Properties

Label 189.2.u.a.4.1
Level $189$
Weight $2$
Character 189.4
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(4,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([2, 12]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.u (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 4.1
Character \(\chi\) \(=\) 189.4
Dual form 189.2.u.a.142.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.467294 - 2.65016i) q^{2} +(1.66541 + 0.475808i) q^{3} +(-4.92558 + 1.79277i) q^{4} +(2.75387 - 1.00233i) q^{5} +(0.482727 - 4.63595i) q^{6} +(-0.609446 - 2.57460i) q^{7} +(4.36176 + 7.55480i) q^{8} +(2.54721 + 1.58484i) q^{9} +O(q^{10})\) \(q+(-0.467294 - 2.65016i) q^{2} +(1.66541 + 0.475808i) q^{3} +(-4.92558 + 1.79277i) q^{4} +(2.75387 - 1.00233i) q^{5} +(0.482727 - 4.63595i) q^{6} +(-0.609446 - 2.57460i) q^{7} +(4.36176 + 7.55480i) q^{8} +(2.54721 + 1.58484i) q^{9} +(-3.94319 - 6.82980i) q^{10} +(-2.20625 - 0.803010i) q^{11} +(-9.05615 + 0.642067i) q^{12} +(-1.68408 + 0.612957i) q^{13} +(-6.53831 + 2.81822i) q^{14} +(5.06325 - 0.358977i) q^{15} +(9.95243 - 8.35108i) q^{16} +(-0.185180 - 0.320741i) q^{17} +(3.00976 - 7.49110i) q^{18} +(-0.496899 + 0.860655i) q^{19} +(-11.7675 + 9.87408i) q^{20} +(0.210035 - 4.57776i) q^{21} +(-1.09713 + 6.22215i) q^{22} +(-1.14680 + 6.50383i) q^{23} +(3.66952 + 14.6572i) q^{24} +(2.74891 - 2.30661i) q^{25} +(2.41139 + 4.17666i) q^{26} +(3.48809 + 3.85139i) q^{27} +(7.61753 + 11.5888i) q^{28} +(6.76911 + 2.46375i) q^{29} +(-3.31737 - 13.2507i) q^{30} +(-3.45754 + 1.25844i) q^{31} +(-13.4172 - 11.2583i) q^{32} +(-3.29225 - 2.38710i) q^{33} +(-0.763481 + 0.640637i) q^{34} +(-4.25893 - 6.47925i) q^{35} +(-15.3877 - 3.23968i) q^{36} -1.65927 q^{37} +(2.51307 + 0.914682i) q^{38} +(-3.09635 + 0.219526i) q^{39} +(19.5841 + 16.4330i) q^{40} +(8.90071 - 3.23959i) q^{41} +(-12.2299 + 1.58253i) q^{42} +(-1.36359 - 7.73328i) q^{43} +12.3067 q^{44} +(8.60321 + 1.81129i) q^{45} +17.7721 q^{46} +(-0.234461 - 0.0853368i) q^{47} +(20.5484 - 9.17257i) q^{48} +(-6.25715 + 3.13816i) q^{49} +(-7.39743 - 6.20718i) q^{50} +(-0.155790 - 0.622278i) q^{51} +(7.19621 - 6.03834i) q^{52} +(-4.11638 + 7.12978i) q^{53} +(8.57683 - 11.0437i) q^{54} -6.88060 q^{55} +(16.7923 - 15.8341i) q^{56} +(-1.23705 + 1.19692i) q^{57} +(3.36617 - 19.0905i) q^{58} +(3.89379 + 3.26728i) q^{59} +(-24.2959 + 10.8454i) q^{60} +(0.813935 + 0.296248i) q^{61} +(4.95075 + 8.57495i) q^{62} +(2.52793 - 7.52393i) q^{63} +(-10.5746 + 18.3158i) q^{64} +(-4.02336 + 3.37600i) q^{65} +(-4.78773 + 9.84044i) q^{66} +(0.371283 - 2.10565i) q^{67} +(1.48713 + 1.24785i) q^{68} +(-5.00447 + 10.2859i) q^{69} +(-15.1809 + 14.3145i) q^{70} +(0.743006 - 1.28692i) q^{71} +(-0.862762 + 26.1564i) q^{72} -9.96945 q^{73} +(0.775366 + 4.39732i) q^{74} +(5.67558 - 2.53351i) q^{75} +(0.904566 - 5.13005i) q^{76} +(-0.722839 + 6.16961i) q^{77} +(2.02869 + 8.10323i) q^{78} +(1.60454 + 9.09978i) q^{79} +(19.0372 - 32.9734i) q^{80} +(3.97660 + 8.07383i) q^{81} +(-12.7447 - 22.0744i) q^{82} +(-6.30367 - 2.29435i) q^{83} +(7.17230 + 22.9247i) q^{84} +(-0.831449 - 0.697669i) q^{85} +(-19.8572 + 7.22743i) q^{86} +(10.1011 + 7.32396i) q^{87} +(-3.55657 - 20.1703i) q^{88} +(6.39738 - 11.0806i) q^{89} +(0.779968 - 23.6463i) q^{90} +(2.60448 + 3.96228i) q^{91} +(-6.01118 - 34.0911i) q^{92} +(-6.35701 + 0.450702i) q^{93} +(-0.116594 + 0.661236i) q^{94} +(-0.505738 + 2.86819i) q^{95} +(-16.9883 - 25.1338i) q^{96} +(2.55575 + 14.4944i) q^{97} +(11.2406 + 15.1160i) q^{98} +(-4.34716 - 5.54198i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} - 15 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} - 15 q^{9} + 3 q^{10} - 15 q^{11} - 3 q^{12} - 12 q^{13} - 30 q^{14} + 9 q^{16} + 27 q^{17} - 3 q^{18} + 3 q^{19} - 18 q^{20} + 15 q^{21} - 12 q^{22} - 36 q^{23} - 72 q^{24} - 3 q^{25} + 30 q^{26} - 12 q^{27} - 12 q^{28} - 30 q^{29} - 3 q^{30} - 3 q^{31} - 75 q^{32} + 15 q^{33} - 18 q^{34} + 15 q^{35} - 60 q^{36} - 6 q^{37} + 69 q^{38} + 51 q^{39} + 51 q^{40} - 39 q^{42} - 12 q^{43} - 6 q^{44} - 21 q^{45} - 6 q^{46} - 21 q^{47} + 90 q^{48} - 42 q^{49} - 39 q^{50} + 33 q^{51} + 9 q^{52} + 9 q^{53} - 9 q^{54} - 24 q^{55} + 111 q^{56} - 18 q^{57} - 3 q^{58} + 27 q^{59} - 63 q^{60} - 21 q^{61} + 75 q^{62} + 63 q^{63} - 30 q^{64} - 90 q^{65} - 3 q^{66} - 3 q^{67} - 30 q^{68} - 6 q^{69} + 39 q^{70} - 18 q^{71} + 183 q^{72} - 42 q^{73} + 51 q^{74} - 45 q^{75} - 24 q^{76} + 15 q^{77} - 30 q^{78} + 15 q^{79} + 102 q^{80} - 87 q^{81} - 6 q^{82} - 42 q^{83} + 135 q^{84} - 63 q^{85} - 93 q^{86} + 75 q^{87} - 51 q^{88} + 75 q^{89} - 39 q^{90} - 21 q^{91} - 66 q^{92} + 81 q^{93} + 33 q^{94} + 15 q^{95} - 171 q^{96} - 12 q^{97} - 36 q^{98} + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.467294 2.65016i −0.330427 1.87394i −0.468413 0.883510i \(-0.655174\pi\)
0.137986 0.990434i \(-0.455937\pi\)
\(3\) 1.66541 + 0.475808i 0.961528 + 0.274708i
\(4\) −4.92558 + 1.79277i −2.46279 + 0.896383i
\(5\) 2.75387 1.00233i 1.23157 0.448254i 0.357433 0.933939i \(-0.383652\pi\)
0.874134 + 0.485685i \(0.161430\pi\)
\(6\) 0.482727 4.63595i 0.197072 1.89262i
\(7\) −0.609446 2.57460i −0.230349 0.973108i
\(8\) 4.36176 + 7.55480i 1.54212 + 2.67102i
\(9\) 2.54721 + 1.58484i 0.849071 + 0.528278i
\(10\) −3.94319 6.82980i −1.24695 2.15977i
\(11\) −2.20625 0.803010i −0.665210 0.242117i −0.0127258 0.999919i \(-0.504051\pi\)
−0.652484 + 0.757802i \(0.726273\pi\)
\(12\) −9.05615 + 0.642067i −2.61429 + 0.185349i
\(13\) −1.68408 + 0.612957i −0.467081 + 0.170004i −0.564830 0.825208i \(-0.691058\pi\)
0.0977486 + 0.995211i \(0.468836\pi\)
\(14\) −6.53831 + 2.81822i −1.74744 + 0.753202i
\(15\) 5.06325 0.358977i 1.30733 0.0926874i
\(16\) 9.95243 8.35108i 2.48811 2.08777i
\(17\) −0.185180 0.320741i −0.0449128 0.0777912i 0.842695 0.538391i \(-0.180968\pi\)
−0.887608 + 0.460600i \(0.847634\pi\)
\(18\) 3.00976 7.49110i 0.709408 1.76567i
\(19\) −0.496899 + 0.860655i −0.113997 + 0.197448i −0.917378 0.398017i \(-0.869699\pi\)
0.803382 + 0.595464i \(0.203032\pi\)
\(20\) −11.7675 + 9.87408i −2.63129 + 2.20791i
\(21\) 0.210035 4.57776i 0.0458334 0.998949i
\(22\) −1.09713 + 6.22215i −0.233910 + 1.32657i
\(23\) −1.14680 + 6.50383i −0.239124 + 1.35614i 0.594627 + 0.804002i \(0.297300\pi\)
