Properties

Label 189.2.u.a.16.6
Level $189$
Weight $2$
Character 189.16
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(4,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([2, 12]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.u (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 16.6
Character \(\chi\) \(=\) 189.16
Dual form 189.2.u.a.130.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.65761 + 0.603319i) q^{2} +(-1.50730 + 0.853264i) q^{3} +(0.851575 - 0.714556i) q^{4} +(-3.19083 + 2.67742i) q^{5} +(1.98371 - 2.32376i) q^{6} +(0.729121 + 2.54330i) q^{7} +(0.783518 - 1.35709i) q^{8} +(1.54388 - 2.57224i) q^{9} +O(q^{10})\) \(q+(-1.65761 + 0.603319i) q^{2} +(-1.50730 + 0.853264i) q^{3} +(0.851575 - 0.714556i) q^{4} +(-3.19083 + 2.67742i) q^{5} +(1.98371 - 2.32376i) q^{6} +(0.729121 + 2.54330i) q^{7} +(0.783518 - 1.35709i) q^{8} +(1.54388 - 2.57224i) q^{9} +(3.67380 - 6.36320i) q^{10} +(-1.89226 - 1.58779i) q^{11} +(-0.673870 + 1.80366i) q^{12} +(0.108160 - 0.0907572i) q^{13} +(-2.74302 - 3.77590i) q^{14} +(2.52498 - 6.75829i) q^{15} +(-0.866076 + 4.91176i) q^{16} +(-0.351339 + 0.608536i) q^{17} +(-1.00727 + 5.19522i) q^{18} +(-3.23251 - 5.59887i) q^{19} +(-0.804060 + 4.56005i) q^{20} +(-3.26911 - 3.21138i) q^{21} +(4.09457 + 1.49030i) q^{22} +(5.24538 + 1.90916i) q^{23} +(-0.0230353 + 2.71409i) q^{24} +(2.14455 - 12.1624i) q^{25} +(-0.124532 + 0.215695i) q^{26} +(-0.132287 + 5.19447i) q^{27} +(2.43823 + 1.64481i) q^{28} +(0.100910 + 0.0846735i) q^{29} +(-0.108009 + 12.7259i) q^{30} +(-3.55162 + 2.98016i) q^{31} +(-0.983522 - 5.57783i) q^{32} +(4.20700 + 0.778680i) q^{33} +(0.215239 - 1.22068i) q^{34} +(-9.13599 - 6.16308i) q^{35} +(-0.523280 - 3.29365i) q^{36} +0.775890 q^{37} +(8.73613 + 7.33049i) q^{38} +(-0.0855897 + 0.229087i) q^{39} +(1.13344 + 6.42806i) q^{40} +(-2.52108 + 2.11544i) q^{41} +(7.35638 + 3.35088i) q^{42} +(-5.66175 + 2.06071i) q^{43} -2.74597 q^{44} +(1.96072 + 12.3412i) q^{45} -9.84662 q^{46} +(-4.55973 - 3.82607i) q^{47} +(-2.88560 - 8.14247i) q^{48} +(-5.93677 + 3.70875i) q^{49} +(3.78296 + 21.4542i) q^{50} +(0.0103293 - 1.21703i) q^{51} +(0.0272554 - 0.154573i) q^{52} +(1.85992 + 3.22148i) q^{53} +(-2.91464 - 8.69019i) q^{54} +10.2891 q^{55} +(4.02277 + 1.00324i) q^{56} +(9.64966 + 5.68097i) q^{57} +(-0.218354 - 0.0794744i) q^{58} +(-0.630281 - 3.57450i) q^{59} +(-2.67897 - 7.55942i) q^{60} +(-0.167139 - 0.140247i) q^{61} +(4.08919 - 7.08269i) q^{62} +(7.66766 + 2.05108i) q^{63} +(0.00796973 + 0.0138040i) q^{64} +(-0.102125 + 0.579182i) q^{65} +(-7.44335 + 1.24742i) q^{66} +(-14.4193 - 5.24819i) q^{67} +(0.135642 + 0.769265i) q^{68} +(-9.53537 + 1.59802i) q^{69} +(18.8622 + 4.70403i) q^{70} +(-7.04066 - 12.1948i) q^{71} +(-2.28111 - 4.11059i) q^{72} +12.7274 q^{73} +(-1.28612 + 0.468110i) q^{74} +(7.14522 + 20.1621i) q^{75} +(-6.75343 - 2.45805i) q^{76} +(2.65855 - 5.97028i) q^{77} +(0.00366121 - 0.431374i) q^{78} +(-5.42013 + 1.97277i) q^{79} +(-10.3874 - 17.9914i) q^{80} +(-4.23286 - 7.94248i) q^{81} +(2.90267 - 5.02758i) q^{82} +(-1.84338 - 1.54678i) q^{83} +(-5.07860 - 0.398766i) q^{84} +(-0.508248 - 2.88242i) q^{85} +(8.14168 - 6.83168i) q^{86} +(-0.224350 - 