Properties

Label 189.2.u.a.4.10
Level $189$
Weight $2$
Character 189.4
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(4,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([2, 12]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.u (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 4.10
Character \(\chi\) \(=\) 189.4
Dual form 189.2.u.a.142.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.134854 - 0.764795i) q^{2} +(1.54799 + 0.776991i) q^{3} +(1.31266 - 0.477769i) q^{4} +(1.10529 - 0.402293i) q^{5} +(0.385486 - 1.28868i) q^{6} +(-0.975813 + 2.45923i) q^{7} +(-1.31901 - 2.28459i) q^{8} +(1.79257 + 2.40555i) q^{9} +O(q^{10})\) \(q+(-0.134854 - 0.764795i) q^{2} +(1.54799 + 0.776991i) q^{3} +(1.31266 - 0.477769i) q^{4} +(1.10529 - 0.402293i) q^{5} +(0.385486 - 1.28868i) q^{6} +(-0.975813 + 2.45923i) q^{7} +(-1.31901 - 2.28459i) q^{8} +(1.79257 + 2.40555i) q^{9} +(-0.456725 - 0.791071i) q^{10} +(-3.93613 - 1.43263i) q^{11} +(2.40321 + 0.280341i) q^{12} +(-3.70688 + 1.34919i) q^{13} +(2.01240 + 0.414661i) q^{14} +(2.02356 + 0.236054i) q^{15} +(0.570812 - 0.478968i) q^{16} +(0.400033 + 0.692877i) q^{17} +(1.59802 - 1.69535i) q^{18} +(1.30975 - 2.26855i) q^{19} +(1.25867 - 1.05615i) q^{20} +(-3.42135 + 3.04867i) q^{21} +(-0.564868 + 3.20353i) q^{22} +(1.28871 - 7.30863i) q^{23} +(-0.266712 - 4.56138i) q^{24} +(-2.77039 + 2.32463i) q^{25} +(1.53174 + 2.65306i) q^{26} +(0.905795 + 5.11659i) q^{27} +(-0.105969 + 3.69434i) q^{28} +(-2.12504 - 0.773451i) q^{29} +(-0.0923528 - 1.57944i) q^{30} +(7.31994 - 2.66424i) q^{31} +(-4.48496 - 3.76333i) q^{32} +(-4.97996 - 5.27604i) q^{33} +(0.475963 - 0.399380i) q^{34} +(-0.0892288 + 3.11073i) q^{35} +(3.50233 + 2.30124i) q^{36} -2.78894 q^{37} +(-1.91160 - 0.695767i) q^{38} +(-6.78654 - 0.791667i) q^{39} +(-2.37696 - 1.99451i) q^{40} +(-2.90818 + 1.05849i) q^{41} +(2.79299 + 2.20551i) q^{42} +(1.78745 + 10.1371i) q^{43} -5.85126 q^{44} +(2.94905 + 1.93770i) q^{45} -5.76340 q^{46} +(0.726756 + 0.264518i) q^{47} +(1.25577 - 0.297924i) q^{48} +(-5.09558 - 4.79949i) q^{49} +(2.15147 + 1.80530i) q^{50} +(0.0808892 + 1.38339i) q^{51} +(-4.22127 + 3.54206i) q^{52} +(-5.10773 + 8.84685i) q^{53} +(3.79100 - 1.38274i) q^{54} -4.92691 q^{55} +(6.90541 - 1.01440i) q^{56} +(3.79013 - 2.49404i) q^{57} +(-0.304961 + 1.72952i) q^{58} +(7.53571 + 6.32321i) q^{59} +(2.76903 - 0.656937i) q^{60} +(7.00038 + 2.54793i) q^{61} +(-3.02472 - 5.23897i) q^{62} +(-7.66501 + 2.06096i) q^{63} +(-1.52822 + 2.64695i) q^{64} +(-3.55441 + 2.98251i) q^{65} +(-3.36352 + 4.52014i) q^{66} +(1.80452 - 10.2339i) q^{67} +(0.856142 + 0.718388i) q^{68} +(7.67366 - 10.3124i) q^{69} +(2.39110 - 0.351252i) q^{70} +(-0.981254 + 1.69958i) q^{71} +(3.13128 - 7.26822i) q^{72} -5.19764 q^{73} +(0.376099 + 2.13296i) q^{74} +(-6.09477 + 1.44595i) q^{75} +(0.635411 - 3.60360i) q^{76} +(7.36409 - 8.28184i) q^{77} +(0.309729 + 5.29707i) q^{78} +(-1.05900 - 6.00590i) q^{79} +(0.438229 - 0.759034i) q^{80} +(-2.57338 + 8.62425i) q^{81} +(1.20171 + 2.08142i) q^{82} +(3.56605 + 1.29793i) q^{83} +(-3.03451 + 5.63648i) q^{84} +(0.720893 + 0.604901i) q^{85} +(7.51179 - 2.73407i) q^{86} +(-2.68858 - 2.84843i) q^{87} +(1.91880 + 10.8821i) q^{88} +(4.65935 - 8.07024i) q^{89} +(1.08425 - 2.51673i) q^{90} +(0.299252 - 10.4326i) q^{91} +(-1.80020 - 10.2095i) q^{92} +(13.4013 + 1.56330i) q^{93} +(0.104296 - 0.591491i) q^{94} +(0.535032 - 3.03432i) q^{95} +(-4.01862 - 9.31038i) q^{96} +(-0.984950 - 5.58593i) q^{97} +(-2.98347 + 4.54430i) q^{98} +(-3.60951 - 12.0367i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} - 15 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} - 15 q^{9} + 3 q^{10} - 15 q^{11} - 3 q^{12} - 12 q^{13} - 30 q^{14} + 9 q^{16} + 27 q^{17} - 3 q^{18} + 3 q^{19} - 18 q^{20} + 15 q^{21} - 12 q^{22} - 36 q^{23} - 72 q^{24} - 3 q^{25} + 30 q^{26} - 12 q^{27} - 12 q^{28} - 30 q^{29} - 3 q^{30} - 3 q^{31} - 75 q^{32} + 15 q^{33} - 18 q^{34} + 15 q^{35} - 60 q^{36} - 6 q^{37} + 69 q^{38} + 51 q^{39} + 51 q^{40} - 39 q^{42} - 12 q^{43} - 6 q^{44} - 21 q^{45} - 6 q^{46} - 21 q^{47} + 90 q^{48} - 42 q^{49} - 39 q^{50} + 33 q^{51} + 9 q^{52} + 9 q^{53} - 9 q^{54} - 24 q^{55} + 111 q^{56} - 18 q^{57} - 3 q^{58} + 27 q^{59} - 63 q^{60} - 21 q^{61} + 75 q^{62} + 63 q^{63} - 30 q^{64} - 90 q^{65} - 3 q^{66} - 3 q^{67} - 30 q^{68} - 6 q^{69} + 39 q^{70} - 18 q^{71} + 183 q^{72} - 42 q^{73} + 51 q^{74} - 45 q^{75} - 24 q^{76} + 15 q^{77} - 30 q^{78} + 15 q^{79} + 102 q^{80} - 87 q^{81} - 6 q^{82} - 42 q^{83} + 135 q^{84} - 63 q^{85} - 93 q^{86} + 75 q^{87} - 51 q^{88} + 75 q^{89} - 39 q^{90} - 21 q^{91} - 66 q^{92} + 81 q^{93} + 33 q^{94} + 15 q^{95} - 171 q^{96} - 12 q^{97} - 36 q^{98} + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.134854 0.764795i −0.0953562 0.540792i −0.994638 0.103421i \(-0.967021\pi\)
0.899281 0.437370i \(-0.144090\pi\)
\(3\) 1.54799 + 0.776991i 0.893735 + 0.448596i
\(4\) 1.31266 0.477769i 0.656330 0.238884i
\(5\) 1.10529 0.402293i 0.494302 0.179911i −0.0828277 0.996564i \(-0.526395\pi\)
0.577129 + 0.816653i \(0.304173\pi\)
\(6\) 0.385486 1.28868i 0.157374 0.526101i
\(7\) −0.975813 + 2.45923i −0.368823 + 0.929500i
\(8\) −1.31901 2.28459i −0.466339 0.807723i
\(9\) 1.79257 + 2.40555i 0.597524 + 0.801851i
\(10\) −0.456725 0.791071i −0.144429 0.250159i
\(11\) −3.93613 1.43263i −1.18679 0.431955i −0.328193 0.944611i \(-0.606440\pi\)
−0.858594 + 0.512656i \(0.828662\pi\)
\(12\) 2.40321 + 0.280341i 0.693747 + 0.0809274i
\(13\) −3.70688 + 1.34919i −1.02810 + 0.374199i −0.800358 0.599522i \(-0.795357\pi\)
−0.227745 + 0.973721i \(0.573135\pi\)
\(14\) 2.01240 + 0.414661i 0.537835 + 0.110823i
\(15\) 2.02356 + 0.236054i 0.522482 + 0.0609489i
\(16\) 0.570812 0.478968i 0.142703 0.119742i
\(17\) 0.400033 + 0.692877i 0.0970222 + 0.168047i 0.910451 0.413617i \(-0.135735\pi\)
−0.813429 + 0.581665i \(0.802402\pi\)
\(18\) 1.59802 1.69535i 0.376657 0.399597i
\(19\) 1.30975 2.26855i 0.300477 0.520442i −0.675767 0.737115i \(-0.736187\pi\)
0.976244 + 0.216674i \(0.0695207\pi\)
\(20\) 1.25867 1.05615i 0.281447 0.236162i
\(21\) −3.42135 + 3.04867i −0.746599 + 0.665274i
\(22\) −0.564868 + 3.20353i −0.120430 + 0.682994i
\(23\) 1.28871 7.30863i 0.268715 1.52396i −0.489531 0.871986i \(-0.662832\pi\)
0.758245 0.651970i \(-0.226057\pi\)