−0.833751 + 0.552140i \(0.813811\pi\)
\(24\) 3.66952 + 14.6572i 0.749037 + 2.99190i
\(25\) 2.74891 2.30661i 0.549782 0.461322i
\(26\) 2.41139 + 4.17666i 0.472913 + 0.819110i
\(27\) 3.48809 + 3.85139i 0.671283 + 0.741201i
\(28\) 7.61753 + 11.5888i 1.43958 + 2.19008i
\(29\) 6.76911 + 2.46375i 1.25699 + 0.457507i 0.882758 0.469827i \(-0.155684\pi\)
0.374233 + 0.927335i \(0.377906\pi\)
\(30\) −3.31737 13.2507i −0.605666 2.41923i
\(31\) −3.45754 + 1.25844i −0.620992 + 0.226023i −0.633306 0.773902i \(-0.718302\pi\)
0.0123140 + 0.999924i \(0.496080\pi\)
\(32\) −13.4172 11.2583i −2.37184 1.99021i
\(33\) −3.29225 2.38710i −0.573106 0.415540i
\(34\) −0.763481 + 0.640637i −0.130936 + 0.109868i
\(35\) −4.25893 6.47925i −0.719890 1.09519i
\(36\) −15.3877 3.23968i −2.56462 0.539947i
\(37\) −1.65927 −0.272782 −0.136391 0.990655i \(-0.543550\pi\)
−0.136391 + 0.990655i \(0.543550\pi\)
\(38\) 2.51307 + 0.914682i 0.407674 + 0.148381i
\(39\) −3.09635 + 0.219526i −0.495813 + 0.0351524i
\(40\) 19.5841 + 16.4330i 3.09652 + 2.59829i
\(41\) 8.90071 3.23959i 1.39006 0.505939i 0.464845 0.885392i \(-0.346110\pi\)
0.925211 + 0.379453i \(0.123888\pi\)
\(42\) −12.2299 + 1.58253i −1.88712 + 0.244190i
\(43\) −1.36359 7.73328i −0.207945 1.17931i −0.892738 0.450577i \(-0.851218\pi\)
0.684793 0.728738i \(-0.259893\pi\)
\(44\) 12.3067 1.85530
\(45\) 8.60321 + 1.81129i 1.28249 + 0.270011i
\(46\) 17.7721 2.62035
\(47\) −0.234461 0.0853368i −0.0341996 0.0124477i 0.324864 0.945761i \(-0.394682\pi\)
−0.359063 + 0.933313i \(0.616904\pi\)
\(48\) 20.5484 9.17257i 2.96591 1.32395i
\(49\) −6.25715 + 3.13816i −0.893879 + 0.448309i
\(50\) −7.39743 6.20718i −1.04615 0.877828i
\(51\) −0.155790 0.622278i −0.0218150 0.0871363i
\(52\) 7.19621 6.03834i 0.997935 0.837367i
\(53\) −4.11638 + 7.12978i −0.565429 + 0.979351i 0.431581 + 0.902074i \(0.357956\pi\)
−0.997010 + 0.0772769i \(0.975377\pi\)
\(54\) 8.57683 11.0437i 1.16716 1.50286i
\(55\) −6.88060 −0.927781
\(56\) 16.7923 15.8341i 2.24397 2.11591i
\(57\) −1.23705 + 1.19692i −0.163851 + 0.158536i
\(58\) 3.36617 19.0905i 0.442000 2.50670i
\(59\) 3.89379 + 3.26728i 0.506928 + 0.425363i 0.860047 0.510215i \(-0.170434\pi\)
−0.353119 + 0.935579i \(0.614879\pi\)
\(60\) −24.2959 + 10.8454i −3.13659 + 1.40013i
\(61\) 0.813935 + 0.296248i 0.104214 + 0.0379307i 0.393601 0.919281i \(-0.371229\pi\)
−0.289387 + 0.957212i \(0.593451\pi\)
\(62\) 4.95075 + 8.57495i 0.628746 + 1.08902i
\(63\) 2.52793 7.52393i 0.318489 0.947926i
\(64\) −10.5746 + 18.3158i −1.32183 + 2.28947i
\(65\) −4.02336 + 3.37600i −0.499037 + 0.418742i
\(66\) −4.78773 + 9.84044i −0.589329 + 1.21127i
\(67\) 0.371283 2.10565i 0.0453595 0.257246i −0.953692 0.300784i \(-0.902752\pi\)
0.999052 + 0.0435375i \(0.0138628\pi\)
\(68\) 1.48713 + 1.24785i 0.180341 + 0.151324i
\(69\) −5.00447 + 10.2859i −0.602467 + 1.23828i
\(70\) −15.1809 + 14.3145i −1.81446 + 1.71091i
\(71\) 0.743006 1.28692i 0.0881786 0.152730i −0.818563 0.574417i \(-0.805229\pi\)
0.906741 + 0.421687i \(0.138562\pi\)
\(72\) −0.862762 + 26.1564i −0.101678 + 3.08256i
\(73\) −9.96945 −1.16684 −0.583418 0.812172i \(-0.698285\pi\)
−0.583418 + 0.812172i \(0.698285\pi\)
\(74\) 0.775366 + 4.39732i 0.0901345 + 0.511178i
\(75\) 5.67558 2.53351i 0.655360 0.292545i
\(76\) 0.904566 5.13005i 0.103761 0.588457i
\(77\) −0.722839 + 6.16961i −0.0823752 + 0.703092i
\(78\) 2.02869 + 8.10323i 0.229703 + 0.917510i
\(79\) 1.60454 + 9.09978i 0.180525 + 1.02381i 0.931572 + 0.363557i \(0.118438\pi\)
−0.751047 + 0.660248i \(0.770451\pi\)
\(80\) 19.0372 32.9734i 2.12842 3.68653i
\(81\) 3.97660 + 8.07383i 0.441844 + 0.897092i
\(82\) −12.7447 22.0744i −1.40741 2.43771i
\(83\) −6.30367 2.29435i −0.691918 0.251838i −0.0279619 0.999609i \(-0.508902\pi\)
−0.663956 + 0.747771i \(0.731124\pi\)
\(84\) 7.17230 + 22.9247i 0.782562 + 2.50129i
\(85\) −0.831449 0.697669i −0.0901833 0.0756728i
\(86\) −19.8572 + 7.22743i −2.14126 + 0.779354i
\(87\) 10.1011 + 7.32396i 1.08295 + 0.785211i
\(88\) −3.55657 20.1703i −0.379132 2.15016i
\(89\) 6.39738 11.0806i 0.678121 1.17454i −0.297425 0.954745i \(-0.596128\pi\)
0.975546 0.219795i \(-0.0705389\pi\)
\(90\) 0.779968 23.6463i 0.0822158 2.49254i
\(91\) 2.60448 + 3.96228i 0.273024 + 0.415360i
\(92\) −6.01118 34.0911i −0.626708 3.55424i
\(93\) −6.35701 + 0.450702i −0.659191 + 0.0467356i
\(94\) −0.116594 + 0.661236i −0.0120257 + 0.0682012i
\(95\) −0.505738 + 2.86819i −0.0518877 + 0.294270i
\(96\) −16.9883 25.1338i −1.73386 2.56521i
\(97\) 2.55575 + 14.4944i 0.259497 + 1.47168i 0.784261 + 0.620431i \(0.213042\pi\)
−0.524764 + 0.851248i \(0.675847\pi\)
\(98\) 11.2406 + 15.1160i 1.13547 + 1.52695i
\(99\) −4.34716 5.54198i −0.436906 0.556990i
\(100\) −9.40478 + 16.2896i −0.940478 + 1.62896i
\(101\) 1.48438 + 8.41831i 0.147701 + 0.837653i 0.965159 + 0.261665i \(0.0842716\pi\)
−0.817458 + 0.575988i \(0.804617\pi\)
\(102\) −1.57633 + 0.703656i −0.156080 + 0.0696723i
\(103\) −7.98496 + 2.90629i −0.786782 + 0.286365i −0.703998 0.710202i \(-0.748603\pi\)
−0.0827842 + 0.996567i \(0.526381\pi\)
\(104\) −11.9763 10.0493i −1.17438 0.985419i
\(105\) −4.01000 12.8171i −0.391336 1.25082i
\(106\) 20.8186 + 7.57735i 2.02208 + 0.735978i
\(107\) −7.94622 13.7633i −0.768190 1.33054i −0.938543 0.345161i \(-0.887824\pi\)
0.170353 0.985383i \(-0.445509\pi\)
\(108\) −24.0855 12.7170i −2.31763 1.22370i
\(109\) 2.43123 4.21101i 0.232869 0.403341i −0.725782 0.687925i \(-0.758522\pi\)
0.958651 + 0.284583i \(0.0918552\pi\)
\(110\) 3.21527 + 18.2347i 0.306564 + 1.73861i
\(111\) −2.76337 0.789493i −0.262287 0.0749353i
\(112\) −27.5662 20.5340i −2.60476 1.94028i
\(113\) 1.58605 8.99494i 0.149203 0.846173i −0.814693 0.579893i \(-0.803094\pi\)
0.963896 0.266280i \(-0.0857945\pi\)
\(114\) 3.75009 + 2.71906i 0.351228 + 0.254664i
\(115\) 3.36082 + 19.0602i 0.313398 + 1.77737i
\(116\) −37.7587 −3.50581
\(117\) −5.26116 1.10766i −0.486394 0.102404i
\(118\) 6.83925 11.8459i 0.629604 1.09051i
\(119\) −0.712924 + 0.672240i −0.0653536 + 0.0616241i
\(120\) 24.7967 + 36.6860i 2.26362 + 3.34896i
\(121\) −4.20377 3.52738i −0.382161 0.320671i
\(122\) 0.404757 2.29549i 0.0366450 0.207824i
\(123\) 16.3648 1.16024i 1.47556 0.104615i
\(124\) 14.7743 12.3971i 1.32677 1.11329i
