 + 1.41134i) q^{34} +(-5.17618 - 0.725868i) q^{35} +(-2.21268 + 5.22662i) q^{36} +2.07250 q^{37} +(2.04647 + 0.744853i) q^{38} +(-3.89833 - 4.10406i) q^{39} +(1.93651 + 1.62493i) q^{40} +(-0.663863 + 0.241626i) q^{41} +(-1.49965 + 0.145581i) q^{42} +(1.66178 + 9.42445i) q^{43} -6.70035 q^{44} +(-2.31052 + 5.45774i) q^{45} -1.98528 q^{46} +(7.26473 + 2.64414i) q^{47} +(-5.21425 - 2.59662i) q^{48} +(3.91786 + 5.80089i) q^{49} +(-0.276342 - 0.231879i) q^{50} +(6.87566 - 9.30121i) q^{51} +(4.73630 - 3.97423i) q^{52} +(0.108967 - 0.188737i) q^{53} +(-0.279558 + 1.68540i) q^{54} -6.99663 q^{55} +(-0.119177 - 3.38343i) q^{56} +(-11.3995 - 1.29330i) q^{57} +(0.245097 - 1.39001i) q^{58} +(-3.08240 - 2.58644i) q^{59} +(-5.79485 - 2.88575i) q^{60} +(-5.32489 - 1.93810i) q^{61} +(-0.695433 - 1.20453i) q^{62} +(7.50156 - 2.59356i) q^{63} +(2.76058 - 4.78146i) q^{64} +(4.94574 - 4.14997i) q^{65} +(-1.96091 + 0.471764i) q^{66} +(0.695751 - 3.94580i) q^{67} +(9.67829 + 8.12105i) q^{68} +(10.1683 - 2.44633i) q^{69} +(-0.0604953 - 1.71745i) q^{70} +(-4.16488 + 7.21379i) q^{71} +(-3.74126 - 0.859975i) q^{72} -5.42623 q^{73} +(0.118326 + 0.671061i) q^{74} +(1.70111 + 0.847128i) q^{75} +(2.17606 - 12.3411i) q^{76} +(6.27199 + 6.96152i) q^{77} +(1.10630 - 1.49657i) q^{78} +(2.08876 + 11.8459i) q^{79} +(3.32197 - 5.75383i) q^{80} +(-0.644959 - 8.97686i) q^{81} +(-0.116139 - 0.201159i) q^{82} +(-9.05188 - 3.29461i) q^{83} +(2.32341 + 8.35264i) q^{84} +(10.1063 + 8.48015i) q^{85} +(-2.95669 + 1.07615i) q^{86} +(0.457473 + 7.42145i) q^{87} +(-0.786951 - 4.46302i) q^{88} +(1.14565 - 1.98432i) q^{89} +(-1.89909 - 0.436530i) q^{90} +(-8.56264 - 1.20076i) q^{91} +(1.98369 + 11.2501i) q^{92} +(5.04615 + 5.31245i) q^{93} +(-0.441387 + 2.50323i) q^{94} +(2.27228 - 12.8868i) q^{95} +(1.79999 - 6.08735i) q^{96} +(0.870524 + 4.93699i) q^{97} +(-1.65460 + 1.59977i) q^{98} +(9.46216 - 4.83260i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} - 15 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} - 15 q^{9} + 3 q^{10} - 15 q^{11} - 3 q^{12} - 12 q^{13} - 30 q^{14} + 9 q^{16} + 27 q^{17} - 3 q^{18} + 3 q^{19} - 18 q^{20} + 15 q^{21} - 12 q^{22} - 36 q^{23} - 72 q^{24} - 3 q^{25} + 30 q^{26} - 12 q^{27} - 12 q^{28} - 30 q^{29} - 3 q^{30} - 3 q^{31} - 75 q^{32} + 15 q^{33} - 18 q^{34} + 15 q^{35} - 60 q^{36} - 6 q^{37} + 69 q^{38} + 51 q^{39} + 51 q^{40} - 39 q^{42} - 12 q^{43} - 6 q^{44} - 21 q^{45} - 6 q^{46} - 21 q^{47} + 90 q^{48} - 42 q^{49} - 39 q^{50} + 33 q^{51} + 9 q^{52} + 9 q^{53} - 9 q^{54} - 24 q^{55} + 111 q^{56} - 18 q^{57} - 3 q^{58} + 27 q^{59} - 63 q^{60} - 21 q^{61} + 75 q^{62} + 63 q^{63} - 30 q^{64} - 90 q^{65} - 3 q^{66} - 3 q^{67} - 30 q^{68} - 6 q^{69} + 39 q^{70} - 18 q^{71} + 183 q^{72} - 42 q^{73} + 51 q^{74} - 45 q^{75} - 24 q^{76} + 15 q^{77} - 30 q^{78} + 15 q^{79} + 102 q^{80} - 87 q^{81} - 6 q^{82} - 42 q^{83} + 135 q^{84} - 63 q^{85} - 93 q^{86} + 75 q^{87} - 51 q^{88} + 75 q^{89} - 39 q^{90} - 21 q^{91} - 66 q^{92} + 81 q^{93} + 33 q^{94} + 15 q^{95} - 171 q^{96} - 12 q^{97} - 36 q^{98} + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0570934 + 0.323793i 0.0403712 + 0.228956i 0.998317 0.0579928i \(-0.0184701\pi\)
−0.957946 + 0.286949i \(0.907359\pi\)
\(3\) −0.691412 1.58806i −0.399187 0.916870i
\(4\) 1.77780 0.647067i 0.888901 0.323534i
\(5\) 1.85642 0.675680i 0.830214 0.302173i 0.108267 0.994122i \(-0.465470\pi\)
0.721947 + 0.691949i \(0.243248\pi\)
\(6\) 0.474729 0.314543i 0.193807 0.128411i
\(7\) −2.33644 1.24140i −0.883090 0.469204i
\(8\) 0.639805 + 1.10817i 0.226205 + 0.391799i
\(9\) −2.04390 + 2.19601i −0.681299 + 0.732005i
\(10\) 0.324770 + 0.562517i 0.102701 + 0.177884i
\(11\) −3.32802 1.21130i −1.00344 0.365221i −0.212527 0.977155i \(-0.568169\pi\)
−0.790908 + 0.611935i \(0.790392\pi\)
\(12\) −2.25678 2.37588i −0.651476 0.685856i
\(13\) 3.07096 1.11774i 0.851730 0.310004i 0.120984 0.992654i \(-0.461395\pi\)
0.730745 + 0.682650i \(0.239173\pi\)
\(14\) 0.268561 0.827397i 0.0717759 0.221131i
\(15\) −2.35657 2.48093i −0.608464 0.640574i
\(16\) 2.57627 2.16174i 0.644067 0.540436i
\(17\) 3.33900 + 5.78332i 0.809827 + 1.40266i 0.912983 + 0.407997i \(0.133772\pi\)
−0.103156 + 0.994665i \(0.532894\pi\)
\(18\) −0.827747 0.536422i −0.195102 0.126436i
\(19\) 3.31187 5.73632i 0.759795 1.31600i −0.183161 0.983083i \(-0.558633\pi\)
0.942955 0.332920i \(-0.108034\pi\)
\(20\) 2.86313 2.40245i 0.640215 0.537205i
\(21\) −0.355980 + 4.56873i −0.0776812 + 0.996978i
\(22\) 0.202202 1.14675i 0.0431097 0.244487i
\(23\) −1.04852 + 5.94644i −0.218631 + 1.23992i 0.655863 + 0.754880i \(0.272305\pi\)
−0.874493 + 0.485037i \(0.838806\pi\)
\(24\) 1.31748 1.78226i 0.268930 0.363802i
\(25\) −0.840487 + 0.705253i −0.168097 + 0.141051i
\(26\) 0.537247 + 0.930538i 0.105363 + 0.182494i
\(27\) 4.90059 + 1.72749i 0.943119 + 0.332456i
\(28\) −4.95699 0.695130i −0.936783 0.131367i
\(29\) −4.03401 1.46826i −0.749098 0.272649i −0.0608717 0.998146i \(-0.519388\pi\)
−0.688226 + 0.725496i \(0.741610\pi\)
\(30\) 0.668764 0.904687i 0.122099 0.165172i
\(31\) −3.97516 + 1.44684i −0.713961 + 0.259860i −0.673360 0.739315i \(-0.735149\pi\)
−0.0406009 + 0.999175i \(0.512927\pi\)
\(32\) 2.80752 + 2.35579i 0.496304 + 0.416449i
\(33\) 0.377410 + 6.12261i 0.0656987 + 1.06581i
\(34\) −1.68196 + 1.41134i −0.288454 + 0.242042i
\(35\) −5.17618 0.725868i −0.874935 0.122694i
\(36\) −2.21268 + 5.22662i −0.368780 + 0.871104i
\(37\) 2.07250 0.340717 0.170358 0.985382i \(-0.445507\pi\)
0.170358 + 0.985382i \(0.445507\pi\)
\(38\) 2.04647 + 0.744853i 0.331981 + 0.120831i
\(39\) −3.89833 4.10406i −0.624233 0.657175i
\(40\) 1.93651 + 1.62493i 0.306190 + 0.256924i
\(41\) −0.663863 + 0.241626i −0.103678 + 0.0377357i −0.393338 0.919394i \(-0.628680\pi\)
0.289660 + 0.957130i \(0.406458\pi\)
\(42\) −1.49965 + 0.145581i −0.231400 + 0.0224636i
\(43\) 1.66178 + 9.42445i 0.253420 + 1.43722i 0.800096 + 0.599871i \(0.204782\pi\)
−0.546677 + 0.837344i \(0.684107\pi\)
\(44\) −6.70035 −1.01012
\(45\) −2.31052 + 5.45774i −0.344432 + 0.813591i
\(46\) −1.98528 −0.292713