\(24\) −0.266712 4.56138i −0.0544423 0.931088i
\(25\) −2.77039 + 2.32463i −0.554078 + 0.464927i
\(26\) 1.53174 + 2.65306i 0.300400 + 0.520308i
\(27\) 0.905795 + 5.11659i 0.174320 + 0.984689i
\(28\) −0.105969 + 3.69434i −0.0200263 + 0.698164i
\(29\) −2.12504 0.773451i −0.394610 0.143626i 0.137091 0.990558i \(-0.456225\pi\)
−0.531701 + 0.846932i \(0.678447\pi\)
\(30\) −0.0923528 1.57944i −0.0168612 0.288366i
\(31\) 7.31994 2.66424i 1.31470 0.478511i 0.412943 0.910757i \(-0.364501\pi\)
0.901756 + 0.432245i \(0.142279\pi\)
\(32\) −4.48496 3.76333i −0.792836 0.665268i
\(33\) −4.97996 5.27604i −0.866900 0.918441i
\(34\) 0.475963 0.399380i 0.0816270 0.0684932i
\(35\) −0.0892288 + 3.11073i −0.0150824 + 0.525809i
\(36\) 3.50233 + 2.30124i 0.583722 + 0.383540i
\(37\) −2.78894 −0.458498 −0.229249 0.973368i \(-0.573627\pi\)
−0.229249 + 0.973368i \(0.573627\pi\)
\(38\) −1.91160 0.695767i −0.310103 0.112868i
\(39\) −6.78654 0.791667i −1.08672 0.126768i
\(40\) −2.37696 1.99451i −0.375830 0.315359i
\(41\) −2.90818 + 1.05849i −0.454181 + 0.165308i −0.558973 0.829186i \(-0.688804\pi\)
0.104792 + 0.994494i \(0.466582\pi\)
\(42\) 2.79299 + 2.20551i 0.430968 + 0.340317i
\(43\) 1.78745 + 10.1371i 0.272584 + 1.54590i 0.746534 + 0.665348i \(0.231717\pi\)
−0.473950 + 0.880552i \(0.657172\pi\)
\(44\) −5.85126 −0.882111
\(45\) 2.94905 + 1.93770i 0.439619 + 0.288855i
\(46\) −5.76340 −0.849766
\(47\) 0.726756 + 0.264518i 0.106008 + 0.0385839i 0.394480 0.918905i \(-0.370925\pi\)
−0.288471 + 0.957488i \(0.593147\pi\)
\(48\) 1.25577 0.297924i 0.181255 0.0430017i
\(49\) −5.09558 4.79949i −0.727939 0.685641i
\(50\) 2.15147 + 1.80530i 0.304264 + 0.255307i
\(51\) 0.0808892 + 1.38339i 0.0113268 + 0.193714i
\(52\) −4.22127 + 3.54206i −0.585384 + 0.491196i
\(53\) −5.10773 + 8.84685i −0.701600 + 1.21521i 0.266304 + 0.963889i \(0.414198\pi\)
−0.967904 + 0.251319i \(0.919136\pi\)
\(54\) 3.79100 1.38274i 0.515889 0.188167i
\(55\) −4.92691 −0.664344
\(56\) 6.90541 1.01440i 0.922775 0.135555i
\(57\) 3.79013 2.49404i 0.502015 0.330344i
\(58\) −0.304961 + 1.72952i −0.0400434 + 0.227097i
\(59\) 7.53571 + 6.32321i 0.981065 + 0.823212i 0.984250 0.176783i \(-0.0565692\pi\)
−0.00318439 + 0.999995i \(0.501014\pi\)
\(60\) 2.76903 0.656937i 0.357480 0.0848102i
\(61\) 7.00038 + 2.54793i 0.896306 + 0.326229i 0.748772 0.662828i \(-0.230644\pi\)
0.147535 + 0.989057i \(0.452866\pi\)
\(62\) −3.02472 5.23897i −0.384140 0.665350i
\(63\) −7.66501 + 2.06096i −0.965701 + 0.259657i
\(64\) −1.52822 + 2.64695i −0.191027 + 0.330869i
\(65\) −3.55441 + 2.98251i −0.440871 + 0.369934i
\(66\) −3.36352 + 4.52014i −0.414021 + 0.556391i
\(67\) 1.80452 10.2339i 0.220457 1.25027i −0.650726 0.759313i \(-0.725535\pi\)
0.871183 0.490959i \(-0.163354\pi\)
\(68\) 0.856142 + 0.718388i 0.103822 + 0.0871174i
\(69\) 7.67366 10.3124i 0.923800 1.24147i
\(70\) 2.39110 0.351252i 0.285791 0.0419826i
\(71\) −0.981254 + 1.69958i −0.116453 + 0.201703i −0.918360 0.395746i \(-0.870486\pi\)
0.801906 + 0.597450i \(0.203819\pi\)
\(72\) 3.13128 7.26822i 0.369025 0.856568i
\(73\) −5.19764 −0.608338 −0.304169 0.952618i \(-0.598379\pi\)
−0.304169 + 0.952618i \(0.598379\pi\)
\(74\) 0.376099 + 2.13296i 0.0437207 + 0.247952i
\(75\) −6.09477 + 1.44595i −0.703763 + 0.166964i
\(76\) 0.635411 3.60360i 0.0728866 0.413361i
\(77\) 7.36409 8.28184i 0.839216 0.943803i
\(78\) 0.309729 + 5.29707i 0.0350699 + 0.599775i
\(79\) −1.05900 6.00590i −0.119147 0.675717i −0.984613 0.174749i \(-0.944089\pi\)
0.865466 0.500968i \(-0.167023\pi\)
\(80\) 0.438229 0.759034i 0.0489954 0.0848626i
\(81\) −2.57338 + 8.62425i −0.285931 + 0.958250i
\(82\) 1.20171 + 2.08142i 0.132706 + 0.229854i
\(83\) 3.56605 + 1.29793i 0.391424 + 0.142467i 0.530232 0.847852i \(-0.322105\pi\)
−0.138808 + 0.990319i \(0.544327\pi\)
\(84\) −3.03451 + 5.63648i −0.331092 + 0.614990i
\(85\) 0.720893 + 0.604901i 0.0781918 + 0.0656107i
\(86\) 7.51179 2.73407i 0.810017 0.294822i
\(87\) −2.68858 2.84843i −0.288246 0.305384i
\(88\) 1.91880 + 10.8821i 0.204545 + 1.16003i
\(89\) 4.65935 8.07024i 0.493891 0.855443i −0.506085 0.862484i \(-0.668908\pi\)
0.999975 + 0.00704032i \(0.00224102\pi\)
\(90\) 1.08425 2.51673i 0.114290 0.265286i
\(91\) 0.299252 10.4326i 0.0313701 1.09364i
\(92\) −1.80020 10.2095i −0.187684 1.06441i
\(93\) 13.4013 + 1.56330i 1.38965 + 0.162106i
\(94\) 0.104296 0.591491i 0.0107573 0.0610076i
\(95\) 0.535032 3.03432i 0.0548931 0.311314i
\(96\) −4.01862 9.31038i −0.410148 0.950237i
\(97\) −0.984950 5.58593i −0.100007 0.567165i −0.993098 0.117290i \(-0.962579\pi\)
0.893091 0.449876i \(-0.148532\pi\)
\(98\) −2.98347 + 4.54430i −0.301376 + 0.459044i
\(99\) −3.60951 12.0367i −0.362769 1.20973i
\(100\) −2.52594 + 4.37506i −0.252594 + 0.437506i
\(101\) −1.54866 8.78288i −0.154097 0.873929i −0.959606 0.281346i \(-0.909219\pi\)
0.805509 0.592583i \(-0.201892\pi\)
\(102\) 1.04710 0.248420i 0.103679 0.0245972i
\(103\) 16.8978 6.15030i 1.66499 0.606007i 0.673856 0.738863i \(-0.264637\pi\)
0.991135 + 0.132856i \(0.0424148\pi\)
\(104\) 7.97175 + 6.68909i 0.781694 + 0.655919i
\(105\) −2.55513 + 4.74605i −0.249355 + 0.463167i
\(106\) 7.45482 + 2.71333i 0.724076 + 0.263542i
\(107\) 8.96116 + 15.5212i 0.866308 + 1.50049i 0.865742 + 0.500490i \(0.166847\pi\)
0.000565690 1.00000i \(0.499820\pi\)
\(108\) 3.63355 + 6.28358i 0.349638 + 0.604638i
\(109\) 3.85403 6.67538i 0.369149 0.639386i −0.620283 0.784378i \(-0.712982\pi\)
0.989433 + 0.144992i \(0.0463157\pi\)
\(110\) 0.664414 + 3.76808i 0.0633493 + 0.359272i
\(111\) −4.31726 2.16698i −0.409776 0.205680i
\(112\) 0.620885 + 1.87114i 0.0586681 + 0.176806i
\(113\) −2.99844 + 17.0050i −0.282069 + 1.59969i 0.433501 + 0.901153i \(0.357278\pi\)
−0.715570 + 0.698541i \(0.753833\pi\)
\(114\) −2.41855 2.56234i −0.226518 0.239985i
\(115\) −1.51582 8.59661i −0.141350 0.801638i
\(116\) −3.15898 −0.293304
\(117\) −9.89040 6.49857i −0.914368 0.600793i
\(118\) 3.81974 6.61598i 0.351635 0.609051i
\(119\) −2.09430 + 0.307652i −0.191984 + 0.0282024i
\(120\) −2.12981 4.93436i −0.194424 0.450443i
\(121\) 5.01417 + 4.20739i 0.455834 + 0.382490i
\(122\) 1.00461 5.69745i 0.0909535 0.515823i
\(123\) −5.32428 0.621091i −0.480074 0.0560019i
\(124\) 8.33569 6.99448i 0.748567 0.628122i
\(125\) −5.06747 + 8.77712i −0.453249 + 0.785050i
\(126\) 2.60987 + 5.58424i 0.232506 + 0.497483i