\(125\) −2.06835 + 3.58249i −0.184999 + 0.320427i
\(126\) −21.1209 3.18352i −1.88160 0.283611i
\(127\) −6.07362 10.5198i −0.538947 0.933483i −0.998961 0.0455717i \(-0.985489\pi\)
0.460014 0.887911i \(-0.347844\pi\)
\(128\) 20.5640 + 7.48467i 1.81761 + 0.661558i
\(129\) 1.40862 13.5279i 0.124022 1.19107i
\(130\) 10.8270 + 9.08496i 0.949594 + 0.796804i
\(131\) −2.39787 + 13.5990i −0.209502 + 1.18815i 0.680693 + 0.732569i \(0.261679\pi\)
−0.890195 + 0.455579i \(0.849432\pi\)
\(132\) 20.4957 + 5.85562i 1.78392 + 0.509666i
\(133\) 2.51868 + 0.754795i 0.218397 + 0.0654490i
\(134\) −5.75381 −0.497053
\(135\) 13.4661 + 7.11002i 1.15898 + 0.611933i
\(136\) 1.61542 2.79800i 0.138521 0.239926i
\(137\) 8.80875 7.39142i 0.752582 0.631492i −0.183602 0.983001i \(-0.558776\pi\)
0.936184 + 0.351509i \(0.114331\pi\)
\(138\) 29.5978 + 8.45608i 2.51954 + 0.719830i
\(139\) −7.48876 6.28381i −0.635188 0.532986i 0.267348 0.963600i \(-0.413853\pi\)
−0.902536 + 0.430614i \(0.858297\pi\)
\(140\) 32.5935 + 24.2788i 2.75465 + 2.05194i
\(141\) −0.349871 0.253680i −0.0294644 0.0213637i
\(142\) −3.75775 1.36771i −0.315344 0.114776i
\(143\) 4.20772 0.351868
\(144\) 38.5860 5.49903i 3.21550 0.458252i
\(145\) 21.1107 1.75315
\(146\) 4.65866 + 26.4206i 0.385554 + 2.18658i
\(147\) −11.9139 + 2.24914i −0.982643 + 0.185506i
\(148\) 8.17286 2.97468i 0.671805 0.244517i
\(149\) −1.42758 1.19789i −0.116952 0.0981346i 0.582436 0.812877i \(-0.302100\pi\)
−0.699388 + 0.714742i \(0.746544\pi\)
\(150\) −9.36637 13.8573i −0.764761 1.13144i
\(151\) −15.4952 5.63979i −1.26098 0.458960i −0.376883 0.926261i \(-0.623004\pi\)
−0.884098 + 0.467301i \(0.845226\pi\)
\(152\) −8.66943 −0.703184
\(153\) 0.0366289 1.11048i 0.00296127 0.0897767i
\(154\) 16.6882 0.967386i 1.34477 0.0779542i
\(155\) −8.26023 + 6.93116i −0.663478 + 0.556724i
\(156\) 14.8578 6.63232i 1.18957 0.531011i
\(157\) −0.979587 0.821971i −0.0781796 0.0656005i 0.602860 0.797847i \(-0.294028\pi\)
−0.681040 + 0.732246i \(0.738472\pi\)
\(158\) 23.3661 8.50455i 1.85890 0.676586i
\(159\) −10.2479 + 9.91544i −0.812711 + 0.786346i
\(160\) −48.2336 17.5556i −3.81320 1.38789i
\(161\) 17.4437 1.01118i 1.37475 0.0796921i
\(162\) 19.5387 14.3115i 1.53510 1.12441i
\(163\) 0.824782 + 1.42856i 0.0646019 + 0.111894i 0.896517 0.443009i \(-0.146089\pi\)
−0.831915 + 0.554902i \(0.812756\pi\)
\(164\) −38.0333 + 31.9137i −2.96990 + 2.49205i
\(165\) −11.4591 3.27385i −0.892087 0.254869i
\(166\) −3.13472 + 17.7779i −0.243301 + 1.37983i
\(167\) 2.59321 14.7068i 0.200669 1.13805i −0.703443 0.710752i \(-0.748355\pi\)
0.904111 0.427297i \(-0.140534\pi\)
\(168\) 35.5002 18.3803i 2.73890 1.41807i
\(169\) −7.49815 + 6.29170i −0.576781 + 0.483977i
\(170\) −1.46040 + 2.52949i −0.112008 + 0.194003i
\(171\) −2.62970 + 1.40477i −0.201099 + 0.107425i
\(172\) 20.5804 + 35.6463i 1.56924 + 2.71801i
\(173\) −5.87313 + 4.92815i −0.446526 + 0.374680i −0.838145 0.545448i \(-0.816360\pi\)
0.391619 + 0.920128i \(0.371915\pi\)
\(174\) 14.6895 30.1919i 1.11361 2.28884i
\(175\) −7.61392 5.67160i −0.575558 0.428733i
\(176\) −28.6636 + 10.4327i −2.16060 + 0.786393i
\(177\) 4.93018 + 7.29407i 0.370575 + 0.548256i
\(178\) −32.3548 11.7762i −2.42509 0.882661i
\(179\) −11.4119 19.7659i −0.852963 1.47737i −0.878522 0.477701i \(-0.841470\pi\)
0.0255596 0.999673i \(-0.491863\pi\)
\(180\) −45.6230 + 6.50189i −3.40054 + 0.484622i
\(181\) −6.10213 10.5692i −0.453567 0.785602i 0.545037 0.838412i \(-0.316516\pi\)
−0.998605 + 0.0528100i \(0.983182\pi\)
\(182\) 9.28361 8.75383i 0.688147 0.648877i
\(183\) 1.21458 + 0.880653i 0.0897845 + 0.0650997i
\(184\) −54.1372 + 19.7043i −3.99104 + 1.45262i
\(185\) −4.56940 + 1.66313i −0.335949 + 0.122276i
\(186\) 4.16502 + 16.6365i 0.305394 + 1.21984i
\(187\) 0.150995 + 0.856338i 0.0110419 + 0.0626216i
\(188\) 1.30785 0.0953844
\(189\) 7.79000 11.3277i 0.566639 0.823966i
\(190\) 7.83747 0.568590
\(191\) −1.26078 7.15023i −0.0912267 0.517372i −0.995838 0.0911358i \(-0.970950\pi\)
0.904612 0.426236i \(-0.140161\pi\)
\(192\) −26.3259 + 25.4719i −1.89991 + 1.83827i
\(193\) 23.0279 8.38149i 1.65759 0.603313i 0.667607 0.744514i \(-0.267319\pi\)
0.989981 + 0.141202i \(0.0450966\pi\)
\(194\) 37.2180 13.5463i 2.67210 0.972564i
\(195\) −8.30690 + 3.70810i −0.594870 + 0.265542i
\(196\) 25.1941 26.6749i 1.79958 1.90535i
\(197\) 0.145635 + 0.252248i 0.0103761 + 0.0179719i 0.871167 0.490987i \(-0.163364\pi\)
−0.860791 + 0.508959i \(0.830030\pi\)
\(198\) −12.6557 + 14.1104i −0.899403 + 1.00278i
\(199\) −0.581824 1.00775i −0.0412444 0.0714374i 0.844666 0.535293i \(-0.179799\pi\)
−0.885911 + 0.463856i \(0.846466\pi\)
\(200\) 29.4161 + 10.7066i 2.08003 + 0.757070i
\(201\) 1.62023 3.33013i 0.114282 0.234889i
\(202\) 21.6162 7.86766i 1.52091 0.553566i
\(203\) 2.21778 18.9293i 0.155657 1.32857i
\(204\) 1.88296 + 2.78578i 0.131833 + 0.195044i
\(205\) 21.2642 17.8428i 1.48516 1.24620i
\(206\) 11.4334 + 19.8033i 0.796606 + 1.37976i
\(207\) −13.2286 + 14.7491i −0.919454 + 1.02514i
\(208\) −11.6419 + 20.1643i −0.807219 + 1.39814i
\(209\) 1.78740 1.49981i 0.123637 0.103744i
\(210\) −32.0934 + 16.6165i −2.21466 + 1.14665i
\(211\) 0.497448 2.82117i 0.0342458 0.194217i −0.962885 0.269911i \(-0.913006\pi\)
0.997131 + 0.0756932i \(0.0241170\pi\)
\(212\) 7.49355 42.4980i 0.514659 2.91878i
\(213\) 1.84974 1.78973i 0.126742 0.122631i
\(214\) −32.7616 + 27.4902i −2.23953 + 1.87919i
\(215\) −11.5064 19.9297i −0.784730 1.35919i
\(216\) −13.8823 + 43.1507i −0.944568 + 2.93603i
\(217\) 5.34716 + 8.13483i 0.362989 + 0.552228i
\(218\) −12.2959 4.47535i −0.832785 0.303109i
\(219\) −16.6033 4.74354i −1.12194 0.320539i
\(220\) 33.8910 12.3353i 2.28493 0.831646i
\(221\) 0.508459 + 0.426648i 0.0342027 + 0.0286995i
\(222\) −0.800973 + 7.69229i −0.0537578 + 0.516272i
\(223\) −1.16906 + 0.980960i −0.0782862 + 0.0656899i −0.681091 0.732199i \(-0.738494\pi\)
0.602805 + 0.797889i \(0.294050\pi\)
\(224\) −20.8087 + 41.4052i −1.39034 + 2.76650i
\(225\) 10.6577 1.51886i 0.710511 0.101257i
\(226\) −24.5791 −1.63498
\(227\) 16.2298 + 5.90717i 1.07721 + 0.392073i 0.818869 0.573980i \(-0.194601\pi\)
0.258342 + 0.966053i \(0.416824\pi\)
\(228\) 3.94740 8.11326i 0.261423 0.537314i
\(229\) −6.89707 5.78733i −0.455771 0.382438i 0.385801 0.922582i \(-0.373925\pi\)