\(47\) 7.26473 + 2.64414i 1.05967 + 0.385688i 0.812304 0.583234i \(-0.198213\pi\)
0.247365 + 0.968922i \(0.420435\pi\)
\(48\) −5.21425 2.59662i −0.752612 0.374790i
\(49\) 3.91786 + 5.80089i 0.559695 + 0.828699i
\(50\) −0.276342 0.231879i −0.0390807 0.0327926i
\(51\) 6.87566 9.30121i 0.962785 1.30243i
\(52\) 4.73630 3.97423i 0.656807 0.551126i
\(53\) 0.108967 0.188737i 0.0149678 0.0259250i −0.858444 0.512906i \(-0.828569\pi\)
0.873412 + 0.486981i \(0.161902\pi\)
\(54\) −0.279558 + 1.68540i −0.0380430 + 0.229355i
\(55\) −6.99663 −0.943426
\(56\) −0.119177 3.38343i −0.0159257 0.452130i
\(57\) −11.3995 1.29330i −1.50990 0.171301i
\(58\) 0.245097 1.39001i 0.0321828 0.182518i
\(59\) −3.08240 2.58644i −0.401294 0.336726i 0.419700 0.907663i \(-0.362135\pi\)
−0.820994 + 0.570937i \(0.806580\pi\)
\(60\) −5.79485 2.88575i −0.748112 0.372549i
\(61\) −5.32489 1.93810i −0.681782 0.248148i −0.0221696 0.999754i \(-0.507057\pi\)
−0.659613 + 0.751606i \(0.729280\pi\)
\(62\) −0.695433 1.20453i −0.0883201 0.152975i
\(63\) 7.50156 2.59356i 0.945108 0.326757i
\(64\) 2.76058 4.78146i 0.345072 0.597683i
\(65\) 4.94574 4.14997i 0.613443 0.514740i
\(66\) −1.96091 + 0.471764i −0.241372 + 0.0580701i
\(67\) 0.695751 3.94580i 0.0849995 0.482056i −0.912357 0.409395i \(-0.865740\pi\)
0.997357 0.0726609i \(-0.0231491\pi\)
\(68\) 9.67829 + 8.12105i 1.17366 + 0.984822i
\(69\) 10.1683 2.44633i 1.22412 0.294503i
\(70\) −0.0604953 1.71745i −0.00723057 0.205275i
\(71\) −4.16488 + 7.21379i −0.494281 + 0.856119i −0.999978 0.00659150i \(-0.997902\pi\)
0.505698 + 0.862711i \(0.331235\pi\)
\(72\) −3.74126 0.859975i −0.440912 0.101349i
\(73\) −5.42623 −0.635092 −0.317546 0.948243i \(-0.602859\pi\)
−0.317546 + 0.948243i \(0.602859\pi\)
\(74\) 0.118326 + 0.671061i 0.0137551 + 0.0780093i
\(75\) 1.70111 + 0.847128i 0.196427 + 0.0978179i
\(76\) 2.17606 12.3411i 0.249611 1.41562i
\(77\) 6.27199 + 6.96152i 0.714760 + 0.793339i
\(78\) 1.10630 1.49657i 0.125263 0.169453i
\(79\) 2.08876 + 11.8459i 0.235004 + 1.33277i 0.842606 + 0.538530i \(0.181020\pi\)
−0.607603 + 0.794241i \(0.707869\pi\)
\(80\) 3.32197 5.75383i 0.371408 0.643297i
\(81\) −0.644959 8.97686i −0.0716621 0.997429i
\(82\) −0.116139 0.201159i −0.0128254 0.0222143i
\(83\) −9.05188 3.29461i −0.993573 0.361631i −0.206470 0.978453i \(-0.566198\pi\)
−0.787103 + 0.616822i \(0.788420\pi\)
\(84\) 2.32341 + 8.35264i 0.253505 + 0.911348i
\(85\) 10.1063 + 8.48015i 1.09618 + 0.919802i
\(86\) −2.95669 + 1.07615i −0.318829 + 0.116044i
\(87\) 0.457473 + 7.42145i 0.0490463 + 0.795663i
\(88\) −0.786951 4.46302i −0.0838892 0.475759i
\(89\) 1.14565 1.98432i 0.121438 0.210337i −0.798897 0.601468i \(-0.794583\pi\)
0.920335 + 0.391131i \(0.127916\pi\)
\(90\) −1.89909 0.436530i −0.200182 0.0460143i
\(91\) −8.56264 1.20076i −0.897609 0.125874i
\(92\) 1.98369 + 11.2501i 0.206814 + 1.17290i
\(93\) 5.04615 + 5.31245i 0.523262 + 0.550876i
\(94\) −0.441387 + 2.50323i −0.0455256 + 0.258189i
\(95\) 2.27228 12.8868i 0.233131 1.32215i
\(96\) 1.79999 6.08735i 0.183711 0.621287i
\(97\) 0.870524 + 4.93699i 0.0883883 + 0.501275i 0.996574 + 0.0827074i \(0.0263567\pi\)
−0.908186 + 0.418568i \(0.862532\pi\)
\(98\) −1.65460 + 1.59977i −0.167140 + 0.161601i
\(99\) 9.46216 4.83260i 0.950983 0.485695i
\(100\) −1.03787 + 1.79765i −0.103787 + 0.179765i
\(101\) −2.56747 14.5609i −0.255473 1.44886i −0.794855 0.606800i \(-0.792453\pi\)
0.539382 0.842061i \(-0.318658\pi\)
\(102\) 3.40422 + 1.69525i 0.337068 + 0.167855i
\(103\) 4.98262 1.81352i 0.490952 0.178692i −0.0846681 0.996409i \(-0.526983\pi\)
0.575620 + 0.817717i \(0.304761\pi\)
\(104\) 3.20346 + 2.68802i 0.314125 + 0.263582i
\(105\) 2.42615 + 8.72199i 0.236768 + 0.851179i
\(106\) 0.0673330 + 0.0245072i 0.00653996 + 0.00238035i
\(107\) −10.3111 17.8593i −0.996811 1.72653i −0.567514 0.823364i \(-0.692095\pi\)
−0.429297 0.903163i \(-0.641239\pi\)
\(108\) 9.83009 0.0998721i 0.945900 0.00961020i
\(109\) 6.05840 10.4935i 0.580290 1.00509i −0.415155 0.909751i \(-0.636273\pi\)
0.995445 0.0953403i \(-0.0303939\pi\)
\(110\) −0.399462 2.26546i −0.0380872 0.216003i
\(111\) −1.43295 3.29126i −0.136010 0.312393i
\(112\) −8.70286 + 1.85260i −0.822343 + 0.175055i
\(113\) −0.221866 + 1.25826i −0.0208714 + 0.118367i −0.993463 0.114151i \(-0.963585\pi\)
0.972592 + 0.232518i \(0.0746965\pi\)
\(114\) −0.232078 3.76492i −0.0217361 0.352617i
\(115\) 2.07140 + 11.7475i 0.193159 + 1.09546i
\(116\) −8.12175 −0.754085
\(117\) −3.82215 + 9.02840i −0.353358 + 0.834676i
\(118\) 0.661486 1.14573i 0.0608947 0.105473i
\(119\) −0.621960 17.6574i −0.0570150 1.61865i
\(120\) 1.24156 4.19881i 0.113339 0.383297i
\(121\) 1.18197 + 0.991788i 0.107452 + 0.0901626i
\(122\) 0.323527 1.83481i 0.0292908 0.166116i
\(123\) 0.842721 + 0.887194i 0.0759856 + 0.0799956i
\(124\) −6.13085 + 5.14440i −0.550567 + 0.461981i
\(125\) −6.02266 + 10.4316i −0.538683 + 0.933026i
\(126\) 1.26807 + 2.28088i 0.112968 + 0.203197i
\(127\) −5.71616 9.90068i −0.507227 0.878543i −0.999965 0.00836519i \(-0.997337\pi\)
0.492738 0.870178i \(-0.335996\pi\)
\(128\) 8.59368 + 3.12785i 0.759582 + 0.276465i
\(129\) 13.8177 9.15520i 1.21658 0.806071i
\(130\) 1.62610 + 1.36446i 0.142618 + 0.119671i
\(131\) 2.35278 13.3433i 0.205563 1.16581i −0.690988 0.722866i \(-0.742824\pi\)
0.896551 0.442940i \(-0.146064\pi\)
\(132\) 4.63271 + 10.6406i 0.403225 + 0.926145i
\(133\) −14.8590 + 9.29120i −1.28844 + 0.805650i
\(134\) 1.31734 0.113801
\(135\) 10.2648 0.104288i 0.883450 0.00897571i
\(136\) −4.27262 + 7.40040i −0.366374 + 0.634579i
\(137\) 4.08938 3.43140i 0.349379 0.293164i −0.451161 0.892442i \(-0.648990\pi\)
0.800541 + 0.599278i \(0.204546\pi\)
\(138\) 1.37265 + 3.15275i 0.116847 + 0.268380i
\(139\) 8.02455 + 6.73339i 0.680633 + 0.571119i 0.916191 0.400741i \(-0.131247\pi\)
−0.235558 + 0.971860i \(0.575692\pi\)
\(140\) −9.67192 + 2.05889i −0.817426 + 0.174008i
\(141\) −0.823849 13.3650i −0.0693806 1.12554i
\(142\) −2.57356 0.936700i −0.215969 0.0786061i
\(143\) −11.5741 −0.967875
\(144\) −0.518405 + 10.0759i −0.0432004 + 0.839659i
\(145\) −8.48088 −0.704299
\(146\) −0.309802 1.75697i −0.0256394 0.145408i