\(127\) −0.549414 0.951613i −0.0487526 0.0844420i 0.840619 0.541626i \(-0.182191\pi\)
−0.889372 + 0.457184i \(0.848858\pi\)
\(128\) −8.77277 3.19303i −0.775411 0.282226i
\(129\) −5.10950 + 17.0811i −0.449867 + 1.50390i
\(130\) 2.76033 + 2.31619i 0.242097 + 0.203144i
\(131\) −1.98550 + 11.2603i −0.173474 + 0.983819i 0.766417 + 0.642343i \(0.222038\pi\)
−0.939891 + 0.341475i \(0.889073\pi\)
\(132\) −9.05772 4.54638i −0.788373 0.395711i
\(133\) 4.30081 + 5.43466i 0.372928 + 0.471244i
\(134\) −8.07020 −0.697159
\(135\) 3.05954 + 5.29093i 0.263323 + 0.455371i
\(136\) 1.05529 1.82782i 0.0904905 0.156734i
\(137\) 0.130872 0.109814i 0.0111811 0.00938207i −0.637180 0.770715i \(-0.719899\pi\)
0.648361 + 0.761333i \(0.275455\pi\)
\(138\) −8.92170 4.47811i −0.759466 0.381202i
\(139\) 5.29186 + 4.44040i 0.448850 + 0.376630i 0.839009 0.544118i \(-0.183136\pi\)
−0.390159 + 0.920747i \(0.627580\pi\)
\(140\) 1.36908 + 4.12595i 0.115708 + 0.348707i
\(141\) 0.919486 + 0.974154i 0.0774347 + 0.0820386i
\(142\) 1.43216 + 0.521263i 0.120184 + 0.0437434i
\(143\) 16.5237 1.38178
\(144\) 2.17541 + 0.514535i 0.181284 + 0.0428779i
\(145\) −2.65994 −0.220896
\(146\) 0.700923 + 3.97513i 0.0580088 + 0.328984i
\(147\) −4.15876 11.3888i −0.343009 0.939332i
\(148\) −3.66092 + 1.33247i −0.300926 + 0.109528i
\(149\) −2.79057 2.34157i −0.228612 0.191828i 0.521285 0.853383i \(-0.325453\pi\)
−0.749897 + 0.661554i \(0.769897\pi\)
\(150\) 1.92776 + 4.46626i 0.157401 + 0.364668i
\(151\) −1.54140 0.561025i −0.125438 0.0456555i 0.278539 0.960425i \(-0.410150\pi\)
−0.403976 + 0.914769i \(0.632372\pi\)
\(152\) −6.91027 −0.560497
\(153\) −0.949667 + 2.20433i −0.0767760 + 0.178210i
\(154\) −7.32699 4.51518i −0.590426 0.363844i
\(155\) 7.01886 5.88952i 0.563769 0.473058i
\(156\) −9.28665 + 2.20321i −0.743527 + 0.176398i
\(157\) −1.62276 1.36166i −0.129511 0.108672i 0.575732 0.817639i \(-0.304717\pi\)
−0.705242 + 0.708966i \(0.749162\pi\)
\(158\) −4.45048 + 1.61984i −0.354061 + 0.128868i
\(159\) −14.7806 + 9.72621i −1.17218 + 0.771338i
\(160\) −6.47115 2.35531i −0.511589 0.186203i
\(161\) 16.7160 + 10.3011i 1.31741 + 0.811840i
\(162\) 6.94282 + 0.805094i 0.545479 + 0.0632542i
\(163\) −3.44273 5.96298i −0.269655 0.467057i 0.699117 0.715007i \(-0.253576\pi\)
−0.968773 + 0.247950i \(0.920243\pi\)
\(164\) −3.31173 + 2.77887i −0.258603 + 0.216993i
\(165\) −7.62683 3.82816i −0.593748 0.298022i
\(166\) 0.511759 2.90233i 0.0397202 0.225264i
\(167\) 2.24598 12.7376i 0.173799 0.985665i −0.765721 0.643173i \(-0.777618\pi\)
0.939521 0.342492i \(-0.111271\pi\)
\(168\) 11.4777 + 3.79515i 0.885525 + 0.292802i
\(169\) 1.96206 1.64636i 0.150928 0.126643i
\(170\) 0.365410 0.632909i 0.0280257 0.0485419i
\(171\) 7.80495 0.915868i 0.596859 0.0700382i
\(172\) 7.18953 + 12.4526i 0.548196 + 0.949504i
\(173\) −10.4460 + 8.76521i −0.794192 + 0.666406i −0.946779 0.321884i \(-0.895684\pi\)
0.152587 + 0.988290i \(0.451240\pi\)
\(174\) −1.81590 + 2.44034i −0.137663 + 0.185002i
\(175\) −3.01341 9.08143i −0.227793 0.686491i
\(176\) −2.93298 + 1.06752i −0.221081 + 0.0804671i
\(177\) 6.75215 + 15.6435i 0.507523 + 1.17583i
\(178\) −6.80041 2.47515i −0.509712 0.185520i
\(179\) −2.14561 3.71631i −0.160371 0.277770i 0.774631 0.632413i \(-0.217936\pi\)
−0.935002 + 0.354643i \(0.884602\pi\)
\(180\) 4.79687 + 1.13457i 0.357538 + 0.0845662i
\(181\) 8.65164 + 14.9851i 0.643071 + 1.11383i 0.984743 + 0.174013i \(0.0556735\pi\)
−0.341672 + 0.939819i \(0.610993\pi\)
\(182\) −8.01917 + 1.17801i −0.594420 + 0.0873202i
\(183\) 8.85682 + 9.38341i 0.654715 + 0.693641i
\(184\) −18.3970 + 6.69597i −1.35625 + 0.493633i
\(185\) −3.08259 + 1.12197i −0.226636 + 0.0824889i
\(186\) −0.611618 10.4601i −0.0448460 0.766970i
\(187\) −0.581941 3.30035i −0.0425558 0.241346i
\(188\) 1.08036 0.0787934
\(189\) −13.4667 2.76529i −0.979561 0.201145i
\(190\) −2.39278 −0.173591
\(191\) −3.60038 20.4188i −0.260514 1.47745i −0.781511 0.623891i \(-0.785551\pi\)
0.520997 0.853559i \(-0.325560\pi\)
\(192\) −4.42233 + 2.91005i −0.319154 + 0.210015i
\(193\) 14.0499 5.11373i 1.01133 0.368094i 0.217387 0.976086i \(-0.430247\pi\)
0.793944 + 0.607991i \(0.208024\pi\)
\(194\) −4.13927 + 1.50657i −0.297182 + 0.108165i
\(195\) −7.81959 + 1.85516i −0.559972 + 0.132850i
\(196\) −8.98180 3.86559i −0.641557 0.276113i
\(197\) −10.4928 18.1740i −0.747579 1.29485i −0.948980 0.315336i \(-0.897883\pi\)
0.201401 0.979509i \(-0.435451\pi\)
\(198\) −8.71883 + 4.38373i −0.619620 + 0.311538i
\(199\) −9.04342 15.6637i −0.641071 1.11037i −0.985194 0.171443i \(-0.945157\pi\)
0.344123 0.938925i \(-0.388176\pi\)
\(200\) 8.96499 + 3.26299i 0.633921 + 0.230728i
\(201\) 10.7450 14.4400i 0.757897 1.01852i
\(202\) −6.50826 + 2.36881i −0.457920 + 0.166669i
\(203\) 3.97573 4.47120i 0.279042 0.313817i
\(204\) 0.767121 + 1.77728i 0.0537092 + 0.124434i
\(205\) −2.78856 + 2.33988i −0.194762 + 0.163424i
\(206\) −6.98246 12.0940i −0.486491 0.842627i
\(207\) 19.8914 10.0012i 1.38255 0.695130i
\(208\) −1.46971 + 2.54562i −0.101906 + 0.176507i
\(209\) −8.40535 + 7.05292i −0.581410 + 0.487861i
\(210\) 3.97433 + 1.31413i 0.274255 + 0.0906834i
\(211\) 3.80425 21.5749i 0.261895 1.48528i −0.515838 0.856686i \(-0.672519\pi\)
0.777733 0.628594i \(-0.216369\pi\)
\(212\) −2.47796 + 14.0532i −0.170187 + 0.965178i
\(213\) −2.83954 + 1.86852i −0.194562 + 0.128029i
\(214\) 10.6621 8.94655i 0.728845 0.611573i
\(215\) 6.05376 + 10.4854i 0.412863 + 0.715100i
\(216\) 10.4945 8.81819i 0.714064 0.600002i
\(217\) −0.590929 + 20.6012i −0.0401149 + 1.39850i
\(218\) −5.62503 2.04734i −0.380975 0.138664i
\(219\) −8.04592 4.03852i −0.543693 0.272898i
\(220\) −6.46735 + 2.35392i −0.436029 + 0.158702i
\(221\) −2.41770 2.02869i −0.162632 0.136465i
\(222\) −1.07509 + 3.59404i −0.0721556 + 0.241216i
\(223\) −15.2032 + 12.7570i −1.01808 + 0.854270i −0.989385 0.145318i \(-0.953579\pi\)
−0.0286946 + 0.999588i \(0.509135\pi\)
\(224\) 13.6314 7.35722i 0.910783 0.491575i
\(225\) −10.5582 2.49726i −0.703877 0.166484i
\(226\) 13.4097 0.891998
\(227\) 22.9329 + 8.34689i 1.52211 + 0.554003i 0.961674 0.274195i \(-0.0884114\pi\)
0.560436 + 0.828198i \(0.310634\pi\)
\(228\) 3.78357 5.08464i 0.250573 0.336738i
\(229\) 12.1455 + 10.1913i 0.802597 + 0.673459i 0.948829 0.315792i \(-0.102270\pi\)