−0.841572 + 0.540144i \(0.818370\pi\)
\(230\) 48.9419 17.8134i 3.22713 1.17458i
\(231\) −4.13938 + 9.93103i −0.272351 + 0.653414i
\(232\) 10.9121 + 61.8855i 0.716414 + 4.06298i
\(233\) 3.91280 0.256336 0.128168 0.991752i \(-0.459090\pi\)
0.128168 + 0.991752i \(0.459090\pi\)
\(234\) −0.476977 + 14.4605i −0.0311809 + 0.945312i
\(235\) −0.731210 −0.0476989
\(236\) −25.0366 9.11259i −1.62975 0.593179i
\(237\) −1.65753 + 15.9184i −0.107668 + 1.03401i
\(238\) 2.11469 + 1.57523i 0.137075 + 0.102107i
\(239\) 9.32029 + 7.82065i 0.602879 + 0.505876i 0.892370 0.451305i \(-0.149041\pi\)
−0.289490 + 0.957181i \(0.593486\pi\)
\(240\) 47.3938 45.8563i 3.05926 2.96001i
\(241\) 21.1617 17.7568i 1.36315 1.14381i 0.388149 0.921597i \(-0.373115\pi\)
0.974997 0.222218i \(-0.0713297\pi\)
\(242\) −7.38371 + 12.7890i −0.474643 + 0.822106i
\(243\) 2.78109 + 15.3384i 0.178407 + 0.983957i
\(244\) −4.54021 −0.290657
\(245\) −14.0859 + 14.9138i −0.899916 + 0.952807i
\(246\) −10.7220 42.8271i −0.683609 2.73056i
\(247\) 0.309276 1.75399i 0.0196788 0.111604i
\(248\) −24.5882 20.6320i −1.56135 1.31013i
\(249\) −9.40656 6.82038i −0.596117 0.432224i
\(250\) 10.4607 + 3.80737i 0.661591 + 0.240799i
\(251\) 3.00566 + 5.20596i 0.189716 + 0.328597i 0.945155 0.326621i \(-0.105910\pi\)
−0.755440 + 0.655218i \(0.772577\pi\)
\(252\) 1.03712 + 41.5917i 0.0653324 + 2.62003i
\(253\) 7.75277 13.4282i 0.487412 0.844223i
\(254\) −25.0410 + 21.0119i −1.57121 + 1.31840i
\(255\) −1.05275 1.55752i −0.0659259 0.0975356i
\(256\) 2.88108 16.3394i 0.180067 1.02121i
\(257\) −2.55476 2.14370i −0.159361 0.133720i 0.559620 0.828749i \(-0.310947\pi\)
−0.718982 + 0.695029i \(0.755391\pi\)
\(258\) −36.5094 + 2.58846i −2.27297 + 0.161150i
\(259\) 1.01123 + 4.27195i 0.0628350 + 0.265446i
\(260\) 13.7650 23.8417i 0.853671 1.47860i
\(261\) 13.3377 + 17.0036i 0.825584 + 1.05250i
\(262\) 37.1599 2.29575
\(263\) −2.14434 12.1611i −0.132225 0.749888i −0.976752 0.214374i \(-0.931229\pi\)
0.844526 0.535514i \(-0.179882\pi\)
\(264\) 3.67403 35.2842i 0.226121 2.17159i
\(265\) −4.18961 + 23.7604i −0.257366 + 1.45959i
\(266\) 0.823362 7.02760i 0.0504836 0.430890i
\(267\) 15.9265 15.4099i 0.974688 0.943068i
\(268\) 1.94615 + 11.0372i 0.118880 + 0.674204i
\(269\) −1.34615 + 2.33159i −0.0820760 + 0.142160i −0.904141 0.427233i \(-0.859488\pi\)
0.822066 + 0.569393i \(0.192822\pi\)
\(270\) 12.5501 39.0097i 0.763772 2.37406i
\(271\) 11.0044 + 19.0602i 0.668469 + 1.15782i 0.978332 + 0.207041i \(0.0663833\pi\)
−0.309864 + 0.950781i \(0.600283\pi\)
\(272\) −4.52153 1.64570i −0.274158 0.0997853i
\(273\) 2.45225 + 7.83808i 0.148417 + 0.474382i
\(274\) −23.7047 19.8906i −1.43205 1.20164i
\(275\) −7.91702 + 2.88156i −0.477414 + 0.173765i
\(276\) 6.20970 59.6359i 0.373780 3.58966i
\(277\) 1.69737 + 9.62627i 0.101985 + 0.578387i 0.992382 + 0.123201i \(0.0393160\pi\)
−0.890397 + 0.455186i \(0.849573\pi\)
\(278\) −13.1536 + 22.7828i −0.788903 + 1.36642i
\(279\) −10.8015 2.27411i −0.646669 0.136147i
\(280\) 30.3730 60.4363i 1.81513 3.61176i
\(281\) 1.22691 + 6.95814i 0.0731912 + 0.415088i 0.999285 + 0.0377956i \(0.0120336\pi\)
−0.926094 + 0.377292i \(0.876855\pi\)
\(282\) −0.508798 + 1.04576i −0.0302985 + 0.0622738i
\(283\) −1.58826 + 9.00744i −0.0944120 + 0.535437i 0.900514 + 0.434827i \(0.143190\pi\)
−0.994926 + 0.100610i \(0.967921\pi\)
\(284\) −1.35258 + 7.67088i −0.0802611 + 0.455183i
\(285\) −2.20697 + 4.53608i −0.130730 + 0.268694i
\(286\) −1.96624 11.1511i −0.116266 0.659380i
\(287\) −13.7652 20.9414i −0.812532 1.23613i
\(288\) −16.3338 49.9414i −0.962477 2.94282i
\(289\) 8.43142 14.6036i 0.495966 0.859038i
\(290\) −9.86491 55.9467i −0.579288 3.28530i
\(291\) −2.64015 + 25.3552i −0.154768 + 1.48635i
\(292\) 49.1053 17.8729i 2.87367 1.04593i
\(293\) −15.1908 12.7466i −0.887455 0.744663i 0.0802432 0.996775i \(-0.474430\pi\)
−0.967698 + 0.252112i \(0.918875\pi\)
\(294\) 11.5279 + 30.5227i 0.672320 + 1.78012i
\(295\) 13.9979 + 5.09480i 0.814987 + 0.296631i
\(296\) −7.23733 12.5354i −0.420662 0.728607i
\(297\) −4.60290 11.2981i −0.267087 0.655583i
\(298\) −2.50748 + 4.34309i −0.145255 + 0.251588i
\(299\) −2.05526 11.6559i −0.118858 0.674080i
\(300\) −23.4136 + 22.6540i −1.35178 + 1.30793i
\(301\) −19.0791 + 8.22371i −1.09970 + 0.474007i
\(302\) −7.70551 + 43.7001i −0.443403 + 2.51466i
\(303\) −1.53340 + 14.7263i −0.0880914 + 0.846002i
\(304\) 2.24204 + 12.7153i 0.128590 + 0.729270i
\(305\) 2.53841 0.145349
\(306\) −2.96005 + 0.421847i −0.169215 + 0.0241154i
\(307\) −12.8118 + 22.1907i −0.731210 + 1.26649i 0.225157 + 0.974323i \(0.427711\pi\)
−0.956366 + 0.292170i \(0.905623\pi\)
\(308\) −7.50026 31.6848i −0.427367 1.80541i
\(309\) −14.6811 + 1.04087i −0.835179 + 0.0592129i
\(310\) 22.2286 + 18.6520i 1.26250 + 1.05936i
\(311\) −5.62406 + 31.8956i −0.318911 + 1.80863i 0.230489 + 0.973075i \(0.425968\pi\)
−0.549400 + 0.835560i \(0.685144\pi\)
\(312\) −15.1640 22.4348i −0.858494 1.27012i
\(313\) −1.51083 + 1.26774i −0.0853971 + 0.0716567i −0.684487 0.729025i \(-0.739974\pi\)
0.599090 + 0.800682i \(0.295529\pi\)
\(314\) −1.72060 + 2.98016i −0.0970989 + 0.168180i
\(315\) −0.579849 23.2537i −0.0326708 1.31020i
\(316\) −24.2170 41.9452i −1.36232 2.35960i
\(317\) 2.19415 + 0.798604i 0.123236 + 0.0448541i 0.402902 0.915243i \(-0.368002\pi\)
−0.279666 + 0.960097i \(0.590224\pi\)
\(318\) 31.0663 + 22.5251i 1.74211 + 1.26314i
\(319\) −12.9559 10.8713i −0.725393 0.608677i
\(320\) −10.7627 + 61.0384i −0.601655 + 3.41215i
\(321\) −6.68509 26.7024i −0.373125 1.49038i
\(322\) −10.8311 45.7560i −0.603594 2.54988i
\(323\) 0.368063 0.0204796
\(324\) −34.0615 32.6392i −1.89231 1.81329i
\(325\) −3.21555 + 5.56949i −0.178366 + 0.308940i
\(326\) 3.40050 2.85336i 0.188336 0.158033i
\(327\) 6.05263 5.85628i 0.334711 0.323853i
\(328\) 63.2972 + 53.1127i 3.49501 + 2.93266i
\(329\) −0.0768170 + 0.655652i −0.00423506 + 0.0361472i
\(330\) −3.32145 + 31.8982i −0.182840 + 1.75594i
\(331\) 5.76896 + 2.09973i 0.317091 + 0.115412i 0.495662 0.868515i \(-0.334925\pi\)
−0.178571 + 0.983927i \(0.557148\pi\)
\(332\) 35.1625 1.92979
\(333\) −4.22651 2.62967i −0.231611 0.144105i
\(334\) −40.1872 −2.19895
\(335\) −1.08809 6.17084i −0.0594485 0.337149i
