Properties

Label 189.2.u.a.4.11
Level $189$
Weight $2$
Character 189.4
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(4,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([2, 12]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.u (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 4.11
Character \(\chi\) \(=\) 189.4
Dual form 189.2.u.a.142.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0305699 - 0.173370i) q^{2} +(-0.226706 + 1.71715i) q^{3} +(1.85026 - 0.673440i) q^{4} +(2.52551 - 0.919210i) q^{5} +(0.304634 - 0.0131890i) q^{6} +(-1.78991 - 1.94839i) q^{7} +(-0.349362 - 0.605113i) q^{8} +(-2.89721 - 0.778577i) q^{9} +O(q^{10})\) \(q+(-0.0305699 - 0.173370i) q^{2} +(-0.226706 + 1.71715i) q^{3} +(1.85026 - 0.673440i) q^{4} +(2.52551 - 0.919210i) q^{5} +(0.304634 - 0.0131890i) q^{6} +(-1.78991 - 1.94839i) q^{7} +(-0.349362 - 0.605113i) q^{8} +(-2.89721 - 0.778577i) q^{9} +(-0.236568 - 0.409748i) q^{10} +(5.66019 + 2.06014i) q^{11} +(0.736933 + 3.32985i) q^{12} +(-5.70404 + 2.07610i) q^{13} +(-0.283077 + 0.369879i) q^{14} +(1.00587 + 4.54507i) q^{15} +(2.92247 - 2.45224i) q^{16} +(-0.621796 - 1.07698i) q^{17} +(-0.0464149 + 0.526091i) q^{18} +(-1.47151 + 2.54874i) q^{19} +(4.05382 - 3.40156i) q^{20} +(3.75147 - 2.63182i) q^{21} +(0.184136 - 1.04429i) q^{22} +(-0.622595 + 3.53091i) q^{23} +(1.11827 - 0.462724i) q^{24} +(1.70302 - 1.42901i) q^{25} +(0.534306 + 0.925446i) q^{26} +(1.99375 - 4.79843i) q^{27} +(-4.62392 - 2.39965i) q^{28} +(-1.80256 - 0.656078i) q^{29} +(0.757231 - 0.313331i) q^{30} +(0.351738 - 0.128022i) q^{31} +(-1.58499 - 1.32997i) q^{32} +(-4.82077 + 9.25234i) q^{33} +(-0.167709 + 0.140724i) q^{34} +(-6.31140 - 3.27539i) q^{35} +(-5.88492 + 0.510526i) q^{36} -4.85189 q^{37} +(0.486860 + 0.177203i) q^{38} +(-2.27184 - 10.2654i) q^{39} +(-1.43854 - 1.20708i) q^{40} +(-8.12199 + 2.95616i) q^{41} +(-0.570962 - 0.569939i) q^{42} +(-1.51365 - 8.58435i) q^{43} +11.8602 q^{44} +(-8.03260 + 0.696841i) q^{45} +0.631189 q^{46} +(1.43798 + 0.523383i) q^{47} +(3.54832 + 5.57425i) q^{48} +(-0.592478 + 6.97488i) q^{49} +(-0.299809 - 0.251569i) q^{50} +(1.99031 - 0.823559i) q^{51} +(-9.15584 + 7.68266i) q^{52} +(4.07550 - 7.05897i) q^{53} +(-0.892855 - 0.198969i) q^{54} +16.1885 q^{55} +(-0.553673 + 1.76379i) q^{56} +(-4.04297 - 3.10463i) q^{57} +(-0.0586405 + 0.332567i) q^{58} +(3.18453 + 2.67214i) q^{59} +(4.92196 + 7.73217i) q^{60} +(-3.48243 - 1.26750i) q^{61} +(-0.0329478 - 0.0570673i) q^{62} +(3.66876 + 7.03848i) q^{63} +(3.63289 - 6.29234i) q^{64} +(-12.4972 + 10.4864i) q^{65} +(1.75145 + 0.552936i) q^{66} +(0.699154 - 3.96510i) q^{67} +(-1.87577 - 1.57396i) q^{68} +(-5.92196 - 1.86957i) q^{69} +(-0.374916 + 1.19434i) q^{70} +(-0.161544 + 0.279802i) q^{71} +(0.541048 + 2.02514i) q^{72} +4.85752 q^{73} +(0.148322 + 0.841174i) q^{74} +(2.06773 + 3.24831i) q^{75} +(-1.00627 + 5.70681i) q^{76} +(-6.11724 - 14.7157i) q^{77} +(-1.71026 + 0.707680i) q^{78} +(-0.357349 - 2.02663i) q^{79} +(5.12659 - 8.87951i) q^{80} +(7.78764 + 4.51140i) q^{81} +(0.760800 + 1.31774i) q^{82} +(9.46250 + 3.44407i) q^{83} +(5.16882 - 7.39595i) q^{84} +(-2.56032 - 2.14837i) q^{85} +(-1.44200 + 0.524845i) q^{86} +(1.53524 - 2.94653i) q^{87} +(-0.730838 - 4.14479i) q^{88} +(2.13585 - 3.69941i) q^{89} +(0.366367 + 1.37131i) q^{90} +(14.2547 + 7.39769i) q^{91} +(1.22590 + 6.95240i) q^{92} +(0.140092 + 0.633010i) q^{93} +(0.0467801 - 0.265303i) q^{94} +(-1.37350 + 7.78949i) q^{95} +(2.64308 - 2.42016i) q^{96} +(-0.938221 - 5.32092i) q^{97} +(1.22735 - 0.110503i) q^{98} +(-14.7948 - 10.3755i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} - 15 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} - 15 q^{9} + 3 q^{10} - 15 q^{11} - 3 q^{12} - 12 q^{13} - 30 q^{14} + 9 q^{16} + 27 q^{17} - 3 q^{18} + 3 q^{19} - 18 q^{20} + 15 q^{21} - 12 q^{22} - 36 q^{23} - 72 q^{24} - 3 q^{25} + 30 q^{26} - 12 q^{27} - 12 q^{28} - 30 q^{29} - 3 q^{30} - 3 q^{31} - 75 q^{32} + 15 q^{33} - 18 q^{34} + 15 q^{35} - 60 q^{36} - 6 q^{37} + 69 q^{38} + 51 q^{39} + 51 q^{40} - 39 q^{42} - 12 q^{43} - 6 q^{44} - 21 q^{45} - 6 q^{46} - 21 q^{47} + 90 q^{48} - 42 q^{49} - 39 q^{50} + 33 q^{51} + 9 q^{52} + 9 q^{53} - 9 q^{54} - 24 q^{55} + 111 q^{56} - 18 q^{57} - 3 q^{58} + 27 q^{59} - 63 q^{60} - 21 q^{61} + 75 q^{62} + 63 q^{63} - 30 q^{64} - 90 q^{65} - 3 q^{66} - 3 q^{67} - 30 q^{68} - 6 q^{69} + 39 q^{70} - 18 q^{71} + 183 q^{72} - 42 q^{73} + 51 q^{74} - 45 q^{75} - 24 q^{76} + 15 q^{77} - 30 q^{78} + 15 q^{79} + 102 q^{80} - 87 q^{81} - 6 q^{82} - 42 q^{83} + 135 q^{84} - 63 q^{85} - 93 q^{86} + 75 q^{87} - 51 q^{88} + 75 q^{89} - 39 q^{90} - 21 q^{91} - 66 q^{92} + 81 q^{93} + 33 q^{94} + 15 q^{95} - 171 q^{96} - 12 q^{97} - 36 q^{98} + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0305699 0.173370i −0.0216162 0.122591i 0.972090 0.234607i \(-0.0753804\pi\)
−0.993706 + 0.112016i \(0.964269\pi\)
\(3\) −0.226706 + 1.71715i −0.130889 + 0.991397i
\(4\) 1.85026 0.673440i 0.925131 0.336720i
\(5\) 2.52551 0.919210i 1.12944 0.411083i 0.291352 0.956616i \(-0.405895\pi\)
0.838089 + 0.545533i \(0.183673\pi\)
\(6\) 0.304634 0.0131890i 0.124366 0.00538437i
\(7\) −1.78991 1.94839i −0.676521 0.736424i
\(8\) −0.349362 0.605113i −0.123518 0.213940i
\(9\) −2.89721 0.778577i −0.965736 0.259526i
\(10\) −0.236568 0.409748i −0.0748095 0.129574i
\(11\) 5.66019 + 2.06014i 1.70661 + 0.621155i 0.996551 0.0829858i \(-0.0264456\pi\)
0.710060 + 0.704141i \(0.248668\pi\)
\(12\) 0.736933 + 3.32985i 0.212734 + 0.961245i
\(13\) −5.70404 + 2.07610i −1.58202 + 0.575807i −0.975641 0.219373i \(-0.929599\pi\)
−0.606374 + 0.795179i \(0.707377\pi\)
\(14\) −0.283077 + 0.369879i −0.0756555 + 0.0988543i
\(15\) 1.00587 + 4.54507i 0.259715 + 1.17353i
\(16\) 2.92247 2.45224i 0.730617 0.613060i
\(17\) −0.621796 1.07698i −0.150808 0.261207i 0.780717 0.624885i \(-0.214854\pi\)
−0.931525 + 0.363678i \(0.881521\pi\)
\(18\) −0.0464149 + 0.526091i −0.0109401 + 0.124001i
\(19\) −1.47151 + 2.54874i −0.337589 + 0.584721i −0.983979 0.178286i \(-0.942945\pi\)
0.646390 + 0.763007i \(0.276278\pi\)
\(20\) 4.05382 3.40156i 0.906462 0.760612i
\(21\) 3.75147 2.63182i 0.818637 0.574311i
\(22\) 0.184136 1.04429i 0.0392579 0.222643i
\(23\) −0.622595 + 3.53091i −0.129820 + 0.736247i 0.848507 + 0.529183i \(0.177502\pi\)