\(147\) 6.50333 10.2326i 0.536386 0.843973i
\(148\) 3.68450 1.34105i 0.302864 0.110233i
\(149\) 1.60443 + 1.34627i 0.131440 + 0.110291i 0.706138 0.708075i \(-0.250436\pi\)
−0.574698 + 0.818366i \(0.694880\pi\)
\(150\) −0.177172 + 0.599173i −0.0144660 + 0.0489223i
\(151\) −9.45486 3.44129i −0.769426 0.280048i −0.0726694 0.997356i \(-0.523152\pi\)
−0.696756 + 0.717308i \(0.745374\pi\)
\(152\) 8.47580 0.687478
\(153\) −19.5248 4.48802i −1.57849 0.362835i
\(154\) −1.89600 + 2.42828i −0.152784 + 0.195677i
\(155\) −6.40195 + 5.37188i −0.514217 + 0.431480i
\(156\) −9.58607 4.77372i −0.767500 0.382204i
\(157\) −7.43472 6.23847i −0.593355 0.497884i 0.295947 0.955204i \(-0.404365\pi\)
−0.889302 + 0.457320i \(0.848809\pi\)
\(158\) −3.71638 + 1.35265i −0.295659 + 0.107611i
\(159\) −0.375068 0.0425521i −0.0297448 0.00337460i
\(160\) 6.80369 + 2.47634i 0.537879 + 0.195772i
\(161\) 9.83169 12.5918i 0.774845 0.992376i
\(162\) 2.86982 0.721353i 0.225474 0.0566749i
\(163\) 3.25591 + 5.63940i 0.255023 + 0.441712i 0.964902 0.262611i \(-0.0845837\pi\)
−0.709879 + 0.704324i \(0.751250\pi\)
\(164\) −1.02387 + 0.859128i −0.0799508 + 0.0670867i
\(165\) 4.83756 + 11.1111i 0.376603 + 0.864999i
\(166\) 0.549970 3.11904i 0.0426860 0.242084i
\(167\) 1.07006 6.06859i 0.0828035 0.469602i −0.915006 0.403441i \(-0.867814\pi\)
0.997809 0.0661605i \(-0.0210749\pi\)
\(168\) −5.29071 + 2.52861i −0.408187 + 0.195086i
\(169\) −1.77715 + 1.49120i −0.136704 + 0.114708i
\(170\) −2.16881 + 3.75649i −0.166340 + 0.288110i
\(171\) 5.82793 + 18.9974i 0.445673 + 1.45277i
\(172\) 9.05258 + 15.6795i 0.690253 + 1.19555i
\(173\) −3.54075 + 2.97104i −0.269198 + 0.225884i −0.767387 0.641185i \(-0.778443\pi\)
0.498188 + 0.867069i \(0.333999\pi\)
\(174\) −2.37689 + 0.571843i −0.180192 + 0.0433513i
\(175\) 2.83924 0.604398i 0.214627 0.0456882i
\(176\) −11.1924 + 4.07369i −0.843657 + 0.307066i
\(177\) −1.97622 + 6.68334i −0.148542 + 0.502351i
\(178\) 0.707917 + 0.257661i 0.0530606 + 0.0193125i
\(179\) 11.2466 + 19.4797i 0.840609 + 1.45598i 0.889380 + 0.457168i \(0.151136\pi\)
−0.0487707 + 0.998810i \(0.515530\pi\)
\(180\) −0.576129 + 11.1978i −0.0429421 + 0.834638i
\(181\) 3.82076 + 6.61776i 0.283995 + 0.491894i 0.972365 0.233466i \(-0.0750067\pi\)
−0.688370 + 0.725360i \(0.741673\pi\)
\(182\) −0.100074 2.84108i −0.00741795 0.210595i
\(183\) 0.603863 + 9.79629i 0.0446389 + 0.724163i
\(184\) −7.26053 + 2.64262i −0.535254 + 0.194816i
\(185\) 3.84742 1.40035i 0.282868 0.102956i
\(186\) −1.43203 + 1.93722i −0.105002 + 0.142044i
\(187\) −4.10693 23.2915i −0.300328 1.70325i
\(188\) 14.6262 1.06672
\(189\) −9.30541 10.1198i −0.676869 0.736104i
\(190\) 4.30238 0.312127
\(191\) 0.451657 + 2.56147i 0.0326807 + 0.185342i 0.996778 0.0802068i \(-0.0255581\pi\)
−0.964098 + 0.265548i \(0.914447\pi\)
\(192\) −9.50197 1.07802i −0.685746 0.0777991i
\(193\) −10.8716 + 3.95695i −0.782557 + 0.284827i −0.702238 0.711942i \(-0.747816\pi\)
−0.0803184 + 0.996769i \(0.525594\pi\)
\(194\) −1.54886 + 0.563739i −0.111202 + 0.0404741i
\(195\) −10.0100 4.98481i −0.716828 0.356970i
\(196\) 10.7188 + 7.77772i 0.765625 + 0.555552i
\(197\) −3.06268 5.30472i −0.218207 0.377946i 0.736053 0.676924i \(-0.236688\pi\)
−0.954260 + 0.298978i \(0.903354\pi\)
\(198\) 2.10499 + 2.78787i 0.149595 + 0.198125i
\(199\) 5.74234 + 9.94603i 0.407064 + 0.705055i 0.994559 0.104172i \(-0.0332193\pi\)
−0.587495 + 0.809227i \(0.699886\pi\)
\(200\) −1.31929 0.480183i −0.0932879 0.0339540i
\(201\) −6.74723 + 1.62328i −0.475913 + 0.114497i
\(202\) 4.56812 1.66266i 0.321412 0.116984i
\(203\) 7.60252 + 8.43831i 0.533592 + 0.592254i
\(204\) 6.20506 20.9847i 0.434441 1.46923i
\(205\) −1.06914 + 0.897118i −0.0746722 + 0.0626574i
\(206\) 0.871681 + 1.50980i 0.0607329 + 0.105192i
\(207\) −10.9154 14.4565i −0.758673 1.00479i
\(208\) 5.49534 9.51820i 0.381033 0.659969i
\(209\) −17.9704 + 15.0789i −1.24304 + 1.04303i
\(210\) −2.68560 + 1.28354i −0.185324 + 0.0885726i
\(211\) −2.17536 + 12.3371i −0.149758 + 0.849320i 0.813665 + 0.581334i \(0.197469\pi\)
−0.963423 + 0.267986i \(0.913642\pi\)
\(212\) 0.0715969 0.406046i 0.00491730 0.0278874i
\(213\) 14.3356 + 1.62640i 0.982260 + 0.111439i
\(214\) 5.19403 4.35831i 0.355057 0.297928i
\(215\) 9.45288 + 16.3729i 0.644681 + 1.11662i
\(216\) 1.22106 + 6.53596i 0.0830825 + 0.444716i
\(217\) 11.0838 + 1.55431i 0.752419 + 0.105513i
\(218\) 3.74360 + 1.36256i 0.253549 + 0.0922842i
\(219\) 3.75176 + 8.61720i 0.253521 + 0.582297i
\(220\) −12.4386 + 4.52729i −0.838613 + 0.305230i
\(221\) 16.7182 + 14.0282i 1.12458 + 0.943639i
\(222\) 0.983876 0.651889i 0.0660334 0.0437519i
\(223\) 6.81490 5.71838i 0.456360 0.382931i −0.385430 0.922737i \(-0.625947\pi\)
0.841790 + 0.539806i \(0.181502\pi\)
\(224\) −3.63512 8.98940i −0.242882 0.600630i
\(225\) 0.169126 3.28719i 0.0112750 0.219146i
\(226\) −0.420084 −0.0279436
\(227\) −13.5318 4.92518i −0.898138 0.326895i −0.148632 0.988893i \(-0.547487\pi\)
−0.749506 + 0.661997i \(0.769709\pi\)
\(228\) −21.1029 + 5.07703i −1.39758 + 0.336235i
\(229\) −13.6724 11.4725i −0.903499 0.758125i 0.0673725 0.997728i \(-0.478538\pi\)
−0.970871 + 0.239603i \(0.922983\pi\)
\(230\) −3.68550 + 1.34141i −0.243015 + 0.0884501i
\(231\) 6.71881 14.7736i 0.442065 0.972032i
\(232\) −0.953892 5.40979i −0.0626261 0.355170i
\(233\) −5.15441 −0.337677 −0.168838 0.985644i \(-0.554002\pi\)
−0.168838 + 0.985644i \(0.554002\pi\)
\(234\) −3.14155 0.722125i −0.205370 0.0472068i
\(235\) 15.2729 0.996297
\(236\) −7.15350 2.60366i −0.465653 0.169484i
\(237\) 17.3679 11.5075i 1.12817 0.747493i
\(238\) 5.68183 1.20951i 0.368298 0.0784007i
\(239\) −11.4287 9.58981i −0.739260 0.620313i 0.193379 0.981124i \(-0.438055\pi\)
−0.932639 + 0.360811i \(0.882500\pi\)
\(240\) −11.4343 1.29724i −0.738081 0.0837366i
\(241\) 10.4840 8.79711i 0.675333 0.566672i −0.239306 0.970944i \(-0.576920\pi\)
0.914639 + 0.404273i \(0.132475\pi\)
\(242\) −0.253652 + 0.439337i −0.0163053 + 0.0282417i
\(243\) −13.8099 + 7.23095i −0.885906 + 0.463866i
\(244\) −10.7207 −0.686321
\(245\) 11.1927 + 8.12165i 0.715077 + 0.518873i
\(246\) −0.239153 + 0.323520i −0.0152479 + 0.0206269i