\(336\) −36.1389 47.3139i −1.97154 2.58118i
\(337\) −18.6292 + 6.78048i −1.01480 + 0.369356i −0.795273 0.606251i \(-0.792673\pi\)
−0.219524 + 0.975607i \(0.570450\pi\)
\(338\) 20.1778 + 16.9312i 1.09753 + 0.920936i
\(339\) 6.92129 14.2256i 0.375913 0.772631i
\(340\) 5.34613 + 1.94583i 0.289934 + 0.105528i
\(341\) 8.63873 0.467814
\(342\) 4.95170 + 6.31269i 0.267757 + 0.341351i
\(343\) 11.8929 + 14.1971i 0.642157 + 0.766573i
\(344\) 52.4757 44.0324i 2.82930 2.37407i
\(345\) −3.47181 + 33.3422i −0.186916 + 1.79508i
\(346\) 15.8048 + 13.2618i 0.849673 + 0.712961i
\(347\) 19.1981 6.98752i 1.03061 0.375110i 0.229294 0.973357i \(-0.426358\pi\)
0.801312 + 0.598247i \(0.204136\pi\)
\(348\) −62.8839 17.9659i −3.37093 0.963073i
\(349\) 33.7947 + 12.3003i 1.80899 + 0.658418i 0.997226 + 0.0744315i \(0.0237142\pi\)
0.811763 + 0.583987i \(0.198508\pi\)
\(350\) −11.4727 + 22.8284i −0.613241 + 1.22023i
\(351\) −8.23498 4.34802i −0.439550 0.232080i
\(352\) 20.5611 + 35.6128i 1.09591 + 1.89817i
\(353\) 2.22254 1.86493i 0.118294 0.0992602i −0.581722 0.813388i \(-0.697621\pi\)
0.700016 + 0.714128i \(0.253176\pi\)
\(354\) 17.0266 16.4742i 0.904952 0.875595i
\(355\) 0.756223 4.28875i 0.0401361 0.227623i
\(356\) −11.6459 + 66.0474i −0.617233 + 3.50050i
\(357\) −1.50717 + 0.780343i −0.0797680 + 0.0413001i
\(358\) −47.0501 + 39.4797i −2.48668 + 2.08657i
\(359\) 5.64377 9.77530i 0.297867 0.515921i −0.677781 0.735264i \(-0.737058\pi\)
0.975648 + 0.219343i \(0.0703915\pi\)
\(360\) 23.8413 + 72.8960i 1.25655 + 3.84195i
\(361\) 9.00618 + 15.5992i 0.474010 + 0.821009i
\(362\) −25.1585 + 21.1105i −1.32230 + 1.10954i
\(363\) −5.32266 7.87474i −0.279367 0.413316i
\(364\) −19.9320 14.8473i −1.04472 0.778212i
\(365\) −27.4545 + 9.99264i −1.43704 + 0.523039i
\(366\) 1.76630 3.63036i 0.0923260 0.189762i
\(367\) −23.9923 8.73249i −1.25239 0.455832i −0.371181 0.928561i \(-0.621047\pi\)
−0.881208 + 0.472729i \(0.843269\pi\)
\(368\) 42.9005 + 74.3059i 2.23634 + 3.87346i
\(369\) 27.8062 + 5.85422i 1.44753 + 0.304758i
\(370\) 6.54280 + 11.3325i 0.340144 + 0.589147i
\(371\) 20.8651 + 6.25283i 1.08326 + 0.324631i
\(372\) 30.5040 13.6166i 1.58156 0.705987i
\(373\) 25.7924 9.38767i 1.33548 0.486075i 0.427094 0.904207i \(-0.359537\pi\)
0.908386 + 0.418132i \(0.137315\pi\)
\(374\) 2.19887 0.800323i 0.113701 0.0413837i
\(375\) −5.14923 + 4.98219i −0.265905 + 0.257279i
\(376\) −0.377961 2.14352i −0.0194919 0.110544i
\(377\) −12.9099 −0.664895
\(378\) −33.6603 15.3514i −1.73130 0.789589i
\(379\) 12.8185 0.658443 0.329221 0.944253i \(-0.393214\pi\)
0.329221 + 0.944253i \(0.393214\pi\)
\(380\) −2.65093 15.0342i −0.135990 0.771236i
\(381\) −5.10969 20.4097i −0.261777 1.04562i
\(382\) −18.3601 + 6.68252i −0.939383 + 0.341907i
\(383\) −17.8169 + 6.48482i −0.910401 + 0.331359i −0.754413 0.656400i \(-0.772078\pi\)
−0.155988 + 0.987759i \(0.549856\pi\)
\(384\) 30.6863 + 22.2496i 1.56595 + 1.13542i
\(385\) 4.19336 + 17.7148i 0.213713 + 0.902831i
\(386\) −32.9731 57.1110i −1.67829 2.90688i
\(387\) 8.78263 21.8594i 0.446446 1.11117i
\(388\) −38.5735 66.8113i −1.95827 3.39183i
\(389\) 18.5894 + 6.76599i 0.942520 + 0.343049i 0.767161 0.641455i \(-0.221669\pi\)
0.175360 + 0.984504i \(0.443891\pi\)
\(390\) 13.7088 + 20.2818i 0.694172 + 1.02701i
\(391\) 2.29841 0.836553i 0.116236 0.0423063i
\(392\) −51.0004 33.5836i −2.57591 1.69623i
\(393\) −10.4639 + 21.5070i −0.527836 + 1.08488i
\(394\) 0.600442 0.503830i 0.0302498 0.0253826i
\(395\) 13.5396 + 23.4513i 0.681253 + 1.17996i
\(396\) 31.3477 + 19.5041i 1.57528 + 0.980116i
\(397\) 3.21569 5.56973i 0.161391 0.279537i −0.773977 0.633214i \(-0.781735\pi\)
0.935368 + 0.353677i \(0.115069\pi\)
\(398\) −2.39881 + 2.01284i −0.120241 + 0.100895i
\(399\) 3.83550 + 2.45545i 0.192015 + 0.122926i
\(400\) 8.09566 45.9128i 0.404783 2.29564i
\(401\) −2.94198 + 16.6848i −0.146916 + 0.833199i 0.818894 + 0.573945i \(0.194588\pi\)
−0.965809 + 0.259254i \(0.916523\pi\)
\(402\) −9.58248 2.73771i −0.477931 0.136544i
\(403\) 5.05141 4.23864i 0.251629 0.211142i
\(404\) −22.4035 38.8040i −1.11461 1.93057i
\(405\) 19.0436 + 18.2484i 0.946286 + 0.906771i
\(406\) −51.2019 + 2.96808i −2.54111 + 0.147303i
\(407\) 3.66076 + 1.33241i 0.181457 + 0.0660450i
\(408\) 4.02166 3.89119i 0.199102 0.192643i
\(409\) −20.2490 + 7.37004i −1.00125 + 0.364425i −0.790066 0.613022i \(-0.789954\pi\)
−0.211183 + 0.977447i \(0.567732\pi\)
\(410\) −57.2229 48.0157i −2.82604 2.37133i
\(411\) 18.1871 8.11851i 0.897105 0.400456i
\(412\) 34.1203 28.6303i 1.68099 1.41051i
\(413\) 6.03888 12.0162i 0.297154 0.591278i
\(414\) 45.2692 + 28.1658i 2.22486 + 1.38427i
\(415\) −19.6592 −0.965031
\(416\) 29.4965 + 10.7358i 1.44618 + 0.526368i
\(417\) −9.48200 14.0284i −0.464336 0.686972i
\(418\) −4.80996 4.03604i −0.235263 0.197409i
\(419\) 12.2407 4.45526i 0.597998 0.217654i −0.0252454 0.999681i \(-0.508037\pi\)
0.623244 + 0.782028i \(0.285814\pi\)
\(420\) 42.7296 + 55.9426i 2.08499 + 2.72972i
\(421\) −3.24633 18.4109i −0.158216 0.897290i −0.955786 0.294063i \(-0.904992\pi\)
0.797569 0.603227i \(-0.206119\pi\)
\(422\) −7.70900 −0.375268
\(423\) −0.461977 0.588953i −0.0224621 0.0286359i
\(424\) −71.8188 −3.48783
\(425\) −1.24887 0.454551i −0.0605791 0.0220490i
\(426\) −5.60745 4.06577i −0.271682 0.196987i
\(427\) 0.266671 2.27611i 0.0129051 0.110149i
\(428\) 63.8140 + 53.5463i 3.08457 + 2.58826i
\(429\) 7.00761 + 2.00207i 0.338330 + 0.0966608i
\(430\) −47.4399 + 39.8068i −2.28776 + 1.91965i
\(431\) 0.578897 1.00268i 0.0278845 0.0482974i −0.851746 0.523954i \(-0.824456\pi\)
0.879631 + 0.475657i \(0.157790\pi\)
\(432\) 66.8783 + 9.20139i 3.21768 + 0.442702i
\(433\) 16.9175 0.813004 0.406502 0.913650i \(-0.366748\pi\)
0.406502 + 0.913650i \(0.366748\pi\)
\(434\) 19.0599 17.9722i 0.914903 0.862692i
\(435\) 35.1581 + 10.0446i 1.68570 + 0.481604i
\(436\) −4.42586 + 25.1003i −0.211960 + 1.20209i
\(437\) −5.02771 4.21875i −0.240508 0.201810i
\(438\) −4.81252 + 46.2179i −0.229951 + 2.20838i
\(439\) −14.8184 5.39346i −0.707244 0.257416i −0.0367432 0.999325i \(-0.511698\pi\)
−0.670500 + 0.741909i \(0.733921\pi\)
\(440\) −30.0116 51.9816i −1.43075 2.47812i
\(441\) −20.9118 1.92298i −0.995799 0.0915705i
\(442\) 0.893084 1.54687i 0.0424797 0.0735770i