−0.978328 + 0.207063i \(0.933609\pi\)
\(24\) 1.11827 0.462724i 0.228266 0.0944532i
\(25\) 1.70302 1.42901i 0.340605 0.285801i
\(26\) 0.534306 + 0.925446i 0.104786 + 0.181495i
\(27\) 1.99375 4.79843i 0.383697 0.923459i
\(28\) −4.62392 2.39965i −0.873839 0.453490i
\(29\) −1.80256 0.656078i −0.334727 0.121831i 0.169188 0.985584i \(-0.445885\pi\)
−0.503915 + 0.863753i \(0.668108\pi\)
\(30\) 0.757231 0.313331i 0.138251 0.0572061i
\(31\) 0.351738 0.128022i 0.0631740 0.0229935i −0.310240 0.950658i \(-0.600409\pi\)
0.373414 + 0.927665i \(0.378187\pi\)
\(32\) −1.58499 1.32997i −0.280190 0.235107i
\(33\) −4.82077 + 9.25234i −0.839188 + 1.61063i
\(34\) −0.167709 + 0.140724i −0.0287618 + 0.0241340i
\(35\) −6.31140 3.27539i −1.06682 0.553641i
\(36\) −5.88492 + 0.510526i −0.980820 + 0.0850877i
\(37\) −4.85189 −0.797645 −0.398823 0.917028i \(-0.630581\pi\)
−0.398823 + 0.917028i \(0.630581\pi\)
\(38\) 0.486860 + 0.177203i 0.0789791 + 0.0287461i
\(39\) −2.27184 10.2654i −0.363785 1.64377i
\(40\) −1.43854 1.20708i −0.227453 0.190856i
\(41\) −8.12199 + 2.95616i −1.26844 + 0.461675i −0.886593 0.462550i \(-0.846935\pi\)
−0.381848 + 0.924225i \(0.624712\pi\)
\(42\) −0.570962 0.569939i −0.0881014 0.0879435i
\(43\) −1.51365 8.58435i −0.230830 1.30910i −0.851221 0.524808i \(-0.824137\pi\)
0.620391 0.784293i \(-0.286974\pi\)
\(44\) 11.8602 1.78799
\(45\) −8.03260 + 0.696841i −1.19743 + 0.103879i
\(46\) 0.631189 0.0930637
\(47\) 1.43798 + 0.523383i 0.209751 + 0.0763432i 0.444759 0.895650i \(-0.353289\pi\)
−0.235008 + 0.971993i \(0.575512\pi\)
\(48\) 3.54832 + 5.57425i 0.512157 + 0.804574i
\(49\) −0.592478 + 6.97488i −0.0846397 + 0.996412i
\(50\) −0.299809 0.251569i −0.0423993 0.0355773i
\(51\) 1.99031 0.823559i 0.278698 0.115321i
\(52\) −9.15584 + 7.68266i −1.26969 + 1.06539i
\(53\) 4.07550 7.05897i 0.559813 0.969624i −0.437699 0.899122i \(-0.644206\pi\)
0.997512 0.0705026i \(-0.0224603\pi\)
\(54\) −0.892855 0.198969i −0.121502 0.0270763i
\(55\) 16.1885 2.18286
\(56\) −0.553673 + 1.76379i −0.0739877 + 0.235696i
\(57\) −4.04297 3.10463i −0.535504 0.411218i
\(58\) −0.0586405 + 0.332567i −0.00769988 + 0.0436682i
\(59\) 3.18453 + 2.67214i 0.414591 + 0.347883i 0.826101 0.563522i \(-0.190554\pi\)
−0.411510 + 0.911405i \(0.634999\pi\)
\(60\) 4.92196 + 7.73217i 0.635422 + 0.998219i
\(61\) −3.48243 1.26750i −0.445880 0.162287i 0.109315 0.994007i \(-0.465134\pi\)
−0.555195 + 0.831720i \(0.687356\pi\)
\(62\) −0.0329478 0.0570673i −0.00418438 0.00724756i
\(63\) 3.66876 + 7.03848i 0.462220 + 0.886765i
\(64\) 3.63289 6.29234i 0.454111 0.786543i
\(65\) −12.4972 + 10.4864i −1.55009 + 1.30068i
\(66\) 1.75145 + 0.552936i 0.215589 + 0.0680617i
\(67\) 0.699154 3.96510i 0.0854153 0.484414i −0.911851 0.410522i \(-0.865347\pi\)
0.997266 0.0738927i \(-0.0235422\pi\)
\(68\) −1.87577 1.57396i −0.227470 0.190870i
\(69\) −5.92196 1.86957i −0.712921 0.225070i
\(70\) −0.374916 + 1.19434i −0.0448111 + 0.142751i
\(71\) −0.161544 + 0.279802i −0.0191717 + 0.0332064i −0.875452 0.483305i \(-0.839436\pi\)
0.856280 + 0.516511i \(0.172770\pi\)
\(72\) 0.541048 + 2.02514i 0.0637631 + 0.238665i
\(73\) 4.85752 0.568529 0.284265 0.958746i \(-0.408251\pi\)
0.284265 + 0.958746i \(0.408251\pi\)
\(74\) 0.148322 + 0.841174i 0.0172420 + 0.0977845i
\(75\) 2.06773 + 3.24831i 0.238761 + 0.375082i
\(76\) −1.00627 + 5.70681i −0.115427 + 0.654616i
\(77\) −6.11724 14.7157i −0.697124 1.67701i
\(78\) −1.71026 + 0.707680i −0.193649 + 0.0801290i
\(79\) −0.357349 2.02663i −0.0402049 0.228013i 0.958084 0.286487i \(-0.0924876\pi\)
−0.998289 + 0.0584741i \(0.981376\pi\)
\(80\) 5.12659 8.87951i 0.573170 0.992760i
\(81\) 7.78764 + 4.51140i 0.865293 + 0.501266i
\(82\) 0.760800 + 1.31774i 0.0840163 + 0.145520i
\(83\) 9.46250 + 3.44407i 1.03864 + 0.378035i 0.804366 0.594134i \(-0.202505\pi\)
0.234278 + 0.972170i \(0.424727\pi\)
\(84\) 5.16882 7.39595i 0.563965 0.806965i
\(85\) −2.56032 2.14837i −0.277706 0.233023i
\(86\) −1.44200 + 0.524845i −0.155495 + 0.0565955i
\(87\) 1.53524 2.94653i 0.164595 0.315901i
\(88\) −0.730838 4.14479i −0.0779076 0.441836i
\(89\) 2.13585 3.69941i 0.226400 0.392136i −0.730339 0.683085i \(-0.760638\pi\)
0.956739 + 0.290949i \(0.0939710\pi\)
\(90\) 0.366367 + 1.37131i 0.0386185 + 0.144549i
\(91\) 14.2547 + 7.39769i 1.49430 + 0.775489i
\(92\) 1.22590 + 6.95240i 0.127808 + 0.724838i
\(93\) 0.140092 + 0.633010i 0.0145269 + 0.0656401i
\(94\) 0.0467801 0.265303i 0.00482500 0.0273640i
\(95\) −1.37350 + 7.78949i −0.140918 + 0.799185i
\(96\) 2.64308 2.42016i 0.269758 0.247006i
\(97\) −0.938221 5.32092i −0.0952619 0.540257i −0.994667 0.103141i \(-0.967111\pi\)
0.899405 0.437117i \(-0.144000\pi\)
\(98\) 1.22735 0.110503i 0.123981 0.0111625i
\(99\) −14.7948 10.3755i −1.48693 1.04278i
\(100\) 2.18869 3.79092i 0.218869 0.379092i
\(101\) −0.288498 1.63615i −0.0287066 0.162803i 0.967084 0.254456i \(-0.0818963\pi\)
−0.995791 + 0.0916523i \(0.970785\pi\)
\(102\) −0.203624 0.319884i −0.0201618 0.0316732i
\(103\) −7.75612 + 2.82300i −0.764233 + 0.278158i −0.694582 0.719413i \(-0.744411\pi\)
−0.0696509 + 0.997571i \(0.522189\pi\)
\(104\) 3.24905 + 2.72628i 0.318595 + 0.267333i
\(105\) 7.05516 10.0951i 0.688513 0.985179i
\(106\) −1.34840 0.490779i −0.130969 0.0476687i
\(107\) 1.95477 + 3.38577i 0.188975 + 0.327315i 0.944909 0.327334i \(-0.106150\pi\)
−0.755934 + 0.654648i \(0.772817\pi\)
\(108\) 0.457497 10.2210i 0.0440227 0.983519i
\(109\) −1.77525 + 3.07483i −0.170038 + 0.294515i −0.938433 0.345461i \(-0.887722\pi\)
0.768395 + 0.639976i \(0.221056\pi\)
\(110\) −0.494882 2.80662i −0.0471852 0.267600i
\(111\) 1.09995 8.33142i 0.104403 0.790783i
\(112\) −10.0089 1.30484i −0.945749 0.123296i
\(113\) −2.90076 + 16.4510i −0.272881 + 1.54758i 0.472733 + 0.881206i \(0.343267\pi\)
−0.745614 + 0.666378i \(0.767844\pi\)
\(114\) −0.414658 + 0.795839i −0.0388362 + 0.0745371i
\(115\) 1.67328 + 9.48965i 0.156034 + 0.884914i
\(116\) −3.77704 −0.350689
\(117\) 18.1422 1.57386i 1.67725 0.145504i
\(118\) 0.365919 0.633791i 0.0336856 0.0583452i
\(119\) −0.985430 + 3.13920i −0.0903342 + 0.287770i
\(120\) 2.39886 2.19654i 0.218985 0.200516i
\(121\) 19.3671 + 16.2509i 1.76064 + 1.47735i
\(122\) −0.113290 + 0.642498i −0.0102568 + 0.0581691i
\(123\) −3.23487 14.6169i −0.291678 1.31796i
\(124\) 0.564592 0.473749i 0.0507019 0.0425439i
\(125\) −3.73153 + 6.46320i −0.333758 + 0.578087i
