Properties

Label 189.2.u.a.4.12
Level $189$
Weight $2$
Character 189.4
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(4,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([2, 12]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.u (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 4.12
Character \(\chi\) \(=\) 189.4
Dual form 189.2.u.a.142.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0290601 + 0.164808i) q^{2} +(0.733837 - 1.56891i) q^{3} +(1.85307 - 0.674462i) q^{4} +(-0.999212 + 0.363683i) q^{5} +(0.279894 + 0.0753494i) q^{6} +(1.97858 + 1.75648i) q^{7} +(0.332357 + 0.575660i) q^{8} +(-1.92297 - 2.30265i) q^{9} +O(q^{10})\) \(q+(0.0290601 + 0.164808i) q^{2} +(0.733837 - 1.56891i) q^{3} +(1.85307 - 0.674462i) q^{4} +(-0.999212 + 0.363683i) q^{5} +(0.279894 + 0.0753494i) q^{6} +(1.97858 + 1.75648i) q^{7} +(0.332357 + 0.575660i) q^{8} +(-1.92297 - 2.30265i) q^{9} +(-0.0889751 - 0.154109i) q^{10} +(-1.03647 - 0.377243i) q^{11} +(0.301679 - 3.40224i) q^{12} +(-1.14619 + 0.417180i) q^{13} +(-0.231985 + 0.377129i) q^{14} +(-0.162671 + 1.83456i) q^{15} +(2.93605 - 2.46364i) q^{16} +(-1.95396 - 3.38436i) q^{17} +(0.323613 - 0.383835i) q^{18} +(-0.705034 + 1.22115i) q^{19} +(-1.60632 + 1.34786i) q^{20} +(4.20772 - 1.81524i) q^{21} +(0.0320529 - 0.181781i) q^{22} +(-0.811107 + 4.60002i) q^{23} +(1.14706 - 0.0989989i) q^{24} +(-2.96406 + 2.48714i) q^{25} +(-0.102063 - 0.176778i) q^{26} +(-5.02380 + 1.32720i) q^{27} +(4.85112 + 1.92041i) q^{28} +(8.20907 + 2.98786i) q^{29} +(-0.307077 + 0.0265029i) q^{30} +(-2.90602 + 1.05771i) q^{31} +(1.50975 + 1.26683i) q^{32} +(-1.35246 + 1.34929i) q^{33} +(0.500988 - 0.420379i) q^{34} +(-2.61582 - 1.03552i) q^{35} +(-5.11644 - 2.97000i) q^{36} +4.37450 q^{37} +(-0.221744 - 0.0807084i) q^{38} +(-0.186600 + 2.10442i) q^{39} +(-0.541453 - 0.454333i) q^{40} +(-8.04440 + 2.92792i) q^{41} +(0.421443 + 0.640715i) q^{42} +(-1.05735 - 5.99651i) q^{43} -2.17508 q^{44} +(2.75889 + 1.60148i) q^{45} -0.781690 q^{46} +(-1.73596 - 0.631839i) q^{47} +(-1.71065 - 6.41432i) q^{48} +(0.829534 + 6.95067i) q^{49} +(-0.496037 - 0.416225i) q^{50} +(-6.74366 + 0.582025i) q^{51} +(-1.84260 + 1.54613i) q^{52} +(-4.55546 + 7.89029i) q^{53} +(-0.364724 - 0.789393i) q^{54} +1.17285 q^{55} +(-0.353542 + 1.72277i) q^{56} +(1.39850 + 2.00226i) q^{57} +(-0.253866 + 1.43975i) q^{58} +(0.0125627 + 0.0105414i) q^{59} +(0.935899 + 3.50928i) q^{60} +(-7.36629 - 2.68111i) q^{61} +(-0.258768 - 0.448199i) q^{62} +(0.239827 - 7.93363i) q^{63} +(3.66784 - 6.35288i) q^{64} +(0.993568 - 0.833703i) q^{65} +(-0.261676 - 0.183686i) q^{66} +(-1.27108 + 7.20865i) q^{67} +(-5.90345 - 4.95358i) q^{68} +(6.62180 + 4.64822i) q^{69} +(0.0946464 - 0.461201i) q^{70} +(8.19310 - 14.1909i) q^{71} +(0.686431 - 1.87228i) q^{72} +9.16921 q^{73} +(0.127123 + 0.720953i) q^{74} +(1.72697 + 6.47551i) q^{75} +(-0.482854 + 2.73840i) q^{76} +(-1.38811 - 2.56694i) q^{77} +(-0.352247 + 0.0304014i) q^{78} +(-1.89813 - 10.7649i) q^{79} +(-2.03776 + 3.52950i) q^{80} +(-1.60440 + 8.85584i) q^{81} +(-0.716316 - 1.24070i) q^{82} +(11.3691 + 4.13802i) q^{83} +(6.57288 - 6.20171i) q^{84} +(3.18326 + 2.67107i) q^{85} +(0.957545 - 0.348518i) q^{86} +(10.7118 - 10.6867i) q^{87} +(-0.127314 - 0.722032i) q^{88} +(8.07668 - 13.9892i) q^{89} +(-0.183764 + 0.501226i) q^{90} +(-3.00060 - 1.18785i) q^{91} +(1.59950 + 9.07121i) q^{92} +(-0.473100 + 5.33548i) q^{93} +(0.0536849 - 0.304462i) q^{94} +(0.260365 - 1.47660i) q^{95} +(3.09546 - 1.43902i) q^{96} +(-0.0674999 - 0.382811i) q^{97} +(-1.12142 + 0.338701i) q^{98} +(1.12443 + 3.11205i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} - 15 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} - 15 q^{9} + 3 q^{10} - 15 q^{11} - 3 q^{12} - 12 q^{13} - 30 q^{14} + 9 q^{16} + 27 q^{17} - 3 q^{18} + 3 q^{19} - 18 q^{20} + 15 q^{21} - 12 q^{22} - 36 q^{23} - 72 q^{24} - 3 q^{25} + 30 q^{26} - 12 q^{27} - 12 q^{28} - 30 q^{29} - 3 q^{30} - 3 q^{31} - 75 q^{32} + 15 q^{33} - 18 q^{34} + 15 q^{35} - 60 q^{36} - 6 q^{37} + 69 q^{38} + 51 q^{39} + 51 q^{40} - 39 q^{42} - 12 q^{43} - 6 q^{44} - 21 q^{45} - 6 q^{46} - 21 q^{47} + 90 q^{48} - 42 q^{49} - 39 q^{50} + 33 q^{51} + 9 q^{52} + 9 q^{53} - 9 q^{54} - 24 q^{55} + 111 q^{56} - 18 q^{57} - 3 q^{58} + 27 q^{59} - 63 q^{60} - 21 q^{61} + 75 q^{62} + 63 q^{63} - 30 q^{64} - 90 q^{65} - 3 q^{66} - 3 q^{67} - 30 q^{68} - 6 q^{69} + 39 q^{70} - 18 q^{71} + 183 q^{72} - 42 q^{73} + 51 q^{74} - 45 q^{75} - 24 q^{76} + 15 q^{77} - 30 q^{78} + 15 q^{79} + 102 q^{80} - 87 q^{81} - 6 q^{82} - 42 q^{83} + 135 q^{84} - 63 q^{85} - 93 q^{86} + 75 q^{87} - 51 q^{88} + 75 q^{89} - 39 q^{90} - 21 q^{91} - 66 q^{92} + 81 q^{93} + 33 q^{94} + 15 q^{95} - 171 q^{96} - 12 q^{97} - 36 q^{98} + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0290601 + 0.164808i 0.0205486 + 0.116537i 0.993357 0.115076i \(-0.0367110\pi\)
−0.972808 + 0.231612i \(0.925600\pi\)
\(3\) 0.733837 1.56891i 0.423681 0.905812i
\(4\) 1.85307 0.674462i 0.926534 0.337231i
\(5\) −0.999212 + 0.363683i −0.446861 + 0.162644i −0.555642 0.831422i \(-0.687528\pi\)
0.108781 + 0.994066i \(0.465305\pi\)
\(6\) 0.279894 + 0.0753494i 0.114266 + 0.0307613i
\(7\) 1.97858 + 1.75648i 0.747832 + 0.663888i
\(8\) 0.332357 + 0.575660i 0.117506 + 0.203526i
\(9\) −1.92297 2.30265i −0.640989 0.767550i
\(10\) −0.0889751 0.154109i −0.0281364 0.0487337i
\(11\) −1.03647 0.377243i −0.312507 0.113743i 0.181005 0.983482i \(-0.442065\pi\)
−0.493512 + 0.869739i \(0.664287\pi\)
\(12\) 0.301679 3.40224i 0.0870872 0.982143i
\(13\) −1.14619 + 0.417180i −0.317897 + 0.115705i −0.496040 0.868300i \(-0.665213\pi\)
0.178143 + 0.984005i \(0.442991\pi\)
\(14\) −0.231985 + 0.377129i −0.0620005 + 0.100792i
\(15\) −0.162671 + 1.83456i −0.0420016 + 0.473681i
\(16\) 2.93605 2.46364i 0.734014 0.615911i
\(17\) −1.95396 3.38436i −0.473906 0.820829i 0.525648 0.850702i \(-0.323823\pi\)
−0.999554 + 0.0298734i \(0.990490\pi\)
\(18\) 0.323613 0.383835i 0.0762764 0.0904709i
\(19\) −0.705034 + 1.22115i −0.161746 + 0.280152i −0.935495 0.353340i \(-0.885046\pi\)
0.773749 + 0.633492i \(0.218379\pi\)
\(20\) −1.60632 + 1.34786i −0.359183 + 0.301391i
\(21\) 4.20772 1.81524i 0.918200 0.396118i
\(22\) 0.0320529 0.181781i 0.00683369 0.0387558i
\(23\) −0.811107 + 4.60002i −0.169128 + 0.959170i 0.775578 + 0.631251i \(0.217458\pi\)
−0.944706 + 0.327919i \(0.893653\pi\)