\(443\) 30.3711 25.4843i 1.44297 1.21080i 0.505458 0.862851i \(-0.331324\pi\)
0.937514 0.347946i \(-0.113121\pi\)
\(444\) 15.0266 1.06536i 0.713130 0.0505598i
\(445\) 6.51118 36.9268i 0.308660 1.75050i
\(446\) 3.14599 + 2.63980i 0.148967 + 0.124998i
\(447\) −1.80756 2.67423i −0.0854945 0.126487i
\(448\) 53.6005 + 16.0629i 2.53238 + 0.758903i
\(449\) −17.1715 + 29.7420i −0.810375 + 1.40361i 0.102226 + 0.994761i \(0.467403\pi\)
−0.912602 + 0.408850i \(0.865930\pi\)
\(450\) −9.00548 27.5347i −0.424522 1.29800i
\(451\) −22.2386 −1.04718
\(452\) 8.31359 + 47.1487i 0.391038 + 2.21769i
\(453\) −23.1225 16.7653i −1.08639 0.787704i
\(454\) 8.07083 45.7720i 0.378783 2.14819i
\(455\) 11.1439 + 8.30107i 0.522434 + 0.389160i
\(456\) −14.4382 4.12498i −0.676131 0.193170i
\(457\) −6.31205 35.7974i −0.295265 1.67453i −0.666122 0.745842i \(-0.732047\pi\)
0.370857 0.928690i \(-0.379064\pi\)
\(458\) −12.1144 + 20.9827i −0.566067 + 0.980457i
\(459\) 0.589376 1.83198i 0.0275097 0.0855093i
\(460\) −50.7244 87.8572i −2.36504 4.09636i
\(461\) 23.0683 + 8.39618i 1.07440 + 0.391049i 0.817820 0.575474i \(-0.195183\pi\)
0.256578 + 0.966523i \(0.417405\pi\)
\(462\) 28.2531 + 6.32929i 1.31445 + 0.294465i
\(463\) 7.47936 + 6.27593i 0.347595 + 0.291667i 0.799824 0.600235i \(-0.204926\pi\)
−0.452228 + 0.891902i \(0.649371\pi\)
\(464\) 87.9440 32.0090i 4.08270 1.48598i
\(465\) −17.0546 + 7.61297i −0.790889 + 0.353043i
\(466\) −1.82843 10.3695i −0.0847004 0.480360i
\(467\) −13.6607 + 23.6610i −0.632140 + 1.09490i 0.354973 + 0.934876i \(0.384490\pi\)
−0.987113 + 0.160022i \(0.948843\pi\)
\(468\) 27.9000 3.97613i 1.28968 0.183797i
\(469\) −5.64750 + 0.327375i −0.260777 + 0.0151168i
\(470\) 0.341690 + 1.93782i 0.0157610 + 0.0893850i
\(471\) −1.24032 1.83502i −0.0571509 0.0845532i
\(472\) −7.69983 + 43.6679i −0.354413 + 2.00998i
\(473\) −3.20149 + 18.1565i −0.147205 + 0.834838i
\(474\) 42.9607 3.04585i 1.97325 0.139900i
\(475\) 0.619263 + 3.51202i 0.0284138 + 0.161142i
\(476\) 2.30640 4.58928i 0.105714 0.210349i
\(477\) −21.7848 + 11.6373i −0.997459 + 0.532835i
\(478\) 16.3706 28.3548i 0.748775 1.29692i
\(479\) 1.47080 + 8.34133i 0.0672027 + 0.381125i 0.999796 + 0.0201965i \(0.00642917\pi\)
−0.932593 + 0.360929i \(0.882460\pi\)
\(480\) −71.9759 52.1873i −3.28524 2.38201i
\(481\) 2.79435 1.01706i 0.127411 0.0463739i
\(482\) −56.9470 47.7842i −2.59386 2.17651i
\(483\) 29.5321 + 6.61581i 1.34376 + 0.301030i
\(484\) 27.0298 + 9.83803i 1.22863 + 0.447183i
\(485\) 21.5663 + 37.3539i 0.979273 + 1.69615i
\(486\) 39.3495 14.5379i 1.78493 0.659450i
\(487\) 0.130959 0.226827i 0.00593430 0.0102785i −0.863043 0.505130i \(-0.831444\pi\)
0.868977 + 0.494852i \(0.164778\pi\)
\(488\) 1.31210 + 7.44128i 0.0593959 + 0.336851i
\(489\) 0.693882 + 2.77159i 0.0313784 + 0.125336i
\(490\) 46.1062 + 30.3607i 2.08286 + 1.37156i
\(491\) 0.966808 5.48304i 0.0436314 0.247446i −0.955189 0.295995i \(-0.904349\pi\)
0.998821 + 0.0485493i \(0.0154598\pi\)
\(492\) −78.5261 + 35.0531i −3.54023 + 1.58031i
\(493\) −0.463276 2.62737i −0.0208649 0.118331i
\(494\) −4.79288 −0.215642
\(495\) −17.5264 10.9046i −0.787752 0.490126i
\(496\) −23.9015 + 41.3987i −1.07321 + 1.85886i
\(497\) −3.76614 1.12863i −0.168934 0.0506261i
\(498\) −13.6795 + 28.1160i −0.612991 + 1.25991i
\(499\) 25.5742 + 21.4593i 1.14486 + 0.960649i 0.999587 0.0287425i \(-0.00915027\pi\)
0.145271 + 0.989392i \(0.453595\pi\)
\(500\) 3.76527 21.3539i 0.168388 0.954975i
\(501\) 11.3164 23.2591i 0.505580 1.03914i
\(502\) 12.3921 10.3982i 0.553086 0.464094i
\(503\) 0.241460 0.418221i 0.0107662 0.0186475i −0.860592 0.509295i \(-0.829906\pi\)
0.871358 + 0.490647i \(0.163240\pi\)
\(504\) 67.8680 13.7196i 3.02308 0.611121i
\(505\) 12.5257 + 21.6951i 0.557385 + 0.965419i
\(506\) −39.2096 14.2711i −1.74308 0.634429i
\(507\) −15.4812 + 6.91061i −0.687543 + 0.306911i
\(508\) 48.7757 + 40.9277i 2.16407 + 1.81587i
\(509\) −4.08937 + 23.1920i −0.181258 + 1.02797i 0.749412 + 0.662104i \(0.230336\pi\)
−0.930670 + 0.365861i \(0.880775\pi\)
\(510\) −3.63572 + 3.51778i −0.160992 + 0.155770i
\(511\) 6.07584 + 25.6674i 0.268779 + 1.13546i
\(512\) −0.880867 −0.0389292
\(513\) −5.04795 + 1.08829i −0.222872 + 0.0480491i
\(514\) −4.48731 + 7.77225i −0.197927 + 0.342819i
\(515\) −19.0765 + 16.0071i −0.840611 + 0.705356i
\(516\) 17.3141 + 69.1582i 0.762212 + 3.04452i
\(517\) 0.448753 + 0.376549i 0.0197362 + 0.0165606i
\(518\) 10.8488 4.67619i 0.476669 0.205460i
\(519\) −12.1261 + 5.41292i −0.532275 + 0.237601i
\(520\) −43.0540 15.6704i −1.88804 0.687191i
\(521\) −12.4066 −0.543544 −0.271772 0.962362i \(-0.587610\pi\)
−0.271772 + 0.962362i \(0.587610\pi\)
\(522\) 38.8296 43.2927i 1.69953 1.89487i
\(523\) 16.0858 0.703383 0.351692 0.936116i \(-0.385607\pi\)
0.351692 + 0.936116i \(0.385607\pi\)
\(524\) −12.5689 71.2817i −0.549074 3.11395i
\(525\) −9.98174 13.0683i −0.435639 0.570349i
\(526\) −31.2269 + 11.3657i −1.36156 + 0.495566i
\(527\) 1.04390 + 0.875937i 0.0454730 + 0.0381564i
\(528\) −52.7007 + 3.73640i −2.29350 + 0.162606i
\(529\) −19.3717 7.05071i −0.842247 0.306553i
\(530\) 64.9267 2.82023
\(531\) 4.74022 + 14.4935i 0.205708 + 0.628963i
\(532\) −13.7591 + 0.797592i −0.596534 + 0.0345800i
\(533\) −13.0038 + 10.9115i −0.563258 + 0.472629i
\(534\) −48.2809 35.0069i −2.08932 1.51489i
\(535\) −35.6781 29.9375i −1.54250 1.29431i
\(536\) 17.5272 6.37939i 0.757061 0.275548i
\(537\) −9.60070 38.3483i −0.414301 1.65485i
\(538\) 6.80814 + 2.47796i 0.293520 + 0.106832i
\(539\) 16.3248 1.89902i 0.703160 0.0817967i
\(540\) −79.0750 10.8795i −3.40284 0.468177i
\(541\) −13.1928 22.8506i −0.567204 0.982425i −0.996841 0.0794239i \(-0.974692\pi\)
0.429637 0.903002i \(-0.358641\pi\)
\(542\) 45.3701 38.0700i 1.94881 1.63525i
\(543\) −5.13367 20.5055i −0.220307 0.879977i
\(544\) −1.12642 + 6.38826i −0.0482950 + 0.273894i
\(545\) 2.47447 14.0334i 0.105995 0.601127i
\(546\) 19.6262 10.1615i 0.839924 0.434874i
\(547\) 28.9358 24.2800i 1.23721 1.03814i 0.239469 0.970904i \(-0.423027\pi\)
0.997737 0.0672347i \(-0.0214176\pi\)
\(548\) −30.1371 + 52.1991i −1.28740 + 2.22983i
\(549\) 1.60376 + 2.04456i 0.0684469 + 0.0872597i
\(550\) 11.3362 + 19.6348i 0.483376 + 0.837231i
\(551\) −5.48400 + 4.60163i −0.233626 + 0.196036i