\(247\) 3.75890 21.3178i 0.239173 1.35642i
\(248\) −4.14668 3.47948i −0.263315 0.220947i
\(249\) 1.02652 + 16.6529i 0.0650530 + 1.05533i
\(250\) −3.72152 1.35452i −0.235369 0.0856675i
\(251\) −4.85765 8.41369i −0.306612 0.531067i 0.671007 0.741451i \(-0.265862\pi\)
−0.977619 + 0.210384i \(0.932529\pi\)
\(252\) 11.6581 9.46485i 0.734391 0.596229i
\(253\) 10.6924 18.5198i 0.672225 1.16433i
\(254\) 2.87941 2.41612i 0.180671 0.151601i
\(255\) 6.47944 21.9127i 0.405758 1.37222i
\(256\) 1.39535 7.91340i 0.0872092 0.494588i
\(257\) −2.80389 2.35274i −0.174902 0.146760i 0.551135 0.834416i \(-0.314195\pi\)
−0.726036 + 0.687657i \(0.758640\pi\)
\(258\) 3.75329 + 3.95136i 0.233669 + 0.246001i
\(259\) −4.84226 2.57280i −0.300884 0.159866i
\(260\) 6.10724 10.5780i 0.378755 0.656023i
\(261\) 11.4694 5.85778i 0.709940 0.362587i
\(262\) 4.45478 0.275217
\(263\) 0.613089 + 3.47700i 0.0378047 + 0.214401i 0.997858 0.0654158i \(-0.0208374\pi\)
−0.960053 + 0.279817i \(0.909726\pi\)
\(264\) −6.54346 + 4.33551i −0.402722 + 0.266832i
\(265\) 0.0747629 0.424001i 0.00459265 0.0260462i
\(266\) −3.85678 4.28078i −0.236474 0.262472i
\(267\) −3.94334 0.447379i −0.241328 0.0273791i
\(268\) −1.31629 7.46505i −0.0804052 0.456000i
\(269\) −0.434332 + 0.752285i −0.0264817 + 0.0458676i −0.878963 0.476891i \(-0.841764\pi\)
0.852481 + 0.522758i \(0.175097\pi\)
\(270\) 0.619818 + 3.31770i 0.0377209 + 0.201909i
\(271\) −3.54947 6.14785i −0.215615 0.373456i 0.737848 0.674967i \(-0.235842\pi\)
−0.953463 + 0.301511i \(0.902509\pi\)
\(272\) 21.1042 + 7.68131i 1.27963 + 0.465748i
\(273\) 4.01343 + 14.4283i 0.242904 + 0.873237i
\(274\) 1.34454 + 1.12820i 0.0812266 + 0.0681572i
\(275\) 3.65143 1.32901i 0.220189 0.0801424i
\(276\) 16.4943 10.9286i 0.992838 0.657827i
\(277\) 0.668043 + 3.78866i 0.0401388 + 0.227639i 0.998278 0.0586652i \(-0.0186844\pi\)
−0.958139 + 0.286304i \(0.907573\pi\)
\(278\) −1.72208 + 2.98272i −0.103283 + 0.178892i
\(279\) 4.94755 11.6867i 0.296202 0.699665i
\(280\) −2.50736 6.20053i −0.149843 0.370552i
\(281\) 2.68129 + 15.2064i 0.159952 + 0.907136i 0.954117 + 0.299433i \(0.0967975\pi\)
−0.794165 + 0.607702i \(0.792091\pi\)
\(282\) 4.28047 1.02981i 0.254898 0.0613245i
\(283\) −4.03012 + 22.8560i −0.239566 + 1.35865i 0.593215 + 0.805044i \(0.297858\pi\)
−0.832781 + 0.553602i \(0.813253\pi\)
\(284\) −2.73653 + 15.5197i −0.162383 + 0.920922i
\(285\) −22.0361 + 5.30153i −1.30531 + 0.314036i
\(286\) −0.660806 3.74761i −0.0390743 0.221601i
\(287\) 1.85103 + 0.259574i 0.109263 + 0.0153222i
\(288\) −10.9116 + 1.35036i −0.642974 + 0.0795708i
\(289\) −13.7979 + 23.8986i −0.811640 + 1.40580i
\(290\) −0.484203 2.74605i −0.0284334 0.161254i
\(291\) 7.23837 4.79594i 0.424320 0.281143i
\(292\) −9.64677 + 3.51114i −0.564534 + 0.205474i
\(293\) 11.6223 + 9.75229i 0.678983 + 0.569735i 0.915709 0.401842i \(-0.131630\pi\)
−0.236726 + 0.971577i \(0.576074\pi\)
\(294\) 3.68455 + 1.52152i 0.214887 + 0.0887367i
\(295\) −7.46982 2.71879i −0.434910 0.158294i
\(296\) 1.32600 + 2.29669i 0.0770719 + 0.133492i
\(297\) −14.2167 11.6852i −0.824939 0.678044i
\(298\) −0.344312 + 0.596366i −0.0199455 + 0.0345466i
\(299\) 3.42660 + 19.4332i 0.198165 + 1.12385i
\(300\) 3.57239 + 0.405294i 0.206252 + 0.0233996i
\(301\) 7.81684 24.0826i 0.450555 1.38810i
\(302\) 0.574454 3.25789i 0.0330561 0.187471i
\(303\) −21.3484 + 14.1449i −1.22643 + 0.812602i
\(304\) −3.86821 21.9377i −0.221857 1.25821i
\(305\) −11.1947 −0.641009
\(306\) 0.338451 6.57824i 0.0193479 0.376053i
\(307\) −2.22517 + 3.85410i −0.126997 + 0.219965i −0.922512 0.385969i \(-0.873867\pi\)
0.795515 + 0.605934i \(0.207201\pi\)
\(308\) 15.6549 + 8.31780i 0.892023 + 0.473951i
\(309\) −6.32504 6.65882i −0.359819 0.378807i
\(310\) −2.10489 1.76621i −0.119549 0.100314i
\(311\) 5.55693 31.5149i 0.315105 1.78705i −0.256526 0.966537i \(-0.582578\pi\)
0.571631 0.820511i \(-0.306311\pi\)
\(312\) 2.05384 6.94583i 0.116276 0.393230i
\(313\) 18.9280 15.8825i 1.06987 0.897732i 0.0748338 0.997196i \(-0.476157\pi\)
0.995041 + 0.0994643i \(0.0317129\pi\)
\(314\) 1.59550 2.76348i 0.0900392 0.155952i
\(315\) 12.1736 9.88337i 0.685905 0.556865i
\(316\) 11.3785 + 19.7082i 0.640091 + 1.10867i
\(317\) 12.6372 + 4.59956i 0.709775 + 0.258337i 0.671578 0.740933i \(-0.265617\pi\)
0.0381961 + 0.999270i \(0.487839\pi\)
\(318\) −0.00763583 0.123874i −0.000428196 0.00694650i
\(319\) 11.6468 + 9.77280i 0.652094 + 0.547172i
\(320\) 1.89404 10.7417i 0.105880 0.600477i
\(321\) −21.2326 + 28.7228i −1.18509 + 1.60315i
\(322\) 4.63847 + 2.46452i 0.258492 + 0.137342i
\(323\) 44.2333 2.46121
\(324\) −6.95524 15.5418i −0.386402 0.863431i
\(325\) −1.79281 + 3.10524i −0.0994473 + 0.172248i
\(326\) −1.64011 + 1.37621i −0.0908372 + 0.0762215i
\(327\) −20.8531 2.36583i −1.15318 0.130831i
\(328\) −0.692507 0.581082i −0.0382373 0.0320849i
\(329\) −13.6911 15.1963i −0.754816 0.837799i
\(330\) −3.32151 + 2.20074i −0.182843 + 0.121147i
\(331\) 21.6307 + 7.87292i 1.18893 + 0.432735i 0.859348 0.511392i \(-0.170870\pi\)
0.329582 + 0.944127i \(0.393092\pi\)
\(332\) −18.2243 −1.00019
\(333\) −4.23598 + 4.55124i −0.232130 + 0.249406i
\(334\) 2.02606 0.110861
\(335\) −1.37449 7.79514i −0.0750966 0.425894i
\(336\) 8.95932 + 12.5398i 0.488771 + 0.684102i
\(337\) 6.68806 2.43426i 0.364322 0.132602i −0.153371 0.988169i \(-0.549013\pi\)
0.517693 + 0.855566i \(0.326791\pi\)
\(338\) −0.584305 0.490290i −0.0317820 0.0266682i
\(339\) 2.15160 0.517641i 0.116859 0.0281144i
\(340\) 23.4542 + 8.53661i 1.27198 + 0.462963i
\(341\) 14.9820 0.811319
\(342\) −5.81848 + 2.97167i −0.314627 + 0.160689i
\(343\) −1.95262 18.4170i −0.105431 0.994427i
\(344\) −9.38072 + 7.87136i −0.505774 + 0.424395i
\(345\) 17.2236 11.4119i 0.927289 0.614396i
\(346\) −1.16416 0.976842i −0.0625854 0.0525154i
\(347\) −13.2935 + 4.83843i −0.713631 + 0.259740i −0.673219 0.739443i \(-0.735089\pi\)
−0.0404113 + 0.999183i \(0.512867\pi\)
\(348\) 5.61547 + 12.8979i 0.301021 + 0.691398i
\(349\) −6.25442 2.27642i −0.334792 0.121854i 0.169154 0.985590i \(-0.445897\pi\)
−0.503945 + 0.863735i \(0.668119\pi\)