\(24\) 1.14706 0.0989989i 0.234142 0.0202081i
\(25\) −2.96406 + 2.48714i −0.592813 + 0.497429i
\(26\) −0.102063 0.176778i −0.0200162 0.0346691i
\(27\) −5.02380 + 1.32720i −0.966830 + 0.255419i
\(28\) 4.85112 + 1.92041i 0.916775 + 0.362923i
\(29\) 8.20907 + 2.98786i 1.52439 + 0.554831i 0.962239 0.272207i \(-0.0877535\pi\)
0.562147 + 0.827038i \(0.309976\pi\)
\(30\) −0.307077 + 0.0265029i −0.0560644 + 0.00483875i
\(31\) −2.90602 + 1.05771i −0.521937 + 0.189970i −0.589535 0.807743i \(-0.700689\pi\)
0.0675976 + 0.997713i \(0.478467\pi\)
\(32\) 1.50975 + 1.26683i 0.266889 + 0.223946i
\(33\) −1.35246 + 1.34929i −0.235433 + 0.234881i
\(34\) 0.500988 0.420379i 0.0859187 0.0720943i
\(35\) −2.61582 1.03552i −0.442155 0.175035i
\(36\) −5.11644 2.97000i −0.852740 0.495000i
\(37\) 4.37450 0.719164 0.359582 0.933113i \(-0.382919\pi\)
0.359582 + 0.933113i \(0.382919\pi\)
\(38\) −0.221744 0.0807084i −0.0359717 0.0130926i
\(39\) −0.186600 + 2.10442i −0.0298799 + 0.336977i
\(40\) −0.541453 0.454333i −0.0856113 0.0718364i
\(41\) −8.04440 + 2.92792i −1.25632 + 0.457265i −0.882534 0.470248i \(-0.844164\pi\)
−0.373790 + 0.927513i \(0.621942\pi\)
\(42\) 0.421443 + 0.640715i 0.0650300 + 0.0988644i
\(43\) −1.05735 5.99651i −0.161244 0.914459i −0.952853 0.303431i \(-0.901868\pi\)
0.791610 0.611027i \(-0.209243\pi\)
\(44\) −2.17508 −0.327906
\(45\) 2.75889 + 1.60148i 0.411271 + 0.238735i
\(46\) −0.781690 −0.115254
\(47\) −1.73596 0.631839i −0.253216 0.0921632i 0.212293 0.977206i \(-0.431907\pi\)
−0.465510 + 0.885043i \(0.654129\pi\)
\(48\) −1.71065 6.41432i −0.246911 0.925828i
\(49\) 0.829534 + 6.95067i 0.118505 + 0.992953i
\(50\) −0.496037 0.416225i −0.0701502 0.0588630i
\(51\) −6.74366 + 0.582025i −0.944301 + 0.0814998i
\(52\) −1.84260 + 1.54613i −0.255523 + 0.214409i
\(53\) −4.55546 + 7.89029i −0.625741 + 1.08382i 0.362656 + 0.931923i \(0.381870\pi\)
−0.988397 + 0.151892i \(0.951463\pi\)
\(54\) −0.364724 0.789393i −0.0496327 0.107423i
\(55\) 1.17285 0.158147
\(56\) −0.353542 + 1.72277i −0.0472440 + 0.230214i
\(57\) 1.39850 + 2.00226i 0.185236 + 0.265206i
\(58\) −0.253866 + 1.43975i −0.0333343 + 0.189048i
\(59\) 0.0125627 + 0.0105414i 0.00163553 + 0.00137237i 0.643605 0.765358i \(-0.277438\pi\)
−0.641969 + 0.766730i \(0.721882\pi\)
\(60\) 0.935899 + 3.50928i 0.120824 + 0.453046i
\(61\) −7.36629 2.68111i −0.943157 0.343281i −0.175745 0.984436i \(-0.556233\pi\)
−0.767412 + 0.641155i \(0.778456\pi\)
\(62\) −0.258768 0.448199i −0.0328635 0.0569213i
\(63\) 0.239827 7.93363i 0.0302154 0.999543i
\(64\) 3.66784 6.35288i 0.458480 0.794110i
\(65\) 0.993568 0.833703i 0.123237 0.103408i
\(66\) −0.261676 0.183686i −0.0322101 0.0226101i
\(67\) −1.27108 + 7.20865i −0.155287 + 0.880677i 0.803236 + 0.595661i \(0.203110\pi\)
−0.958523 + 0.285016i \(0.908001\pi\)
\(68\) −5.90345 4.95358i −0.715899 0.600710i
\(69\) 6.62180 + 4.64822i 0.797171 + 0.559580i
\(70\) 0.0946464 0.461201i 0.0113124 0.0551240i
\(71\) 8.19310 14.1909i 0.972342 1.68415i 0.283902 0.958853i \(-0.408371\pi\)
0.688440 0.725293i \(-0.258296\pi\)
\(72\) 0.686431 1.87228i 0.0808967 0.220650i
\(73\) 9.16921 1.07317 0.536587 0.843845i \(-0.319713\pi\)
0.536587 + 0.843845i \(0.319713\pi\)
\(74\) 0.127123 + 0.720953i 0.0147778 + 0.0838091i
\(75\) 1.72697 + 6.47551i 0.199413 + 0.747728i
\(76\) −0.482854 + 2.73840i −0.0553872 + 0.314116i
\(77\) −1.38811 2.56694i −0.158190 0.292530i
\(78\) −0.352247 + 0.0304014i −0.0398842 + 0.00344228i
\(79\) −1.89813 10.7649i −0.213557 1.21114i −0.883393 0.468632i \(-0.844747\pi\)
0.669836 0.742509i \(-0.266364\pi\)
\(80\) −2.03776 + 3.52950i −0.227828 + 0.394610i
\(81\) −1.60440 + 8.85584i −0.178266 + 0.983982i
\(82\) −0.716316 1.24070i −0.0791039 0.137012i
\(83\) 11.3691 + 4.13802i 1.24792 + 0.454207i 0.879700 0.475530i \(-0.157744\pi\)
0.368224 + 0.929737i \(0.379966\pi\)
\(84\) 6.57288 6.20171i 0.717160 0.676662i
\(85\) 3.18326 + 2.67107i 0.345273 + 0.289719i
\(86\) 0.957545 0.348518i 0.103255 0.0375817i
\(87\) 10.7118 10.6867i 1.14843 1.14573i
\(88\) −0.127314 0.722032i −0.0135717 0.0769689i
\(89\) 8.07668 13.9892i 0.856127 1.48286i −0.0194689 0.999810i \(-0.506198\pi\)
0.875596 0.483045i \(-0.160469\pi\)
\(90\) −0.183764 + 0.501226i −0.0193704 + 0.0528338i
\(91\) −3.00060 1.18785i −0.314548 0.124520i
\(92\) 1.59950 + 9.07121i 0.166759 + 0.945739i
\(93\) −0.473100 + 5.33548i −0.0490581 + 0.553263i
\(94\) 0.0536849 0.304462i 0.00553717 0.0314029i
\(95\) 0.260365 1.47660i 0.0267129 0.151496i
\(96\) 3.09546 1.43902i 0.315929 0.146869i
\(97\) −0.0674999 0.382811i −0.00685357 0.0388685i 0.981189 0.193049i \(-0.0618375\pi\)
−0.988043 + 0.154180i \(0.950726\pi\)
\(98\) −1.12142 + 0.338701i −0.113281 + 0.0342140i
\(99\) 1.12443 + 3.11205i 0.113010 + 0.312773i
\(100\) −3.81513 + 6.60799i −0.381513 + 0.660799i
\(101\) −0.0271522 0.153988i −0.00270174 0.0153223i 0.983427 0.181304i \(-0.0580318\pi\)
−0.986129 + 0.165982i \(0.946921\pi\)
\(102\) −0.291894 1.09449i −0.0289018 0.108371i
\(103\) −12.1426 + 4.41953i −1.19644 + 0.435469i −0.861981 0.506940i \(-0.830777\pi\)
−0.334461 + 0.942410i \(0.608554\pi\)
\(104\) −0.621100 0.521164i −0.0609038 0.0511044i
\(105\) −3.54423 + 3.34409i −0.345881 + 0.326350i
\(106\) −1.43277 0.521484i −0.139162 0.0506510i
\(107\) −0.102633 0.177765i −0.00992187 0.0171852i 0.861022 0.508568i \(-0.169825\pi\)
−0.870944 + 0.491383i \(0.836492\pi\)
\(108\) −8.41430 + 5.84774i −0.809666 + 0.562699i
\(109\) 3.12301 5.40921i 0.299130 0.518109i −0.676807 0.736160i \(-0.736637\pi\)
0.975937 + 0.218052i \(0.0699702\pi\)
\(110\) 0.0340831 + 0.193295i 0.00324969 + 0.0184299i
\(111\) 3.21017 6.86321i 0.304696 0.651427i
\(112\) 10.1366 + 0.282624i 0.957815 + 0.0267055i
\(113\) −2.15911 + 12.2449i −0.203112 + 1.15191i 0.697270 + 0.716808i \(0.254398\pi\)
−0.900383 + 0.435099i \(0.856713\pi\)
\(114\) −0.289348 + 0.288671i −0.0271000 + 0.0270365i
\(115\) −0.862482 4.89138i −0.0804269 0.456123i
\(116\) 17.2272 1.59950
\(117\) 3.16471 + 1.83706i 0.292578 + 0.169836i
\(118\) −0.00137223 + 0.00237677i −0.000126324 + 0.000218800i
\(119\) 2.07851 10.1283i 0.190537 0.928462i
\(120\) −1.11015 + 0.516086i −0.101342 + 0.0471120i
\(121\) −7.49454 6.28866i −0.681322 0.571697i
\(122\) 0.227803 1.29194i 0.0206243 0.116966i
\(123\) −1.30963 + 14.7696i −0.118085 + 1.33173i
\(124\) −4.67168 + 3.92000i −0.419529 + 0.352026i
\(125\) 4.71554 8.16756i 0.421771 0.730529i