\(552\) −99.5363 + 7.05697i −4.23655 + 0.300365i
\(553\) 22.4504 9.67687i 0.954690 0.411502i
\(554\) 24.7180 8.99660i 1.05017 0.382229i
\(555\) −8.40128 + 0.595638i −0.356615 + 0.0252834i
\(556\) 48.1519 + 17.5259i 2.04210 + 0.743262i
\(557\) −5.24806 9.08990i −0.222367 0.385151i 0.733159 0.680057i \(-0.238045\pi\)
−0.955526 + 0.294906i \(0.904712\pi\)
\(558\) −0.979264 + 29.6884i −0.0414556 + 1.25681i
\(559\) 7.03656 + 12.1877i 0.297615 + 0.515484i
\(560\) −96.4954 28.9177i −4.07768 1.22199i
\(561\) −0.155982 + 1.49800i −0.00658557 + 0.0632457i
\(562\) 17.8668 6.50299i 0.753667 0.274312i
\(563\) 4.98131 1.81305i 0.209937 0.0764108i −0.234911 0.972017i \(-0.575480\pi\)
0.444848 + 0.895606i \(0.353258\pi\)
\(564\) 2.17810 + 0.622283i 0.0917148 + 0.0262028i
\(565\) −4.64809 26.3606i −0.195547 1.10900i
\(566\) 24.6133 1.03457
\(567\) 18.3634 15.1587i 0.771189 0.636606i
\(568\) 12.9633 0.543927
\(569\) −1.65775 9.40156i −0.0694965 0.394134i −0.999637 0.0269311i \(-0.991427\pi\)
0.930141 0.367203i \(-0.119685\pi\)
\(570\) 13.0526 + 3.72913i 0.546715 + 0.156196i
\(571\) 26.6672 9.70606i 1.11599 0.406186i 0.282801 0.959179i \(-0.408737\pi\)
0.833186 + 0.552993i \(0.186514\pi\)
\(572\) −20.7255 + 7.54346i −0.866576 + 0.315408i
\(573\) 1.30242 12.5080i 0.0544092 0.522528i
\(574\) −49.0657 + 46.2656i −2.04796 + 1.93109i
\(575\) 11.8493 + 20.5237i 0.494152 + 0.855896i
\(576\) −55.9633 + 29.8952i −2.33180 + 1.24563i
\(577\) −14.9454 25.8862i −0.622186 1.07766i −0.989078 0.147394i \(-0.952912\pi\)
0.366892 0.930263i \(-0.380422\pi\)
\(578\) −42.6419 15.5204i −1.77367 0.645563i
\(579\) 42.3391 3.00177i 1.75955 0.124749i
\(580\) −103.983 + 37.8465i −4.31764 + 1.57149i
\(581\) −2.06529 + 17.6277i −0.0856825 + 0.731322i
\(582\) 68.4289 4.85150i 2.83647 0.201101i
\(583\) 14.8071 12.4246i 0.613246 0.514574i
\(584\) −43.4844 75.3171i −1.79940 3.11665i
\(585\) −15.5988 + 2.22303i −0.644930 + 0.0919111i
\(586\) −26.6819 + 46.2143i −1.10222 + 1.90910i
\(587\) 23.2180 19.4822i 0.958308 0.804116i −0.0223688 0.999750i \(-0.507121\pi\)
0.980677 + 0.195634i \(0.0626764\pi\)
\(588\) 54.6508 32.4372i 2.25376 1.33769i
\(589\) 0.634965 3.60106i 0.0261633 0.148379i
\(590\) 6.96091 39.4773i 0.286576 1.62525i
\(591\) 0.122522 + 0.489392i 0.00503987 + 0.0201309i
\(592\) −16.5137 + 13.8567i −0.678711 + 0.569506i
\(593\) −6.88951 11.9330i −0.282918 0.490029i 0.689184 0.724586i \(-0.257969\pi\)
−0.972102 + 0.234558i \(0.924636\pi\)
\(594\) −27.7909 + 17.4779i −1.14027 + 0.717129i
\(595\) −1.28950 + 2.56584i −0.0528642 + 0.105189i
\(596\) 9.17921 + 3.34096i 0.375995 + 0.136851i
\(597\) −0.489484 1.95516i −0.0200332 0.0800192i
\(598\) −29.9296 + 10.8935i −1.22391 + 0.445468i
\(599\) 5.52167 + 4.63323i 0.225609 + 0.189309i 0.748585 0.663039i \(-0.230734\pi\)
−0.522975 + 0.852348i \(0.675178\pi\)
\(600\) 43.8957 + 31.8273i 1.79204 + 1.29934i
\(601\) −34.2145 + 28.7093i −1.39564 + 1.17108i −0.432640 + 0.901567i \(0.642418\pi\)
−0.962997 + 0.269512i \(0.913138\pi\)
\(602\) 30.7097 + 46.7197i 1.25163 + 1.90415i
\(603\) 4.28285 4.77513i 0.174411 0.194458i
\(604\) 86.4337 3.51694
\(605\) −15.1122 5.50039i −0.614399 0.223623i
\(606\) 39.7435 2.81775i 1.61447 0.114463i
\(607\) −10.1602 8.52543i −0.412390 0.346037i 0.412869 0.910790i \(-0.364527\pi\)
−0.825259 + 0.564754i \(0.808971\pi\)
\(608\) 16.3565 5.95329i 0.663344 0.241438i
\(609\) 12.7002 30.4699i 0.514639 1.23470i
\(610\) −1.18618 6.72718i −0.0480271 0.272375i
\(611\) 0.447160 0.0180901
\(612\) 1.81041 + 5.53541i 0.0731813 + 0.223756i
\(613\) −19.4812 −0.786839 −0.393420 0.919359i \(-0.628708\pi\)
−0.393420 + 0.919359i \(0.628708\pi\)
\(614\) 64.7958 + 23.5838i 2.61495 + 0.951763i
\(615\) 43.9035 19.5980i 1.77036 0.790268i
\(616\) −49.7630 + 21.4495i −2.00501 + 0.864224i
\(617\) −26.8526 22.5320i −1.08105 0.907105i −0.0850385 0.996378i \(-0.527101\pi\)
−0.996007 + 0.0892726i \(0.971546\pi\)
\(618\) 9.61886 + 38.4209i 0.386927 + 1.54551i
\(619\) 33.0617 27.7420i 1.32886 1.11505i 0.344519 0.938779i \(-0.388042\pi\)
0.984342 0.176267i \(-0.0564024\pi\)
\(620\) 28.2605 48.9486i 1.13497 1.96582i
\(621\) −29.0489 + 18.2692i −1.16569 + 0.733116i
\(622\) 87.1565 3.49466
\(623\) −32.4270 9.71769i −1.29916 0.389331i
\(624\) −28.9829 + 28.0427i −1.16025 + 1.12261i
\(625\) −5.22078 + 29.6085i −0.208831 + 1.18434i
\(626\) 4.06570 + 3.41153i 0.162498 + 0.136352i
\(627\) 3.69038 1.64734i 0.147380 0.0657885i
\(628\) 6.29864 + 2.29252i 0.251343 + 0.0914814i
\(629\) 0.307263 + 0.532196i 0.0122514 + 0.0212200i
\(630\) −61.3551 + 12.4030i −2.44444 + 0.494148i
\(631\) −20.3466 + 35.2413i −0.809984 + 1.40293i 0.102890 + 0.994693i \(0.467191\pi\)
−0.912874 + 0.408241i \(0.866142\pi\)
\(632\) −61.7484 + 51.8131i −2.45622 + 2.06101i
\(633\) 2.17079 4.46173i 0.0862813 0.177338i
\(634\) 1.09111 6.18802i 0.0433337 0.245758i
\(635\) −27.2702 22.8825i −1.08219 0.908063i
\(636\) 32.7008 67.2114i 1.29667 2.66510i
\(637\) 8.61401 9.12029i 0.341300 0.361359i
\(638\) −22.7565 + 39.4154i −0.900937 + 1.56047i
\(639\) 3.93216 2.10053i 0.155554 0.0830956i
\(640\) 64.1325 2.53506
\(641\) 5.24855 + 29.7660i 0.207305 + 1.17569i 0.893771 + 0.448524i \(0.148050\pi\)
−0.686466 + 0.727162i \(0.740839\pi\)
\(642\) −67.6417 + 30.1944i −2.66960 + 1.19168i
\(643\) −2.81411 + 15.9596i −0.110978 + 0.629387i 0.877685 + 0.479237i \(0.159087\pi\)
−0.988663 + 0.150150i \(0.952024\pi\)
\(644\) −84.1075 + 36.2531i −3.31430 + 1.42857i
\(645\) −9.68024 38.6660i −0.381159 1.52247i
\(646\) −0.171994 0.975426i −0.00676701 0.0383776i
\(647\) 3.51357 6.08568i 0.138133 0.239253i −0.788657 0.614833i \(-0.789223\pi\)
0.926790 + 0.375581i \(0.122557\pi\)
\(648\) −43.6512 + 65.2585i −1.71478 + 2.56360i
\(649\) −5.96702 10.3352i −0.234226 0.405692i
\(650\) 16.2626 + 5.91911i 0.637873 + 0.232167i
\(651\) 5.03463 + 16.0921i 0.197323 + 0.630699i
\(652\) −6.62361 5.55787i −0.259401 0.217663i
\(653\) −14.4000 + 5.24117i −0.563515 + 0.205103i −0.608041 0.793905i \(-0.708044\pi\)
0.0445260 + 0.999008i \(0.485822\pi\)
\(654\) −18.3484 13.3038i −0.717480 0.520220i
\(655\) 7.02720 + 39.8532i 0.274575 + 1.55719i
\(656\) 61.5296 106.572i 2.40233 4.16095i
\(657\) −25.3943 15.7999i −0.990726 0.616414i
\(658\) 1.77348 0.102805i 0.0691373 0.00400777i