0.0415252i) q^{87} +(-3.63740 + 1.32391i) q^{88} +(-0.452090 - 0.783042i) q^{89} +(-10.6958 - 19.2739i) q^{90} +(0.309685 + 0.208911i) q^{91} +(5.83104 - 2.12233i) q^{92} +(2.81047 - 7.52245i) q^{93} +(9.86659 + 3.59114i) q^{94} +(25.3049 + 9.21024i) q^{95} +(6.24182 + 7.56824i) q^{96} +(-1.73081 + 0.629965i) q^{97} +(7.60326 - 9.72941i) q^{98} +(-7.00562 + 2.41598i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} - 15 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} - 15 q^{9} + 3 q^{10} - 15 q^{11} - 3 q^{12} - 12 q^{13} - 30 q^{14} + 9 q^{16} + 27 q^{17} - 3 q^{18} + 3 q^{19} - 18 q^{20} + 15 q^{21} - 12 q^{22} - 36 q^{23} - 72 q^{24} - 3 q^{25} + 30 q^{26} - 12 q^{27} - 12 q^{28} - 30 q^{29} - 3 q^{30} - 3 q^{31} - 75 q^{32} + 15 q^{33} - 18 q^{34} + 15 q^{35} - 60 q^{36} - 6 q^{37} + 69 q^{38} + 51 q^{39} + 51 q^{40} - 39 q^{42} - 12 q^{43} - 6 q^{44} - 21 q^{45} - 6 q^{46} - 21 q^{47} + 90 q^{48} - 42 q^{49} - 39 q^{50} + 33 q^{51} + 9 q^{52} + 9 q^{53} - 9 q^{54} - 24 q^{55} + 111 q^{56} - 18 q^{57} - 3 q^{58} + 27 q^{59} - 63 q^{60} - 21 q^{61} + 75 q^{62} + 63 q^{63} - 30 q^{64} - 90 q^{65} - 3 q^{66} - 3 q^{67} - 30 q^{68} - 6 q^{69} + 39 q^{70} - 18 q^{71} + 183 q^{72} - 42 q^{73} + 51 q^{74} - 45 q^{75} - 24 q^{76} + 15 q^{77} - 30 q^{78} + 15 q^{79} + 102 q^{80} - 87 q^{81} - 6 q^{82} - 42 q^{83} + 135 q^{84} - 63 q^{85} - 93 q^{86} + 75 q^{87} - 51 q^{88} + 75 q^{89} - 39 q^{90} - 21 q^{91} - 66 q^{92} + 81 q^{93} + 33 q^{94} + 15 q^{95} - 171 q^{96} - 12 q^{97} - 36 q^{98} + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.65761 + 0.603319i −1.17210 + 0.426611i −0.853407 0.521245i \(-0.825468\pi\)
−0.318698 + 0.947856i \(0.603245\pi\)
\(3\) −1.50730 + 0.853264i −0.870238 + 0.492632i
\(4\) 0.851575 0.714556i 0.425787 0.357278i
\(5\) −3.19083 + 2.67742i −1.42698 + 1.19738i −0.479512 + 0.877535i \(0.659186\pi\)
−0.947470 + 0.319845i \(0.896369\pi\)
\(6\) 1.98371 2.32376i 0.809847 0.948669i
\(7\) 0.729121 + 2.54330i 0.275582 + 0.961278i
\(8\) 0.783518 1.35709i 0.277015 0.479805i
\(9\) 1.54388 2.57224i 0.514627 0.857414i
\(10\) 3.67380 6.36320i 1.16176 2.01222i
\(11\) −1.89226 1.58779i −0.570538 0.478738i 0.311287 0.950316i \(-0.399240\pi\)
−0.881824 + 0.471578i \(0.843685\pi\)
\(12\) −0.673870 + 1.80366i −0.194530 + 0.520673i
\(13\) 0.108160 0.0907572i 0.0299983 0.0251715i −0.627665 0.778483i \(-0.715989\pi\)
0.657664 + 0.753312i \(0.271545\pi\)
\(14\) −2.74302 3.77590i −0.733102 1.00915i
\(15\) 2.52498 6.75829i 0.651946 1.74498i
\(16\) −0.866076 + 4.91176i −0.216519 + 1.22794i
\(17\) −0.351339 + 0.608536i −0.0852121 + 0.147592i −0.905482 0.424386i \(-0.860490\pi\)
0.820269 + 0.571977i \(0.193823\pi\)
\(18\) −1.00727 + 5.19522i −0.237415 + 1.22452i
\(19\) −3.23251 5.59887i −0.741588 1.28447i −0.951772 0.306807i \(-0.900739\pi\)
0.210183 0.977662i \(-0.432594\pi\)
\(20\) −0.804060 + 4.56005i −0.179793 + 1.01966i
\(21\) −3.26911 3.21138i −0.713378 0.700780i
\(22\) 4.09457 + 1.49030i 0.872965 + 0.317733i
\(23\) 5.24538 + 1.90916i 1.09374 + 0.398088i 0.825004 0.565126i \(-0.191173\pi\)
0.268734 + 0.963214i \(0.413395\pi\)
\(24\) −0.0230353 + 2.71409i −0.00470207 + 0.554011i
\(25\) 2.14455 12.1624i 0.428910 2.43247i