−0.146232 + 0.989250i \(0.546715\pi\)
\(230\) −6.37024 + 2.31858i −0.420041 + 0.152882i
\(231\) 17.8345 7.09841i 1.17342 0.467041i
\(232\) 1.03592 + 5.87502i 0.0680118 + 0.385714i
\(233\) 2.88655 0.189104 0.0945520 0.995520i \(-0.469858\pi\)
0.0945520 + 0.995520i \(0.469858\pi\)
\(234\) −3.63632 + 8.44049i −0.237714 + 0.551772i
\(235\) 0.909691 0.0593417
\(236\) 12.9128 + 4.69989i 0.840555 + 0.305937i
\(237\) 3.02720 10.1199i 0.196638 0.657361i
\(238\) 0.517715 + 1.56022i 0.0335585 + 0.101134i
\(239\) −15.4217 12.9403i −0.997545 0.837040i −0.0109024 0.999941i \(-0.503470\pi\)
−0.986642 + 0.162901i \(0.947915\pi\)
\(240\) 1.26814 0.834481i 0.0818579 0.0538655i
\(241\) −16.2021 + 13.5952i −1.04367 + 0.875742i −0.992414 0.122944i \(-0.960766\pi\)
−0.0512547 + 0.998686i \(0.516322\pi\)
\(242\) 2.54161 4.40220i 0.163381 0.282984i
\(243\) −10.6845 + 11.3508i −0.685414 + 0.728154i
\(244\) 10.4064 0.666203
\(245\) −7.56290 3.25492i −0.483176 0.207949i
\(246\) 0.242993 + 4.15574i 0.0154927 + 0.264960i
\(247\) −1.79437 + 10.1764i −0.114173 + 0.647506i
\(248\) −15.7417 13.2089i −0.999600 0.838764i
\(249\) 4.51174 + 4.77998i 0.285920 + 0.302919i
\(250\) 7.39607 + 2.69195i 0.467769 + 0.170254i
\(251\) −2.99103 5.18061i −0.188792 0.326997i 0.756056 0.654507i \(-0.227124\pi\)
−0.944848 + 0.327510i \(0.893791\pi\)
\(252\) −9.07689 + 6.36745i −0.571790 + 0.401111i
\(253\) −15.5431 + 26.9215i −0.977187 + 1.69254i
\(254\) −0.653698 + 0.548518i −0.0410167 + 0.0344171i
\(255\) 0.645936 + 1.49651i 0.0404501 + 0.0937151i
\(256\) −2.32046 + 13.1600i −0.145029 + 0.822498i
\(257\) 10.5663 + 8.86621i 0.659110 + 0.553059i 0.909820 0.415003i \(-0.136220\pi\)
−0.250710 + 0.968062i \(0.580664\pi\)
\(258\) 13.7526 + 1.60427i 0.856197 + 0.0998776i
\(259\) 2.72148 6.85862i 0.169105 0.426174i
\(260\) −3.24078 + 5.61320i −0.200985 + 0.348116i
\(261\) −1.94870 6.49836i −0.120622 0.402238i
\(262\) 8.87959 0.548583
\(263\) 2.21517 + 12.5629i 0.136593 + 0.774660i 0.973737 + 0.227676i \(0.0731128\pi\)
−0.837143 + 0.546983i \(0.815776\pi\)
\(264\) −5.48497 + 18.3363i −0.337577 + 1.12852i
\(265\) −2.08650 + 11.8332i −0.128173 + 0.726905i
\(266\) 3.57642 4.02213i 0.219284 0.246612i
\(267\) 13.4832 8.87240i 0.825155 0.542982i
\(268\) −2.52073 14.2958i −0.153978 0.873254i
\(269\) 9.60819 16.6419i 0.585822 1.01467i −0.408951 0.912556i \(-0.634105\pi\)
0.994772 0.102117i \(-0.0325615\pi\)
\(270\) 3.63389 3.05343i 0.221152 0.185826i
\(271\) −9.45706 16.3801i −0.574475 0.995021i −0.996098 0.0882493i \(-0.971873\pi\)
0.421623 0.906771i \(-0.361461\pi\)
\(272\) 0.560210 + 0.203900i 0.0339677 + 0.0123632i
\(273\) 8.56928 15.9171i 0.518637 0.963347i
\(274\) −0.101634 0.0852811i −0.00613994 0.00515202i
\(275\) 14.2350 5.18110i 0.858401 0.312432i
\(276\) 5.14595 17.2029i 0.309750 1.03549i
\(277\) −2.20277 12.4926i −0.132352 0.750605i −0.976667 0.214758i \(-0.931104\pi\)
0.844315 0.535847i \(-0.180007\pi\)
\(278\) 2.68237 4.64600i 0.160878 0.278648i
\(279\) 19.5305 + 12.8327i 1.16926 + 0.768272i
\(280\) 7.22441 3.89921i 0.431741 0.233023i
\(281\) −1.10050 6.24125i −0.0656504 0.372322i −0.999878 0.0156435i \(-0.995020\pi\)
0.934227 0.356678i \(-0.116091\pi\)
\(282\) 0.621032 0.834587i 0.0369819 0.0496989i
\(283\) −5.07947 + 28.8071i −0.301943 + 1.71240i 0.335613 + 0.942000i \(0.391057\pi\)
−0.637556 + 0.770404i \(0.720055\pi\)
\(284\) −0.476045 + 2.69978i −0.0282481 + 0.160203i
\(285\) 3.18586 4.28139i 0.188714 0.253608i
\(286\) −2.22828 12.6372i −0.131761 0.747254i
\(287\) 0.234773 8.18475i 0.0138582 0.483130i
\(288\) 1.01328 17.5348i 0.0597082 1.03325i
\(289\) 8.17995 14.1681i 0.481173 0.833417i
\(290\) 0.358704 + 2.03431i 0.0210638 + 0.119459i
\(291\) 2.81552 9.41229i 0.165049 0.551758i
\(292\) −6.82273 + 2.48327i −0.399270 + 0.145323i
\(293\) −10.7472 9.01797i −0.627858 0.526836i 0.272404 0.962183i \(-0.412181\pi\)
−0.900263 + 0.435347i \(0.856626\pi\)
\(294\) −8.14927 + 4.71643i −0.475275 + 0.275068i
\(295\) 10.8729 + 3.95743i 0.633047 + 0.230410i
\(296\) 3.67862 + 6.37156i 0.213816 + 0.370340i
\(297\) 3.76488 21.4372i 0.218460 1.24391i
\(298\) −1.41450 + 2.44998i −0.0819397 + 0.141924i
\(299\) 5.08367 + 28.8310i 0.293996 + 1.66734i
\(300\) −7.30952 + 4.80993i −0.422016 + 0.277702i
\(301\) −26.6737 5.49621i −1.53745 0.316796i
\(302\) −0.221205 + 1.25451i −0.0127289 + 0.0721891i
\(303\) 4.42690 14.7991i 0.254319 0.850188i
\(304\) −0.338944 1.92225i −0.0194398 0.110248i
\(305\) 8.76247 0.501738
\(306\) 1.81393 + 0.429037i 0.103695 + 0.0245264i
\(307\) −5.75646 + 9.97048i −0.328538 + 0.569045i −0.982222 0.187723i \(-0.939889\pi\)
0.653684 + 0.756768i \(0.273223\pi\)
\(308\) 5.70974 14.3896i 0.325343 0.819922i
\(309\) 30.9364 + 3.60882i 1.75991 + 0.205298i
\(310\) −5.45080 4.57377i −0.309585 0.259772i
\(311\) −0.567993 + 3.22125i −0.0322079 + 0.182660i −0.996668 0.0815698i \(-0.974007\pi\)
0.964460 + 0.264230i \(0.0851178\pi\)
\(312\) 7.14285 + 16.5486i 0.404385 + 0.936882i
\(313\) −4.61419 + 3.87177i −0.260809 + 0.218845i −0.763810 0.645441i \(-0.776674\pi\)
0.503001 + 0.864286i \(0.332229\pi\)
\(314\) −0.822555 + 1.42471i −0.0464195 + 0.0804009i
\(315\) −7.64297 + 5.36155i −0.430632 + 0.302089i
\(316\) −4.25954 7.37775i −0.239618 0.415031i
\(317\) 1.91287 + 0.696230i 0.107438 + 0.0391041i 0.395180 0.918604i \(-0.370682\pi\)
−0.287742 + 0.957708i \(0.592905\pi\)
\(318\) 9.43178 + 9.99255i 0.528908 + 0.560354i
\(319\) 7.25635 + 6.08880i 0.406278 + 0.340907i
\(320\) −0.624276 + 3.54044i −0.0348981 + 0.197917i
\(321\) 1.81200 + 30.9894i 0.101136 + 1.72966i
\(322\) 5.62400 14.1735i 0.313413 0.789858i
\(323\) 2.09577 0.116612
\(324\) 0.742427 + 12.5502i 0.0412459 + 0.697232i
\(325\) 7.13313 12.3549i 0.395675 0.685329i
\(326\) −4.09620 + 3.43712i −0.226867 + 0.190364i
\(327\) 11.1527 7.33890i 0.616747 0.405842i
\(328\) 6.25411 + 5.24782i 0.345326 + 0.289763i
\(329\) −1.35969 + 1.52914i −0.0749619 + 0.0843040i
\(330\) −1.89925 + 6.34920i −0.104550 + 0.349512i
\(331\) −6.36037 2.31499i −0.349598 0.127243i 0.161252 0.986913i \(-0.448447\pi\)
−0.510850 + 0.859670i \(0.670669\pi\)
\(332\) 5.30112 0.290937
\(333\) −4.99937 6.70894i −0.273964 0.367647i
\(334\) −10.0445 −0.549612
\(335\) −2.12252 12.0374i −0.115966 0.657674i
\(336\) −0.492733 + 3.37894i −0.0268808 + 0.184336i