\(659\) −0.359040 2.03622i −0.0139862 0.0793198i 0.977016 0.213167i \(-0.0683779\pi\)
−0.991002 + 0.133847i \(0.957267\pi\)
\(660\) 62.3118 4.41781i 2.42548 0.171963i
\(661\) 0.870163 4.93494i 0.0338454 0.191947i −0.963197 0.268795i \(-0.913375\pi\)
0.997043 + 0.0768482i \(0.0244857\pi\)
\(662\) 2.86881 16.2698i 0.111500 0.632346i
\(663\) 0.643793 + 0.952475i 0.0250029 + 0.0369911i
\(664\) −10.1618 57.6304i −0.394354 2.23649i
\(665\) 7.69266 0.445930i 0.298308 0.0172924i
\(666\) −4.99400 + 12.4297i −0.193514 + 0.481643i
\(667\) −23.7866 + 41.1997i −0.921022 + 1.59526i
\(668\) 13.5928 + 77.0887i 0.525922 + 2.98265i
\(669\) −2.41372 + 1.07746i −0.0933199 + 0.0416568i
\(670\) −15.8452 + 5.76719i −0.612155 + 0.222806i
\(671\) −1.55786 1.30720i −0.0601403 0.0504637i
\(672\) −54.3560 + 59.0559i −2.09683 + 2.27813i
\(673\) −31.9524 11.6297i −1.23168 0.448293i −0.357504 0.933911i \(-0.616372\pi\)
−0.874171 + 0.485618i \(0.838595\pi\)
\(674\) 26.6746 + 46.2018i 1.02747 + 1.77963i
\(675\) 18.4721 + 2.54147i 0.710992 + 0.0978212i
\(676\) 25.6532 44.4327i 0.986663 1.70895i
\(677\) 5.99400 + 33.9936i 0.230368 + 1.30648i 0.852153 + 0.523293i \(0.175297\pi\)
−0.621785 + 0.783188i \(0.713592\pi\)
\(678\) −40.9345 11.6950i −1.57208 0.449142i
\(679\) 35.7596 15.4136i 1.37233 0.591518i
\(680\) 1.64416 9.32450i 0.0630507 0.357578i
\(681\) 24.2187 + 17.5602i 0.928063 + 0.672907i
\(682\) −4.03683 22.8940i −0.154578 0.876657i
\(683\) 40.3067 1.54229 0.771147 0.636657i \(-0.219683\pi\)
0.771147 + 0.636657i \(0.219683\pi\)
\(684\) 10.4344 11.6337i 0.398969 0.444827i
\(685\) 16.8495 29.1842i 0.643787 1.11507i
\(686\) 32.0671 38.1523i 1.22433 1.45666i
\(687\) −8.73283 12.9200i −0.333178 0.492928i
\(688\) −78.1522 65.5775i −2.97953 2.50012i
\(689\) 2.56209 14.5303i 0.0976078 0.553561i
\(690\) 89.9843 6.37975i 3.42564 0.242873i
\(691\) −0.421451 + 0.353639i −0.0160327 + 0.0134531i −0.650769 0.759276i \(-0.725553\pi\)
0.634736 + 0.772729i \(0.281109\pi\)
\(692\) 20.0936 34.8031i 0.763844 1.32302i
\(693\) −11.6190 + 14.5697i −0.441371 + 0.553459i
\(694\) −27.4892 47.6126i −1.04347 1.80735i
\(695\) −26.9215 9.79862i −1.02119 0.371683i
\(696\) −11.2725 + 108.257i −0.427282 + 4.10348i
\(697\) −2.68730 2.25492i −0.101789 0.0854110i
\(698\) 16.8056 95.3091i 0.636100 3.60750i
\(699\) 6.51644 + 1.86174i 0.246474 + 0.0704176i
\(700\) 47.6708 + 14.2860i 1.80179 + 0.539958i
\(701\) 27.6199 1.04319 0.521594 0.853194i \(-0.325338\pi\)
0.521594 + 0.853194i \(0.325338\pi\)
\(702\) −7.67478 + 23.8558i −0.289666 + 0.900378i
\(703\) 0.824489 1.42806i 0.0310962 0.0538602i
\(704\) 38.0380 31.9177i 1.43361 1.20294i
\(705\) −1.21777 0.347915i −0.0458638 0.0131033i
\(706\) −5.98093 5.01860i −0.225095 0.188877i
\(707\) 20.7692 8.95219i 0.781105 0.336682i
\(708\) −37.3605 27.0889i −1.40410 1.01806i
\(709\) −30.1781 10.9839i −1.13336 0.412511i −0.293852 0.955851i \(-0.594937\pi\)
−0.839513 + 0.543340i \(0.817159\pi\)
\(710\) −11.7192 −0.439816
\(711\) −10.3346 + 25.7220i −0.387576 + 0.964651i
\(712\) 111.615 4.18297
\(713\) −4.21957 23.9304i −0.158024 0.896200i
\(714\) 2.77232 + 3.62959i 0.103752 + 0.135834i
\(715\) 11.5875 4.21751i 0.433349 0.157726i
\(716\) 91.6457 + 76.8999i 3.42496 + 2.87388i
\(717\) 11.8010 + 17.4593i 0.440717 + 0.652029i
\(718\) −28.5434 10.3889i −1.06523 0.387712i
\(719\) −15.6211 −0.582570 −0.291285 0.956636i \(-0.594083\pi\)
−0.291285 + 0.956636i \(0.594083\pi\)
\(720\) 100.749 53.8194i 3.75470 2.00573i
\(721\) 12.3489 + 18.7869i 0.459899 + 0.699660i
\(722\) 37.1317 31.1572i 1.38190 1.15955i
\(723\) 43.6918 19.5035i 1.62492 0.725343i
\(724\) 49.0046 + 41.1197i 1.82124 + 1.52820i
\(725\) 24.2906 8.84105i 0.902130 0.328348i
\(726\) −18.3820 + 17.7857i −0.682221 + 0.660089i
\(727\) −11.7457 4.27508i −0.435623 0.158554i 0.114894 0.993378i \(-0.463347\pi\)
−0.550517 + 0.834824i \(0.685569\pi\)
\(728\) −18.5741 + 36.9589i −0.688403 + 1.36979i
\(729\) −2.66645 + 26.8680i −0.0987573 + 0.995112i
\(730\) 39.3114 + 68.0893i 1.45498 + 2.52010i
\(731\) −2.22787 + 1.86941i −0.0824009 + 0.0691426i
\(732\) −7.56133 2.16027i −0.279475 0.0798457i
\(733\) −6.38353 + 36.2028i −0.235781 + 1.33718i 0.605182 + 0.796087i \(0.293100\pi\)
−0.840963 + 0.541093i \(0.818011\pi\)
\(734\) −11.9310 + 67.6640i −0.440381 + 2.49753i
\(735\) −30.5550 + 18.1355i −1.12704 + 0.668937i
\(736\) 88.6091 74.3518i 3.26617 2.74064i
\(737\) −2.51001 + 4.34746i −0.0924572 + 0.160141i
\(738\) 2.52091 76.4265i 0.0927961 2.81330i
\(739\) −15.6210 27.0564i −0.574628 0.995286i −0.996082 0.0884356i \(-0.971813\pi\)
0.421454 0.906850i \(-0.361520\pi\)
\(740\) 19.5254 16.3837i 0.717767 0.602278i
\(741\) 1.34964 2.77397i 0.0495802 0.101904i
\(742\) 6.82085 58.2176i 0.250401 2.13724i
\(743\) −9.31561 + 3.39060i −0.341757 + 0.124389i −0.507196 0.861831i \(-0.669318\pi\)
0.165439 + 0.986220i \(0.447096\pi\)
\(744\) −31.1327 46.0600i −1.14138 1.68864i
\(745\) −5.13205 1.86791i −0.188024 0.0684351i
\(746\) −36.9314 63.9671i −1.35216 2.34200i
\(747\) −12.4206 15.8345i −0.454447 0.579353i
\(748\) −2.27895 3.94726i −0.0833268 0.144326i
\(749\) −30.5921 + 28.8463i −1.11781 + 1.05402i
\(750\) 15.6098 + 11.3181i 0.569989 + 0.413280i
\(751\) −9.33186 + 3.39652i −0.340524 + 0.123941i −0.506621 0.862169i \(-0.669106\pi\)
0.166097 + 0.986109i \(0.446884\pi\)
\(752\) −3.04611 + 1.10869i −0.111080 + 0.0404299i
\(753\) 2.52864 + 10.1002i 0.0921487 + 0.368072i
\(754\) 6.03273 + 34.2133i 0.219699 + 1.24598i
\(755\) −48.3247 −1.75871
\(756\) −18.0624 + 69.7610i −0.656925 + 2.53718i
\(757\) −27.0978 −0.984888 −0.492444 0.870344i \(-0.663896\pi\)
−0.492444 + 0.870344i \(0.663896\pi\)
\(758\) −5.99001 33.9711i −0.217567 1.23388i
\(759\) 19.3008 18.6747i 0.700575 0.677848i
\(760\) −23.8745 + 8.68960i −0.866018 + 0.315205i
\(761\) 37.5494 13.6669i 1.36117 0.495424i 0.444751 0.895654i \(-0.353292\pi\)
0.916415 + 0.400230i \(0.131070\pi\)
\(762\) −51.7013 + 23.0788i −1.87294 + 0.836058i
\(763\) −12.3234 3.69306i −0.446136 0.133698i
\(764\) 19.0287 + 32.9587i 0.688436 + 1.19241i
\(765\) −1.01219 3.09482i −0.0365958 0.111893i
\(766\) 25.5115 + 44.1873i 0.921769 + 1.59655i
\(767\) −8.56017 3.11565i −0.309090 0.112499i
\(768\) 12.5726 25.8410i 0.453675 <