\(26\) −0.124532 + 0.215695i −0.0244226 + 0.0423012i
\(27\) −0.132287 + 5.19447i −0.0254586 + 0.999676i
\(28\) 2.43823 + 1.64481i 0.460783 + 0.310841i
\(29\) 0.100910 + 0.0846735i 0.0187385 + 0.0157235i 0.652109 0.758125i \(-0.273885\pi\)
−0.633370 + 0.773849i \(0.718329\pi\)
\(30\) −0.108009 + 12.7259i −0.0197197 + 2.32343i
\(31\) −3.55162 + 2.98016i −0.637889 + 0.535253i −0.903369 0.428864i \(-0.858914\pi\)
0.265480 + 0.964116i \(0.414470\pi\)
\(32\) −0.983522 5.57783i −0.173864 0.986030i
\(33\) 4.20700 + 0.778680i 0.732345 + 0.135551i
\(34\) 0.215239 1.22068i 0.0369132 0.209345i
\(35\) −9.13599 6.16308i −1.54426 1.04175i
\(36\) −0.523280 3.29365i −0.0872133 0.548941i
\(37\) 0.775890 0.127556 0.0637778 0.997964i \(-0.479685\pi\)
0.0637778 + 0.997964i \(0.479685\pi\)
\(38\) 8.73613 + 7.33049i 1.41719 + 1.18916i
\(39\) −0.0855897 + 0.229087i −0.0137053 + 0.0366833i
\(40\) 1.13344 + 6.42806i 0.179213 + 1.01637i
\(41\) −2.52108 + 2.11544i −0.393727 + 0.330376i −0.818063 0.575129i \(-0.804952\pi\)
0.424336 + 0.905505i \(0.360507\pi\)
\(42\) 7.35638 + 3.35088i 1.13511 + 0.517052i
\(43\) −5.66175 + 2.06071i −0.863409 + 0.314255i −0.735495 0.677530i \(-0.763050\pi\)
−0.127914 + 0.991785i \(0.540828\pi\)
\(44\) −2.74597 −0.413970
\(45\) 1.96072 + 12.3412i 0.292286 + 1.83972i
\(46\) −9.84662 −1.45180
\(47\) −4.55973 3.82607i −0.665106 0.558090i 0.246507 0.969141i \(-0.420717\pi\)
−0.911612 + 0.411051i \(0.865162\pi\)
\(48\) −2.88560 8.14247i −0.416500 1.17526i
\(49\) −5.93677 + 3.70875i −0.848109 + 0.529821i
\(50\) 3.78296 + 21.4542i 0.534992 + 3.03409i
\(51\) 0.0103293 1.21703i 0.00144639 0.170418i
\(52\) 0.0272554 0.154573i 0.00377965 0.0214354i
\(53\) 1.85992 + 3.22148i 0.255480 + 0.442504i 0.965026 0.262155i \(-0.0844332\pi\)
−0.709546 + 0.704659i \(0.751100\pi\)
\(54\) −2.91464 8.69019i −0.396633 1.18259i
\(55\) 10.2891 1.38738
\(56\) 4.02277 + 1.00324i 0.537566 + 0.134063i
\(57\) 9.64966 + 5.68097i 1.27813 + 0.752463i
\(58\) −0.218354 0.0794744i −0.0286713 0.0104355i
\(59\) −0.630281 3.57450i −0.0820555 0.465360i −0.997953 0.0639483i \(-0.979631\pi\)
0.915898 0.401412i \(-0.131480\pi\)
\(60\) −2.67897 7.55942i −0.345853 0.975917i
\(61\) −0.167139 0.140247i −0.0214000 0.0179567i 0.632025 0.774948i \(-0.282224\pi\)
−0.653425 + 0.756991i \(0.726668\pi\)
\(62\) 4.08919 7.08269i 0.519328 0.899502i
\(63\) 7.66766 + 2.05108i 0.966035 + 0.258412i
\(64\) 0.00796973 + 0.0138040i 0.000996216 + 0.00172550i
\(65\) −0.102125 + 0.579182i −0.0126671 + 0.0718386i
\(66\) −7.44335 + 1.24742i −0.916212 + 0.153547i
\(67\) −14.4193 5.24819i −1.76160 0.641169i −0.761620 0.648024i \(-0.775596\pi\)
−0.999977 + 0.00685489i \(0.997818\pi\)
\(68\) 0.135642 + 0.769265i 0.0164490 + 0.0932871i
\(69\) −9.53537 + 1.59802i −1.14792 + 0.192379i
\(70\) 18.8622 + 4.70403i 2.25446 + 0.562239i
\(71\) −7.04066 12.1948i −0.835573 1.44725i −0.893563 0.448937i \(-0.851803\pi\)
0.0579909 0.998317i \(-0.481531\pi\)
\(72\) −2.28111 4.11059i −0.268831 0.484437i
\(73\) 12.7274 1.48963 0.744815 0.667271i \(-0.232538\pi\)
0.744815 + 0.667271i \(0.232538\pi\)
\(74\) −1.28612 + 0.468110i −0.149508 + 0.0544166i
\(75\) 7.14522 + 20.1621i 0.825059 + 2.32812i