\(126\) 1.10811 0.851220i 0.0987184 0.0758327i
\(127\) 7.88389 + 13.6553i 0.699582 + 1.21171i 0.968611 + 0.248580i \(0.0799640\pi\)
−0.269029 + 0.963132i \(0.586703\pi\)
\(128\) −5.09053 1.85280i −0.449943 0.163766i
\(129\) 15.0838 0.653044i 1.32805 0.0574973i
\(130\) 2.20007 + 1.84608i 0.192959 + 0.161912i
\(131\) −0.705933 + 4.00355i −0.0616777 + 0.349791i 0.938314 + 0.345784i \(0.112387\pi\)
−0.999992 + 0.00400787i \(0.998724\pi\)
\(132\) −2.68878 + 20.3658i −0.234028 + 1.77261i
\(133\) 7.59982 1.69491i 0.658988 0.146967i
\(134\) −0.708805 −0.0612314
\(135\) 0.624459 13.9512i 0.0537449 1.20072i
\(136\) −0.434464 + 0.752514i −0.0372550 + 0.0645275i
\(137\) 9.88246 8.29237i 0.844316 0.708465i −0.114215 0.993456i \(-0.536435\pi\)
0.958530 + 0.284991i \(0.0919907\pi\)
\(138\) −0.143094 + 1.08385i −0.0121810 + 0.0922631i
\(139\) 10.8278 + 9.08563i 0.918405 + 0.770633i 0.973699 0.227837i \(-0.0731653\pi\)
−0.0552943 + 0.998470i \(0.517610\pi\)
\(140\) −13.8835 1.80997i −1.17337 0.152970i
\(141\) −1.22473 + 2.35058i −0.103141 + 0.197954i
\(142\) 0.0534478 + 0.0194534i 0.00448524 + 0.00163249i
\(143\) −36.5630 −3.05755
\(144\) −10.3763 + 4.82929i −0.864688 + 0.402441i
\(145\) −5.15546 −0.428137
\(146\) −0.148494 0.842150i −0.0122894 0.0696968i
\(147\) −11.8426 2.59862i −0.976761 0.214331i
\(148\) −8.97726 + 3.26746i −0.737927 + 0.268583i
\(149\) −13.9545 11.7092i −1.14320 0.959258i −0.143660 0.989627i \(-0.545887\pi\)
−0.999539 + 0.0303696i \(0.990332\pi\)
\(150\) 0.499951 0.457784i 0.0408208 0.0373779i
\(151\) 2.23442 + 0.813263i 0.181835 + 0.0661824i 0.431333 0.902193i \(-0.358043\pi\)
−0.249498 + 0.968375i \(0.580266\pi\)
\(152\) 2.05637 0.166793
\(153\) 0.962960 + 3.60436i 0.0778507 + 0.291395i
\(154\) −2.36427 + 1.51041i −0.190518 + 0.121712i
\(155\) 0.770638 0.646642i 0.0618991 0.0519395i
\(156\) −11.1166 17.4637i −0.890040 1.39821i
\(157\) 2.85700 + 2.39731i 0.228013 + 0.191326i 0.749636 0.661850i \(-0.230229\pi\)
−0.521623 + 0.853176i \(0.674673\pi\)
\(158\) −0.340433 + 0.123907i −0.0270834 + 0.00985755i
\(159\) 11.1974 + 8.59855i 0.888009 + 0.681910i
\(160\) −5.22543 1.90190i −0.413107 0.150359i
\(161\) 7.99400 5.10694i 0.630015 0.402483i
\(162\) 0.544076 1.48806i 0.0427467 0.116913i
\(163\) 3.36378 + 5.82624i 0.263472 + 0.456346i 0.967162 0.254160i \(-0.0817991\pi\)
−0.703690 + 0.710507i \(0.748466\pi\)
\(164\) −13.0370 + 10.9394i −1.01802 + 0.854220i
\(165\) −3.67004 + 27.7982i −0.285712 + 2.16408i
\(166\) 0.307832 1.74580i 0.0238924 0.135501i
\(167\) 2.44213 13.8500i 0.188977 1.07174i −0.731760 0.681562i \(-0.761301\pi\)
0.920738 0.390182i \(-0.127588\pi\)
\(168\) −2.90317 1.35060i −0.223984 0.104201i
\(169\) 18.2673 15.3281i 1.40518 1.17908i
\(170\) −0.294195 + 0.509560i −0.0225637 + 0.0390815i
\(171\) 6.24767 6.23854i 0.477772 0.477073i
\(172\) −8.58170 14.8639i −0.654349 1.13337i
\(173\) 14.2419 11.9504i 1.08279 0.908572i 0.0866445 0.996239i \(-0.472386\pi\)
0.996150 + 0.0876670i \(0.0279411\pi\)
\(174\) −0.557773 0.176090i −0.0422847 0.0133493i
\(175\) −5.83252 0.760374i −0.440897 0.0574789i
\(176\) 21.5937 7.85945i 1.62768 0.592429i
\(177\) −5.31042 + 4.86253i −0.399155 + 0.365490i
\(178\) −0.706660 0.257203i −0.0529664 0.0192782i
\(179\) 5.80869 + 10.0610i 0.434162 + 0.751991i 0.997227 0.0744219i \(-0.0237112\pi\)
−0.563065 + 0.826413i \(0.690378\pi\)
\(180\) −14.3931 + 6.69882i −1.07280 + 0.499300i
\(181\) −12.4918 21.6365i −0.928509 1.60823i −0.785818 0.618458i \(-0.787758\pi\)
−0.142691 0.989767i \(-0.545576\pi\)
\(182\) 0.846775 2.69750i 0.0627671 0.199952i
\(183\) 2.96598 5.69251i 0.219251 0.420802i
\(184\) 2.35411 0.856827i 0.173547 0.0631661i
\(185\) −12.2535 + 4.45990i −0.900894 + 0.327899i
\(186\) 0.105463 0.0436389i 0.00773290 0.00319976i
\(187\) −1.30075 7.37691i −0.0951201 0.539453i
\(188\) 3.01311 0.219754
\(189\) −12.9179 + 4.70414i −0.939636 + 0.342176i
\(190\) 1.39246 0.101019
\(191\) −0.596759 3.38439i −0.0431800 0.244886i 0.955576 0.294744i \(-0.0952343\pi\)
−0.998756 + 0.0498579i \(0.984123\pi\)
\(192\) 9.98130 + 7.66472i 0.720338 + 0.553154i
\(193\) −17.8018 + 6.47934i −1.28140 + 0.466393i −0.890897 0.454206i \(-0.849923\pi\)
−0.390508 + 0.920599i \(0.627701\pi\)
\(194\) −0.893809 + 0.325320i −0.0641717 + 0.0233566i
\(195\) −15.1736 23.8369i −1.08660 1.70700i
\(196\) 3.60093 + 13.3044i 0.257209 + 0.950311i
\(197\) 4.00638 + 6.93925i 0.285442 + 0.494401i 0.972716 0.231998i \(-0.0745261\pi\)
−0.687274 + 0.726398i \(0.741193\pi\)
\(198\) −1.34654 + 2.88216i −0.0956943 + 0.204826i
\(199\) −0.784854 1.35941i −0.0556369 0.0963659i 0.836866 0.547408i \(-0.184386\pi\)
−0.892502 + 0.451043i \(0.851052\pi\)
\(200\) −1.45968 0.531280i −0.103215 0.0375672i
\(201\) 6.65017 + 2.09947i 0.469067 + 0.148085i
\(202\) −0.274841 + 0.100034i −0.0193378 + 0.00703837i
\(203\) 1.94811 + 4.68642i 0.136731 + 0.328922i
\(204\) 3.12797 2.86415i 0.219002 0.200531i
\(205\) −17.7948 + 14.9316i −1.24284 + 1.04287i
\(206\) 0.726528 + 1.25838i 0.0506196 + 0.0876757i
\(207\) 4.55288 9.74506i 0.316447 0.677328i
\(208\) −11.5788 + 20.0550i −0.802843 + 1.39056i
\(209\) −13.5798 + 11.3948i −0.939335 + 0.788196i
\(210\) −1.96586 0.914552i −0.135657 0.0631101i
\(211\) 1.85421 10.5158i 0.127649 0.723935i −0.852050 0.523461i \(-0.824641\pi\)
0.979699 0.200474i \(-0.0642483\pi\)
\(212\) 2.78695 15.8056i 0.191408 1.08553i
\(213\) −0.443839 0.340828i −0.0304114 0.0233531i
\(214\) 0.527235 0.442403i 0.0360410 0.0302420i
\(215\) −11.7136 20.2885i −0.798858 1.38366i
\(216\) −3.60013 + 0.469948i −0.244958 + 0.0319759i
\(217\) −0.879015 0.456177i −0.0596714 0.0309673i
\(218\) 0.587353 + 0.213779i 0.0397806 + 0.0144790i
\(219\) −1.10123 + 8.34109i −0.0744141 + 0.563638i
\(220\) 29.9531 10.9020i 2.01944 0.735014i
\(221\) 5.78267 + 4.85224i 0.388985 + 0.326397i
\(222\) −1.47805 + 0.0639913i −0.0992000 + 0.00429482i
\(223\) 0.128511 0.107834i 0.00860576 0.00722109i −0.638475 0.769643i \(-0.720434\pi\)
0.647080 + 0.762422i \(0.275990\pi\)
\(224\) 0.245688 + 5.46871i 0.0164157 + 0.365393i
\(225\) −6.04660 + 2.81419i −0.403107 + 0.187613i
\(226\) 2.94080 0.195619
\(227\) 12.3424 + 4.49227i 0.819195 + 0.298162i 0.717416 0.696645i \(-0.245325\pi\)
0.101778 + 0.994807i \(0.467547\pi\)
\(228\) −9.57133 3.02168i −0.633877 0.200115i
\(229\) −17.6285 14.7921i −1.16493 0.977488i −0.164964 0.986300i \(-0.552751\pi\)