\(350\) 0.357802 + 0.884820i 0.0191253 + 0.0472956i
\(351\) 16.9804 0.172518i 0.906345 0.00920832i
\(352\) −6.48991 11.2409i −0.345914 0.599140i
\(353\) −18.6678 + 15.6642i −0.993589 + 0.833720i −0.986083 0.166252i \(-0.946834\pi\)
−0.00750578 + 0.999972i \(0.502389\pi\)
\(354\) −2.27685 0.258313i −0.121013 0.0137292i
\(355\) −2.85754 + 16.2059i −0.151663 + 0.860121i
\(356\) 0.752746 4.26904i 0.0398955 0.226258i
\(357\) −27.6110 + 13.1962i −1.46133 + 0.698420i
\(358\) −5.66527 + 4.75373i −0.299419 + 0.251242i
\(359\) 2.69724 4.67175i 0.142355 0.246566i −0.786028 0.618191i \(-0.787866\pi\)
0.928383 + 0.371625i \(0.121199\pi\)
\(360\) −7.52641 + 0.931425i −0.396676 + 0.0490904i
\(361\) −12.4369 21.5414i −0.654576 1.13376i
\(362\) −1.92464 + 1.61497i −0.101157 + 0.0848808i
\(363\) 0.757797 2.56277i 0.0397740 0.134511i
\(364\) −15.9997 + 3.40590i −0.838610 + 0.178517i
\(365\) −10.0733 + 3.66639i −0.527262 + 0.191908i
\(366\) −3.13749 + 0.754831i −0.163999 + 0.0394556i
\(367\) −11.7511 4.27703i −0.613400 0.223259i 0.0165902 0.999862i \(-0.494719\pi\)
−0.629990 + 0.776603i \(0.716941\pi\)
\(368\) 10.1534 + 17.5862i 0.529283 + 0.916745i
\(369\) 0.826254 1.95171i 0.0430130 0.101602i
\(370\) 0.673085 + 1.16582i 0.0349920 + 0.0606080i
\(371\) −0.488893 + 0.305700i −0.0253821 + 0.0158712i
\(372\) 12.4086 + 6.17929i 0.643355 + 0.320381i
\(373\) 1.07733 0.392117i 0.0557822 0.0203030i −0.313978 0.949430i \(-0.601662\pi\)
0.369761 + 0.929127i \(0.379440\pi\)
\(374\) 7.30716 2.65959i 0.377844 0.137524i
\(375\) 20.7301 + 2.35187i 1.07050 + 0.121450i
\(376\) 1.71783 + 9.74232i 0.0885905 + 0.502422i
\(377\) −14.0294 −0.722551
\(378\) 2.74543 3.59080i 0.141210 0.184691i
\(379\) 28.2287 1.45001 0.725006 0.688742i \(-0.241837\pi\)
0.725006 + 0.688742i \(0.241837\pi\)
\(380\) −4.29893 24.3804i −0.220530 1.25069i
\(381\) −11.7707 + 15.9231i −0.603031 + 0.815764i
\(382\) −0.803600 + 0.292487i −0.0411158 + 0.0149649i
\(383\) 11.9552 4.35134i 0.610883 0.222343i −0.0180067 0.999838i \(-0.505732\pi\)
0.628889 + 0.777495i \(0.283510\pi\)
\(384\) −0.974558 15.8100i −0.0497327 0.806798i
\(385\) 16.3472 + 8.68561i 0.833130 + 0.442660i
\(386\) −1.90193 3.29424i −0.0968057 0.167672i
\(387\) −24.0927 15.6133i −1.22470 0.793669i
\(388\) 4.74218 + 8.21370i 0.240748 + 0.416988i
\(389\) 7.37415 + 2.68397i 0.373884 + 0.136083i 0.522126 0.852868i \(-0.325139\pi\)
−0.148242 + 0.988951i \(0.547361\pi\)
\(390\) 1.04254 3.52575i 0.0527913 0.178533i
\(391\) −37.8912 + 13.7913i −1.91624 + 0.697454i
\(392\) −3.92173 + 8.05311i −0.198077 + 0.406744i
\(393\) −22.8167 + 5.48933i −1.15095 + 0.276900i
\(394\) 1.54277 1.29454i 0.0777238 0.0652180i
\(395\) 11.8817 + 20.5796i 0.597831 + 1.03547i
\(396\) 13.6948 14.7141i 0.688192 0.739410i
\(397\) −6.77414 + 11.7332i −0.339985 + 0.588871i −0.984429 0.175780i \(-0.943755\pi\)
0.644445 + 0.764651i \(0.277089\pi\)
\(398\) −2.89260 + 2.42718i −0.144993 + 0.121664i
\(399\) 25.0287 + 17.1730i 1.25300 + 0.859727i
\(400\) −0.640743 + 3.63384i −0.0320372 + 0.181692i
\(401\) −5.39809 + 30.6141i −0.269568 + 1.52880i 0.486136 + 0.873883i \(0.338406\pi\)
−0.755704 + 0.654913i \(0.772705\pi\)
\(402\) −0.910828 2.09203i −0.0454280 0.104341i
\(403\) −10.5904 + 8.88637i −0.527544 + 0.442662i
\(404\) −13.9863 24.2250i −0.695846 1.20524i
\(405\) −7.26280 16.2290i −0.360891 0.806425i
\(406\) −2.29821 + 2.94341i −0.114058 + 0.146079i
\(407\) −6.89732 2.51042i −0.341887 0.124437i
\(408\) 14.7064 + 1.66847i 0.728078 + 0.0826017i
\(409\) 8.59389 3.12792i 0.424941 0.154666i −0.120692 0.992690i \(-0.538511\pi\)
0.545633 + 0.838024i \(0.316289\pi\)
\(410\) −0.351522 0.294962i −0.0173604 0.0145671i
\(411\) −8.27673 4.12169i −0.408261 0.203308i
\(412\) 7.68464 6.44818i 0.378595 0.317679i
\(413\) 3.99102 + 9.86953i 0.196385 + 0.485648i
\(414\) 4.05771 4.35970i 0.199425 0.214268i
\(415\) −19.0302 −0.934153
\(416\) 11.2549 + 4.09646i 0.551818 + 0.200845i
\(417\) 5.14480 17.3990i 0.251942 0.852035i
\(418\) −5.90844 4.95777i −0.288991 0.242492i
\(419\) −31.3856 + 11.4234i −1.53329 + 0.558070i −0.964423 0.264362i \(-0.914839\pi\)
−0.568862 + 0.822433i \(0.692616\pi\)
\(420\) 9.95693 + 13.9361i 0.485849 + 0.680012i
\(421\) −5.85790 33.2218i −0.285497 1.61913i −0.703506 0.710690i \(-0.748383\pi\)
0.418009 0.908443i \(-0.362728\pi\)
\(422\) −4.11886 −0.200503
\(423\) −20.6549 + 10.5491i −1.00428 + 0.512914i
\(424\) 0.278871 0.0135432
\(425\) −6.88509 2.50597i −0.333976 0.121557i
\(426\) 0.291852 + 4.73463i 0.0141403 + 0.229394i
\(427\) 10.0353 + 11.1386i 0.485642 + 0.539032i
\(428\) −29.8873 25.0784i −1.44466 1.21221i
\(429\) 8.00248 + 18.3804i 0.386363 + 0.887415i
\(430\) −4.76172 + 3.99556i −0.229631 + 0.192683i
\(431\) 5.98641 10.3688i 0.288355 0.499446i −0.685062 0.728485i \(-0.740225\pi\)
0.973417 + 0.229039i \(0.0735583\pi\)
\(432\) 16.3596 6.14334i 0.787102 0.295572i
\(433\) 25.0145 1.20212 0.601060 0.799204i \(-0.294745\pi\)
0.601060 + 0.799204i \(0.294745\pi\)
\(434\) 0.129539 + 3.67760i 0.00621808 + 0.176531i
\(435\) 5.86379 + 13.4682i 0.281147 + 0.645750i
\(436\) 3.98067 22.5755i 0.190639 1.08117i
\(437\) 30.6381 + 25.7084i 1.46562 + 1.22980i
\(438\) −2.57599 + 1.70678i −0.123086 + 0.0815531i
\(439\) −11.0829 4.03383i −0.528956 0.192524i 0.0637163 0.997968i \(-0.479705\pi\)
−0.592672 + 0.805444i \(0.701927\pi\)
\(440\) −4.47648 7.75349i −0.213408 0.369633i
\(441\) −20.7466 3.25275i −0.987931 0.154893i
\(442\) −3.58774 + 6.21414i −0.170651 + 0.295577i
\(443\) −28.1368 + 23.6096i −1.33682 + 1.12173i −0.354391 + 0.935097i \(0.615312\pi\)
−0.982431 + 0.186629i \(0.940244\pi\)
\(444\) −4.67718 4.92400i −0.221969 0.233683i
\(445\) 0.786032 4.45781i 0.0372615 0.211320i
\(446\) 2.24066 + 1.88014i 0.106098 + 0.0890270i
\(447\) 1.02865 3.47877i 0.0486535 0.164540i
\(448\) −12.3856 + 7.74460i −0.585165 + 0.365898i
\(449\) 6.54227 11.3315i 0.308749 0.534769i −0.669340 0.742956i \(-0.733423\pi\)
0.978089 + 0.208188i \(0.0667564\pi\)
\(450\) 1.07402 0.132915i 0.0506300 0.00626568i
\(451\) 2.50203 0.117816
\(452\) 0.419747 + 2.38051i 0.0197433 + 0.111970i
\(453\) 1.07222 + 17.3943i 0.0503772 + 0.817254i