\(76\) −6.75343 2.45805i −0.774671 0.281957i
\(77\) 2.65855 5.97028i 0.302970 0.680377i
\(78\) 0.00366121 0.431374i 0.000414551 0.0488435i
\(79\) −5.42013 + 1.97277i −0.609812 + 0.221954i −0.628421 0.777873i \(-0.716299\pi\)
0.0186088 + 0.999827i \(0.494076\pi\)
\(80\) −10.3874 17.9914i −1.16134 2.01150i
\(81\) −4.23286 7.94248i −0.470317 0.882497i
\(82\) 2.90267 5.02758i 0.320547 0.555203i
\(83\) −1.84338 1.54678i −0.202337 0.169781i 0.535989 0.844225i \(-0.319939\pi\)
−0.738326 + 0.674444i \(0.764383\pi\)
\(84\) −5.07860 0.398766i −0.554120 0.0435090i
\(85\) −0.508248 2.88242i −0.0551272 0.312642i
\(86\) 8.14168 6.83168i 0.877940 0.736679i
\(87\) −0.224350 0.0415252i −0.0240528 0.00445197i
\(88\) −3.63740 + 1.32391i −0.387748 + 0.141129i
\(89\) −0.452090 0.783042i −0.0479214 0.0830023i 0.841070 0.540927i \(-0.181926\pi\)
−0.888991 + 0.457924i \(0.848593\pi\)
\(90\) −10.6958 19.2739i −1.12743 2.03165i
\(91\) 0.309685 + 0.208911i 0.0324638 + 0.0218998i
\(92\) 5.83104 2.12233i 0.607928 0.221268i
\(93\) 2.81047 7.52245i 0.291433 0.780042i
\(94\) 9.86659 + 3.59114i 1.01766 + 0.370398i
\(95\) 25.3049 + 9.21024i 2.59623 + 0.944951i
\(96\) 6.24182 + 7.56824i 0.637053 + 0.772430i
\(97\) −1.73081 + 0.629965i −0.175737 + 0.0639632i −0.428390 0.903594i \(-0.640919\pi\)
0.252653 + 0.967557i \(0.418697\pi\)
\(98\) 7.60326 9.72941i 0.768045 0.982819i
\(99\) −7.00562 + 2.41598i −0.704091 + 0.242815i
\(100\) −6.86444 11.8896i −0.686444 1.18896i
\(101\) 7.64362 2.78205i 0.760569 0.276824i 0.0675228 0.997718i \(-0.478490\pi\)
0.693046 + 0.720893i \(0.256268\pi\)
\(102\) 0.717135 + 2.02359i 0.0710069 + 0.200365i
\(103\) −4.90711 + 4.11755i −0.483511 + 0.405714i −0.851694 0.524039i \(-0.824425\pi\)
0.368183 + 0.929753i \(0.379980\pi\)
\(104\) −0.0384205 0.217893i −0.00376744 0.0213662i
\(105\) 19.0294 + 1.49417i 1.85708 + 0.145816i
\(106\) −5.02660 4.21781i −0.488226 0.409670i
\(107\) −5.96628 + 10.3339i −0.576782 + 0.999016i 0.419063 + 0.907957i \(0.362358\pi\)
−0.995846 + 0.0910589i \(0.970975\pi\)
\(108\) 3.59909 + 4.51800i 0.346322 + 0.434745i
\(109\) −0.160232 0.277531i −0.0153475 0.0265826i 0.858250 0.513232i \(-0.171552\pi\)
−0.873597 + 0.486650i \(0.838219\pi\)
\(110\) −17.0552 + 6.20760i −1.62615 + 0.591871i
\(111\) −1.16950 + 0.662039i −0.111004 + 0.0628380i
\(112\) −13.1236 + 1.37857i −1.24006 + 0.130263i
\(113\) 1.98832 + 0.723688i 0.187045 + 0.0680789i 0.433845 0.900988i \(-0.357157\pi\)
−0.246799 + 0.969067i \(0.579379\pi\)
\(114\) −19.4228 3.59499i −1.81911 0.336701i
\(115\) −21.8488 + 7.95230i −2.03741 + 0.741556i
\(116\) 0.146436 0.0135963
\(117\) −0.0664629 0.418333i −0.00614449 0.0386749i
\(118\) 3.20132 + 5.54485i 0.294705 + 0.510445i
\(119\) −1.80386 0.449864i −0.165360 0.0412389i
\(120\) −7.19326 8.72186i −0.656652 0.796193i
\(121\) −0.850574 4.82385i −0.0773249 0.438532i
\(122\) 0.361665 + 0.131635i 0.0327436 + 0.0119177i
\(123\) 1.99499 5.33974i 0.179882 0.481468i
\(124\) −0.894975 + 5.07566i −0.0803712 + 0.455807i
\(125\) 15.3076 + 26.5135i 1.36915 + 2.37144i
\(126\) −13.9474 + 1.22616i −1.24254 + 0.109235i
\(127\) −5.21371 + 9.03041i −0.462642 + 0.801320i −0.999092 0.0426127i \(-0.986432\pi\)
0.536450 + 0.843932i \(0.319765\pi\)