−0.999961 + 0.00881137i \(0.997195\pi\)
\(230\) 1.59407 0.580195i 0.105110 0.0382569i
\(231\) 26.6559 7.16807i 1.75383 0.471624i
\(232\) 0.232745 + 1.31996i 0.0152804 + 0.0866597i
\(233\) 7.87251 0.515745 0.257873 0.966179i \(-0.416978\pi\)
0.257873 + 0.966179i \(0.416978\pi\)
\(234\) −0.827466 3.09721i −0.0540932 0.202471i
\(235\) 4.11273 0.268285
\(236\) 7.69174 + 2.79957i 0.500690 + 0.182236i
\(237\) 3.56103 0.154173i 0.231314 0.0100146i
\(238\) 0.574369 + 0.0748794i 0.0372308 + 0.00485371i
\(239\) 16.1523 + 13.5534i 1.04481 + 0.876696i 0.992538 0.121937i \(-0.0389105\pi\)
0.0522680 + 0.998633i \(0.483355\pi\)
\(240\) 14.0852 + 10.8162i 0.909198 + 0.698180i
\(241\) 2.17608 1.82595i 0.140173 0.117619i −0.570005 0.821641i \(-0.693059\pi\)
0.710178 + 0.704022i \(0.248614\pi\)
\(242\) 2.22538 3.85446i 0.143053 0.247774i
\(243\) −9.51225 + 12.3498i −0.610211 + 0.792239i
\(244\) −7.29700 −0.467143
\(245\) 4.91507 + 18.1597i 0.314012 + 1.16018i
\(246\) −2.43524 + 1.00767i −0.155265 + 0.0642465i
\(247\) 3.10214 17.5931i 0.197384 1.11942i
\(248\) −0.200352 0.168115i −0.0127223 0.0106753i
\(249\) −8.05918 + 15.4677i −0.510730 + 0.980228i
\(250\) 1.23460 + 0.449358i 0.0780830 + 0.0284199i
\(251\) −3.00024 5.19656i −0.189373 0.328004i 0.755668 0.654955i \(-0.227312\pi\)
−0.945041 + 0.326951i \(0.893979\pi\)
\(252\) 11.5282 + 10.5524i 0.726206 + 0.664736i
\(253\) −10.7982 + 18.7030i −0.678876 + 1.17585i
\(254\) 2.12642 1.78428i 0.133423 0.111955i
\(255\) 4.26951 3.90941i 0.267367 0.244817i
\(256\) 2.35777 13.3716i 0.147361 0.835724i
\(257\) 15.9942 + 13.4207i 0.997692 + 0.837163i 0.986663 0.162776i \(-0.0520448\pi\)
0.0110292 + 0.999939i \(0.496489\pi\)
\(258\) −0.574328 2.59512i −0.0357561 0.161565i
\(259\) 8.68442 + 9.45339i 0.539623 + 0.587405i
\(260\) −16.0612 + 27.8188i −0.996071 + 1.72525i
\(261\) 4.71159 + 3.30423i 0.291640 + 0.204527i
\(262\) 0.715677 0.0442147
\(263\) −0.326824 1.85351i −0.0201528 0.114292i 0.973072 0.230502i \(-0.0740367\pi\)
−0.993225 + 0.116209i \(0.962926\pi\)
\(264\) 7.28291 0.315310i 0.448232 0.0194060i
\(265\) 3.80403 21.5737i 0.233680 1.32526i
\(266\) −0.526173 1.26577i −0.0322617 0.0776094i
\(267\) 5.86822 + 4.50626i 0.359129 + 0.275778i
\(268\) −1.37664 7.80732i −0.0840917 0.476908i
\(269\) 4.75096 8.22890i 0.289671 0.501725i −0.684060 0.729426i \(-0.739787\pi\)
0.973731 + 0.227701i \(0.0731208\pi\)
\(270\) −2.43781 + 0.318223i −0.148360 + 0.0193664i
\(271\) −15.0810 26.1210i −0.916105 1.58674i −0.805276 0.592901i \(-0.797983\pi\)
−0.110829 0.993839i \(-0.535351\pi\)
\(272\) −4.45820 1.62265i −0.270318 0.0983877i
\(273\) −15.9346 + 22.8004i −0.964405 + 1.37995i
\(274\) −1.73976 1.45983i −0.105103 0.0881916i
\(275\) 12.5834 4.57998i 0.758806 0.276183i
\(276\) −12.2162 + 0.528895i −0.735331 + 0.0318358i
\(277\) 2.12281 + 12.0391i 0.127548 + 0.723358i 0.979762 + 0.200165i \(0.0641480\pi\)
−0.852215 + 0.523192i \(0.824741\pi\)
\(278\) 1.24417 2.15497i 0.0746206 0.129247i
\(279\) −1.11873 + 0.0970519i −0.0669768 + 0.00581034i
\(280\) 0.222987 + 4.96341i 0.0133260 + 0.296620i
\(281\) −5.28489 29.9721i −0.315270 1.78799i −0.570700 0.821159i \(-0.693328\pi\)
0.255430 0.966828i \(-0.417783\pi\)
\(282\) 0.444960 + 0.140474i 0.0264970 + 0.00836513i
\(283\) −0.985249 + 5.58762i −0.0585669 + 0.332150i −0.999987 0.00508640i \(-0.998381\pi\)
0.941420 + 0.337236i \(0.109492\pi\)
\(284\) −0.110468 + 0.626498i −0.00655509 + 0.0371758i
\(285\) −13.0643 4.12443i −0.773865 0.244310i
\(286\) 1.11773 + 6.33894i 0.0660925 + 0.374829i
\(287\) 20.2974 + 10.5336i 1.19812 + 0.621778i
\(288\) 3.55657 + 5.08723i 0.209573 + 0.299768i
\(289\) 7.72674 13.3831i 0.454514 0.787241i
\(290\) 0.157602 + 0.893804i 0.00925469 + 0.0524860i
\(291\) 9.34952 0.404782i 0.548078 0.0237288i
\(292\) 8.98768 3.27125i 0.525964 0.191435i
\(293\) 15.4454 + 12.9602i 0.902328 + 0.757143i 0.970644 0.240521i \(-0.0773182\pi\)
−0.0683160 + 0.997664i \(0.521763\pi\)
\(294\) −0.0884972 + 2.13260i −0.00516126 + 0.124376i
\(295\) 10.4988 + 3.82126i 0.611265 + 0.222482i
\(296\) 1.69507 + 2.93594i 0.0985237 + 0.170648i
\(297\) 21.1704 23.0526i 1.22843 1.33765i
\(298\) −1.60345 + 2.77725i −0.0928852 + 0.160882i
\(299\) −3.77922 21.4330i −0.218558 1.23950i
\(300\) 6.01339 + 4.61773i 0.347183 + 0.266605i
\(301\) −14.0164 + 18.3144i −0.807892 + 1.05562i
\(302\) 0.0726898 0.412244i 0.00418283 0.0237220i
\(303\) 2.87492 0.124468i 0.165160 0.00715052i
\(304\) 1.94967 + 11.0571i 0.111821 + 0.634169i
\(305\) −9.96001 −0.570309
\(306\) 0.595452 0.277134i 0.0340397 0.0158427i
\(307\) −1.94250 + 3.36451i −0.110864 + 0.192023i −0.916119 0.400906i \(-0.868695\pi\)
0.805255 + 0.592929i \(0.202029\pi\)
\(308\) −21.2287 23.1084i −1.20962 1.31672i
\(309\) −3.08915 13.9584i −0.175736 0.794066i
\(310\) −0.135667 0.113838i −0.00770536 0.00646557i
\(311\) 0.0578151 0.327886i 0.00327840 0.0185927i −0.983125 0.182937i \(-0.941440\pi\)
0.986403 + 0.164344i \(0.0525507\pi\)
\(312\) −5.41800 + 4.96104i −0.306734 + 0.280864i
\(313\) −2.66081 + 2.23269i −0.150398 + 0.126199i −0.714882 0.699245i \(-0.753520\pi\)
0.564484 + 0.825444i \(0.309075\pi\)
\(314\) 0.328284 0.568605i 0.0185261 0.0320882i
\(315\) 15.7353 + 14.4034i 0.886584 + 0.811539i
\(316\) −2.02600 3.50914i −0.113971 0.197404i
\(317\) 12.8867 + 4.69039i 0.723792 + 0.263439i 0.677535 0.735491i \(-0.263048\pi\)
0.0462572 + 0.998930i \(0.485271\pi\)
\(318\) 1.14843 2.20415i 0.0644009 0.123603i
\(319\) −8.85122 7.42705i −0.495573 0.415835i
\(320\) 3.39090 19.2307i 0.189557 1.07503i
\(321\) −6.25703 + 2.58907i −0.349233 + 0.144508i
\(322\) −1.12977 1.22980i −0.0629595 0.0685343i
\(323\) 3.65993 0.203644
\(324\) 17.4473 + 3.10276i 0.969296 + 0.172376i
\(325\) −6.74735 + 11.6867i −0.374275 + 0.648264i
\(326\) 0.907268 0.761288i 0.0502489 0.0421638i
\(327\) −4.87748 3.74546i −0.269725 0.207124i
\(328\) 4.62633 + 3.88195i 0.255446 + 0.214345i
\(329\) −1.55410 3.73856i −0.0856801 0.206114i
\(330\) 4.93157 0.213510i 0.271474 0.0117533i
\(331\) −16.4600 5.99094i −0.904722 0.329292i −0.152578 0.988291i \(-0.548758\pi\)
−0.752143 + 0.659000i \(0.770980\pi\)
\(332\) 19.8275 1.08817
\(333\) 14.0569 + 3.77757i 0.770315 + 0.207009i
\(334\) −2.47583 −0.135472
\(335\) −1.87904 10.6566i −0.102663 0.582230i
\(336\) 4.50967 16.8909i 0.246023 0.921475i