\(454\) 0.822160 4.66270i 0.0385859 0.218831i
\(455\) −16.7072 + 3.55650i −0.783243 + 0.166731i
\(456\) −5.86027 13.4601i −0.274432 0.630327i
\(457\) 2.25853 + 12.8088i 0.105650 + 0.599168i 0.990959 + 0.134166i \(0.0428355\pi\)
−0.885309 + 0.465003i \(0.846053\pi\)
\(458\) 2.93412 5.08204i 0.137102 0.237468i
\(459\) 6.37244 + 34.1098i 0.297440 + 1.59211i
\(460\) 11.2840 + 19.5444i 0.526118 + 0.911264i
\(461\) 26.8426 + 9.76990i 1.25018 + 0.455030i 0.880464 0.474113i \(-0.157231\pi\)
0.369720 + 0.929143i \(0.379454\pi\)
\(462\) 5.16719 + 1.33203i 0.240400 + 0.0619715i
\(463\) 18.1417 + 15.2227i 0.843115 + 0.707458i 0.958262 0.285891i \(-0.0922895\pi\)
−0.115147 + 0.993348i \(0.536734\pi\)
\(464\) −13.5667 + 4.93787i −0.629818 + 0.229235i
\(465\) 12.9573 + 6.45254i 0.600879 + 0.299229i
\(466\) −0.294283 1.66896i −0.0136324 0.0773132i
\(467\) −2.86818 + 4.96783i −0.132723 + 0.229884i −0.924725 0.380635i \(-0.875706\pi\)
0.792002 + 0.610518i \(0.209039\pi\)
\(468\) −0.953055 + 18.5239i −0.0440550 + 0.856268i
\(469\) −6.52388 + 8.35540i −0.301245 + 0.385816i
\(470\) 0.871985 + 4.94527i 0.0402217 + 0.228108i
\(471\) −4.76664 + 16.1202i −0.219635 + 0.742778i
\(472\) 0.894093 5.07065i 0.0411539 0.233396i
\(473\) 5.88538 33.3777i 0.270610 1.53471i
\(474\) 4.71764 + 4.96661i 0.216689 + 0.228124i
\(475\) 1.26197 + 7.15701i 0.0579033 + 0.328386i
\(476\) −12.5312 30.9889i −0.574369 1.42037i
\(477\) 0.191751 + 0.625053i 0.00877967 + 0.0286192i
\(478\) 2.45261 4.24804i 0.112180 0.194301i
\(479\) −4.90286 27.8055i −0.224018 1.27047i −0.864554 0.502539i \(-0.832399\pi\)
0.640537 0.767928i \(-0.278712\pi\)
\(480\) −0.771565 12.5169i −0.0352170 0.571314i
\(481\) 6.36455 2.31651i 0.290199 0.105624i
\(482\) 3.44701 + 2.89238i 0.157007 + 0.131745i
\(483\) −26.7944 6.90720i −1.21919 0.314289i
\(484\) 2.74306 + 0.998392i 0.124684 + 0.0453814i
\(485\) 4.95188 + 8.57691i 0.224853 + 0.389457i
\(486\) −3.12979 4.05871i −0.141970 0.184107i
\(487\) −15.9865 + 27.6895i −0.724420 + 1.25473i 0.234793 + 0.972045i \(0.424559\pi\)
−0.959212 + 0.282686i \(0.908774\pi\)
\(488\) −1.25914 7.14091i −0.0569984 0.323254i
\(489\) 6.70456 9.06975i 0.303191 0.410148i
\(490\) −1.99070 + 4.08782i −0.0899307 + 0.184669i
\(491\) −0.954103 + 5.41099i −0.0430581 + 0.244194i −0.998739 0.0502112i \(-0.984011\pi\)
0.955681 + 0.294406i \(0.0951217\pi\)
\(492\) 2.07227 + 1.03196i 0.0934250 + 0.0465243i
\(493\) −4.97816 28.2325i −0.224205 1.27153i
\(494\) 7.11716 0.320216
\(495\) 14.3004 15.3647i 0.642756 0.690592i
\(496\) −7.11338 + 12.3207i −0.319400 + 0.553217i
\(497\) 18.6862 11.6843i 0.838189 0.524111i
\(498\) −5.33349 + 1.28315i −0.238999 + 0.0574994i
\(499\) 19.8712 + 16.6740i 0.889559 + 0.746429i 0.968122 0.250480i \(-0.0805886\pi\)
−0.0785626 + 0.996909i \(0.525033\pi\)
\(500\) −3.95718 + 22.4423i −0.176971 + 1.00365i
\(501\) −10.3772 + 2.49658i −0.463618 + 0.111539i
\(502\) 2.44695 2.05324i 0.109213 0.0916405i
\(503\) −8.11379 + 14.0535i −0.361776 + 0.626614i −0.988253 0.152826i \(-0.951163\pi\)
0.626477 + 0.779440i \(0.284496\pi\)
\(504\) 7.67365 + 6.65367i 0.341811 + 0.296378i
\(505\) −14.6048 25.2962i −0.649905 1.12567i
\(506\) 6.60704 + 2.40477i 0.293719 + 0.106905i
\(507\) 3.59687 + 1.79119i 0.159743 + 0.0795494i
\(508\) −16.5686 13.9027i −0.735113 0.616833i
\(509\) 2.15414 12.2167i 0.0954805 0.541497i −0.899119 0.437705i \(-0.855791\pi\)
0.994599 0.103792i \(-0.0330975\pi\)
\(510\) 7.46510 + 0.846929i 0.330560 + 0.0375027i
\(511\) 12.6780 + 6.73611i 0.560843 + 0.297988i
\(512\) 20.9324 0.925090
\(513\) 26.1396 22.3901i 1.15409 0.988549i
\(514\) 0.601717 1.04220i 0.0265406 0.0459697i
\(515\) 8.02444 6.73331i 0.353599 0.296705i
\(516\) 18.6410 25.2171i 0.820626 1.11012i
\(517\) −20.9743 17.5995i −0.922448 0.774026i
\(518\) 0.556592 1.71478i 0.0244553 0.0753431i
\(519\) 7.16632 + 3.56872i 0.314566 + 0.156650i
\(520\) 7.76319 + 2.82557i 0.340438 + 0.123909i
\(521\) 24.6079 1.07809 0.539047 0.842276i \(-0.318785\pi\)
0.539047 + 0.842276i \(0.318785\pi\)
\(522\) 2.55154 + 3.37928i 0.111678 + 0.147907i
\(523\) 24.0758 1.05276 0.526380 0.850250i \(-0.323549\pi\)
0.526380 + 0.850250i \(0.323549\pi\)
\(524\) −4.45121 25.2441i −0.194452 1.10279i
\(525\) −2.92291 4.09101i −0.127566 0.178546i
\(526\) −1.09082 + 0.397028i −0.0475622 + 0.0173112i
\(527\) −21.6406 18.1586i −0.942681 0.791003i
\(528\) 14.2078 + 14.9576i 0.618317 + 0.650947i
\(529\) −12.6478 4.60342i −0.549903 0.200148i
\(530\) 0.141557 0.00614885
\(531\) 11.9800 1.48257i 0.519886 0.0643382i
\(532\) −20.4044 + 26.1327i −0.884642 + 1.13300i
\(533\) −1.76862 + 1.48405i −0.0766074 + 0.0642812i
\(534\) −0.0802806 1.30237i −0.00347408 0.0563590i
\(535\) −31.2089 26.1873i −1.34928 1.13218i
\(536\) 4.81778 1.75353i 0.208096 0.0757408i
\(537\) 23.1589 31.3288i 0.999382 1.35194i
\(538\) −0.268382 0.0976831i −0.0115708 0.00421142i
\(539\) −6.01210 24.0512i −0.258959 1.03596i
\(540\) 18.1812 6.82740i 0.782396 0.293804i
\(541\) −6.25983 10.8424i −0.269131 0.466149i 0.699506 0.714626i \(-0.253403\pi\)
−0.968638 + 0.248477i \(0.920070\pi\)
\(542\) 1.78798 1.50029i 0.0768004 0.0644432i
\(543\) 7.86770 10.6432i 0.337635 0.456744i
\(544\) −4.24997 + 24.1028i −0.182216 + 1.03340i
\(545\) 4.15669 23.5738i 0.178053 1.00979i
\(546\) −4.44263 + 2.12328i −0.190127 + 0.0908680i
\(547\) −20.6948 + 17.3650i −0.884845 + 0.742473i −0.967169 0.254132i \(-0.918210\pi\)
0.0823242 + 0.996606i \(0.473766\pi\)
\(548\) 5.04977 8.74645i 0.215715 0.373630i
\(549\) 15.1396 7.73225i 0.646144 0.330004i
\(550\) 0.638797 + 1.10643i 0.0272384 + 0.0471783i
\(551\) −21.7825 + 18.2777i −0.927968 + 0.778657i
\(552\) 9.21667 + 9.70306i 0.392288 + 0.412990i
\(553\) 9.82527 30.2702i 0.417813 1.28722i
\(554\) −1.18860 + 0.432616i −0.0504988 + 0.0183801i
\(555\) −4.88399 5.14174i −0.207314 0.218255i
\(556\) 18.6230 + 6.77823i 0.789792 + 0.287461i
\(557\) −17.3337 30.0228i −0.734451 1.27211i −0.954964 0.296723i \(-0.904106\pi\)
0.220512 0.975384i \(-0.429227\pi\)
\(558\) 4.06655 + 0.934746i 0.172151 + 0.0395710i
\(559\) 15.6373 + 27.0846i 0.661388 + 1.14556i