\(128\) 8.65602 + 7.26327i 0.765092 + 0.641988i
\(129\) 6.77560 7.93706i 0.596559 0.698819i
\(130\) −0.180148 1.02167i −0.0158000 0.0896063i
\(131\) −5.67608 2.06593i −0.495922 0.180501i 0.0819370 0.996638i \(-0.473889\pi\)
−0.577859 + 0.816137i \(0.696112\pi\)
\(132\) 4.13899 2.34303i 0.360253 0.203935i
\(133\) 11.8827 12.3035i 1.03036 1.06685i
\(134\) 27.0678 2.33831
\(135\) −13.4857 16.9288i −1.16066 1.45700i
\(136\) 0.550560 + 0.953598i 0.0472101 + 0.0817703i
\(137\) −0.445164 + 2.52465i −0.0380329 + 0.215695i −0.997901 0.0647560i \(-0.979373\pi\)
0.959868 + 0.280452i \(0.0904842\pi\)
\(138\) 14.8418 8.40176i 1.26341 0.715205i
\(139\) −0.548284 3.10947i −0.0465048 0.263742i 0.952686 0.303955i \(-0.0983074\pi\)
−0.999191 + 0.0402133i \(0.987196\pi\)
\(140\) −12.1838 + 1.27986i −1.02972 + 0.108168i
\(141\) 10.1375 + 1.87637i 0.853733 + 0.158019i
\(142\) 19.0280 + 15.9664i 1.59679 + 1.33987i
\(143\) −0.348771 −0.0291657
\(144\) 11.2971 + 9.81094i 0.941427 + 0.817578i
\(145\) −0.548693 −0.0455665
\(146\) −21.0970 + 7.67868i −1.74600 + 0.635492i
\(147\) 5.78392 10.6558i 0.477050 0.878876i
\(148\) 0.660728 0.554417i 0.0543115 0.0455728i
\(149\) −2.18925 12.4159i −0.179351 1.01715i −0.933001 0.359873i \(-0.882820\pi\)
0.753651 0.657275i \(-0.228291\pi\)
\(150\) −24.0082 29.1100i −1.96026 2.37682i
\(151\) 12.4271 + 10.4275i 1.01130 + 0.848581i 0.988509 0.151159i \(-0.0483006\pi\)
0.0227902 + 0.999740i \(0.492745\pi\)
\(152\) −10.1309 −0.821725
\(153\) 1.02288 + 1.84324i 0.0826947 + 0.149017i
\(154\) −0.804851 + 11.5003i −0.0648567 + 0.926723i
\(155\) 3.35345 19.0184i 0.269356 1.52759i
\(156\) 0.0908097 + 0.256243i 0.00727059 + 0.0205159i
\(157\) 1.46311 + 8.29772i 0.116769 + 0.662230i 0.985859 + 0.167576i \(0.0535940\pi\)
−0.869090 + 0.494654i \(0.835295\pi\)
\(158\) 7.79423 6.54014i 0.620076 0.520306i
\(159\) −5.55222 3.26872i −0.440320 0.259226i
\(160\) 18.0725 + 15.1646i 1.42875 + 1.19887i
\(161\) −1.03106 + 14.7326i −0.0812590 + 1.16109i
\(162\) 11.8083 + 10.6117i 0.927744 + 0.833736i
\(163\) 4.06419 7.03938i 0.318332 0.551367i −0.661808 0.749673i \(-0.730211\pi\)
0.980140 + 0.198306i \(0.0635440\pi\)
\(164\) −0.635290 + 3.60291i −0.0496078 + 0.281340i
\(165\) −15.5087 + 8.77929i −1.20735 + 0.683467i
\(166\) 3.98879 + 1.45180i 0.309590 + 0.112682i
\(167\) −18.8324 6.85444i −1.45730 0.530412i −0.512677 0.858582i \(-0.671346\pi\)
−0.944619 + 0.328169i \(0.893568\pi\)
\(168\) −6.91954 + 1.92031i −0.533854 + 0.148155i
\(169\) −2.25396 + 12.7829i −0.173382 + 0.983298i
\(170\) 2.58149 + 4.47128i 0.197991 + 0.342931i
\(171\) −19.3923 0.329200i −1.48296 0.0251746i
\(172\) −3.34891 + 5.80048i −0.255352 + 0.442283i
\(173\) −4.49223 + 25.4767i −0.341538 + 1.93696i 0.00782730 + 0.999969i \(0.497508\pi\)
−0.349365 + 0.936987i \(0.613603\pi\)
\(174\) 0.396937 0.0665222i 0.0300917 0.00504303i
\(175\) 32.4962 3.41358i 2.45648 0.258043i
\(176\) 9.43771 7.91918i 0.711394 0.596931i
\(177\) 4.00001 + 4.85003i 0.300659 + 0.364551i
\(178\) 1.22181 + 1.02522i 0.0915786 + 0.0768436i
\(179\) −9.77341 + 16.9280i −0.730499 + 1.26526i 0.226171 + 0.974088i \(0.427379\pi\)
−0.956670 + 0.291174i \(0.905954\pi\)
\(180\) 10.4882 + 9.10842i 0.781743 + 0.678901i