\(337\) 9.84784 3.58432i 0.536446 0.195250i −0.0595681 0.998224i \(-0.518972\pi\)
0.596014 + 0.802974i \(0.296750\pi\)
\(338\) −3.21586 2.69843i −0.174920 0.146775i
\(339\) −27.5913 8.71059i −1.49855 0.473095i
\(340\) −6.18407 2.25082i −0.335378 0.122068i
\(341\) 2.25465 0.122096
\(342\) −1.27257 0.892451i −0.0688127 0.0482582i
\(343\) 14.6503 11.3300i 0.791042 0.611762i
\(344\) −4.66569 + 3.91498i −0.251557 + 0.211081i
\(345\) −16.6745 + 0.721914i −0.897725 + 0.0388665i
\(346\) −2.50722 2.10381i −0.134789 0.113101i
\(347\) −23.9933 + 8.73284i −1.28803 + 0.468803i −0.893079 0.449900i \(-0.851460\pi\)
−0.394948 + 0.918704i \(0.629237\pi\)
\(348\) 0.856278 6.48574i 0.0459013 0.347672i
\(349\) 3.01755 + 1.09830i 0.161526 + 0.0587906i 0.421517 0.906820i \(-0.361498\pi\)
−0.259992 + 0.965611i \(0.583720\pi\)
\(350\) 0.0464729 + 1.03443i 0.00248408 + 0.0552926i
\(351\) −1.41038 + 31.5097i −0.0752808 + 1.68186i
\(352\) −6.23144 10.7932i −0.332137 0.575278i
\(353\) 13.1621 11.0443i 0.700546 0.587828i −0.221383 0.975187i \(-0.571057\pi\)
0.921929 + 0.387359i \(0.126613\pi\)
\(354\) 1.00536 + 0.772022i 0.0534342 + 0.0410325i
\(355\) −0.150783 + 0.855135i −0.00800275 + 0.0453859i
\(356\) 1.46056 8.28324i 0.0774095 0.439011i
\(357\) −5.16708 2.40381i −0.273471 0.127223i
\(358\) 1.56670 1.31462i 0.0828027 0.0694797i
\(359\) −10.6001 + 18.3599i −0.559450 + 0.968996i 0.438092 + 0.898930i \(0.355654\pi\)
−0.997542 + 0.0700661i \(0.977679\pi\)
\(360\) 3.22795 + 4.61718i 0.170128 + 0.243347i
\(361\) 5.16929 + 8.95347i 0.272068 + 0.471235i
\(362\) −3.36925 + 2.82714i −0.177084 + 0.148591i
\(363\) −32.2958 + 29.5720i −1.69509 + 1.55213i
\(364\) 31.3569 + 4.08794i 1.64355 + 0.214266i
\(365\) 12.2677 4.46508i 0.642121 0.233713i
\(366\) −1.07758 0.340194i −0.0563261 0.0177822i
\(367\) 18.7954 + 6.84096i 0.981111 + 0.357095i 0.782272 0.622937i \(-0.214061\pi\)
0.198839 + 0.980032i \(0.436283\pi\)
\(368\) 6.83914 + 11.8457i 0.356515 + 0.617502i
\(369\) 25.8327 2.24103i 1.34480 0.116663i
\(370\) 1.14780 + 1.98805i 0.0596714 + 0.103354i
\(371\) −21.0484 + 4.69421i −1.09278 + 0.243711i
\(372\) 0.685502 + 1.07689i 0.0355416 + 0.0558342i
\(373\) −29.4768 + 10.7287i −1.52625 + 0.555510i −0.962700 0.270571i \(-0.912788\pi\)
−0.563551 + 0.826081i \(0.690565\pi\)
\(374\) −1.23917 + 0.451023i −0.0640762 + 0.0233218i
\(375\) −10.2523 7.87285i −0.529428 0.406552i
\(376\) −0.185671 1.05299i −0.00957524 0.0543039i
\(377\) 11.6440 0.599694
\(378\) 1.21046 + 2.09577i 0.0622591 + 0.107795i
\(379\) 2.42639 0.124635 0.0623177 0.998056i \(-0.480151\pi\)
0.0623177 + 0.998056i \(0.480151\pi\)
\(380\) 2.70443 + 15.3376i 0.138734 + 0.786801i
\(381\) −25.2355 + 10.4421i −1.29286 + 0.534964i
\(382\) −0.568510 + 0.206921i −0.0290875 + 0.0105870i
\(383\) 19.5174 7.10375i 0.997293 0.362985i 0.208753 0.977968i \(-0.433060\pi\)
0.788540 + 0.614984i \(0.210837\pi\)
\(384\) 4.33559 8.32116i 0.221250 0.424637i
\(385\) −28.9760 31.5417i −1.47675 1.60751i
\(386\) 1.66753 + 2.88824i 0.0848749 + 0.147008i
\(387\) −2.29821 + 26.0491i −0.116824 + 1.32415i
\(388\) −5.31928 9.21326i −0.270045 0.467732i
\(389\) −8.27808 3.01298i −0.419715 0.152764i 0.123524 0.992342i \(-0.460580\pi\)
−0.543240 + 0.839578i \(0.682803\pi\)
\(390\) −3.66877 + 3.35934i −0.185775 + 0.170107i
\(391\) 4.18986 1.52498i 0.211890 0.0771218i
\(392\) 4.42758 2.07824i 0.223627 0.104967i
\(393\) −6.71465 2.11982i −0.338709 0.106931i
\(394\) 1.08059 0.906719i 0.0544391 0.0456799i
\(395\) −2.76538 4.78978i −0.139141 0.241000i
\(396\) −34.3615 9.23409i −1.72673 0.464030i
\(397\) 5.22369 9.04770i 0.262169 0.454091i −0.704649 0.709556i \(-0.748895\pi\)
0.966818 + 0.255466i \(0.0822287\pi\)
\(398\) −0.211688 + 0.177628i −0.0106110 + 0.00890366i
\(399\) 1.18749 + 13.4343i 0.0594488 + 0.672555i
\(400\) 1.47276 8.35244i 0.0736381 0.417622i
\(401\) −2.83748 + 16.0922i −0.141697 + 0.803605i 0.828263 + 0.560340i \(0.189330\pi\)
−0.969960 + 0.243265i \(0.921782\pi\)
\(402\) 0.160690 1.21712i 0.00801451 0.0607046i
\(403\) −1.74054 + 1.46049i −0.0867025 + 0.0727520i
\(404\) −1.63565 2.83303i −0.0813765 0.140948i
\(405\) 23.8147 + 4.23510i 1.18336 + 0.210444i
\(406\) 0.752933 0.481009i 0.0373674 0.0238721i
\(407\) −27.4626 9.99556i −1.36127 0.495462i
\(408\) −1.19368 0.916639i −0.0590961 0.0453804i
\(409\) −4.58686 + 1.66948i −0.226806 + 0.0825505i −0.452923 0.891550i \(-0.649619\pi\)
0.226118 + 0.974100i \(0.427397\pi\)
\(410\) 3.13269 + 2.62864i 0.154712 + 0.129819i
\(411\) 11.9988 + 18.8496i 0.591859 + 0.929782i
\(412\) −12.4497 + 10.4466i −0.613354 + 0.514666i
\(413\) −0.493630 10.9876i −0.0242899 0.540664i
\(414\) −1.82869 0.491429i −0.0898750 0.0241524i
\(415\) 27.0634 1.32849
\(416\) 11.8020 + 4.29558i 0.578641 + 0.210608i
\(417\) −18.0561 + 16.5332i −0.884213 + 0.809637i
\(418\) 2.39066 + 2.00600i 0.116931 + 0.0981167i
\(419\) −26.9191 + 9.79775i −1.31508 + 0.478651i −0.901880 0.431987i \(-0.857813\pi\)
−0.413204 + 0.910638i \(0.635590\pi\)
\(420\) 6.25547 23.4298i 0.305236 1.14326i
\(421\) 0.140839 + 0.798739i 0.00686408 + 0.0389281i 0.988047 0.154150i \(-0.0492640\pi\)
−0.981183 + 0.193078i \(0.938153\pi\)
\(422\) −1.87981 −0.0915075
\(423\) −3.75864 2.63593i −0.182751 0.128163i
\(424\) −5.69530 −0.276588
\(425\) −2.59795 0.945575i −0.126019 0.0458671i
\(426\) −0.0455214 + 0.0873677i −0.00220552 + 0.00423298i
\(427\) 3.76363 + 9.05386i 0.182135 + 0.438147i
\(428\) 5.89696 + 4.94813i 0.285040 + 0.239177i
\(429\) 8.28905 62.7841i 0.400199 3.03125i
\(430\) −3.15934 + 2.65100i −0.152357 + 0.127843i
\(431\) 6.65677 11.5299i 0.320645 0.555374i −0.659976 0.751287i \(-0.729434\pi\)
0.980621 + 0.195913i \(0.0627669\pi\)
\(432\) −5.94025 18.9124i −0.285801 0.909924i
\(433\) −20.0155 −0.961881 −0.480941 0.876753i \(-0.659705\pi\)
−0.480941 + 0.876753i \(0.659705\pi\)
\(434\) −0.0522161 + 0.166341i −0.00250646 + 0.00798460i
\(435\) 1.16877 8.85269i 0.0560384 0.424454i
\(436\) −1.21397 + 6.88476i −0.0581386 + 0.329720i
\(437\) −8.08322 6.78263i −0.386673 0.324457i
\(438\) 1.47976 0.0640656i 0.0707058 0.00306117i
\(439\) 7.64847 + 2.78382i 0.365042 + 0.132864i 0.518027 0.855364i \(-0.326667\pi\)
−0.152986 + 0.988228i \(0.548889\pi\)
\(440\) −5.65566 9.79590i −0.269623 0.467001i
\(441\) 7.14701 19.7464i 0.340334 0.940305i
\(442\) 0.664459 1.15088i 0.0316051 0.0547416i