\(337\) −2.22559 + 0.810048i −0.121235 + 0.0441261i −0.401926 0.915672i \(-0.631659\pi\)
0.280690 + 0.959798i \(0.409437\pi\)
\(338\) −1.52372 1.27855i −0.0828795 0.0695442i
\(339\) −17.8543 + 23.9938i −0.969711 + 1.30317i
\(340\) 1.23529 + 0.449609i 0.0669930 + 0.0243835i
\(341\) −32.6291 −1.76696
\(342\) −1.75298 5.84568i −0.0947903 0.316098i
\(343\) 16.7754 7.84776i 0.905784 0.423739i
\(344\) 20.8015 17.4545i 1.12154 0.941086i
\(345\) 4.33302 14.4853i 0.233282 0.779861i
\(346\) 8.11227 + 6.80700i 0.436118 + 0.365947i
\(347\) −7.34810 + 2.67449i −0.394467 + 0.143574i −0.531635 0.846974i \(-0.678422\pi\)
0.137168 + 0.990548i \(0.456200\pi\)
\(348\) −4.89009 2.45450i −0.262136 0.131575i
\(349\) 18.6277 + 6.77991i 0.997116 + 0.362921i 0.788472 0.615071i \(-0.210873\pi\)
0.208644 + 0.977992i \(0.433095\pi\)
\(350\) −6.53906 + 3.52931i −0.349527 + 0.188650i
\(351\) −10.2610 17.7445i −0.547689 0.947132i
\(352\) 12.2619 + 21.2382i 0.653562 + 1.13200i
\(353\) −20.6455 + 17.3236i −1.09885 + 0.922042i −0.997347 0.0727931i \(-0.976809\pi\)
−0.101500 + 0.994836i \(0.532364\pi\)
\(354\) 11.0535 7.27360i 0.587486 0.386587i
\(355\) −0.400842 + 2.27329i −0.0212745 + 0.120654i
\(356\) 2.26044 12.8196i 0.119803 0.679436i
\(357\) −3.48100 1.15101i −0.184234 0.0609178i
\(358\) −2.55287 + 2.14211i −0.134923 + 0.113214i
\(359\) 8.93724 15.4797i 0.471689 0.816990i −0.527786 0.849377i \(-0.676978\pi\)
0.999475 + 0.0323875i \(0.0103111\pi\)
\(360\) 0.537024 9.29320i 0.0283036 0.489795i
\(361\) 6.06911 + 10.5120i 0.319427 + 0.553264i
\(362\) 10.2938 8.63753i 0.541031 0.453979i
\(363\) 4.49281 + 10.4090i 0.235811 + 0.546330i
\(364\) −4.59156 13.8374i −0.240663 0.725279i
\(365\) −5.74491 + 2.09098i −0.300703 + 0.109447i
\(366\) 5.98201 8.03905i 0.312684 0.420208i
\(367\) −5.08005 1.84899i −0.265176 0.0965163i 0.206010 0.978550i \(-0.433952\pi\)
−0.471187 + 0.882034i \(0.656174\pi\)
\(368\) −2.76499 4.78911i −0.144135 0.249650i
\(369\) −7.75937 5.09836i −0.403936 0.265410i
\(370\) 1.27378 + 2.20625i 0.0662205 + 0.114697i
\(371\) −16.7722 21.1939i −0.870769 1.10033i
\(372\) 18.3382 4.35065i 0.950794 0.225571i
\(373\) −4.15661 + 1.51288i −0.215221 + 0.0783341i −0.447381 0.894344i \(-0.647643\pi\)
0.232159 + 0.972678i \(0.425421\pi\)
\(374\) −2.44562 + 0.890132i −0.126460 + 0.0460276i
\(375\) −14.6642 + 9.64955i −0.757254 + 0.498301i
\(376\) −0.354283 2.00924i −0.0182707 0.103618i
\(377\) 8.92080 0.459444
\(378\) −0.298834 + 10.6722i −0.0153703 + 0.548919i
\(379\) −16.8581 −0.865944 −0.432972 0.901407i \(-0.642535\pi\)
−0.432972 + 0.901407i \(0.642535\pi\)
\(380\) −0.747388 4.23865i −0.0383402 0.217438i
\(381\) −0.111095 1.89998i −0.00569157 0.0973389i
\(382\) −15.1306 + 5.50711i −0.774151 + 0.281768i
\(383\) −29.7629 + 10.8328i −1.52081 + 0.553531i −0.961351 0.275325i \(-0.911214\pi\)
−0.559462 + 0.828856i \(0.688992\pi\)
\(384\) −11.0992 11.7591i −0.566406 0.600082i
\(385\) 4.80774 12.1164i 0.245025 0.617508i
\(386\) −5.80563 10.0557i −0.295499 0.511819i
\(387\) −21.1813 + 22.4714i −1.07671 + 1.14228i
\(388\) −3.96169 6.86185i −0.201124 0.348357i
\(389\) 15.9166 + 5.79315i 0.807002 + 0.293725i 0.712385 0.701789i \(-0.247615\pi\)
0.0946169 + 0.995514i \(0.469837\pi\)
\(390\) 2.47332 + 5.73021i 0.125241 + 0.290160i
\(391\) 5.57951 2.03078i 0.282168 0.102701i
\(392\) −4.24375 + 17.9718i −0.214342 + 0.907715i
\(393\) −11.8227 + 15.8882i −0.596377 + 0.801453i
\(394\) −12.4844 + 10.4757i −0.628955 + 0.527756i
\(395\) −3.58664 6.21225i −0.180464 0.312572i
\(396\) −10.4888 14.0755i −0.527082 0.707322i
\(397\) −1.93889 + 3.35826i −0.0973102 + 0.168546i −0.910570 0.413354i \(-0.864357\pi\)
0.813260 + 0.581900i \(0.197691\pi\)
\(398\) −10.7600 + 9.02867i −0.539348 + 0.452566i
\(399\) 2.43495 + 11.7545i 0.121900 + 0.588461i
\(400\) −0.467947 + 2.65386i −0.0233974 + 0.132693i
\(401\) 3.08785 17.5121i 0.154200 0.874511i −0.805314 0.592849i \(-0.798003\pi\)
0.959514 0.281662i \(-0.0908857\pi\)
\(402\) −12.4926 6.27047i −0.623075 0.312743i
\(403\) −23.5396 + 19.7520i −1.17259 + 0.983919i
\(404\) −6.22905 10.7890i −0.309907 0.536774i
\(405\) 0.625142 + 10.5676i 0.0310636 + 0.525107i
\(406\) −3.95570 2.43766i −0.196318 0.120979i
\(407\) 10.9776 + 3.99552i 0.544140 + 0.198051i
\(408\) 3.05378 2.00950i 0.151185 0.0994851i
\(409\) −14.8804 + 5.41601i −0.735786 + 0.267804i −0.682612 0.730781i \(-0.739156\pi\)
−0.0531743 + 0.998585i \(0.516934\pi\)
\(410\) 2.16558 + 1.81714i 0.106950 + 0.0897419i
\(411\) 0.287913 0.0683059i 0.0142017 0.00336928i
\(412\) 19.2426 16.1465i 0.948017 0.795481i
\(413\) −22.9036 + 12.3617i −1.12701 + 0.608281i
\(414\) −10.3313 13.8642i −0.507755 0.681386i
\(415\) 4.46367 0.219113
\(416\) 21.7027 + 7.89912i 1.06406 + 0.387286i
\(417\) 4.74162 + 10.9854i 0.232198 + 0.537959i
\(418\) 6.52754 + 5.47725i 0.319272 + 0.267901i
\(419\) 3.62696 1.32011i 0.177189 0.0644914i −0.251902 0.967753i \(-0.581056\pi\)
0.429091 + 0.903261i \(0.358834\pi\)
\(420\) −1.08650 + 7.45071i −0.0530157 + 0.363558i
\(421\) 4.10604 + 23.2865i 0.200116 + 1.13491i 0.904942 + 0.425534i \(0.139914\pi\)
−0.704827 + 0.709380i \(0.748975\pi\)
\(422\) −17.0134 −0.828201
\(423\) 0.666450 + 2.22242i 0.0324039 + 0.108058i
\(424\) 26.9485 1.30873
\(425\) −2.71893 0.989611i −0.131888 0.0480032i
\(426\) 1.81196 + 1.91969i 0.0877896 + 0.0930091i
\(427\) −13.0970 + 14.7292i −0.633808 + 0.712796i
\(428\) 19.1785 + 16.0927i 0.927027 + 0.777868i
\(429\) 25.5785 + 12.8387i 1.23494 + 0.619860i
\(430\) 7.20283 6.04389i 0.347351 0.291462i
\(431\) −0.690915 + 1.19670i −0.0332802 + 0.0576430i −0.882186 0.470902i \(-0.843929\pi\)
0.848906 + 0.528545i \(0.177262\pi\)
\(432\) 2.96773 + 2.48677i 0.142785 + 0.119645i
\(433\) 6.45364 0.310142 0.155071 0.987903i \(-0.450439\pi\)
0.155071 + 0.987903i \(0.450439\pi\)
\(434\) 15.8354 2.32621i 0.760122 0.111662i
\(435\) −4.11757 2.06675i −0.197423 0.0990931i
\(436\) 1.86974 10.6038i 0.0895444 0.507832i
\(437\) −14.8921 12.4960i −0.712388 0.597764i
\(438\) −2.00362 + 6.69809i −0.0957365 + 0.320047i
\(439\) −20.1250 7.32489i −0.960512 0.349598i −0.186278 0.982497i \(-0.559642\pi\)
−0.774234 + 0.632899i \(0.781865\pi\)
\(440\) 6.49862 + 11.2559i 0.309810 + 0.536606i
\(441\) 2.41125 20.8611i 0.114822 0.993386i
\(442\) −1.22550 + 2.12262i −0.0582909 + 0.100963i