\(181\) 1.41161 2.44499i 0.104924 0.181734i −0.808783 0.588107i \(-0.799873\pi\)
0.913707 + 0.406373i \(0.133207\pi\)
\(182\) −0.639376 0.159454i −0.0473937 0.0118195i
\(183\) 0.371596 + 0.0687792i 0.0274692 + 0.00508430i
\(184\) 6.70076 5.62261i 0.493987 0.414504i
\(185\) −2.47573 + 2.07739i −0.182020 + 0.152733i
\(186\) −0.120222 + 14.1649i −0.00881509 + 1.03862i
\(187\) 1.63105 0.593655i 0.119275 0.0434124i
\(188\) −6.61690 −0.482587
\(189\) −13.3076 + 3.45095i −0.967982 + 0.251020i
\(190\) −47.5023 −3.44618
\(191\) 7.66448 2.78964i 0.554582 0.201851i −0.0494989 0.998774i \(-0.515762\pi\)
0.604081 + 0.796923i \(0.293540\pi\)
\(192\) −0.0237912 0.0140064i −0.00171698 0.00101082i
\(193\) 2.27167 1.90616i 0.163519 0.137208i −0.557357 0.830273i \(-0.688184\pi\)
0.720875 + 0.693065i \(0.243740\pi\)
\(194\) 2.48894 2.08847i 0.178695 0.149943i
\(195\) −0.340261 0.960138i −0.0243666 0.0687569i
\(196\) −2.40549 + 7.40043i −0.171821 + 0.528602i
\(197\) −8.95897 + 15.5174i −0.638300 + 1.10557i 0.347505 + 0.937678i \(0.387029\pi\)
−0.985806 + 0.167891i \(0.946304\pi\)
\(198\) 10.1549 8.23137i 0.721680 0.584978i
\(199\) −5.88375 + 10.1910i −0.417088 + 0.722417i −0.995645 0.0932243i \(-0.970283\pi\)
0.578557 + 0.815642i \(0.303616\pi\)
\(200\) −14.8251 12.4398i −1.04830 0.879625i
\(201\) 26.2122 4.39288i 1.84887 0.309850i
\(202\) −10.9916 + 9.22309i −0.773370 + 0.648934i
\(203\) −0.141775 + 0.318382i −0.00995064 + 0.0223460i
\(204\) −0.860839 1.04377i −0.0602708 0.0730786i
\(205\) 2.38041 13.5000i 0.166255 0.942881i
\(206\) 5.64985 9.78583i 0.393644 0.681811i
\(207\) 13.0091 10.5449i 0.904194 0.732919i
\(208\) 0.352103 + 0.609860i 0.0244139 + 0.0422862i
\(209\) −2.77311 + 15.7271i −0.191820 + 1.08786i
\(210\) −32.4447 + 9.00405i −2.23889 + 0.621338i
\(211\) 4.57923 + 1.66670i 0.315247 + 0.114741i 0.494798 0.869008i \(-0.335242\pi\)
−0.179550 + 0.983749i \(0.557464\pi\)
\(212\) 3.88579 + 1.41431i 0.266877 + 0.0971353i
\(213\) 21.0177 + 12.3736i 1.44011 + 0.847825i
\(214\) 3.65510 20.7291i 0.249858 1.41701i
\(215\) 12.5483 21.7343i 0.855786 1.48226i
\(216\) 6.94572 + 4.24948i 0.472597 + 0.289141i
\(217\) −10.1690 6.85994i −0.690317 0.465683i
\(218\) 0.433042 + 0.363365i 0.0293293 + 0.0246102i
\(219\) −19.1840 + 10.8598i −1.29633 + 0.733839i
\(220\) 8.76191 7.35212i 0.590728 0.495680i
\(221\) 0.0172282 + 0.0977060i 0.00115889 + 0.00657241i
\(222\) 1.53914 1.80298i 0.103301 0.121008i
\(223\) 3.39420 19.2495i 0.227292 1.28904i −0.630962 0.775814i \(-0.717339\pi\)
0.858254 0.513225i \(-0.171549\pi\)
\(224\) 13.4690 6.56830i 0.899935 0.438863i
\(225\) −27.9736 24.2936i −1.86491 1.61957i
\(226\) −3.73246 −0.248280
\(227\) −9.43162 7.91407i −0.625999 0.525275i 0.273684 0.961820i \(-0.411758\pi\)
−0.899683 + 0.436544i \(0.856202\pi\)
\(228\) 12.2768 2.05745i 0.813049 0.136258i
\(229\) −4.45188 25.2478i −0.294188 1.66842i −0.670483 0.741925i \(-0.733913\pi\)
0.376295 0.926500i \(-0.377198\pi\)
\(230\) 31.4189 26.3636i 2.07170 1.73836i
\(231\) 1.08700 + 11.2674i 0.0715190 + 0.741342i
\(232\) 0.193975 0.0706009i 0.0127351 0.00463518i
\(233\) 7.33354 0.480436 0.240218 0.970719i \(-0.422781\pi\)
0.240218 + 0.970719i \(0.422781\pi\)