\(443\) −23.2674 + 19.5237i −1.10547 + 0.927599i −0.997781 0.0665854i \(-0.978790\pi\)
−0.107689 + 0.994185i \(0.534345\pi\)
\(444\) −3.57551 16.1561i −0.169686 0.766733i
\(445\) 1.99358 11.3062i 0.0945049 0.535964i
\(446\) −0.0226238 0.0189836i −0.00107127 0.000898901i
\(447\) 23.2701 21.3074i 1.10064 1.00781i
\(448\) −18.7625 + 4.18440i −0.886444 + 0.197695i
\(449\) −13.1727 + 22.8158i −0.621659 + 1.07675i 0.367517 + 0.930017i \(0.380208\pi\)
−0.989177 + 0.146729i \(0.953125\pi\)
\(450\) 0.672742 + 0.962273i 0.0317134 + 0.0453620i
\(451\) −52.0621 −2.45151
\(452\) 5.71162 + 32.3922i 0.268652 + 1.52360i
\(453\) −1.90305 + 3.65247i −0.0894132 + 0.171608i
\(454\) 0.401521 2.27714i 0.0188443 0.106871i
\(455\) 42.8005 + 5.57982i 2.00652 + 0.261586i
\(456\) −0.466191 + 3.53109i −0.0218314 + 0.165358i
\(457\) 1.75841 + 9.97245i 0.0822551 + 0.466492i 0.997915 + 0.0645384i \(0.0205575\pi\)
−0.915660 + 0.401953i \(0.868331\pi\)
\(458\) −2.02561 + 3.50846i −0.0946505 + 0.163939i
\(459\) −6.40753 + 0.836416i −0.299078 + 0.0390406i
\(460\) 9.48672 + 16.4315i 0.442321 + 0.766122i
\(461\) 13.6186 + 4.95676i 0.634281 + 0.230859i 0.639093 0.769129i \(-0.279310\pi\)
−0.00481277 + 0.999988i \(0.501532\pi\)
\(462\) −2.05760 4.40222i −0.0957282 0.204810i
\(463\) −27.9630 23.4637i −1.29955 1.09045i −0.990222 0.139498i \(-0.955451\pi\)
−0.309329 0.950955i \(-0.600104\pi\)
\(464\) −6.87679 + 2.50295i −0.319247 + 0.116196i
\(465\) 0.935673 + 1.46990i 0.0433908 + 0.0681649i
\(466\) −0.240662 1.36486i −0.0111484 0.0632260i
\(467\) −16.1910 + 28.0436i −0.749229 + 1.29770i 0.198964 + 0.980007i \(0.436242\pi\)
−0.948193 + 0.317696i \(0.897091\pi\)
\(468\) 32.5079 15.1297i 1.50268 0.699373i
\(469\) −8.97700 + 5.73493i −0.414519 + 0.264814i
\(470\) −0.125726 0.713027i −0.00579930 0.0328895i
\(471\) −4.76423 + 4.36241i −0.219524 + 0.201009i
\(472\) 0.504391 2.86054i 0.0232165 0.131667i
\(473\) 9.11740 51.7074i 0.419219 2.37751i
\(474\) −0.135589 0.612665i −0.00622783 0.0281406i
\(475\) 1.13614 + 6.44336i 0.0521296 + 0.295642i
\(476\) 0.290761 + 6.47197i 0.0133270 + 0.296642i
\(477\) −17.3035 + 17.2782i −0.792274 + 0.791116i
\(478\) 1.85598 3.21466i 0.0848907 0.147035i
\(479\) −6.01067 34.0882i −0.274634 1.55753i −0.740121 0.672474i \(-0.765232\pi\)
0.465486 0.885055i \(-0.345880\pi\)
\(480\) 4.45049 8.54168i 0.203136 0.389872i
\(481\) 27.6753 10.0730i 1.26189 0.459289i
\(482\) −0.383088 0.321449i −0.0174492 0.0146416i
\(483\) 6.95710 + 14.8847i 0.316559 + 0.677276i
\(484\) 46.7781 + 17.0259i 2.12628 + 0.773902i
\(485\) −7.26053 12.5756i −0.329683 0.571029i
\(486\) 2.43188 + 1.27161i 0.110312 + 0.0576815i
\(487\) −8.17536 + 14.1601i −0.370461 + 0.641657i −0.989636 0.143596i \(-0.954134\pi\)
0.619176 + 0.785252i \(0.287467\pi\)
\(488\) 0.449648 + 2.55008i 0.0203546 + 0.115437i
\(489\) −10.7671 + 4.45527i −0.486906 + 0.201474i
\(490\) 2.99811 1.40727i 0.135441 0.0635740i
\(491\) 4.46823 25.3406i 0.201648 1.14360i −0.700979 0.713181i \(-0.747254\pi\)
0.902628 0.430422i \(-0.141635\pi\)
\(492\) −15.8289 24.8665i −0.713624 1.12107i
\(493\) 0.414240 + 2.34927i 0.0186564 + 0.105806i
\(494\) −3.14496 −0.141498
\(495\) −46.9016 12.6040i −2.10807 0.566509i
\(496\) 0.714001 1.23669i 0.0320596 0.0555289i
\(497\) 0.834313 0.186068i 0.0374240 0.00834630i
\(498\) 2.92802 + 0.924378i 0.131208 + 0.0414224i
\(499\) 17.5974 + 14.7659i 0.787766 + 0.661014i 0.945191 0.326517i \(-0.105875\pi\)
−0.157425 + 0.987531i \(0.550319\pi\)
\(500\) −2.55173 + 14.4716i −0.114117 + 0.647189i
\(501\) 23.2289 + 7.33337i 1.03779 + 0.327631i
\(502\) −0.809213 + 0.679011i −0.0361170 + 0.0303057i
\(503\) −2.97449 + 5.15197i −0.132626 + 0.229715i −0.924688 0.380726i \(-0.875674\pi\)
0.792062 + 0.610441i \(0.209008\pi\)
\(504\) 2.97735 4.67899i 0.132622 0.208419i
\(505\) −2.23257 3.86693i −0.0993481 0.172076i
\(506\) 3.57265 + 1.30034i 0.158824 + 0.0578071i
\(507\) 22.1793 + 34.8426i 0.985017 + 1.54742i
\(508\) 23.7833 + 19.9566i 1.05521 + 0.885429i
\(509\) 0.929970 5.27412i 0.0412202 0.233771i −0.957237 0.289306i \(-0.906575\pi\)
0.998457 + 0.0555351i \(0.0176865\pi\)
\(510\) −0.808295 0.620697i −0.0357919 0.0274849i
\(511\) −8.69450 9.46436i −0.384622 0.418678i
\(512\) −13.2248 −0.584458
\(513\) 9.29612 + 12.1425i 0.410434 + 0.536105i
\(514\) 1.83782 3.18320i 0.0810628 0.140405i
\(515\) −16.9932 + 14.2590i −0.748811 + 0.628327i
\(516\) 27.4691 11.3663i 1.20926 0.500375i
\(517\) 7.06101 + 5.92489i 0.310543 + 0.260576i
\(518\) 1.37346 1.79461i 0.0603462 0.0788507i
\(519\) 17.2919 + 27.1648i 0.759030 + 1.19240i
\(520\) 10.7115 + 3.89867i 0.469731 + 0.170968i
\(521\) 10.9764 0.480886 0.240443 0.970663i \(-0.422707\pi\)
0.240443 + 0.970663i \(0.422707\pi\)
\(522\) 0.428823 0.917860i 0.0187691 0.0401736i
\(523\) −2.51309 −0.109890 −0.0549449 0.998489i \(-0.517498\pi\)
−0.0549449 + 0.998489i \(0.517498\pi\)
\(524\) 1.38999 + 7.88301i 0.0607219 + 0.344371i
\(525\) 2.62794 9.84292i 0.114693 0.429580i
\(526\) −0.311353 + 0.113323i −0.0135756 + 0.00494112i
\(527\) −0.356587 0.299212i −0.0155332 0.0130339i
\(528\) 8.60044 + 38.8614i 0.374286 + 1.69122i
\(529\) 9.53320 + 3.46980i 0.414487 + 0.150861i
\(530\) −3.85654 −0.167517
\(531\) −7.14579 10.2211i −0.310101 0.443560i
\(532\) 12.9202 8.25405i 0.560163 0.357859i
\(533\) 40.1908 33.7241i 1.74086 1.46075i
\(534\) 0.601861 1.15513i 0.0260451 0.0499875i
\(535\) 8.04903 + 6.75394i 0.347990 + 0.291998i
\(536\) −2.64359 + 0.962189i −0.114186 + 0.0415602i
\(537\) −18.5930 + 7.69352i −0.802349 + 0.332000i
\(538\) −1.57188 0.572119i −0.0677688 0.0246658i
\(539\) −17.7228 + 38.2585i −0.763374 + 1.64791i
\(540\) −8.23986 26.2338i −0.354587 1.12892i
\(541\) 1.00845 + 1.74669i 0.0433568 + 0.0750962i 0.886889 0.461982i \(-0.152861\pi\)
−0.843533 + 0.537078i \(0.819528\pi\)
\(542\) −4.06759 + 3.41312i −0.174718 + 0.146606i
\(543\) 39.9850 16.5452i 1.71592 0.710023i
\(544\) −0.446809 + 2.53398i −0.0191568 + 0.108643i
\(545\) −1.65700 + 9.39733i −0.0709782 + 0.402537i
\(546\) 4.44004 + 2.06558i 0.190016 + 0.0883986i
\(547\) 11.8798 9.96834i 0.507944 0.426215i −0.352461 0.935826i \(-0.614655\pi\)
0.860405 + 0.509611i \(0.170211\pi\)
\(548\) 12.7007 21.9983i 0.542548 0.939721i
\(549\) 9.10248 + 6.38356i 0.388485 + 0.272444i
\(550\) −1.17871 2.04158i −0.0502602 0.0870531i
\(551\) 4.32467 3.62883i 0.184237 0.154593i