\(443\) −27.0022 + 22.6576i −1.28291 + 1.07649i −0.290079 + 0.957003i \(0.593682\pi\)
−0.992835 + 0.119491i \(0.961874\pi\)
\(444\) −6.70240 0.781852i −0.318082 0.0371051i
\(445\) 1.90334 10.7944i 0.0902271 0.511703i
\(446\) 11.8067 + 9.90698i 0.559063 + 0.469109i
\(447\) −2.50041 5.79297i −0.118265 0.273998i
\(448\) −5.01819 6.34116i −0.237087 0.299592i
\(449\) −10.7147 + 18.5584i −0.505658 + 0.875825i 0.494321 + 0.869280i \(0.335417\pi\)
−0.999979 + 0.00654545i \(0.997917\pi\)
\(450\) −0.486079 + 8.41159i −0.0229140 + 0.396526i
\(451\) 12.9634 0.610422
\(452\) 4.18852 + 23.7543i 0.197012 + 1.11731i
\(453\) −1.95017 2.06612i −0.0916270 0.0970747i
\(454\) 3.29107 18.6646i 0.154458 0.875972i
\(455\) −3.86621 11.6515i −0.181251 0.546229i
\(456\) −10.6971 5.36922i −0.500936 0.251437i
\(457\) −0.549899 3.11863i −0.0257232 0.145883i 0.969241 0.246113i \(-0.0791534\pi\)
−0.994964 + 0.100229i \(0.968042\pi\)
\(458\) 6.15637 10.6631i 0.287668 0.498256i
\(459\) −3.18282 + 2.67441i −0.148561 + 0.124831i
\(460\) −6.09694 10.5602i −0.284271 0.492373i
\(461\) 11.0098 + 4.00726i 0.512780 + 0.186636i 0.585433 0.810721i \(-0.300925\pi\)
−0.0726535 + 0.997357i \(0.523147\pi\)
\(462\) −7.83388 12.6825i −0.364465 0.590042i
\(463\) −18.8553 15.8215i −0.876282 0.735288i 0.0891290 0.996020i \(-0.471592\pi\)
−0.965411 + 0.260732i \(0.916036\pi\)
\(464\) −1.58346 + 0.576331i −0.0735101 + 0.0267555i
\(465\) 15.4413 3.66336i 0.716071 0.169884i
\(466\) −0.389262 2.20762i −0.0180322 0.102266i
\(467\) 6.62096 11.4678i 0.306381 0.530668i −0.671186 0.741289i \(-0.734215\pi\)
0.977568 + 0.210620i \(0.0675484\pi\)
\(468\) −16.0875 3.80509i −0.743647 0.175890i
\(469\) 23.4066 + 14.4241i 1.08082 + 0.666043i
\(470\) −0.122676 0.695727i −0.00565860 0.0320915i
\(471\) −1.45403 3.36871i −0.0669982 0.155222i
\(472\) 4.50627 25.5563i 0.207418 1.17632i
\(473\) 7.48717 42.4618i 0.344260 1.95240i
\(474\) −8.14791 0.950475i −0.374246 0.0436568i
\(475\) 1.64504 + 9.32947i 0.0754795 + 0.428066i
\(476\) −2.60211 + 1.40443i −0.119268 + 0.0643721i
\(477\) −30.4375 + 3.57168i −1.39364 + 0.163536i
\(478\) −7.81702 + 13.5395i −0.357542 + 0.619281i
\(479\) 5.79407 + 32.8598i 0.264738 + 1.50140i 0.769780 + 0.638309i \(0.220366\pi\)
−0.505042 + 0.863095i \(0.668523\pi\)
\(480\) −8.18725 8.67402i −0.373695 0.395913i
\(481\) 10.3383 3.76282i 0.471384 0.171570i
\(482\) 12.5824 + 10.5579i 0.573114 + 0.480900i
\(483\) 17.8725 + 28.9342i 0.813226 + 1.31655i
\(484\) 8.59206 + 3.12725i 0.390548 + 0.142148i
\(485\) −3.33584 5.77785i −0.151473 0.262358i
\(486\) 10.1219 + 6.64079i 0.459138 + 0.301232i
\(487\) 1.15530 2.00104i 0.0523516 0.0906757i −0.838662 0.544652i \(-0.816662\pi\)
0.891014 + 0.453977i \(0.149995\pi\)
\(488\) −3.41258 19.3537i −0.154480 0.876100i
\(489\) −0.696142 11.9056i −0.0314806 0.538391i
\(490\) −1.46946 + 6.22301i −0.0663834 + 0.281127i
\(491\) −2.96527 + 16.8169i −0.133821 + 0.758936i 0.841853 + 0.539708i \(0.181465\pi\)
−0.975674 + 0.219229i \(0.929646\pi\)
\(492\) −7.28570 + 1.72849i −0.328465 + 0.0779265i
\(493\) −0.314179 1.78180i −0.0141499 0.0802481i
\(494\) 8.02481 0.361053
\(495\) −8.83183 11.8519i −0.396961 0.532705i
\(496\) 2.90222 5.02680i 0.130314 0.225710i
\(497\) −3.22213 4.07160i −0.144532 0.182636i
\(498\) 3.04728 4.09515i 0.136552 0.183508i
\(499\) 1.93332 + 1.62225i 0.0865475 + 0.0726220i 0.685035 0.728510i \(-0.259787\pi\)
−0.598487 + 0.801132i \(0.704231\pi\)
\(500\) −2.45843 + 13.9425i −0.109944 + 0.623525i
\(501\) 13.3738 17.9726i 0.597496 0.802957i
\(502\) −3.55876 + 2.98615i −0.158835 + 0.133278i
\(503\) 16.5818 28.7204i 0.739344 1.28058i −0.213447 0.976955i \(-0.568469\pi\)
0.952791 0.303627i \(-0.0981975\pi\)
\(504\) 14.8186 + 14.7930i 0.660075 + 0.658931i
\(505\) −5.24502 9.08463i −0.233400 0.404261i
\(506\) 22.6855 + 8.25683i 1.00849 + 0.367061i
\(507\) 4.31646 1.02406i 0.191701 0.0454800i
\(508\) −1.17584 0.986650i −0.0521696 0.0437755i
\(509\) 1.49047 8.45288i 0.0660639 0.374667i −0.933794 0.357811i \(-0.883523\pi\)
0.999858 0.0168561i \(-0.00536571\pi\)
\(510\) 1.05742 0.695819i 0.0468232 0.0308114i
\(511\) 5.07193 12.7822i 0.224369 0.565450i
\(512\) −8.29398 −0.366545
\(513\) 12.7936 + 4.64661i 0.564853 + 0.205153i
\(514\) 5.35592 9.27673i 0.236240 0.409179i
\(515\) 16.2028 13.5958i 0.713980 0.599101i
\(516\) 1.45377 + 24.8628i 0.0639986 + 1.09452i
\(517\) −2.48165 2.08235i −0.109143 0.0915816i
\(518\) −5.61244 1.15646i −0.246597 0.0508121i
\(519\) −22.9808 + 5.45207i −1.00874 + 0.239319i
\(520\) 11.5021 + 4.18642i 0.504400 + 0.183586i
\(521\) 12.6761 0.555350 0.277675 0.960675i \(-0.410436\pi\)
0.277675 + 0.960675i \(0.410436\pi\)
\(522\) −4.70712 + 2.36669i −0.206025 + 0.103587i
\(523\) 44.2582 1.93528 0.967638 0.252344i \(-0.0812013\pi\)
0.967638 + 0.252344i \(0.0812013\pi\)
\(524\) 2.77355 + 15.7296i 0.121163 + 0.687150i
\(525\) 2.39144 16.3994i 0.104371 0.715728i
\(526\) 9.30930 3.38831i 0.405905 0.147737i
\(527\) 4.77421 + 4.00603i 0.207968 + 0.174506i
\(528\) −5.36968 0.626387i −0.233685 0.0272600i
\(529\) −30.1424 10.9710i −1.31054 0.476998i
\(530\) 9.33131 0.405326
\(531\) −1.70253 + 29.4623i −0.0738837 + 1.27856i
\(532\) 8.24201 + 5.07906i 0.357336 + 0.220205i
\(533\) 9.35215 7.84739i 0.405087 0.339908i
\(534\) −8.60383 9.11537i −0.372324 0.394461i
\(535\) 16.1488 + 13.5504i 0.698172 + 0.585836i
\(536\) −25.7604 + 9.37603i −1.11268 + 0.404983i
\(537\) −0.433857 7.41994i −0.0187223 0.320194i
\(538\) −14.0233 5.10407i −0.604589 0.220052i
\(539\) 13.1809 + 26.1915i 0.567743 + 1.12815i
\(540\) 6.54398 + 5.48344i 0.281608 + 0.235970i
\(541\) 14.1100 + 24.4392i 0.606635 + 1.05072i 0.991791 + 0.127871i \(0.0408145\pi\)
−0.385155 + 0.922852i \(0.625852\pi\)
\(542\) −11.2521 + 9.44164i −0.483319 + 0.405553i
\(543\) 1.74942 + 29.9191i 0.0750747 + 1.28395i
\(544\) 0.813393 4.61298i 0.0348739 0.197780i
\(545\) 1.57437 8.92870i 0.0674386 0.382463i
\(546\) −13.3289 4.40726i −0.570426 0.188613i
\(547\) 25.1973 21.1430i 1.07736 0.904010i 0.0816582 0.996660i \(-0.473978\pi\)
0.995699 + 0.0926507i \(0.0295340\pi\)
\(548\) 0.119324 0.206675i 0.00509727 0.00882872i
\(549\) 6.41949 + 21.4071i 0.273977 + 0.913634i
\(550\) −5.88213 10.1881i −0.250815 0.434424i
\(551\) −4.53788 + 3.80774i −0.193320 + 0.162215i
\(552\) −33.6812 3.92900i −1.43357 0.167229i