\(234\) 0.362557 + 0.653333i 0.0237011 + 0.0427097i
\(235\) 24.7933 1.61734
\(236\) −3.09091 2.59358i −0.201201 0.168828i
\(237\) 6.48645 7.59834i 0.421340 0.493565i
\(238\) 3.26150 0.342606i 0.211412 0.0222079i
\(239\) 2.57748 + 14.6176i 0.166723 + 0.945536i 0.947270 + 0.320438i \(0.103830\pi\)
−0.780546 + 0.625098i \(0.785059\pi\)
\(240\) 31.0083 + 18.2553i 2.00158 + 1.17837i
\(241\) −3.03867 + 17.2332i −0.195738 + 1.11009i 0.715626 + 0.698484i \(0.246142\pi\)
−0.911364 + 0.411602i \(0.864970\pi\)
\(242\) 4.32024 + 7.48287i 0.277715 + 0.481017i
\(243\) 13.1572 + 8.35992i 0.844034 + 0.536289i
\(244\) −0.242546 −0.0155274
\(245\) 9.01332 27.7292i 0.575840 1.77155i
\(246\) −0.0853383 + 10.0548i −0.00544097 + 0.641070i
\(247\) −0.857767 0.312202i −0.0545784 0.0198649i
\(248\) 1.26160 + 7.15488i 0.0801116 + 0.454335i
\(249\) 4.09832 + 0.758564i 0.259721 + 0.0480720i
\(250\) −41.3700 34.7135i −2.61647 2.19548i
\(251\) −6.62373 + 11.4726i −0.418086 + 0.724147i −0.995747 0.0921303i \(-0.970632\pi\)
0.577661 + 0.816277i \(0.303966\pi\)
\(252\) 7.99520 3.73232i 0.503650 0.235114i
\(253\) −6.89427 11.9412i −0.433439 0.750738i
\(254\) 3.19406 18.1144i 0.200413 1.13660i
\(255\) 3.22554 + 3.91099i 0.201991 + 0.244915i
\(256\) −18.7603 6.82819i −1.17252 0.426762i
\(257\) −3.76921 21.3762i −0.235117 1.33341i −0.842368 0.538903i \(-0.818839\pi\)
0.607251 0.794510i \(-0.292272\pi\)
\(258\) −6.44270 + 17.2444i −0.401105 + 1.07359i
\(259\) 0.565718 + 1.97332i 0.0351520 + 0.122616i
\(260\) 0.326890 + 0.566191i 0.0202729 + 0.0351136i
\(261\) 0.373594 0.128839i 0.0231249 0.00797493i
\(262\) 10.6551 0.658276
\(263\) −10.1892 + 3.70856i −0.628292 + 0.228679i −0.636488 0.771287i \(-0.719613\pi\)
0.00819596 + 0.999966i \(0.497391\pi\)
\(264\) 4.35300 5.09918i 0.267909 0.313833i
\(265\) −14.5599 5.29939i −0.894410 0.325539i
\(266\) −12.2739 + 27.5634i −0.752564 + 1.69002i
\(267\) 1.34957 + 0.794525i 0.0825926 + 0.0486241i
\(268\) −16.0292 + 5.83416i −0.979141 + 0.356378i
\(269\) −6.69178 11.5905i −0.408005 0.706686i 0.586661 0.809833i \(-0.300442\pi\)
−0.994666 + 0.103147i \(0.967109\pi\)
\(270\) 32.5675 + 19.9252i 1.98199 + 1.21261i
\(271\) 10.7152 18.5593i 0.650904 1.12740i −0.332000 0.943279i \(-0.607723\pi\)
0.982904 0.184120i \(-0.0589433\pi\)
\(272\) −2.68470 2.25273i −0.162784 0.136592i
\(273\) −0.645043 0.0506481i −0.0390398 0.00306536i
\(274\) −0.785264 4.45345i −0.0474395 0.269043i
\(275\) −23.3694 + 19.6092i −1.40923 + 1.18248i
\(276\) −6.97820 + 8.17439i −0.420038 + 0.492040i
\(277\) −5.14046 + 1.87098i −0.308861 + 0.112416i −0.491800 0.870708i \(-0.663661\pi\)
0.182940 + 0.983124i \(0.441439\pi\)
\(278\) 2.78484 + 4.82349i 0.167024 + 0.289294i
\(279\) 2.18242 + 13.7366i 0.130658 + 0.822391i
\(280\) −15.5221 + 7.56951i −0.927621 + 0.452365i
\(281\) 13.4765 4.90506i 0.803942 0.292611i 0.0928232 0.995683i \(-0.470411\pi\)
0.711119 + 0.703072i \(0.248189\pi\)
\(282\) −17.9361 + 3.00588i −1.06808 + 0.178998i
\(283\) 7.48499 + 2.72431i 0.444936 + 0.161944i 0.554765 0.832007i \(-0.312808\pi\)
−0.109829 + 0.993951i \(0.535030\pi\)
\(284\) −14.7095 5.35382i −0.872848 0.317691i
\(285\) −46.0008 + 7.70922i −2.72485 + 0.456655i
\(286\) 0.578125 0.210420i 0.0341853 0.0124424i