\(126\) 1.31449 0.191027i 0.117104 0.0170180i
\(127\) −5.53843 9.59284i −0.491456 0.851227i 0.508496 0.861065i \(-0.330202\pi\)
−0.999952 + 0.00983786i \(0.996868\pi\)
\(128\) 4.85756 + 1.76801i 0.429352 + 0.156271i
\(129\) −10.1839 2.74157i −0.896643 0.241382i
\(130\) 0.166274 + 0.139520i 0.0145832 + 0.0122368i
\(131\) 3.76740 21.3660i 0.329159 1.86675i −0.149512 0.988760i \(-0.547770\pi\)
0.478671 0.877994i \(-0.341119\pi\)
\(132\) −1.59615 + 3.41251i −0.138927 + 0.297021i
\(133\) −3.53990 + 1.17777i −0.306948 + 0.102125i
\(134\) −1.22498 −0.105822
\(135\) 4.53716 3.15322i 0.390497 0.271386i
\(136\) 1.29883 2.24964i 0.111374 0.192905i
\(137\) 2.74303 2.30168i 0.234353 0.196646i −0.518047 0.855352i \(-0.673341\pi\)
0.752400 + 0.658707i \(0.228896\pi\)
\(138\) −0.573633 + 1.22640i −0.0488309 + 0.104398i
\(139\) −8.63704 7.24733i −0.732584 0.614711i 0.198251 0.980151i \(-0.436474\pi\)
−0.930835 + 0.365440i \(0.880918\pi\)
\(140\) −5.54572 0.154624i −0.468699 0.0130681i
\(141\) −2.26521 + 2.25991i −0.190765 + 0.190319i
\(142\) 2.57686 + 0.937900i 0.216245 + 0.0787068i
\(143\) 1.34537 0.112506
\(144\) −11.3188 2.02320i −0.943237 0.168600i
\(145\) −9.28923 −0.771429
\(146\) 0.266458 + 1.51116i 0.0220522 + 0.125064i
\(147\) 11.5137 + 3.79919i 0.949637 + 0.313352i
\(148\) 8.10625 2.95044i 0.666330 0.242524i
\(149\) 8.24863 + 6.92142i 0.675754 + 0.567025i 0.914762 0.403993i \(-0.132378\pi\)
−0.239008 + 0.971018i \(0.576822\pi\)
\(150\) −1.01703 + 0.472797i −0.0830401 + 0.0386038i
\(151\) −9.05289 3.29498i −0.736714 0.268142i −0.0537099 0.998557i \(-0.517105\pi\)
−0.683004 + 0.730415i \(0.739327\pi\)
\(152\) −0.937293 −0.0760245
\(153\) −4.03560 + 11.0073i −0.326259 + 0.889889i
\(154\) 0.382714 0.303367i 0.0308400 0.0244460i
\(155\) 2.51906 2.11374i 0.202336 0.169780i
\(156\) 1.07357 + 4.02548i 0.0859541 + 0.322297i
\(157\) 4.52487 + 3.79682i 0.361124 + 0.303019i 0.805239 0.592951i \(-0.202037\pi\)
−0.444114 + 0.895970i \(0.646482\pi\)
\(158\) 1.71897 0.625655i 0.136754 0.0497745i
\(159\) 9.03621 + 12.9373i 0.716618 + 1.02600i
\(160\) −1.96929 0.716762i −0.155686 0.0566650i
\(161\) −9.68469 + 7.67679i −0.763261 + 0.605016i
\(162\) −1.50614 0.00706558i −0.118333 0.000555124i
\(163\) 6.14002 + 10.6348i 0.480924 + 0.832984i 0.999760 0.0218892i \(-0.00696809\pi\)
−0.518837 + 0.854873i \(0.673635\pi\)
\(164\) −12.9321 + 10.8513i −1.00982 + 0.847343i
\(165\) 0.860679 1.84009i 0.0670038 0.143251i
\(166\) −0.351591 + 1.99397i −0.0272888 + 0.154762i
\(167\) 1.00808 5.71710i 0.0780075 0.442403i −0.920640 0.390412i \(-0.872332\pi\)
0.998648 0.0519902i \(-0.0165564\pi\)
\(168\) 2.44343 + 1.81891i 0.188515 + 0.140332i
\(169\) −8.81886 + 7.39990i −0.678374 + 0.569223i
\(170\) −0.347708 + 0.602248i −0.0266680 + 0.0461903i
\(171\) 4.16765 0.724794i 0.318708 0.0554264i
\(172\) −6.00375 10.3988i −0.457781 0.792901i
\(173\) −1.99539 + 1.67433i −0.151707 + 0.127297i −0.715482 0.698631i \(-0.753793\pi\)
0.563775 + 0.825928i \(0.309348\pi\)
\(174\) 2.07254 + 1.45483i 0.157119 + 0.110291i
\(175\) −10.2333 0.285320i −0.773561 0.0215682i
\(176\) −3.97252 + 1.44588i −0.299440 + 0.108987i
\(177\) 0.0257575 0.0119742i 0.00193605 0.000900034i
\(178\) 2.54024 + 0.924574i 0.190399 + 0.0692997i
\(179\) −6.48035 11.2243i −0.484364 0.838944i 0.515474 0.856905i \(-0.327616\pi\)
−0.999839 + 0.0179614i \(0.994282\pi\)
\(180\) 6.19255 + 1.10690i 0.461565 + 0.0825031i
\(181\) 3.49102 + 6.04662i 0.259485 + 0.449442i 0.966104 0.258153i \(-0.0831137\pi\)
−0.706619 + 0.707594i \(0.749780\pi\)
\(182\) 0.108569 0.529042i 0.00804765 0.0392152i
\(183\) −9.61208 + 9.58956i −0.710545 + 0.708881i
\(184\) −2.91762 + 1.06193i −0.215090 + 0.0782864i
\(185\) −4.37106 + 1.59093i −0.321366 + 0.116968i
\(186\) −0.893077 + 0.0770788i −0.0654836 + 0.00565169i
\(187\) 0.748491 + 4.24490i 0.0547351 + 0.310418i
\(188\) −3.64301 −0.265694
\(189\) −12.2712 6.19826i −0.892596 0.450857i
\(190\) 0.250922 0.0182038
\(191\) −3.58675 20.3415i −0.259528 1.47186i −0.784176 0.620538i \(-0.786914\pi\)
0.524648 0.851319i \(-0.324197\pi\)
\(192\) −7.27551 10.4165i −0.525065 0.751745i
\(193\) −4.24624 + 1.54551i −0.305651 + 0.111248i −0.490292 0.871558i \(-0.663110\pi\)
0.184641 + 0.982806i \(0.440888\pi\)
\(194\) 0.0611287 0.0222490i 0.00438879 0.00159739i
\(195\) −0.578889 2.17062i −0.0414551 0.155442i
\(196\) 6.22515 + 12.3206i 0.444653 + 0.880042i
\(197\) 2.46875 + 4.27599i 0.175891 + 0.304652i 0.940469 0.339879i \(-0.110386\pi\)
−0.764578 + 0.644531i \(0.777053\pi\)
\(198\) −0.480214 + 0.275752i −0.0341273 + 0.0195968i
\(199\) 12.7724 + 22.1225i 0.905413 + 1.56822i 0.820362 + 0.571844i \(0.193772\pi\)
0.0850503 + 0.996377i \(0.472895\pi\)
\(200\) −2.41688 0.879671i −0.170899 0.0622022i
\(201\) 10.3770 + 7.28419i 0.731935 + 0.513787i
\(202\) 0.0245893 0.00894979i 0.00173010 0.000629705i
\(203\) 10.9942 + 20.3308i 0.771638 + 1.42694i
\(204\) −12.1039 + 5.62687i −0.847443 + 0.393960i
\(205\) 6.97323 5.85123i 0.487031 0.408668i
\(206\) −1.08124 1.87276i −0.0753334 0.130481i
\(207\) 12.1520 6.97799i 0.844620 0.485004i
\(208\) −2.33750 + 4.04867i −0.162077 + 0.280725i
\(209\) 1.19142 0.999718i 0.0824121 0.0691519i
\(210\) −0.654128 0.486938i −0.0451391 0.0336019i
\(211\) 2.17639 12.3429i 0.149829 0.849723i −0.813533 0.581519i \(-0.802459\pi\)
0.963362 0.268204i \(-0.0864302\pi\)
\(212\) −3.11988 + 17.6937i −0.214274 + 1.21521i
\(213\) −16.2518 23.2680i −1.11356 1.59430i
\(214\) 0.0263145 0.0220805i 0.00179883 0.00150939i
\(215\) 3.23734 + 5.60724i 0.220785 + 0.382411i
\(216\) −2.43371 2.45090i −0.165593 0.166762i
\(217\) −7.60763 3.01163i −0.516440 0.204443i
\(218\) 0.982236 + 0.357505i 0.0665254 + 0.0242133i
\(219\) 6.72870 14.3857i 0.454684 0.972094i
\(220\) 2.17337 0.791041i 0.146528 0.0533320i
\(221\) 3.65151 + 3.06398i 0.245627 + 0.206106i
\(222\) 1.22440 + 0.329616i 0.0821763 + 0.0221224i
\(223\) 15.4961 13.0027i 1.03769 0.870729i 0.0459475 0.998944i \(-0.485369\pi\)
0.991746 + 0.128215i \(0.0409249\pi\)
\(224\) 0.761991 + 5.15838i 0.0509127 + 0.344659i
\(225\) 11.4268 + 2.04250i 0.761788 + 0.136167i
\(226\) −2.08081 −0.138413
\(227\) −0.00667054 0.00242788i −0.000442739 0.000161144i 0.341799 0.939773i \(-0.388964\pi\)
−0.342242 + 0.939612i \(0.611186\pi\)
\(228\) 3.94197 + 2.76710i 0.261064 + 0.183255i
\(229\) 9.76722 + 8.19567i 0.645436 + 0.541585i 0.905682 0.423957i \(-0.139359\pi\)