\(553\) 15.8033 + 3.25632i 0.672023 + 0.138473i
\(554\) −9.25719 + 3.36934i −0.393300 + 0.143150i
\(555\) −5.64359 0.658339i −0.239557 0.0279449i
\(556\) 9.06789 + 3.30044i 0.384564 + 0.139970i
\(557\) 4.22812 + 7.32332i 0.179151 + 0.310299i 0.941590 0.336761i \(-0.109332\pi\)
−0.762439 + 0.647060i \(0.775998\pi\)
\(558\) 7.18060 16.6674i 0.303979 0.705585i
\(559\) −20.3028 35.1655i −0.858719 1.48734i
\(560\) 1.43901 + 1.81838i 0.0608091 + 0.0768405i
\(561\) 1.66350 5.56109i 0.0702331 0.234789i
\(562\) −4.62487 + 1.68332i −0.195088 + 0.0710064i
\(563\) −35.0053 + 12.7409i −1.47530 + 0.536965i −0.949534 0.313665i \(-0.898443\pi\)
−0.525765 + 0.850630i \(0.676221\pi\)
\(564\) 1.67239 + 0.839431i 0.0704204 + 0.0353464i
\(565\) 3.52684 + 20.0017i 0.148375 + 0.841479i
\(566\) 22.7165 0.954846
\(567\) −18.6978 14.7442i −0.785235 0.619197i
\(568\) 5.17712 0.217227
\(569\) −1.76688 10.0204i −0.0740713 0.420079i −0.999184 0.0403868i \(-0.987141\pi\)
0.925113 0.379692i \(-0.123970\pi\)
\(570\) −3.70401 1.85917i −0.155144 0.0778721i
\(571\) −11.6130 + 4.22679i −0.485989 + 0.176886i −0.573382 0.819288i \(-0.694369\pi\)
0.0873926 + 0.996174i \(0.472147\pi\)
\(572\) 21.6899 7.89449i 0.906901 0.330085i
\(573\) 10.2918 34.4056i 0.429947 1.43731i
\(574\) −6.29132 + 0.924193i −0.262594 + 0.0385751i
\(575\) 13.4197 + 23.2436i 0.559639 + 0.969323i
\(576\) −9.10682 + 1.06864i −0.379451 + 0.0445265i
\(577\) −14.3195 24.8021i −0.596129 1.03253i −0.993386 0.114819i \(-0.963371\pi\)
0.397257 0.917707i \(-0.369962\pi\)
\(578\) −11.9388 4.34536i −0.496588 0.180743i
\(579\) 25.7224 + 3.00059i 1.06899 + 0.124700i
\(580\) −3.49160 + 1.27084i −0.144981 + 0.0527687i
\(581\) −6.67171 + 7.50317i −0.276789 + 0.311284i
\(582\) −7.57816 0.884011i −0.314125 0.0366435i
\(583\) 32.7790 27.5048i 1.35757 1.13913i
\(584\) 6.85572 + 11.8745i 0.283692 + 0.491369i
\(585\) −13.5461 3.20398i −0.560063 0.132468i
\(586\) −5.44760 + 9.43552i −0.225038 + 0.389778i
\(587\) −23.3555 + 19.5976i −0.963983 + 0.808878i −0.981596 0.190967i \(-0.938838\pi\)
0.0176135 + 0.999845i \(0.494393\pi\)
\(588\) −10.9002 12.9627i −0.449519 0.534572i
\(589\) 3.54332 20.0952i 0.146000 0.828006i
\(590\) 1.56036 8.84925i 0.0642390 0.364318i
\(591\) −2.12171 36.2861i −0.0872754 1.49261i
\(592\) −1.59196 + 1.33581i −0.0654291 + 0.0549016i
\(593\) −13.4231 23.2494i −0.551219 0.954739i −0.998187 0.0601889i \(-0.980830\pi\)
0.446968 0.894550i \(-0.352504\pi\)
\(594\) −16.9028 + 0.0115381i −0.693531 + 0.000473412i
\(595\) −2.19105 + 1.18257i −0.0898241 + 0.0484805i
\(596\) −4.78179 1.74043i −0.195870 0.0712908i
\(597\) −1.82864 31.2739i −0.0748412 1.27996i
\(598\) 21.3642 7.77594i 0.873648 0.317982i
\(599\) 28.5034 + 23.9172i 1.16462 + 0.977229i 0.999958 0.00912179i \(-0.00290360\pi\)
0.164658 + 0.986351i \(0.447348\pi\)
\(600\) 11.3424 + 12.0168i 0.463053 + 0.490584i
\(601\) 4.04013 3.39007i 0.164801 0.138284i −0.556658 0.830742i \(-0.687917\pi\)
0.721458 + 0.692458i \(0.243472\pi\)
\(602\) −0.606418 + 21.1411i −0.0247157 + 0.861648i
\(603\) 27.8530 14.0042i 1.13426 0.570293i
\(604\) −2.29138 −0.0932348
\(605\) 7.23473 + 2.63323i 0.294134 + 0.107056i
\(606\) −11.9153 1.38995i −0.484026 0.0564629i
\(607\) 0.496810 + 0.416873i 0.0201649 + 0.0169204i 0.652814 0.757518i \(-0.273588\pi\)
−0.632649 + 0.774438i \(0.718033\pi\)
\(608\) −14.4115 + 5.24535i −0.584463 + 0.212727i
\(609\) 9.62849 3.83229i 0.390166 0.155292i
\(610\) −1.18165 6.70150i −0.0478438 0.271336i
\(611\) −3.05088 −0.123426
\(612\) −0.193427 + 3.34726i −0.00781883 + 0.135305i
\(613\) −16.4059 −0.662630 −0.331315 0.943520i \(-0.607492\pi\)
−0.331315 + 0.943520i \(0.607492\pi\)
\(614\) 8.40166 + 3.05795i 0.339063 + 0.123409i
\(615\) −6.13474 + 1.45543i −0.247377 + 0.0586888i
\(616\) −28.6339 5.90010i −1.15369 0.237722i
\(617\) 31.7556 + 26.6461i 1.27843 + 1.07273i 0.993458 + 0.114195i \(0.0364288\pi\)
0.284972 + 0.958536i \(0.408016\pi\)
\(618\) −1.41190 24.1467i −0.0567949 0.971323i
\(619\) −5.62640 + 4.72111i −0.226144 + 0.189757i −0.748819 0.662775i \(-0.769379\pi\)
0.522675 + 0.852532i \(0.324934\pi\)
\(620\) 6.39954 11.0843i 0.257012 0.445157i
\(621\) 38.5626 0.0263233i 1.54746 0.00105632i
\(622\) 2.54019 0.101852
\(623\) 15.2999 + 19.3334i 0.612976 + 0.774578i
\(624\) −4.25302 + 2.79864i −0.170257 + 0.112035i
\(625\) 1.06992 6.06784i 0.0427970 0.242714i
\(626\) 3.58335 + 3.00679i 0.143219 + 0.120175i
\(627\) −18.4915 + 4.38701i −0.738479 + 0.175200i
\(628\) −2.78069 1.01209i −0.110962 0.0403868i
\(629\) −1.11567 1.93239i −0.0444845 0.0770494i
\(630\) 5.13117 + 5.12228i 0.204431 + 0.204076i
\(631\) 2.24120 3.88187i 0.0892206 0.154535i −0.817961 0.575273i \(-0.804896\pi\)
0.907182 + 0.420739i \(0.138229\pi\)
\(632\) −12.3242 + 10.3412i −0.490229 + 0.411351i
\(633\) 22.6525 30.4420i 0.900355 1.20996i
\(634\) 0.274514 1.55685i 0.0109023 0.0618303i
\(635\) −0.990090 0.830784i −0.0392905 0.0329687i
\(636\) −14.7551 + 19.8289i −0.585077 + 0.786268i
\(637\) 25.3641 + 10.9162i 1.00496 + 0.432516i
\(638\) 3.67814 6.37072i 0.145619 0.252219i
\(639\) −5.84740 + 0.686161i −0.231320 + 0.0271441i
\(640\) −10.9810 −0.434062
\(641\) −4.97247 28.2003i −0.196401 1.11384i −0.910410 0.413707i \(-0.864234\pi\)
0.714009 0.700136i \(-0.246877\pi\)
\(642\) 23.4562 5.56486i 0.925743 0.219628i
\(643\) −5.87650 + 33.3273i −0.231747 + 1.31430i 0.617611 + 0.786483i \(0.288100\pi\)
−0.849358 + 0.527817i \(0.823011\pi\)
\(644\) 26.8640 + 5.53542i 1.05859 + 0.218126i
\(645\) 1.22411 + 20.9351i 0.0481993 + 0.824318i
\(646\) −0.282623 1.60284i −0.0111197 0.0630628i
\(647\) −1.69981 + 2.94416i −0.0668266 + 0.115747i −0.897503 0.441009i \(-0.854621\pi\)
0.830676 + 0.556756i \(0.187954\pi\)
\(648\) 23.0971 5.49633i 0.907342 0.215916i
\(649\) −20.6027 35.6849i −0.808725 1.40075i
\(650\) −10.4109 3.78927i −0.408350 0.148627i
\(651\) −16.9217 + 31.4313i −0.663213 + 1.23189i
\(652\) −7.36806 6.18254i −0.288556 0.242127i
\(653\) 10.6574 3.87899i 0.417058 0.151797i −0.124964 0.992161i \(-0.539881\pi\)
0.542021 + 0.840365i \(0.317659\pi\)
\(654\) −7.11675 7.53987i −0.278287 0.294832i
\(655\) 2.33540 + 13.2447i 0.0912515 + 0.517513i
\(656\) −1.15304 + 1.99712i −0.0450186 + 0.0779746i
\(657\) −9.31714 12.5032i −0.363496 0.487797i
\(658\) 1.35284 + 0.833671i 0.0527390 + 0.0324999i