\(552\) 0.937609 + 4.23661i 0.0399073 + 0.180322i
\(553\) −3.30904 + 4.32372i −0.140715 + 0.183863i
\(554\) 2.02233 0.736066i 0.0859204 0.0312725i
\(555\) −4.88038 22.0522i −0.207161 0.936062i
\(556\) 26.1530 + 9.51890i 1.10913 + 0.403691i
\(557\) −12.5965 21.8177i −0.533729 0.924445i −0.999224 0.0393948i \(-0.987457\pi\)
0.465495 0.885051i \(-0.345876\pi\)
\(558\) 0.0510255 + 0.190988i 0.00216008 + 0.00808519i
\(559\) 26.4559 + 45.8230i 1.11897 + 1.93810i
\(560\) −26.4769 + 5.90487i −1.11885 + 0.249526i
\(561\) 12.9621 0.561190i 0.547262 0.0236934i
\(562\) −5.03472 + 1.83249i −0.212377 + 0.0772989i
\(563\) −34.7761 + 12.6575i −1.46564 + 0.533448i −0.946912 0.321493i \(-0.895815\pi\)
−0.518725 + 0.854941i \(0.673593\pi\)
\(564\) −0.683091 + 5.17396i −0.0287633 + 0.217863i
\(565\) 7.79606 + 44.2136i 0.327983 + 1.86008i
\(566\) 0.998848 0.0419847
\(567\) −5.14915 23.2484i −0.216244 0.976339i
\(568\) 0.225749 0.00947222
\(569\) −3.79960 21.5486i −0.159288 0.903365i −0.954761 0.297376i \(-0.903889\pi\)
0.795473 0.605989i \(-0.207223\pi\)
\(570\) −0.315678 + 2.39106i −0.0132223 + 0.100150i
\(571\) 27.4591 9.99428i 1.14913 0.418248i 0.303925 0.952696i \(-0.401703\pi\)
0.845201 + 0.534448i \(0.179481\pi\)
\(572\) −67.6511 + 24.6230i −2.82863 + 1.02954i
\(573\) 5.94679 0.257463i 0.248431 0.0107557i
\(574\) 1.20572 3.84097i 0.0503260 0.160319i
\(575\) 3.98540 + 6.90292i 0.166203 + 0.287872i
\(576\) −15.4243 + 15.4017i −0.642679 + 0.641740i
\(577\) −14.3225 24.8072i −0.596252 1.03274i −0.993369 0.114971i \(-0.963323\pi\)
0.397117 0.917768i \(-0.370011\pi\)
\(578\) −2.55644 0.930468i −0.106334 0.0387024i
\(579\) −7.09022 32.0373i −0.294659 1.33143i
\(580\) −9.53894 + 3.47189i −0.396083 + 0.144162i
\(581\) −10.2266 24.6012i −0.424270 1.02063i
\(582\) −0.355991 1.60856i −0.0147563 0.0666768i
\(583\) 37.6106 31.5590i 1.55767 1.30704i
\(584\) −1.69703 2.93935i −0.0702237 0.121631i
\(585\) 44.3715 20.6513i 1.83454 0.853826i
\(586\) 1.77475 3.07396i 0.0733144 0.126984i
\(587\) −11.7360 + 9.84769i −0.484397 + 0.406458i −0.852013 0.523520i \(-0.824619\pi\)
0.367616 + 0.929978i \(0.380174\pi\)
\(588\) −23.6619 + 3.16715i −0.975802 + 0.130611i
\(589\) −0.191293 + 1.08487i −0.00788208 + 0.0447015i
\(590\) 0.341545 1.93700i 0.0140612 0.0797450i
\(591\) −12.8240 + 5.30638i −0.527509 + 0.218275i
\(592\) −14.1795 + 11.8980i −0.582773 + 0.489005i
\(593\) 5.48163 + 9.49445i 0.225103 + 0.389890i 0.956350 0.292222i \(-0.0943947\pi\)
−0.731247 + 0.682113i \(0.761061\pi\)
\(594\) −4.64382 2.96561i −0.190538 0.121680i
\(595\) 0.396872 + 8.83389i 0.0162702 + 0.362154i
\(596\) −33.7050 12.2676i −1.38061 0.502501i
\(597\) 2.51224 1.03953i 0.102819 0.0425450i
\(598\) −3.60033 + 1.31041i −0.147228 + 0.0535867i
\(599\) 26.0096 + 21.8247i 1.06272 + 0.891732i 0.994374 0.105930i \(-0.0337819\pi\)
0.0683508 + 0.997661i \(0.478226\pi\)
\(600\) 1.24321 2.38605i 0.0507537 0.0974100i
\(601\) −9.51678 + 7.98553i −0.388198 + 0.325736i −0.815911 0.578178i \(-0.803764\pi\)
0.427713 + 0.903915i \(0.359319\pi\)
\(602\) 3.60365 + 1.87016i 0.146874 + 0.0762221i
\(603\) −5.11273 + 10.9434i −0.208207 + 0.445649i
\(604\) 4.68195 0.190506
\(605\) 63.8496 + 23.2394i 2.59586 + 0.944815i
\(606\) −0.109465 0.494622i −0.00444672 0.0200926i
\(607\) 7.13805 + 5.98954i 0.289725 + 0.243108i 0.776052 0.630669i \(-0.217219\pi\)
−0.486327 + 0.873777i \(0.661664\pi\)
\(608\) 5.72208 2.08267i 0.232061 0.0844633i
\(609\) −8.48893 + 2.28276i −0.343989 + 0.0925023i
\(610\) 0.304476 + 1.72677i 0.0123279 + 0.0699149i
\(611\) −9.28890 −0.375789
\(612\) 4.20905 + 6.02051i 0.170141 + 0.243365i
\(613\) −10.4679 −0.422795 −0.211397 0.977400i \(-0.567801\pi\)
−0.211397 + 0.977400i \(0.567801\pi\)
\(614\) 0.642689 + 0.233920i 0.0259368 + 0.00944023i
\(615\) −21.6056 33.9415i −0.871224 1.36865i
\(616\) −6.76755 + 8.84273i −0.272672 + 0.356284i
\(617\) −6.40756 5.37658i −0.257959 0.216453i 0.504632 0.863335i \(-0.331628\pi\)
−0.762590 + 0.646882i \(0.776073\pi\)
\(618\) −2.32554 + 0.962274i −0.0935470 + 0.0387084i
\(619\) 12.0719 10.1295i 0.485210 0.407140i −0.367096 0.930183i \(-0.619648\pi\)
0.852306 + 0.523044i \(0.175203\pi\)
\(620\) 0.990407 1.71544i 0.0397757 0.0688936i
\(621\) 15.7016 + 10.0272i 0.630082 + 0.402379i
\(622\) −0.0586131 −0.00235017
\(623\) −11.0309 + 2.46010i −0.441943 + 0.0985619i
\(624\) −31.8125 24.4291i −1.27352 0.977945i
\(625\) −5.41319 + 30.6998i −0.216528 + 1.22799i
\(626\) 0.468423 + 0.393053i 0.0187219 + 0.0157096i
\(627\) −16.4880 25.9018i −0.658466 1.03442i
\(628\) 6.90064 + 2.51163i 0.275366 + 0.100225i
\(629\) 3.01688 + 5.22540i 0.120291 + 0.208350i
\(630\) 2.01610 3.16835i 0.0803232 0.126230i
\(631\) −15.5729 + 26.9730i −0.619947 + 1.07378i 0.369548 + 0.929212i \(0.379513\pi\)
−0.989495 + 0.144568i \(0.953821\pi\)
\(632\) −1.10149 + 0.924262i −0.0438150 + 0.0367652i
\(633\) 17.6368 + 5.56795i 0.700999 + 0.221306i
\(634\) 0.419229 2.37757i 0.0166497 0.0944252i
\(635\) 32.4629 + 27.2396i 1.28825 + 1.08097i
\(636\) 26.5087 + 8.36882i 1.05114 + 0.331845i
\(637\) −11.1010 41.0150i −0.439839 1.62507i
\(638\) −1.01705 + 1.76158i −0.0402654 + 0.0697418i
\(639\) 0.685874 0.684871i 0.0271327 0.0270931i
\(640\) −14.5593 −0.575506
\(641\) −3.08710 17.5078i −0.121933 0.691517i −0.983082 0.183165i \(-0.941366\pi\)
0.861149 0.508352i \(-0.169745\pi\)
\(642\) 0.640144 + 1.00564i 0.0252645 + 0.0396893i
\(643\) 7.38804 41.8996i 0.291356 1.65236i −0.390300 0.920688i \(-0.627629\pi\)
0.681656 0.731673i \(-0.261260\pi\)
\(644\) 11.3518 14.8327i 0.447323 0.584489i
\(645\) 37.4939 15.5144i 1.47632 0.610880i
\(646\) −0.111884 0.634524i −0.00440200 0.0249650i
\(647\) 17.6945 30.6478i 0.695642 1.20489i −0.274321 0.961638i \(-0.588453\pi\)
0.969964 0.243250i \(-0.0782135\pi\)
\(648\) 0.00920037 6.28851i 0.000361425 0.247036i
\(649\) 12.5201 + 21.6854i 0.491455 + 0.851226i
\(650\) 2.23240 + 0.812528i 0.0875620 + 0.0318700i
\(651\) 0.982602 1.40598i 0.0385112 0.0551048i
\(652\) 10.1475 + 8.51477i 0.397407 + 0.333464i
\(653\) 2.71012 0.986404i 0.106055 0.0386010i −0.288447 0.957496i \(-0.593139\pi\)
0.394503 + 0.918895i \(0.370917\pi\)
\(654\) −0.500247 + 0.960109i −0.0195612 + 0.0375432i
\(655\) 1.89726 + 10.7599i 0.0741320 + 0.420424i
\(656\) −16.4870 + 28.5564i −0.643710 + 1.11494i
\(657\) −14.0732 3.78195i −0.549049 0.147548i
\(658\) −0.600648 + 0.383722i −0.0234157 + 0.0149590i