−0.260246 + 0.965542i \(0.583804\pi\)
\(230\) 0.781074 0.284288i 0.0515025 0.0187454i
\(231\) −5.04595 + 0.294104i −0.331999 + 0.0193506i
\(232\) 1.00835 + 5.71867i 0.0662017 + 0.375449i
\(233\) −25.7318 −1.68575 −0.842874 0.538110i \(-0.819138\pi\)
−0.842874 + 0.538110i \(0.819138\pi\)
\(234\) −0.210795 + 0.574955i −0.0137801 + 0.0375860i
\(235\) 1.96439 0.128142
\(236\) 0.0303894 + 0.0110608i 0.00197818 + 0.000719999i
\(237\) −18.2820 4.92164i −1.18755 0.319695i
\(238\) 1.72963 + 0.0482250i 0.112115 + 0.00312596i
\(239\) −5.87757 4.93187i −0.380188 0.319016i 0.432588 0.901592i \(-0.357600\pi\)
−0.812776 + 0.582576i \(0.802045\pi\)
\(240\) 4.04209 + 5.78713i 0.260916 + 0.373558i
\(241\) 14.3640 12.0528i 0.925266 0.776391i −0.0496951 0.998764i \(-0.515825\pi\)
0.974961 + 0.222374i \(0.0713805\pi\)
\(242\) 0.818630 1.41791i 0.0526235 0.0911466i
\(243\) 12.7167 + 9.01590i 0.815775 + 0.578370i
\(244\) −15.4585 −0.989632
\(245\) −3.35673 6.64351i −0.214453 0.424438i
\(246\) −2.47220 + 0.213368i −0.157622 + 0.0136039i
\(247\) 0.298664 1.69381i 0.0190035 0.107774i
\(248\) −1.57472 1.32134i −0.0999946 0.0839054i
\(249\) 14.8353 14.8005i 0.940148 0.937945i
\(250\) 1.48311 + 0.539809i 0.0938003 + 0.0341405i
\(251\) 12.2199 + 21.1655i 0.771315 + 1.33596i 0.936842 + 0.349752i \(0.113734\pi\)
−0.165527 + 0.986205i \(0.552933\pi\)
\(252\) −4.90651 14.8633i −0.309081 0.936301i
\(253\) 2.57601 4.46178i 0.161953 0.280510i
\(254\) 1.42003 1.19155i 0.0891005 0.0747642i
\(255\) 6.52667 3.03412i 0.408716 0.190004i
\(256\) 2.39743 13.5965i 0.149840 0.849782i
\(257\) 4.03394 + 3.38488i 0.251630 + 0.211143i 0.759874 0.650070i \(-0.225261\pi\)
−0.508244 + 0.861213i \(0.669705\pi\)
\(258\) 0.155888 1.75806i 0.00970517 0.109452i
\(259\) 8.65529 + 7.68374i 0.537814 + 0.477445i
\(260\) 1.27885 2.21503i 0.0793109 0.137370i
\(261\) −8.90578 24.6482i −0.551254 1.52568i
\(262\) 3.63076 0.224309
\(263\) −2.22418 12.6140i −0.137149 0.777811i −0.973339 0.229371i \(-0.926333\pi\)
0.836190 0.548440i \(-0.184778\pi\)
\(264\) −1.22623 0.330110i −0.0754694 0.0203169i
\(265\) 1.68230 9.54082i 0.103343 0.586088i
\(266\) −0.296976 0.549178i −0.0182087 0.0336723i
\(267\) −16.0209 22.9374i −0.980463 1.40375i
\(268\) 2.50656 + 14.2154i 0.153113 + 0.868345i
\(269\) −13.9193 + 24.1090i −0.848676 + 1.46995i 0.0337142 + 0.999432i \(0.489266\pi\)
−0.882390 + 0.470518i \(0.844067\pi\)
\(270\) 0.651526 + 0.656127i 0.0396506 + 0.0399306i
\(271\) 3.06182 + 5.30324i 0.185993 + 0.322149i 0.943911 0.330201i \(-0.107117\pi\)
−0.757918 + 0.652350i \(0.773783\pi\)
\(272\) −14.0748 5.12281i −0.853411 0.310616i
\(273\) −4.06558 + 3.83599i −0.246060 + 0.232165i
\(274\) 0.459048 + 0.385187i 0.0277321 + 0.0232700i
\(275\) 4.01041 1.45967i 0.241837 0.0880215i
\(276\) 15.4057 + 4.14731i 0.927314 + 0.249639i
\(277\) −1.20896 6.85633i −0.0726391 0.411957i −0.999346 0.0361710i \(-0.988484\pi\)
0.926706 0.375786i \(-0.122627\pi\)
\(278\) 0.943425 1.63406i 0.0565829 0.0980044i
\(279\) 8.02371 + 4.65762i 0.480367 + 0.278844i
\(280\) −0.273278 1.84999i −0.0163315 0.110558i
\(281\) 4.40712 + 24.9940i 0.262907 + 1.49102i 0.774930 + 0.632047i \(0.217785\pi\)
−0.512023 + 0.858971i \(0.671104\pi\)
\(282\) −0.438278 0.307652i −0.0260991 0.0183204i
\(283\) −3.26995 + 18.5448i −0.194378 + 1.10237i 0.718923 + 0.695090i \(0.244635\pi\)
−0.913301 + 0.407285i \(0.866476\pi\)
\(284\) 5.61118 31.8226i 0.332962 1.88832i
\(285\) −2.12559 1.49207i −0.125909 0.0883828i
\(286\) 0.0390966 + 0.221728i 0.00231183 + 0.0131110i
\(287\) −21.0593 8.33673i −1.24309 0.492102i
\(288\) 0.0138683 5.91251i 0.000817196 0.348398i
\(289\) 0.864054 1.49658i 0.0508267 0.0880344i
\(290\) −0.269946 1.53094i −0.0158518 0.0898998i
\(291\) −0.650130 0.175019i −0.0381113 0.0102598i
\(292\) 16.9912 6.18428i 0.994333 0.361908i
\(293\) 22.7437 + 19.0842i 1.32870 + 1.11491i 0.984379 + 0.176061i \(0.0563356\pi\)
0.344322 + 0.938852i \(0.388109\pi\)
\(294\) −0.291547 + 2.00796i −0.0170034 + 0.117107i
\(295\) −0.0163866 0.00596423i −0.000954063 0.000347251i
\(296\) 1.45390 + 2.51823i 0.0845061 + 0.146369i
\(297\) 5.70768 + 0.519599i 0.331193 + 0.0301502i
\(298\) −0.900999 + 1.56058i −0.0521935 + 0.0904018i
\(299\) −0.989351 5.61089i −0.0572156 0.324486i
\(300\) 7.56768 + 10.8348i 0.436920 + 0.625547i
\(301\) 8.44072 13.7218i 0.486515 0.790909i
\(302\) 0.279962 1.58774i 0.0161100 0.0913642i
\(303\) −0.261518 0.0704024i −0.0150238 0.00404451i
\(304\) 0.938470 + 5.32233i 0.0538250 + 0.305257i
\(305\) 8.33556 0.477293
\(306\) −1.93137 0.345225i −0.110409 0.0197352i
\(307\) −0.592505 + 1.02625i −0.0338161 + 0.0585711i −0.882438 0.470428i \(-0.844099\pi\)
0.848622 + 0.529000i \(0.177433\pi\)
\(308\) −4.30357 3.82049i −0.245218 0.217693i
\(309\) −1.97681 + 22.2938i −0.112457 + 1.26825i
\(310\) 0.421566 + 0.353736i 0.0239433 + 0.0200908i
\(311\) 2.74241 15.5530i 0.155508 0.881929i −0.802812 0.596232i \(-0.796664\pi\)
0.958320 0.285697i \(-0.0922251\pi\)
\(312\) −1.27345 + 0.592001i −0.0720947 + 0.0335154i
\(313\) −13.4998 + 11.3276i −0.763051 + 0.640276i −0.938919 0.344138i \(-0.888171\pi\)
0.175868 + 0.984414i \(0.443727\pi\)
\(314\) −0.494253 + 0.856071i −0.0278923 + 0.0483109i
\(315\) 2.64569 + 8.01460i 0.149068 + 0.451571i
\(316\) −10.7779 18.6678i −0.606302 1.05015i
\(317\) 11.5041 + 4.18714i 0.646132 + 0.235173i 0.644238 0.764825i \(-0.277175\pi\)
0.00189457 + 0.999998i \(0.499397\pi\)
\(318\) −1.86958 + 1.86520i −0.104841 + 0.104595i
\(319\) −7.38128 6.19363i −0.413272 0.346777i
\(320\) −1.35451 + 7.68180i −0.0757194 + 0.429426i
\(321\) −0.354213 + 0.0305711i −0.0197702 + 0.00170631i
\(322\) −1.54663 1.37303i −0.0861906 0.0765157i
\(323\) 5.51044 0.306609
\(324\) 2.99987 + 17.4926i 0.166660 + 0.971810i
\(325\) 2.35980 4.08730i 0.130898 0.226722i
\(326\) −1.57427 + 1.32097i −0.0871910 + 0.0731620i
\(327\) −6.19480 8.86921i −0.342573 0.490468i
\(328\) −4.35910 3.65772i −0.240691 0.201964i
\(329\) −2.32492 4.29934i −0.128177 0.237030i
\(330\) 0.328274 + 0.0883734i 0.0180709 + 0.00486480i
\(331\) 12.8509 + 4.67734i 0.706349 + 0.257090i 0.670119 0.742254i \(-0.266243\pi\)
0.0362296 + 0.999343i \(0.488465\pi\)
\(332\) 23.8587 1.30942
\(333\) −8.41203 10.0730i −0.460976 0.551994i
\(334\) 0.971518 0.0531591
\(335\) −1.35159 7.66524i −0.0738452 0.418797i
\(336\) 7.88199 15.6960i 0.429998 0.856285i