\(659\) 4.10806 + 23.2980i 0.160027 + 0.907560i 0.954045 + 0.299665i \(0.0968748\pi\)
−0.794017 + 0.607895i \(0.792014\pi\)
\(660\) −11.8404 1.38121i −0.460887 0.0537637i
\(661\) −4.74889 + 26.9323i −0.184710 + 1.04754i 0.741616 + 0.670824i \(0.234059\pi\)
−0.926327 + 0.376721i \(0.877052\pi\)
\(662\) −0.912769 + 5.17657i −0.0354758 + 0.201193i
\(663\) −2.16631 5.01893i −0.0841325 0.194919i
\(664\) −1.73839 9.85892i −0.0674628 0.382600i
\(665\) 6.93998 + 4.27669i 0.269121 + 0.165843i
\(666\) −4.45678 + 4.72822i −0.172697 + 0.183215i
\(667\) −8.39143 + 14.5344i −0.324917 + 0.562773i
\(668\) −3.13742 17.7932i −0.121390 0.688439i
\(669\) −33.4465 + 7.93500i −1.29312 + 0.306785i
\(670\) −8.91992 + 3.24659i −0.344607 + 0.125427i
\(671\) −23.9041 20.0579i −0.922809 0.774328i
\(672\) 26.8177 0.797494i 1.03452 0.0307640i
\(673\) 26.4493 + 9.62674i 1.01954 + 0.371084i 0.797091 0.603860i \(-0.206371\pi\)
0.222453 + 0.974943i \(0.428593\pi\)
\(674\) 0.919650 + 1.59288i 0.0354236 + 0.0613555i
\(675\) −14.4036 12.0693i −0.554396 0.464549i
\(676\) 1.78893 3.09852i 0.0688051 0.119174i
\(677\) −6.01340 34.1037i −0.231114 1.31071i −0.850646 0.525740i \(-0.823789\pi\)
0.619532 0.784972i \(-0.287322\pi\)
\(678\) 20.7581 + 10.4192i 0.797210 + 0.400147i
\(679\) 14.6982 + 3.02861i 0.564065 + 0.116227i
\(680\) 0.431086 2.44481i 0.0165314 0.0937542i
\(681\) 29.0145 + 30.7396i 1.11184 + 1.17794i
\(682\) 4.40016 + 24.9546i 0.168491 + 0.955560i
\(683\) −10.9649 −0.419560 −0.209780 0.977749i \(-0.567275\pi\)
−0.209780 + 0.977749i \(0.567275\pi\)
\(684\) 9.80766 4.93118i 0.375005 0.188549i
\(685\) 0.100474 0.174026i 0.00383890 0.00664918i
\(686\) −8.26415 11.7714i −0.315527 0.449435i
\(687\) 10.8826 + 25.2130i 0.415198 + 0.961935i
\(688\) 5.87567 + 4.93027i 0.224008 + 0.187965i
\(689\) 6.99763 39.6855i 0.266588 1.51190i
\(690\) −11.6626 1.36047i −0.443988 0.0517923i
\(691\) −18.2055 + 15.2762i −0.692571 + 0.581136i −0.919649 0.392741i \(-0.871527\pi\)
0.227079 + 0.973876i \(0.427083\pi\)
\(692\) −9.52425 + 16.4965i −0.362058 + 0.627102i
\(693\) 33.1231 + 2.86894i 1.25824 + 0.108982i
\(694\) 3.03636 + 5.25913i 0.115259 + 0.199634i
\(695\) 7.63539 + 2.77906i 0.289627 + 0.105416i
\(696\) −2.96123 + 9.89940i −0.112245 + 0.375236i
\(697\) −1.89677 1.59158i −0.0718453 0.0602853i
\(698\) 2.67323 15.1606i 0.101183 0.573839i
\(699\) 4.46836 + 2.24282i 0.169009 + 0.0848312i
\(700\) −8.29441 10.4811i −0.313499 0.396148i
\(701\) −23.7177 −0.895806 −0.447903 0.894082i \(-0.647829\pi\)
−0.447903 + 0.894082i \(0.647829\pi\)
\(702\) −12.1872 + 10.2404i −0.459976 + 0.386501i
\(703\) −3.65281 + 6.32685i −0.137768 + 0.238622i
\(704\) 9.80736 8.22936i 0.369629 0.310156i
\(705\) 1.40820 + 0.706822i 0.0530357 + 0.0266204i
\(706\) 16.0331 + 13.4534i 0.603415 + 0.506325i
\(707\) 23.1103 + 4.76195i 0.869152 + 0.179092i
\(708\) 16.3372 + 17.3086i 0.613991 + 0.650496i
\(709\) −19.0248 6.92446i −0.714491 0.260054i −0.0409060 0.999163i \(-0.513024\pi\)
−0.673585 + 0.739109i \(0.735247\pi\)
\(710\) 1.79265 0.0672771
\(711\) 12.5492 13.3135i 0.470631 0.499295i
\(712\) −24.5829 −0.921282
\(713\) −10.0387 56.9322i −0.375951 2.13213i
\(714\) −0.410857 + 2.81747i −0.0153760 + 0.105441i
\(715\) 18.2635 6.64736i 0.683015 0.248597i
\(716\) −4.59199 3.85314i −0.171611 0.143999i
\(717\) −13.8181 32.0140i −0.516048 1.19559i
\(718\) −13.0441 4.74765i −0.486800 0.177181i
\(719\) 39.7852 1.48374 0.741868 0.670546i \(-0.233940\pi\)
0.741868 + 0.670546i \(0.233940\pi\)
\(720\) 2.61145 0.306440i 0.0973231 0.0114203i
\(721\) −1.36414 + 47.5571i −0.0508032 + 1.77112i
\(722\) 7.22109 6.05921i 0.268741 0.225501i
\(723\) −35.6441 + 8.45636i −1.32562 + 0.314496i
\(724\) 18.5161 + 15.5368i 0.688144 + 0.577421i
\(725\) 7.68518 2.79718i 0.285420 0.103885i
\(726\) 7.35487 4.83977i 0.272965 0.179621i
\(727\) −47.5872 17.3203i −1.76491 0.642375i −0.764911 0.644135i \(-0.777217\pi\)
−0.999998 + 0.00176083i \(0.999440\pi\)
\(728\) −24.2289 + 13.0770i −0.897983 + 0.484666i
\(729\) −25.3591 + 9.26917i −0.939225 + 0.343303i
\(730\) 2.37389 + 4.11171i 0.0878618 + 0.152181i
\(731\) −6.30876 + 5.29367i −0.233338 + 0.195794i
\(732\) 16.1091 + 8.08570i 0.595409 + 0.298856i
\(733\) −0.335943 + 1.90523i −0.0124083 + 0.0703712i −0.990383 0.138352i \(-0.955820\pi\)
0.977975 + 0.208723i \(0.0669307\pi\)
\(734\) −0.729031 + 4.13454i −0.0269090 + 0.152609i
\(735\) −9.17828 10.9149i −0.338546 0.402602i
\(736\) −33.2846 + 27.9291i −1.22689 + 1.02948i
\(737\) −21.7643 + 37.6968i −0.801697 + 1.38858i
\(738\) −2.85282 + 6.62186i −0.105014 + 0.243754i
\(739\) −16.8742 29.2271i −0.620729 1.07513i −0.989350 0.145555i \(-0.953503\pi\)
0.368621 0.929580i \(-0.379830\pi\)
\(740\) −3.51035 + 2.94553i −0.129043 + 0.108280i
\(741\) −10.6846 + 14.3587i −0.392509 + 0.527482i
\(742\) −13.9472 + 15.6854i −0.512018 + 0.575828i
\(743\) 21.6301 7.87272i 0.793532 0.288822i 0.0867288 0.996232i \(-0.472359\pi\)
0.706804 + 0.707410i \(0.250136\pi\)
\(744\) −14.1049 32.6784i −0.517111 1.19805i
\(745\) −4.02639 1.46549i −0.147515 0.0536912i
\(746\) 1.71758 + 2.97494i 0.0628851 + 0.108920i
\(747\) 3.27014 + 10.9050i 0.119648 + 0.398992i
\(748\) −2.34070 4.05421i −0.0855844 0.148236i
\(749\) −46.9145 + 6.89173i −1.71422 + 0.251818i
\(750\) 9.35745 + 9.91380i 0.341686 + 0.362001i
\(751\) −15.6562 + 5.69839i −0.571303 + 0.207937i −0.611486 0.791255i \(-0.709428\pi\)
0.0401834 + 0.999192i \(0.487206\pi\)
\(752\) 0.541537 0.197103i 0.0197478 0.00718762i
\(753\) −0.604805 10.3436i −0.0220403 0.376940i
\(754\) −1.20301 6.82258i −0.0438109 0.248464i
\(755\) −1.92940 −0.0702179
\(756\) −18.9984 + 2.80411i −0.690966 + 0.101985i
\(757\) 3.53194 0.128370 0.0641852 0.997938i \(-0.479555\pi\)
0.0641852 + 0.997938i \(0.479555\pi\)
\(758\) 2.27339 + 12.8930i 0.0825731 + 0.468295i
\(759\) −44.9784 + 29.5974i −1.63261 + 1.07432i
\(760\) −7.63787 + 2.77996i −0.277055 + 0.100840i
\(761\) −23.0492 + 8.38921i −0.835532 + 0.304109i −0.724127 0.689666i \(-0.757757\pi\)
−0.111405 + 0.993775i \(0.535535\pi\)
\(762\) −1.43811 + 0.341185i −0.0520974 + 0.0123598i
\(763\) 12.6554 + 15.9919i 0.458158 + 0.578944i
\(764\) −14.4815 25.0827i −0.523923 0.907461i
\(765\) −0.162871 + 2.81848i −0.00588860 + 0.101902i
\(766\) 12.2985 + 21.3017i 0.444364 + 0.769661i
\(767\) −36.4652 13.2722i −1.31668 0.479233i