\(560\) −14.9044 + 9.31955i −0.629824 + 0.393823i
\(561\) −34.1489 + 22.6261i −1.44177 + 0.955275i
\(562\) −4.77063 + 1.73637i −0.201237 + 0.0732442i
\(563\) 21.8184 7.94126i 0.919537 0.334684i 0.161483 0.986876i \(-0.448372\pi\)
0.758054 + 0.652191i \(0.226150\pi\)
\(564\) −10.1127 23.2273i −0.425823 0.978047i
\(565\) 0.438308 + 2.48577i 0.0184398 + 0.104577i
\(566\) −7.63069 −0.320742
\(567\) −9.63695 + 21.7745i −0.404714 + 0.914443i
\(568\) −10.6589 −0.447235
\(569\) −6.67248 37.8415i −0.279725 1.58640i −0.723541 0.690281i \(-0.757487\pi\)
0.443816 0.896118i \(-0.353624\pi\)
\(570\) −2.97472 6.83245i −0.124597 0.286180i
\(571\) −12.9888 + 4.72755i −0.543566 + 0.197842i −0.599186 0.800610i \(-0.704509\pi\)
0.0556194 + 0.998452i \(0.482287\pi\)
\(572\) −20.5765 + 7.48923i −0.860346 + 0.313140i
\(573\) 3.75550 2.48829i 0.156888 0.103950i
\(574\) 0.0216334 + 0.614170i 0.000902960 + 0.0256350i
\(575\) −3.31247 5.73737i −0.138140 0.239265i
\(576\) 4.85782 + 15.8351i 0.202409 + 0.659796i
\(577\) 13.3633 + 23.1460i 0.556323 + 0.963580i 0.997799 + 0.0663071i \(0.0211217\pi\)
−0.441476 + 0.897273i \(0.645545\pi\)
\(578\) −8.52598 3.10320i −0.354634 0.129076i
\(579\) 13.8007 + 14.5290i 0.573536 + 0.603803i
\(580\) −15.0773 + 5.48770i −0.626052 + 0.227864i
\(581\) 17.0592 + 18.9346i 0.707735 + 0.785541i
\(582\) 1.96616 + 2.06992i 0.0814998 + 0.0858007i
\(583\) −0.591262 + 0.496128i −0.0244876 + 0.0205475i
\(584\) −3.47173 6.01321i −0.143661 0.248828i
\(585\) −0.995198 + 19.3430i −0.0411464 + 0.799735i
\(586\) −2.49416 + 4.32002i −0.103033 + 0.178458i
\(587\) 29.4089 24.6770i 1.21384 1.01853i 0.214713 0.976677i \(-0.431118\pi\)
0.999124 0.0418527i \(-0.0133260\pi\)
\(588\) 4.94045 22.3997i 0.203741 0.923748i
\(589\) −4.86567 + 27.5946i −0.200486 + 1.13701i
\(590\) 0.453848 2.57390i 0.0186846 0.105966i
\(591\) −6.30667 + 8.53149i −0.259422 + 0.350939i
\(592\) 5.33931 4.48021i 0.219444 0.184136i
\(593\) 12.5149 + 21.6764i 0.513925 + 0.890143i 0.999870 + 0.0161540i \(0.00514220\pi\)
−0.485945 + 0.873989i \(0.661524\pi\)
\(594\) 2.97190 5.27043i 0.121939 0.216248i
\(595\) −13.0854 32.3592i −0.536448 1.32660i
\(596\) 3.72349 + 1.35524i 0.152520 + 0.0555127i
\(597\) 11.8246 15.9960i 0.483949 0.654673i
\(598\) −6.09670 + 2.21902i −0.249313 + 0.0907424i
\(599\) −30.1410 25.2913i −1.23153 1.03337i −0.998138 0.0609908i \(-0.980574\pi\)
−0.233389 0.972383i \(-0.574982\pi\)
\(600\) 0.149613 + 2.42712i 0.00610792 + 0.0990869i
\(601\) 2.59982 2.18151i 0.106049 0.0889856i −0.588221 0.808700i \(-0.700172\pi\)
0.694270 + 0.719714i \(0.255727\pi\)
\(602\) 8.24405 + 1.15608i 0.336003 + 0.0471184i
\(603\) 7.24298 + 9.59269i 0.294957 + 0.390644i
\(604\) −19.0356 −0.774548
\(605\) 2.86435 + 1.04254i 0.116453 + 0.0423853i
\(606\) −5.79887 6.10489i −0.235563 0.247994i
\(607\) 27.5928 + 23.1531i 1.11996 + 0.939757i 0.998602 0.0528524i \(-0.0168313\pi\)
0.121356 + 0.992609i \(0.461276\pi\)
\(608\) 22.8117 8.30278i 0.925137 0.336722i
\(609\) 8.14412 17.9076i 0.330016 0.725654i
\(610\) −0.639146 3.62478i −0.0258783 0.146763i
\(611\) 25.2651 1.02212
\(612\) −37.6154 + 4.65506i −1.52051 + 0.188170i
\(613\) −5.12560 −0.207021 −0.103511 0.994628i \(-0.533008\pi\)
−0.103511 + 0.994628i \(0.533008\pi\)
\(614\) −1.37497 0.500450i −0.0554894 0.0201965i
\(615\) 2.16390 + 1.07759i 0.0872569 + 0.0434527i
\(616\) −3.70172 + 11.4045i −0.149147 + 0.459499i
\(617\) 1.10793 + 0.929660i 0.0446034 + 0.0374267i 0.664817 0.747006i \(-0.268510\pi\)
−0.620213 + 0.784433i \(0.712954\pi\)
\(618\) 1.79496 2.42818i 0.0722040 0.0976756i
\(619\) −8.23815 + 6.91263i −0.331119 + 0.277842i −0.793156 0.609019i \(-0.791563\pi\)
0.462037 + 0.886861i \(0.347119\pi\)
\(620\) −7.90545 + 13.6926i −0.317490 + 0.549909i
\(621\) −15.4108 + 27.3297i −0.618413 + 1.09670i
\(622\) 10.5216 0.421877
\(623\) −5.14006 + 3.21403i −0.205932 + 0.128767i
\(624\) −18.9151 2.14595i −0.757209 0.0859067i
\(625\) −3.17955 + 18.0321i −0.127182 + 0.721285i
\(626\) 6.22331 + 5.22197i 0.248733 + 0.208712i
\(627\) 36.3712 + 18.1123i 1.45253 + 0.723337i
\(628\) −17.2542 6.28000i −0.688516 0.250599i
\(629\) 6.92008 + 11.9859i 0.275922 + 0.477911i
\(630\) 3.89520 + 3.37745i 0.155188 + 0.134561i
\(631\) 20.5448 35.5847i 0.817877 1.41660i −0.0893674 0.995999i \(-0.528485\pi\)
0.907244 0.420605i \(-0.138182\pi\)
\(632\) −11.7910 + 9.89379i −0.469019 + 0.393554i
\(633\) 21.0962 5.07540i 0.838497 0.201729i
\(634\) −0.767804 + 4.35443i −0.0304934 + 0.172937i
\(635\) −17.3013 14.5175i −0.686579 0.576108i
\(636\) −0.694331 + 0.167045i −0.0275320 + 0.00662376i
\(637\) 18.5154 + 13.4351i 0.733609 + 0.532320i
\(638\) −2.49941 + 4.32910i −0.0989526 + 0.171391i
\(639\) −7.32899 23.8904i −0.289930 0.945090i
\(640\) 18.0669 0.714156
\(641\) −0.139391 0.790524i −0.00550560 0.0312238i 0.981931 0.189238i \(-0.0606019\pi\)
−0.987437 + 0.158014i \(0.949491\pi\)
\(642\) −10.5125 5.23507i −0.414895 0.206612i
\(643\) −1.59030 + 9.01902i −0.0627152 + 0.355675i 0.937260 + 0.348631i \(0.113353\pi\)
−0.999975 + 0.00704426i \(0.997758\pi\)
\(644\) 9.33103 28.7476i 0.367694 1.13281i
\(645\) 19.4653 26.3322i 0.766446 1.03683i
\(646\) 2.52543 + 14.3224i 0.0993619 + 0.563509i
\(647\) −21.1182 + 36.5778i −0.830242 + 1.43802i 0.0676045 + 0.997712i \(0.478464\pi\)
−0.897846 + 0.440309i \(0.854869\pi\)
\(648\) 9.53528 6.45817i 0.374581 0.253701i
\(649\) 7.12532 + 12.3414i 0.279693 + 0.484443i
\(650\) −1.10781 0.403211i −0.0434520 0.0158152i
\(651\) −5.19515 18.6765i −0.203614 0.731989i
\(652\) 9.43744 + 7.91895i 0.369599 + 0.310130i
\(653\) 20.8576 7.59154i 0.816221 0.297080i 0.100030 0.994984i \(-0.468106\pi\)
0.716191 + 0.697904i \(0.245884\pi\)
\(654\) −0.424539 6.88717i −0.0166008 0.269310i
\(655\) −4.64804 26.3603i −0.181614 1.02998i
\(656\) −1.18795 + 2.05760i −0.0463818 + 0.0803356i
\(657\) 11.0907 11.9161i 0.432688 0.464890i
\(658\) 4.13878 5.30070i 0.161346 0.206643i
\(659\) 8.10575 + 45.9700i 0.315755 + 1.79074i 0.567954 + 0.823061i \(0.307735\pi\)
−0.252198 + 0.967676i \(0.581154\pi\)
\(660\) 15.7899 + 16.6231i 0.614620 + 0.647055i