\(337\) 23.9720 8.72509i 1.30584 0.475286i 0.406944 0.913453i \(-0.366595\pi\)
0.898893 + 0.438168i \(0.144372\pi\)
\(338\) −1.47584 1.23838i −0.0802751 0.0673588i
\(339\) 17.6268 + 12.3732i 0.957356 + 0.672023i
\(340\) 7.70033 + 2.80269i 0.417609 + 0.151997i
\(341\) 3.41101 0.184717
\(342\) 0.240564 + 0.665799i 0.0130082 + 0.0360023i
\(343\) −10.5674 + 15.2095i −0.570588 + 0.821236i
\(344\) 3.10053 2.60165i 0.167169 0.140272i
\(345\) −8.30706 2.23632i −0.447237 0.120399i
\(346\) −0.333929 0.280200i −0.0179521 0.0150636i
\(347\) −8.59346 + 3.12776i −0.461321 + 0.167907i −0.562217 0.826990i \(-0.690051\pi\)
0.100896 + 0.994897i \(0.467829\pi\)
\(348\) 12.6419 27.0279i 0.677678 1.44885i
\(349\) 18.1898 + 6.62055i 0.973678 + 0.354390i 0.779379 0.626553i \(-0.215535\pi\)
0.194299 + 0.980942i \(0.437757\pi\)
\(350\) −0.250356 1.69481i −0.0133821 0.0905916i
\(351\) 5.20456 3.61705i 0.277799 0.193064i
\(352\) −1.08690 1.88257i −0.0579322 0.100342i
\(353\) −26.7293 + 22.4285i −1.42266 + 1.19375i −0.472757 + 0.881193i \(0.656741\pi\)
−0.949899 + 0.312557i \(0.898814\pi\)
\(354\) 0.00272195 + 0.00389707i 0.000144670 + 0.000207127i
\(355\) −3.02566 + 17.1594i −0.160585 + 0.910725i
\(356\) 5.53145 31.3704i 0.293166 1.66263i
\(357\) −14.3652 10.6935i −0.760285 0.565962i
\(358\) 1.66153 1.39419i 0.0878148 0.0736854i
\(359\) −8.51495 + 14.7483i −0.449402 + 0.778387i −0.998347 0.0574713i \(-0.981696\pi\)
0.548945 + 0.835858i \(0.315030\pi\)
\(360\) −0.00497368 + 2.12045i −0.000262136 + 0.111757i
\(361\) 8.50585 + 14.7326i 0.447677 + 0.775398i
\(362\) −0.895082 + 0.751063i −0.0470445 + 0.0394750i
\(363\) −15.3661 + 7.14341i −0.806512 + 0.374932i
\(364\) −6.36148 0.177368i −0.333432 0.00929664i
\(365\) −9.16198 + 3.33469i −0.479560 + 0.174546i
\(366\) −1.85976 1.30547i −0.0972114 0.0682382i
\(367\) −10.4089 3.78853i −0.543340 0.197760i 0.0557451 0.998445i \(-0.482247\pi\)
−0.599085 + 0.800685i \(0.704469\pi\)
\(368\) 8.95135 + 15.5042i 0.466621 + 0.808211i
\(369\) 22.2111 + 12.8931i 1.15626 + 0.671190i
\(370\) −0.389222 0.674152i −0.0202347 0.0350475i
\(371\) −22.8725 + 7.60996i −1.18748 + 0.395089i
\(372\) 2.72189 + 10.2061i 0.141123 + 0.529161i
\(373\) 22.1971 8.07909i 1.14932 0.418319i 0.304051 0.952656i \(-0.401661\pi\)
0.845272 + 0.534336i \(0.179438\pi\)
\(374\) −0.677842 + 0.246714i −0.0350504 + 0.0127573i
\(375\) −9.35374 13.3919i −0.483025 0.691556i
\(376\) −0.213236 1.20932i −0.0109968 0.0623660i
\(377\) −10.6557 −0.548794
\(378\) 0.664921 2.20251i 0.0341998 0.113285i
\(379\) −34.6919 −1.78200 −0.891002 0.454000i \(-0.849997\pi\)
−0.891002 + 0.454000i \(0.849997\pi\)
\(380\) −0.513438 2.91185i −0.0263388 0.149375i
\(381\) −19.1146 + 1.64973i −0.979271 + 0.0845180i
\(382\) 3.24820 1.18225i 0.166193 0.0604892i
\(383\) −11.8246 + 4.30380i −0.604209 + 0.219914i −0.625968 0.779849i \(-0.715296\pi\)
0.0217584 + 0.999763i \(0.493074\pi\)
\(384\) 6.33851 6.32366i 0.323461 0.322703i
\(385\) 2.32057 + 2.06009i 0.118267 + 0.104992i
\(386\) −0.378108 0.654902i −0.0192452 0.0333337i
\(387\) −11.7746 + 13.9658i −0.598537 + 0.709921i
\(388\) −0.383273 0.663848i −0.0194577 0.0337018i
\(389\) −11.0087 4.00685i −0.558164 0.203155i 0.0475058 0.998871i \(-0.484873\pi\)
−0.605670 + 0.795716i \(0.707095\pi\)
\(390\) 0.340913 0.158484i 0.0172628 0.00802515i
\(391\) 17.1530 6.24319i 0.867465 0.315731i
\(392\) −3.72552 + 2.78764i −0.188167 + 0.140797i
\(393\) −30.7567 21.5899i −1.55147 1.08906i
\(394\) −0.632976 + 0.531130i −0.0318889 + 0.0267579i
\(395\) 5.81164 + 10.0661i 0.292415 + 0.506478i
\(396\) 4.18261 + 5.00845i 0.210184 + 0.251684i
\(397\) 13.3007 23.0375i 0.667545 1.15622i −0.311044 0.950396i \(-0.600679\pi\)
0.978589 0.205826i \(-0.0659881\pi\)
\(398\) −3.27479 + 2.74788i −0.164150 + 0.137739i
\(399\) −0.749896 + 6.41808i −0.0375417 + 0.321306i
\(400\) −2.57522 + 14.6048i −0.128761 + 0.730239i
\(401\) 0.404650 2.29488i 0.0202072 0.114601i −0.973036 0.230654i \(-0.925913\pi\)
0.993243 + 0.116054i \(0.0370244\pi\)
\(402\) −0.898936 + 1.92189i −0.0448349 + 0.0958550i
\(403\) 2.88961 2.42467i 0.143942 0.120781i
\(404\) −0.154174 0.267036i −0.00767042 0.0132856i
\(405\) −1.61759 9.43235i −0.0803788 0.468697i
\(406\) −3.03118 + 2.40274i −0.150435 + 0.119246i
\(407\) −4.53403 1.65025i −0.224744 0.0818000i
\(408\) −2.57635 3.68861i −0.127548 0.182614i
\(409\) −28.6571 + 10.4303i −1.41700 + 0.515747i −0.933177 0.359416i \(-0.882976\pi\)
−0.483827 + 0.875164i \(0.660754\pi\)
\(410\) 1.16697 + 0.979206i 0.0576326 + 0.0483595i
\(411\) −1.59819 5.99264i −0.0788330 0.295595i
\(412\) −19.5202 + 16.3794i −0.961691 + 0.806955i
\(413\) 0.00634058 + 0.0429232i 0.000311999 + 0.00211211i
\(414\) 1.50316 + 1.79996i 0.0738765 + 0.0884632i
\(415\) −12.8651 −0.631523
\(416\) −2.25896 0.822196i −0.110755 0.0403115i
\(417\) −17.7086 + 8.23239i −0.867194 + 0.403142i
\(418\) 0.199384 + 0.167303i 0.00975220 + 0.00818307i
\(419\) 7.62224 2.77427i 0.372371 0.135532i −0.149054 0.988829i \(-0.547623\pi\)
0.521425 + 0.853297i \(0.325401\pi\)
\(420\) −4.31224 + 8.58727i −0.210416 + 0.419016i
\(421\) 5.46441 + 30.9902i 0.266319 + 1.51037i 0.765253 + 0.643730i \(0.222614\pi\)
−0.498934 + 0.866640i \(0.666275\pi\)
\(422\) 2.09746 0.102103
\(423\) 1.88330 + 5.21232i 0.0915691 + 0.253432i
\(424\) −6.05617 −0.294113
\(425\) 14.2091 + 5.17168i 0.689241 + 0.250863i
\(426\) 3.36248 3.35460i 0.162913 0.162531i
\(427\) −9.86545 18.2435i −0.477422 0.882867i
\(428\) −0.310081 0.260189i −0.0149883 0.0125767i
\(429\) 0.987282 2.11077i 0.0476664 0.101909i
\(430\) −0.830040 + 0.696487i −0.0400281 + 0.0335876i
\(431\) −5.08992 + 8.81601i −0.245173 + 0.424652i −0.962180 0.272414i \(-0.912178\pi\)
0.717007 + 0.697066i \(0.245511\pi\)
\(432\) −11.4804 + 16.2736i −0.552352 + 0.782962i
\(433\) 20.3762 0.979219 0.489610 0.871942i \(-0.337139\pi\)
0.489610 + 0.871942i \(0.337139\pi\)
\(434\) 0.275262 1.34132i 0.0132130 0.0643852i
\(435\) −6.81678 + 14.5740i −0.326840 + 0.698769i
\(436\) 2.13884 12.1300i 0.102432 0.580921i
\(437\) −5.04548 4.23366i −0.241358 0.202523i
\(438\) 2.56641 + 0.690895i 0.122628 + 0.0330122i
\(439\) −20.4921 7.45852i −0.978035 0.355976i −0.196959 0.980412i \(-0.563107\pi\)
−0.781076 + 0.624436i \(0.785329\pi\)
\(440\) 0.389805 + 0.675161i 0.0185832 + 0.0321871i
\(441\) 14.4098 15.2760i 0.686181 0.727431i
\(442\) −0.398855 + 0.690837i −0.0189716 + 0.0328598i