\(659\) 4.36648 + 24.7636i 0.170094 + 0.964651i 0.943655 + 0.330930i \(0.107362\pi\)
−0.773561 + 0.633721i \(0.781527\pi\)
\(660\) 11.9299 + 53.9055i 0.464370 + 2.09827i
\(661\) 2.93132 16.6243i 0.114015 0.646612i −0.873218 0.487330i \(-0.837971\pi\)
0.987233 0.159282i \(-0.0509180\pi\)
\(662\) −0.535472 + 3.03681i −0.0208117 + 0.118029i
\(663\) −9.64299 + 8.82968i −0.374503 + 0.342916i
\(664\) −1.22179 6.92910i −0.0474146 0.268901i
\(665\) 17.6354 11.2663i 0.683873 0.436890i
\(666\) 0.225200 2.55254i 0.00872631 0.0989088i
\(667\) 3.43882 5.95622i 0.133152 0.230626i
\(668\) −4.80857 27.2707i −0.186049 1.05514i
\(669\) 0.156033 + 0.245120i 0.00603257 + 0.00947689i
\(670\) −1.79009 + 0.651540i −0.0691573 + 0.0251712i
\(671\) −17.1000 14.3486i −0.660138 0.553921i
\(672\) −9.44629 0.817906i −0.364398 0.0315514i
\(673\) −47.6825 17.3550i −1.83802 0.668986i −0.990371 0.138436i \(-0.955792\pi\)
−0.847654 0.530550i \(-0.821985\pi\)
\(674\) −0.922463 1.59775i −0.0355320 0.0615432i
\(675\) −3.46159 11.0209i −0.133237 0.424195i
\(676\) 23.4767 40.6629i 0.902951 1.56396i
\(677\) 3.50666 + 19.8872i 0.134772 + 0.764328i 0.975018 + 0.222124i \(0.0712990\pi\)
−0.840247 + 0.542204i \(0.817590\pi\)
\(678\) −0.666697 + 5.04980i −0.0256044 + 0.193936i
\(679\) −8.68792 + 11.3520i −0.333412 + 0.435648i
\(680\) −0.405524 + 2.29984i −0.0155511 + 0.0881949i
\(681\) −10.5120 + 20.1753i −0.402821 + 0.773121i
\(682\) −0.0689243 0.390889i −0.00263925 0.0149679i
\(683\) −4.18921 −0.160296 −0.0801479 0.996783i \(-0.525539\pi\)
−0.0801479 + 0.996783i \(0.525539\pi\)
\(684\) 7.35855 15.7504i 0.281361 0.602231i
\(685\) 17.3358 30.0265i 0.662367 1.14725i
\(686\) −2.41215 2.19357i −0.0920961 0.0837510i
\(687\) 29.3967 26.9174i 1.12155 1.02696i
\(688\) −25.4745 21.3756i −0.971206 0.814938i
\(689\) −8.59167 + 48.7258i −0.327317 + 1.85630i
\(690\) 0.634896 + 2.86880i 0.0241701 + 0.109213i
\(691\) −8.30107 + 6.96543i −0.315788 + 0.264977i −0.786879 0.617107i \(-0.788305\pi\)
0.471092 + 0.882084i \(0.343860\pi\)
\(692\) 18.3034 31.7025i 0.695792 1.20515i
\(693\) 6.26558 + 47.3973i 0.238010 + 1.80047i
\(694\) 2.24749 + 3.89276i 0.0853135 + 0.147767i
\(695\) 35.6974 + 12.9928i 1.35408 + 0.492844i
\(696\) −2.31934 + 0.100414i −0.0879142 + 0.00380620i
\(697\) 8.23396 + 6.90911i 0.311883 + 0.261701i
\(698\) 0.0981663 0.556729i 0.00371565 0.0210725i
\(699\) −1.78475 + 13.5183i −0.0675053 + 0.511308i
\(700\) −11.3038 + 2.52096i −0.427242 + 0.0952833i
\(701\) −9.79318 −0.369883 −0.184942 0.982750i \(-0.559210\pi\)
−0.184942 + 0.982750i \(0.559210\pi\)
\(702\) 5.50596 0.718728i 0.207809 0.0271266i
\(703\) 7.13962 12.3662i 0.269276 0.466400i
\(704\) 33.5259 28.1316i 1.26356 1.06025i
\(705\) −0.932382 + 7.06218i −0.0351155 + 0.265977i
\(706\) −2.31711 1.94429i −0.0872058 0.0731743i
\(707\) −2.67149 + 3.49067i −0.100472 + 0.131280i
\(708\) −6.55104 + 12.5732i −0.246203 + 0.472530i
\(709\) −31.8045 11.5759i −1.19444 0.434741i −0.333160 0.942870i \(-0.608115\pi\)
−0.861281 + 0.508129i \(0.830337\pi\)
\(710\) 0.152865 0.00573691
\(711\) −0.542569 + 6.14978i −0.0203479 + 0.230635i
\(712\) −2.98474 −0.111858
\(713\) 0.233045 + 1.32166i 0.00872759 + 0.0494966i
\(714\) −0.258792 + 0.969302i −0.00968505 + 0.0362752i
\(715\) −92.3401 + 33.6090i −3.45332 + 1.25691i
\(716\) 17.5231 + 14.7036i 0.654868 + 0.549499i
\(717\) −26.9350 + 24.6633i −1.00591 + 0.921068i
\(718\) 3.50710 + 1.27648i 0.130884 + 0.0476378i
\(719\) −35.7389 −1.33284 −0.666418 0.745579i \(-0.732173\pi\)
−0.666418 + 0.745579i \(0.732173\pi\)
\(720\) −21.7662 + 21.7344i −0.811178 + 0.809992i
\(721\) 19.3830 + 10.0591i 0.721862 + 0.374620i
\(722\) 1.39424 1.16991i 0.0518883 0.0435395i
\(723\) 2.64209 + 4.15060i 0.0982605 + 0.154363i
\(724\) −37.6840 31.6206i −1.40051 1.17517i
\(725\) −4.00734 + 1.45855i −0.148829 + 0.0541693i
\(726\) 6.11419 + 4.69513i 0.226919 + 0.174253i
\(727\) 10.8621 + 3.95349i 0.402854 + 0.146627i 0.535497 0.844537i \(-0.320124\pi\)
−0.132643 + 0.991164i \(0.542347\pi\)
\(728\) −0.503631 11.2102i −0.0186658 0.415478i
\(729\) −19.0499 19.1337i −0.705553 0.708657i
\(730\) −1.14913 1.99036i −0.0425314 0.0736665i
\(731\) −8.30401 + 6.96789i −0.307135 + 0.257717i
\(732\) 1.65427 12.5300i 0.0611437 0.463124i
\(733\) 4.30583 24.4196i 0.159039 0.901957i −0.795960 0.605349i \(-0.793033\pi\)
0.954999 0.296608i \(-0.0958554\pi\)
\(734\) 0.611448 3.46769i 0.0225690 0.127995i
\(735\) −32.2973 + 4.32299i −1.19130 + 0.159456i
\(736\) 5.68281 4.76844i 0.209471 0.175767i
\(737\) 12.1260 21.0029i 0.446667 0.773650i
\(738\) −1.17823 4.41012i −0.0433713 0.162339i
\(739\) 16.9528 + 29.3632i 0.623620 + 1.08014i 0.988806 + 0.149207i \(0.0476721\pi\)
−0.365186 + 0.930935i \(0.618995\pi\)
\(740\) −19.6687 + 16.5040i −0.723035 + 0.606698i
\(741\) 29.5067 + 9.31531i 1.08396 + 0.342206i
\(742\) 1.45729 + 3.50567i 0.0534986 + 0.128697i
\(743\) −11.2797 + 4.10548i −0.413812 + 0.150615i −0.540533 0.841323i \(-0.681777\pi\)
0.126720 + 0.991939i \(0.459555\pi\)
\(744\) 0.334100 0.305921i 0.0122487 0.0112156i
\(745\) −46.0055 16.7446i −1.68551 0.613476i
\(746\) 2.76114 + 4.78243i 0.101093 + 0.175097i
\(747\) −24.7334 17.3455i −0.904946 0.634637i
\(748\) −7.37463 12.7732i −0.269643 0.467036i
\(749\) 3.09795 9.86887i 0.113197 0.360601i
\(750\) −1.05151 + 2.01812i −0.0383956 + 0.0736915i
\(751\) −28.8921 + 10.5159i −1.05429 + 0.383729i −0.810279 0.586044i \(-0.800684\pi\)
−0.244008 + 0.969773i \(0.578462\pi\)
\(752\) 5.48591 1.99671i 0.200051 0.0728125i
\(753\) 9.60345 3.97376i 0.349969 0.144812i
\(754\) −0.355955 2.01872i −0.0129631 0.0735174i
\(755\) 6.39061 0.232578
\(756\) −20.7335 + 17.4033i −0.754069 + 0.632952i
\(757\) 4.17342 0.151686 0.0758428 0.997120i \(-0.475835\pi\)
0.0758428 + 0.997120i \(0.475835\pi\)
\(758\) −0.0741745 0.420665i −0.00269414 0.0152792i
\(759\) −29.6678 22.7822i −1.07687 0.826941i
\(760\) 5.19337 1.89023i 0.188383 0.0685659i
\(761\) 7.31913 2.66395i 0.265318 0.0965680i −0.205936 0.978566i \(-0.566024\pi\)
0.471254 + 0.881998i \(0.343802\pi\)
\(762\) 2.58180 + 4.05588i 0.0935287 + 0.146929i
\(763\) 9.16851 2.04476i 0.331922 0.0740252i
\(764\) −3.38335 5.86013i −0.122405 0.212012i
\(765\) 5.74512 + 8.21768i 0.207715 + 0.297111i
\(766\) −1.82823 3.16658i −0.0660565 0.114413i
\(767\) −23.7123 8.63058i −0.856202 0.311632i