\(661\) 3.94116 22.3514i 0.153293 0.869369i −0.807036 0.590502i \(-0.798930\pi\)
0.960330 0.278868i \(-0.0899590\pi\)
\(662\) −1.31423 + 7.45335i −0.0510789 + 0.289683i
\(663\) 10.7185 36.2488i 0.416274 1.40779i
\(664\) −2.14043 12.1390i −0.0830647 0.471083i
\(665\) −21.3066 + 27.2883i −0.826236 + 1.05819i
\(666\) −1.71551 1.11173i −0.0664745 0.0430788i
\(667\) 12.9607 22.4485i 0.501839 0.869210i
\(668\) −2.02444 11.4812i −0.0783279 0.444220i
\(669\) −13.7931 6.86875i −0.533271 0.265561i
\(670\) 2.44554 0.890103i 0.0944794 0.0343877i
\(671\) 15.3737 + 12.9001i 0.593495 + 0.498002i
\(672\) −11.7624 + 11.9882i −0.453744 + 0.462454i
\(673\) −44.9112 16.3463i −1.73120 0.630105i −0.732484 0.680784i \(-0.761639\pi\)
−0.998715 + 0.0506794i \(0.983861\pi\)
\(674\) 1.17004 + 2.02657i 0.0450682 + 0.0780605i
\(675\) −5.33720 + 2.00422i −0.205429 + 0.0771424i
\(676\) −2.19451 + 3.80100i −0.0844042 + 0.146192i
\(677\) −6.32092 35.8477i −0.242933 1.37774i −0.825245 0.564775i \(-0.808963\pi\)
0.582312 0.812965i \(-0.302148\pi\)
\(678\) 0.290451 + 0.667120i 0.0111547 + 0.0256206i
\(679\) 4.09484 12.6156i 0.157146 0.484143i
\(680\) −2.93146 + 16.6251i −0.112416 + 0.637545i
\(681\) 1.53456 + 24.8947i 0.0588045 + 0.953968i
\(682\) 0.855373 + 4.85106i 0.0327539 + 0.185757i
\(683\) −0.934222 −0.0357470 −0.0178735 0.999840i \(-0.505690\pi\)
−0.0178735 + 0.999840i \(0.505690\pi\)
\(684\) 22.6535 + 30.0025i 0.866178 + 1.14718i
\(685\) 5.27306 9.13321i 0.201473 0.348962i
\(686\) 5.85183 1.68374i 0.223424 0.0642853i
\(687\) −8.76583 + 29.6449i −0.334437 + 1.13102i
\(688\) 24.6544 + 20.6875i 0.939942 + 0.788705i
\(689\) 0.123676 0.701400i 0.00471167 0.0267212i
\(690\) 4.67845 + 4.92534i 0.178106 + 0.187505i
\(691\) −1.66900 + 1.40046i −0.0634918 + 0.0532760i −0.673981 0.738748i \(-0.735417\pi\)
0.610489 + 0.792024i \(0.290973\pi\)
\(692\) −4.37229 + 7.57303i −0.166209 + 0.287883i
\(693\) −28.1069 0.455243i −1.06769 0.0172932i
\(694\) −2.32562 4.02809i −0.0882793 0.152904i
\(695\) 19.4465 + 7.07795i 0.737648 + 0.268482i
\(696\) −7.93157 + 5.25524i −0.300645 + 0.199199i
\(697\) −3.61404 3.03254i −0.136892 0.114866i
\(698\) 0.380004 2.15511i 0.0143834 0.0815720i
\(699\) 3.56382 + 8.18553i 0.134796 + 0.309605i
\(700\) 4.65653 2.91168i 0.176000 0.110051i
\(701\) −28.5717 −1.07914 −0.539569 0.841942i \(-0.681413\pi\)
−0.539569 + 0.841942i \(0.681413\pi\)
\(702\) 1.02533 + 5.48828i 0.0386985 + 0.207142i
\(703\) 6.86385 11.8885i 0.258875 0.448384i
\(704\) −14.9790 + 12.5689i −0.564544 + 0.473709i
\(705\) −10.5599 24.2544i −0.397709 0.913474i
\(706\) −6.13776 5.15020i −0.230998 0.193830i
\(707\) −12.0771 + 37.2078i −0.454206 + 1.39934i
\(708\) 0.811235 + 13.1604i 0.0304881 + 0.494599i
\(709\) −6.12624 2.22977i −0.230076 0.0837407i 0.224410 0.974495i \(-0.427955\pi\)
−0.454485 + 0.890754i \(0.650177\pi\)
\(710\) −5.41051 −0.203053
\(711\) −30.2830 19.6249i −1.13570 0.735993i
\(712\) 2.93196 0.109880
\(713\) −4.43552 25.1551i −0.166112 0.942066i
\(714\) −5.84926 8.18684i −0.218903 0.306385i
\(715\) −21.4864 + 7.82039i −0.803544 + 0.292466i
\(716\) 32.5989 + 27.3537i 1.21828 + 1.02226i
\(717\) −7.32730 + 24.7800i −0.273643 + 0.925426i
\(718\) 1.66667 + 0.606620i 0.0621997 + 0.0226389i
\(719\) −1.83299 −0.0683589 −0.0341795 0.999416i \(-0.510882\pi\)
−0.0341795 + 0.999416i \(0.510882\pi\)
\(720\) 5.84571 + 19.0553i 0.217857 + 0.710150i
\(721\) −13.8929 1.94823i −0.517397 0.0725558i
\(722\) 6.26489 5.25687i 0.233155 0.195640i
\(723\) −21.2191 10.5668i −0.789148 0.392984i
\(724\) 11.0747 + 9.29278i 0.411588 + 0.345363i
\(725\) 4.42603 1.61094i 0.164379 0.0598290i
\(726\) 0.873074 + 0.0990518i 0.0324028 + 0.00367616i
\(727\) 24.1007 + 8.77195i 0.893846 + 0.325334i 0.747784 0.663942i \(-0.231118\pi\)
0.146062 + 0.989275i \(0.453340\pi\)
\(728\) −4.14777 10.2572i −0.153727 0.380155i
\(729\) 21.0315 + 16.9315i 0.778946 + 0.627091i
\(730\) −1.76227 3.05235i −0.0652247 0.112972i
\(731\) −48.9559 + 41.0789i −1.81070 + 1.51936i
\(732\) 7.41241 + 17.0251i 0.273971 + 0.629267i
\(733\) 5.51821 31.2953i 0.203820 1.15592i −0.695467 0.718558i \(-0.744802\pi\)
0.899286 0.437360i \(-0.144087\pi\)
\(734\) 0.713966 4.04910i 0.0263530 0.149455i
\(735\) 5.15891 23.3902i 0.190289 0.862760i
\(736\) −16.9523 + 14.2247i −0.624870 + 0.524328i
\(737\) −7.09501 + 12.2889i −0.261348 + 0.452668i
\(738\) 0.679125 + 0.156105i 0.0249989 + 0.00574631i
\(739\) 4.02667 + 6.97440i 0.148123 + 0.256557i 0.930534 0.366206i \(-0.119343\pi\)
−0.782410 + 0.622763i \(0.786010\pi\)
\(740\) 5.93384 4.97908i 0.218132 0.183035i
\(741\) −36.4530 + 8.77000i −1.33913 + 0.322174i
\(742\) −0.126896 0.140847i −0.00465850 0.00517064i
\(743\) 44.5501 16.2149i 1.63438 0.594867i 0.648340 0.761351i \(-0.275464\pi\)
0.986044 + 0.166484i \(0.0532414\pi\)
\(744\) −2.65857 + 8.99095i −0.0974680 + 0.329624i
\(745\) 3.88814 + 1.41517i 0.142450 + 0.0518477i
\(746\) 0.188473 + 0.326445i 0.00690050 + 0.0119520i
\(747\) 25.7361 13.1442i 0.941636 0.480921i
\(748\) −22.3725 38.7503i −0.818019 1.41685i
\(749\) 1.92066 + 54.5274i 0.0701794 + 1.99239i
\(750\) 0.422035 + 6.84654i 0.0154105 + 0.250000i
\(751\) 30.5572 11.1219i 1.11505 0.405845i 0.282206 0.959354i \(-0.408934\pi\)
0.832843 + 0.553509i \(0.186711\pi\)
\(752\) 24.4318 8.89246i 0.890937 0.324275i
\(753\) −10.0028 + 13.5316i −0.364524 + 0.493118i
\(754\) −0.800987 4.54262i −0.0291702 0.165433i
\(755\) −19.8774 −0.723411
\(756\) −23.0913 11.9697i −0.839824 0.435334i
\(757\) −49.9205 −1.81439 −0.907195 0.420710i \(-0.861781\pi\)
−0.907195 + 0.420710i \(0.861781\pi\)
\(758\) 1.61168 + 9.14026i 0.0585387 + 0.331989i
\(759\) −36.8035 4.17542i −1.33588 0.151558i
\(760\) 15.7346 5.72693i 0.570754 0.207737i
\(761\) −11.2752 + 4.10382i −0.408724 + 0.148763i −0.538196 0.842820i \(-0.680894\pi\)
0.129472 + 0.991583i \(0.458672\pi\)
\(762\) −5.82781 2.90216i −0.211119 0.105134i
\(763\) −27.1816 + 16.9964i −0.984041 + 0.615311i
\(764\) 2.46040 + 4.26154i 0.0890142 + 0.154177i
\(765\) −39.2787 + 4.86091i −1.42012 + 0.175746i
\(766\) 2.09150 + 3.62258i 0.0755689 + 0.130889i
\(767\) −12.3569 4.49753i −0.446180 0.162396i
\(768\)