\(443\) −6.33793 + 5.31816i −0.301124 + 0.252673i −0.780812 0.624766i \(-0.785194\pi\)
0.479688 + 0.877439i \(0.340750\pi\)
\(444\) 1.31970 14.8831i 0.0626300 0.706322i
\(445\) −2.98267 + 16.9156i −0.141392 + 0.801874i
\(446\) 2.59327 + 2.17601i 0.122795 + 0.103037i
\(447\) 16.9122 7.86218i 0.799922 0.371868i
\(448\) 18.4158 6.12717i 0.870066 0.289482i
\(449\) 6.47670 11.2180i 0.305654 0.529409i −0.671753 0.740776i \(-0.734458\pi\)
0.977407 + 0.211367i \(0.0677915\pi\)
\(450\) −0.00455650 + 1.94259i −0.000214795 + 0.0915744i
\(451\) 9.44230 0.444621
\(452\) 4.25776 + 24.1470i 0.200268 + 1.13578i
\(453\) −11.8129 + 11.7852i −0.555018 + 0.553717i
\(454\) 0.000206287 0.00116991i 9.68153e−6 5.49067e-5i
\(455\) 3.43024 + 0.0956407i 0.160812 + 0.00448370i
\(456\) −0.687820 + 1.47053i −0.0322101 + 0.0688639i
\(457\) 3.45753 + 19.6086i 0.161736 + 0.917252i 0.952366 + 0.304958i \(0.0986423\pi\)
−0.790630 + 0.612295i \(0.790247\pi\)
\(458\) −1.06688 + 1.84788i −0.0498518 + 0.0863458i
\(459\) 14.3080 + 14.4091i 0.667842 + 0.672558i
\(460\) −4.89729 8.48235i −0.228337 0.395492i
\(461\) −1.38048 0.502454i −0.0642954 0.0234016i 0.309672 0.950843i \(-0.399781\pi\)
−0.373968 + 0.927442i \(0.622003\pi\)
\(462\) −0.195106 0.823066i −0.00907717 0.0382925i
\(463\) 4.74179 + 3.97883i 0.220369 + 0.184912i 0.746288 0.665623i \(-0.231834\pi\)
−0.525919 + 0.850535i \(0.676278\pi\)
\(464\) 31.4633 11.4517i 1.46065 0.531632i
\(465\) −1.46770 5.50333i −0.0680628 0.255211i
\(466\) −0.747769 4.24081i −0.0346397 0.196452i
\(467\) −0.466732 + 0.808403i −0.0215978 + 0.0374084i −0.876622 0.481179i \(-0.840209\pi\)
0.855025 + 0.518588i \(0.173542\pi\)
\(468\) 7.10345 + 1.26972i 0.328357 + 0.0586927i
\(469\) −15.1768 + 12.0302i −0.700800 + 0.555505i
\(470\) 0.0570852 + 0.323746i 0.00263314 + 0.0149333i
\(471\) 9.27739 4.31288i 0.427480 0.198727i
\(472\) −0.00189294 + 0.0107354i −8.71295e−5 + 0.000494136i
\(473\) −1.16624 + 6.61406i −0.0536236 + 0.304115i
\(474\) 0.279848 3.15605i 0.0128539 0.144962i
\(475\) −0.947423 5.37310i −0.0434707 0.246535i
\(476\) −2.97955 20.1704i −0.136567 0.924507i
\(477\) 26.9286 4.68314i 1.23298 0.214426i
\(478\) 0.642008 1.11199i 0.0293648 0.0508613i
\(479\) −6.13650 34.8018i −0.280384 1.59014i −0.721322 0.692600i \(-0.756465\pi\)
0.440938 0.897537i \(-0.354646\pi\)
\(480\) −2.56967 + 2.56365i −0.117289 + 0.117014i
\(481\) −5.01403 + 1.82496i −0.228620 + 0.0832109i
\(482\) 2.40382 + 2.01704i 0.109491 + 0.0918739i
\(483\) 4.93723 + 20.8279i 0.224652 + 0.947704i
\(484\) −18.1293 6.59854i −0.824061 0.299934i
\(485\) 0.206669 + 0.357961i 0.00938434 + 0.0162541i
\(486\) −1.11634 + 2.35781i −0.0506384 + 0.106952i
\(487\) 1.31737 2.28176i 0.0596958 0.103396i −0.834633 0.550806i \(-0.814320\pi\)
0.894329 + 0.447410i \(0.147654\pi\)
\(488\) −0.904833 5.13156i −0.0409599 0.232295i
\(489\) 21.1909 1.82892i 0.958285 0.0827067i
\(490\) 0.997356 0.746276i 0.0450560 0.0337133i
\(491\) −1.44686 + 8.20554i −0.0652958 + 0.370311i 0.934598 + 0.355707i \(0.115760\pi\)
−0.999893 + 0.0146040i \(0.995351\pi\)
\(492\) 7.53468 + 28.2523i 0.339690 + 1.27371i
\(493\) −5.92822 33.6206i −0.266994 1.51420i
\(494\) 0.287832 0.0129502
\(495\) −2.25535 2.70066i −0.101370 0.121386i
\(496\) −5.92643 + 10.2649i −0.266105 + 0.460907i
\(497\) 41.1367 13.6867i 1.84523 0.613932i
\(498\) 2.87036 + 2.01487i 0.128624 + 0.0902884i
\(499\) −14.8063 12.4239i −0.662820 0.556172i 0.248111 0.968732i \(-0.420190\pi\)
−0.910931 + 0.412560i \(0.864635\pi\)
\(500\) 3.22952 18.3155i 0.144428 0.819094i
\(501\) −8.22986 5.77701i −0.367683 0.258098i
\(502\) −3.13314 + 2.62901i −0.139839 + 0.117339i
\(503\) −15.6608 + 27.1253i −0.698279 + 1.20946i 0.270783 + 0.962640i \(0.412717\pi\)
−0.969063 + 0.246815i \(0.920616\pi\)
\(504\) 4.64678 2.49874i 0.206984 0.111303i
\(505\) 0.0831335 + 0.143991i 0.00369939 + 0.00640754i
\(506\) 0.810197 + 0.294887i 0.0360176 + 0.0131093i
\(507\) 5.13819 + 19.2663i 0.228195 + 0.855648i
\(508\) −16.7331 14.0407i −0.742411 0.622956i
\(509\) 3.91248 22.1888i 0.173418 0.983500i −0.766537 0.642200i \(-0.778022\pi\)
0.939954 0.341300i \(-0.110867\pi\)
\(510\) 0.689713 + 0.987475i 0.0305410 + 0.0437261i
\(511\) 18.1420 + 16.1056i 0.802554 + 0.712468i
\(512\) 12.6491 0.559017
\(513\) 1.92124 7.07055i 0.0848247 0.312173i
\(514\) −0.440628 + 0.763191i −0.0194353 + 0.0336629i
\(515\) 10.5257 8.83210i 0.463817 0.389189i
\(516\) −20.7206 + 1.78833i −0.912172 + 0.0787268i
\(517\) 1.56091 + 1.30976i 0.0686489 + 0.0576033i
\(518\) −1.01482 + 1.64975i −0.0445886 + 0.0724859i
\(519\) 1.16259 + 4.35927i 0.0510319 + 0.191351i
\(520\) 0.810149 + 0.294870i 0.0355274 + 0.0129309i
\(521\) 27.1773 1.19066 0.595329 0.803482i \(-0.297022\pi\)
0.595329 + 0.803482i \(0.297022\pi\)
\(522\) 3.80341 2.18402i 0.166471 0.0955920i
\(523\) 10.9931 0.480693 0.240346 0.970687i \(-0.422739\pi\)
0.240346 + 0.970687i \(0.422739\pi\)
\(524\) −7.42929 42.1336i −0.324550 1.84061i
\(525\) −7.95718 + 15.8457i −0.347280 + 0.691563i
\(526\) 2.01425 0.733127i 0.0878254 0.0319658i
\(527\) 9.25792 + 7.76832i 0.403281 + 0.338393i
\(528\) −0.646725 + 7.29357i −0.0281451 + 0.317412i
\(529\) 1.11066 + 0.404246i 0.0482894 + 0.0175759i
\(530\) 1.62129 0.0704244
\(531\) 0.000115399 0.0491984i 5.00788e−6 0.00213503i
\(532\) −5.76532 + 4.57001i −0.249958 + 0.198135i
\(533\) 7.99897 6.71193i 0.346474 0.290726i
\(534\) 3.31470 3.30693i 0.143441 0.143105i
\(535\) 0.167202 + 0.140299i 0.00722876 + 0.00606565i
\(536\) −4.57219 + 1.66414i −0.197488 + 0.0718799i
\(537\) −22.3655 + 1.93030i −0.965141 + 0.0832984i
\(538\) −4.37785 1.59341i −0.188742 0.0686966i
\(539\) 1.76231 7.51708i 0.0759081 0.323784i
\(540\) 6.28094 8.90328i 0.270289 0.383136i
\(541\) −12.6595 21.9269i −0.544274 0.942710i −0.998652 0.0519013i \(-0.983472\pi\)
0.454378 0.890809i \(-0.349861\pi\)
\(542\) −0.785038 + 0.658725i −0.0337203 + 0.0282947i
\(543\) 12.0485 1.03987i 0.517049 0.0446249i
\(544\) 1.33742 7.58489i 0.0573415 0.325200i
\(545\) −1.15331 + 6.54074i −0.0494023 + 0.280174i
\(546\) −0.750348 0.558565i −0.0321119 0.0239044i
\(547\) −18.5056 + 15.5280i −0.791242 + 0.663931i −0.946053 0.324013i \(-0.894968\pi\)
0.154811 + 0.987944i \(0.450523\pi\)
\(548\) 3.53064 6.11524i 0.150821 0.261230i
\(549\) 7.99147 + 22.1177i 0.341068 + 0.943959i
\(550\) 0.357108 + 0.618530i 0.0152272 + 0.0263742i
\(551\) −9.43631 + 7.91800i −0.402000 + 0.337318i
\(552\) −0.474988 + 5.35677i −0.0202168 + 0.227999i
\(553\) 15.1527 24.6331i 0.644358 1.04751i
\(554\) 1.09485 0.398491i 0.0465155 0.0169303i
\(555\) −0.711607 + 8.02529i −0.0302060 + 0.340655i
\(556\) −20.8931 7.60445i −0.886063 0.322501i
\(557\) −5.57957 9.66411i −0.236414 0.409481i 0.723269 0.690567i \(-0.242639\pi\)
−0.959683 + 0.281086i \(0.909306\pi\)
\(558\) −0.534443 + 1.45772i −0.0226248 + 0.0617103i
\(559\) 3.71355 + 6.43205i 0.157066 + 0.272047i
\(560\) −10.2314 + 3.40410i −0.432354 + 0.143849i
\(561\) 7.20915 + 1.94075i 0.304370 + 0.0819385i
\(562\) −3.99114 + 1.45266i −0.168356 + 0.0612766i
\(563\) 34.6151 12.5989i 1.45885 0.530979i 0.513803 0.857908i \(-0.328236\pi\)
0.945049 + 0.326930i \(0.106014\pi\)
\(564\) −2.67338 + 5.71556i −0.112569 + 0.240669i
\(565\) −2.29587 13.0205i −0.0965880 0.547778i
\(566\) −3.15136 −0.132461
\(567\) −18.7296 + 14.7039i −0.786567 + 0.617505i
\(568\) 10.8921 0.457024
\(569\) −4.02818 22.8449i −0.168870 0.957709i −0.944984 0.327117i \(-0.893923\pi\)
0.776114 0.630593i \(-0.217188\pi\)
\(570\) 0.184136 0.393674i 0.00771260 0.0164892i
\(571\) −7.61983 + 2.77339i −0.318880 + 0.116063i −0.496501 0.868036i \(-0.665382\pi\)
0.177621 + 0.984099i \(0.443160\pi\)
\(572\) 2.49306 0.907401i 0.104240 0.0379403i
\(573\) −34.5461 9.30003i −1.44318 0.388514i
\(574\) 0.761975 3.71301i 0.0318042 0.154978i
\(575\) −9.03674 15.6521i −0.376858 0.652737i
\(576\) −21.6816 + 3.77063i −0.903400 + 0.157110i
\(577\) −11.9048 20.6198i −0.495605 0.858414i 0.504382 0.863481i \(-0.331720\pi\)
−0.999987 + 0.00506711i \(0.998387\pi\)
\(578\) 0.271759 + 0.0989120i 0.0113037 + 0.00411420i
\(579\) −0.691287 + 7.79613i −0.0287289 + 0.323996i
\(580\) −17.2136 + 6.26523i −0.714755 + 0.260149i
\(581\) 15.2263 + 28.1571i 0.631695 + 1.16815i
\(582\) 0.00995173 0.112233i 0.000412513 0.00465219i
\(583\) 7.69815 6.45952i 0.318825 0.267526i
\(584\) 3.04745 + 5.27835i 0.126105 + 0.218419i
\(585\) −3.83033 0.684657i −0.158364 0.0283071i
\(586\) −2.48430 + 4.30293i −0.102625 + 0.177752i
\(587\) −29.0802 + 24.4012i −1.20027 + 1.00715i −0.200647 + 0.979664i \(0.564304\pi\)
−0.999622 + 0.0274816i \(0.991251\pi\)
\(588\) 23.8981 0.725407i 0.985543 0.0299153i
\(589\) 0.757222 4.29442i 0.0312008 0.176949i
\(590\) 0.000506756 0.00287396i 2.08628e−5 0.000118319i
\(591\) 8.52031 0.735363i 0.350479 0.0302488i
\(592\) 12.8438 10.7772i 0.527876 0.442941i
\(593\) −5.68593 9.84832i −0.233493 0.404422i 0.725341 0.688390i \(-0.241682\pi\)
−0.958834 + 0.283968i \(0.908349\pi\)
\(594\) 0.0802316 + 0.955771i 0.00329194 + 0.0392157i
\(595\) 1.60663 + 10.8763i 0.0658655 + 0.445883i
\(596\) 19.9535 + 7.26248i 0.817327 + 0.297483i
\(597\) 44.0811 3.80451i 1.80412 0.155708i
\(598\) 0.895968 0.326106i 0.0366389 0.0133355i
\(599\) 15.1611 + 12.7216i 0.619464 + 0.519792i 0.897635 0.440740i \(-0.145284\pi\)
−0.278171 + 0.960532i \(0.589728\pi\)
\(600\) −3.15372 + 3.14633i −0.128750 + 0.128448i
\(601\) 12.8458 10.7789i 0.523990 0.439679i −0.342030 0.939689i \(-0.611115\pi\)
0.866020 + 0.500009i \(0.166670\pi\)
\(602\) 2.50674 + 0.992342i 0.102167 + 0.0404449i
\(603\) 19.0433 10.9352i 0.775501 0.445314i
\(604\) −18.9980 −0.773016
\(605\) 9.77571 + 3.55807i 0.397439 + 0.144656i
\(606\) 0.00400314 0.0451462i 0.000162616 0.00183394i
\(607\) −14.8286 12.4427i −0.601876 0.505034i 0.290172 0.956974i \(-0.406287\pi\)
−0.892048 + 0.451941i \(0.850732\pi\)
\(608\) −2.61143 + 0.950481i −0.105907 + 0.0385471i
\(609\) 39.9651 2.32937i 1.61947 0.0943909i
\(610\) 0.242232 + 1.37377i 0.00980769 + 0.0556222i
\(611\) 2.25334 0.0911604
\(612\) −0.0542279 + 23.1192i −0.00219203 + 0.934537i
\(613\) 27.9450 1.12869 0.564344 0.825540i \(-0.309129\pi\)
0.564344 + 0.825540i \(0.309129\pi\)
\(614\) −0.186352 0.0678267i −0.00752057 0.00273726i
\(615\) −4.06285 15.2342i −0.163830 0.614303i
\(616\) 1.01634 1.65222i 0.0409494 0.0665699i
\(617\) −26.9774 22.6367i −1.08607 0.911319i −0.0896574 0.995973i \(-0.528577\pi\)
−0.996410 + 0.0846535i \(0.973022\pi\)
\(618\) −3.73165 + 0.322067i −0.150109 + 0.0129554i
\(619\) −0.182175 + 0.152863i −0.00732225 + 0.00614409i −0.646441 0.762964i \(-0.723744\pi\)
0.639119 + 0.769108i \(0.279299\pi\)
\(620\) 3.24235 5.61592i 0.130216 0.225541i
\(621\) −2.03029 24.1861i −0.0814726 0.970553i
\(622\) 2.64295 0.105973
\(623\) 40.5522 13.4922i 1.62469 0.540554i
\(624\) 4.63667 + 6.63840i 0.185615 + 0.265749i
\(625\) 1.61807 9.17655i 0.0647229 0.367062i
\(626\) −2.25919 1.89568i −0.0902953 0.0757668i
\(627\) −0.694163 2.60286i −0.0277222 0.103948i
\(628\) 10.9457 + 3.98391i 0.436781 + 0.158975i
\(629\) −8.54762 14.8049i −0.340816 0.590311i
\(630\) −1.24399 + 0.668936i −0.0495616 + 0.0266510i
\(631\) 16.1764 28.0184i 0.643974 1.11540i −0.340563 0.940222i \(-0.610618\pi\)
0.984537 0.175175i \(-0.0560490\pi\)
\(632\) 5.56604 4.67046i 0.221405 0.185781i
\(633\) −17.7679 12.4723i −0.706209 0.495728i
\(634\) −0.355764 + 2.01764i −0.0141292 + 0.0801307i
\(635\) 9.02282 + 7.57104i 0.358060 + 0.300448i
\(636\) 25.4704 + 17.8791i 1.00997 + 0.708954i
\(637\) −3.85049 7.62075i −0.152562 0.301945i
\(638\) 0.806259 1.39648i 0.0319201 0.0552872i
\(639\) −48.4317 + 8.42273i −1.91593 + 0.333198i
\(640\) −5.49673 −0.217277
\(641\) 4.00357 + 22.7053i 0.158131 + 0.896807i 0.955867 + 0.293800i \(0.0949199\pi\)
−0.797736 + 0.603007i \(0.793969\pi\)
\(642\) −0.0153318 0.0574887i −0.000605098 0.00226890i
\(643\) −4.82429 + 27.3599i −0.190251 + 1.07897i 0.728769 + 0.684760i \(0.240093\pi\)
−0.919020 + 0.394210i \(0.871018\pi\)
\(644\) −12.7687 + 20.7576i −0.503157 + 0.817963i
\(645\) 11.1729 0.964304i 0.439934 0.0379694i
\(646\) 0.160134 + 0.908165i 0.00630039 + 0.0357313i
\(647\) 11.0845 19.1989i 0.435776 0.754787i −0.561582 0.827421i \(-0.689807\pi\)
0.997359 + 0.0726341i \(0.0231405\pi\)
\(648\) −5.63118 + 2.01972i −0.221214 + 0.0793420i
\(649\) −0.00904421 0.0156650i −0.000355016 0.000614906i
\(650\) 0.742195 + 0.270137i 0.0291113 + 0.0105956i
\(651\) −10.3077 + 9.72566i −0.403992 + 0.381179i
\(652\) 18.5507 + 15.5659i 0.726500 + 0.609606i
\(653\) −19.8853 + 7.23766i −0.778172 + 0.283232i −0.700410 0.713740i \(-0.747000\pi\)
−0.0777620 + 0.996972i \(0.524777\pi\)
\(654\) 1.28169 1.27869i 0.0501182 0.0500008i
\(655\) 4.00602 + 22.7193i 0.156528 + 0.887716i
\(656\) −16.4054 + 28.4151i −0.640525 + 1.10942i
\(657\) −17.6321 21.1135i −0.687893 0.823715i
\(658\) 0.641002 0.508105i 0.0249889 0.0198080i
\(659\) −0.954608 5.41385i −0.0371863 0.210894i 0.960553 0.278097i \(-0.0897036\pi\)
−0.997739 + 0.0672030i \(0.978592\pi\)
\(660\) 0.353823 3.99032i 0.0137726 0.155323i
\(661\) −2.21984 + 12.5893i −0.0863418 + 0.489669i 0.910717 + 0.413031i \(0.135530\pi\)
−0.997059 + 0.0766382i \(0.975581\pi\)
\(662\) −0.397415 + 2.25385i −0.0154460 + 0.0875985i
\(663\) 7.48673 3.48043i 0.290760 0.135169i
\(664\) 1.39652 + 7.92005i 0.0541955 + 0.307358i
\(665\) 3.10878 2.46424i 0.120553 0.0955593i
\(666\) 1.41565 1.67909i 0.0548553 0.0650634i
\(667\) −20.4026 + 35.3384i −0.789993 + 1.36831i
\(668\) −1.98793 11.2741i −0.0769152 0.436208i
\(669\) −9.02858 33.8539i −0.349065 1.30887i
\(670\) 1.22402 0.445505i 0.0472879 0.0172114i
\(671\) 6.62349 + 5.55777i 0.255697 + 0.214555i
\(672\) 8.65222 + 2.58991i 0.333767 + 0.0999080i
\(673\) 13.5940 + 4.94780i 0.524008 + 0.190723i 0.590461 0.807066i \(-0.298946\pi\)
−0.0664526 + 0.997790i \(0.521168\pi\)
\(674\) 2.13459 + 3.69722i 0.0822214 + 0.142412i
\(675\) 11.5899 16.4288i 0.446097 0.632345i
\(676\) −11.3510 + 19.6605i −0.436577 + 0.756173i
\(677\) 6.23545 + 35.3630i 0.239648 + 1.35911i 0.832601 + 0.553874i \(0.186851\pi\)
−0.592953 + 0.805237i \(0.702038\pi\)
\(678\) −1.52697 + 3.26460i −0.0586431 + 0.125376i
\(679\) 0.538847 0.875983i 0.0206790 0.0336171i
\(680\) −0.479649 + 2.72023i −0.0183937 + 0.104316i
\(681\) −0.00870421 + 0.00868382i −0.000333546 + 0.000332765i
\(682\) 0.0991242 + 0.562162i 0.00379566 + 0.0215263i
\(683\) −35.2464 −1.34867 −0.674333 0.738427i \(-0.735569\pi\)
−0.674333 + 0.738427i \(0.735569\pi\)
\(684\) 7.23409 4.15401i 0.276602 0.158833i
\(685\) −1.90379 + 3.29746i −0.0727401 + 0.125990i
\(686\) −2.81374 1.29961i −0.107429 0.0496193i
\(687\) 20.0258 9.30962i 0.764033 0.355184i
\(688\) −17.8777 15.0011i −0.681580 0.571913i
\(689\) 1.92977 10.9443i 0.0735183 0.416943i
\(690\) 0.127159 1.43406i 0.00484085 0.0545936i
\(691\) 31.3746 26.3264i 1.19355 1.00150i 0.193754 0.981050i \(-0.437934\pi\)
0.999791 0.0204532i \(-0.00651092\pi\)
\(692\) −2.56832 + 4.44846i −0.0976329 + 0.169105i
\(693\) −3.24148 + 8.13248i −0.123134 + 0.308927i
\(694\) −0.765207 1.32538i −0.0290469 0.0503106i
\(695\) 11.2660 + 4.10048i 0.427342 + 0.155540i
\(696\) 9.71205 + 2.61455i 0.368134 + 0.0991042i
\(697\) 25.6276 + 21.5041i 0.970715 + 0.814527i
\(698\) −0.562521 + 3.19022i −0.0212917 + 0.120751i
\(699\) −18.8830 + 40.3710i −0.714219 + 1.52697i
\(700\) −19.1554 + 6.37322i −0.724004 + 0.240885i
\(701\) −6.46856 −0.244314 −0.122157 0.992511i \(-0.538981\pi\)
−0.122157 + 0.992511i \(0.538981\pi\)
\(702\) 0.747364 + 0.752642i 0.0282074 + 0.0284066i
\(703\) −3.08417 + 5.34195i −0.116322 + 0.201475i
\(704\) −6.19818 + 5.20089i −0.233603 + 0.196016i
\(705\) 1.44154 3.08195i 0.0542915 0.116073i
\(706\) −4.47315 3.75342i −0.168349 0.141262i
\(707\) 0.216754 0.352369i 0.00815187 0.0132522i
\(708\) 0.0396543 0.0395614i 0.00149030 0.00148681i
\(709\) 12.6373 + 4.59961i 0.474605 + 0.172742i 0.568237 0.822865i \(-0.307626\pi\)
−0.0936324 + 0.995607i \(0.529848\pi\)
\(710\) −2.91593 −0.109433
\(711\) −21.1376 + 25.0712i −0.792724 + 0.940244i
\(712\) 10.7374 0.402400
\(713\) −2.50837 14.2257i −0.0939392 0.532755i
\(714\) 1.34493 2.67825i 0.0503326 0.100231i
\(715\) −1.34431 + 0.489289i −0.0502743 + 0.0182984i
\(716\) −19.5789 16.4286i −0.731698 0.613967i
\(717\) −12.0508 + 5.60220i −0.450047 + 0.209218i
\(718\) −2.67809 0.974744i −0.0999453 0.0363771i
\(719\) 19.4441 0.725144 0.362572 0.931956i \(-0.381899\pi\)
0.362572 + 0.931956i \(0.381899\pi\)
\(720\) 12.0457 2.09487i 0.448918 0.0780711i
\(721\) −31.7878 12.5838i −1.18384 0.468646i
\(722\) −2.18086 + 1.82996i −0.0811633 + 0.0681041i
\(723\) −8.36899 31.3806i −0.311246 1.16706i
\(724\) 10.5473 + 8.85024i 0.391988 + 0.328917i
\(725\) −31.7634 + 11.5609i −1.17966 + 0.429363i
\(726\) −1.62383 2.32487i −0.0602661 0.0862841i
\(727\) −42.7100 15.5452i −1.58402 0.576538i −0.607950 0.793975i \(-0.708008\pi\)
−0.976074 + 0.217437i \(0.930230\pi\)
\(728\) −0.313477 2.12211i −0.0116182 0.0786508i
\(729\) 23.4771 13.3351i 0.869522 0.493894i
\(730\) −0.815831 1.41306i −0.0301953 0.0522997i
\(731\) −18.2283 + 15.2954i −0.674200 + 0.565721i
\(732\) −11.3440 + 24.2531i −0.419288 + 0.896420i
\(733\) 1.17356 6.65559i 0.0433464 0.245830i −0.955434 0.295205i \(-0.904612\pi\)
0.998780 + 0.0493755i \(0.0157231\pi\)
\(734\) 0.321896 1.82556i 0.0118814 0.0673828i
\(735\) −12.8864 + 0.391154i −0.475321 + 0.0144279i
\(736\) −7.05202 + 5.91735i −0.259941 + 0.218116i
\(737\) 4.03685 6.99203i 0.148699 0.257555i
\(738\) −1.47944 + 4.03524i −0.0544588 + 0.148539i
\(739\) 8.02470 + 13.8992i 0.295193 + 0.511290i 0.975030 0.222074i \(-0.0712826\pi\)
−0.679837 + 0.733364i \(0.737949\pi\)
\(740\) −7.02684 + 5.89622i −0.258312 + 0.216749i
\(741\) −2.43826 1.71155i −0.0895718 0.0628755i
\(742\) −1.91886 3.54842i −0.0704435 0.130267i
\(743\) −15.4896 + 5.63775i −0.568258 + 0.206829i −0.610140 0.792294i \(-0.708887\pi\)
0.0418821 + 0.999123i \(0.486665\pi\)
\(744\) −3.22866 + 1.50094i −0.118368 + 0.0550271i
\(745\) −10.7593 3.91608i −0.394192 0.143474i
\(746\) 1.97655 + 3.42348i 0.0723666 + 0.125343i
\(747\) −12.3340 34.1364i −0.451279 1.24899i
\(748\) 4.25003 + 7.36127i 0.155396 + 0.269155i
\(749\) 0.109174 0.531994i 0.00398915 0.0194386i
\(750\) 1.93527 1.93074i 0.0706662 0.0705007i
\(751\) −4.26983 + 1.55409i −0.155808 + 0.0567096i −0.418747 0.908103i \(-0.637531\pi\)
0.262939 + 0.964813i \(0.415308\pi\)
\(752\) −6.65351 + 2.42168i −0.242629 + 0.0883096i
\(753\) 42.1743 3.63994i 1.53692 0.132647i
\(754\) −0.309654 1.75614i −0.0112769 0.0639547i
\(755\) 10.2441 0.372820
\(756\) −26.9198 3.20936i −0.979064 0.116723i
\(757\) 9.45226 0.343548 0.171774 0.985136i \(-0.445050\pi\)
0.171774 + 0.985136i \(0.445050\pi\)
\(758\) −1.00815 5.71750i −0.0366177 0.207669i
\(759\) −5.10977 7.31576i −0.185473 0.265545i
\(760\) 0.936554 0.340878i 0.0339724 0.0123649i
\(761\) −40.8639 + 14.8732i −1.48131 + 0.539154i −0.951147 0.308738i \(-0.900093\pi\)
−0.530168 + 0.847893i \(0.677871\pi\)
\(762\) −0.827360 3.10230i −0.0299721 0.112384i
\(763\) 15.6803 5.21703i 0.567665 0.188869i
\(764\) −20.3660 35.2750i −0.736817 1.27620i
\(765\) 0.0292408 12.4663i 0.00105720 0.450721i
\(766\) −1.05293 1.82372i −0.0380437 0.0658937i
\(767\) −0.0187970