\(287\) −7.21837 4.86946i −0.426087 0.287435i
\(288\) −15.8660 6.08166i −0.934911 0.358365i
\(289\) 8.25312 + 14.2948i 0.485478 + 0.840872i
\(290\) 0.909517 0.331037i 0.0534087 0.0194392i
\(291\) 2.07132 2.42638i 0.121423 0.142237i
\(292\) 10.8383 9.09444i 0.634265 0.532212i
\(293\) 3.09426 + 17.5484i 0.180768 + 1.02519i 0.931273 + 0.364323i \(0.118700\pi\)
−0.750504 + 0.660866i \(0.770189\pi\)
\(294\) −3.15861 + 21.1527i −0.184214 + 1.23365i
\(295\) 11.5816 + 9.71809i 0.674305 + 0.565809i
\(296\) 0.607924 1.05295i 0.0353348 0.0612018i
\(297\) 8.49807 9.61924i 0.493108 0.558165i
\(298\) 11.1197 + 19.2598i 0.644144 + 1.11569i
\(299\) 0.740613 0.269561i 0.0428307 0.0155891i
\(300\) 20.4917 + 12.0639i 1.18309 + 0.696510i
\(301\) −9.36910 12.8970i −0.540026 0.743373i
\(302\) −26.8903 9.78727i −1.54736 0.563194i
\(303\) −9.14738 + 10.7154i −0.525503 + 0.615584i
\(304\) 30.2999 11.0283i 1.73782 0.632515i
\(305\) 0.908813 0.0520385
\(306\) −2.80759 2.43824i −0.160499 0.139385i
\(307\) −0.753447 1.30501i −0.0430015 0.0744808i 0.843724 0.536778i \(-0.180359\pi\)
−0.886725 + 0.462297i \(0.847025\pi\)
\(308\) −2.00214 6.98383i −0.114083 0.397940i
\(309\) 3.88310 10.3934i 0.220902 0.591261i
\(310\) 5.91544 + 33.5481i 0.335975 + 1.90541i
\(311\) 5.51008 + 2.00550i 0.312448 + 0.113722i 0.493484 0.869755i \(-0.335723\pi\)
−0.181037 + 0.983476i \(0.557945\pi\)
\(312\) 0.243832 + 0.295647i 0.0138042 + 0.0167377i
\(313\) −0.324077 + 1.83793i −0.0183179 + 0.103886i −0.992596 0.121463i \(-0.961241\pi\)
0.974278 + 0.225350i \(0.0723524\pi\)
\(314\) −7.43144 12.8716i −0.419380 0.726388i
\(315\) −29.9578 + 13.9849i −1.68793 + 0.787961i
\(316\) −3.20599 + 5.55294i −0.180351 + 0.312378i
\(317\) −7.59236 6.37075i −0.426429 0.357817i 0.404173 0.914683i \(-0.367559\pi\)
−0.830603 + 0.556866i \(0.812004\pi\)
\(318\) 11.1755 + 2.06848i 0.626690 + 0.115995i
\(319\) −0.0565037 0.320449i −0.00316360 0.0179417i
\(320\) −0.0623891 0.0227078i −0.00348766 0.00126940i
\(321\) 0.175408 20.6671i 0.00979031 1.15352i
\(322\) −7.17937 25.0429i −0.400091 1.39559i
\(323\) 4.54282 0.252769
\(324\) −9.27994 3.73900i −0.515552 0.207722i
\(325\) −0.871867 1.51012i −0.0483625 0.0837662i
\(326\) −2.48983 + 14.1205i −0.137899 + 0.782064i
\(327\) 0.478324 + 0.281600i 0.0264514 + 0.0155725i
\(328\) 0.895534 + 5.07882i 0.0494476 + 0.280431i
\(329\) 6.40626 14.3864i 0.353188 0.793151i
\(330\) 20.4106 23.9093i 1.12356 1.31616i
\(331\) 7.43935 + 6.24236i 0.408904 + 0.343111i 0.823923 0.566702i \(-0.191781\pi\)
−0.415019 + 0.909813i \(0.636225\pi\)
\(332\) −2.67503 −0.146811
\(333\) 1.19788 1.99578i 0.0656436 0.109368i
\(334\) 35.3521 1.93438
\(335\) 60.0611 21.8605i 3.28149 1.19436i
\(336\) 18.6048 13.2758i 1.01498 0.724253i
\(337\) −16.7483 + 14.0535i −0.912339 + 0.765543i −0.972562 0.232642i \(-0.925263\pi\)
0.0602239 + 0.998185i \(0.480819\pi\)
\(338\) −3.97597 22.5488i −0.216264 1.22649i
\(339\) −3.61448 + 0.605747i −0.196312 + 0.0328996i
\(340\) −2.49246 2.09142i −0.135173 0.113423i
\(341\) 11.4525 0.620186
\(342\) 32.3433 11.1540i 1.74893 0.603141i
\(343\) −13.7611 12.3949i −0.743029 0.669260i
\(344\) −1.63951 + 9.29812i −0.0883964 + 0.501321i
\(345\) 26.1471 30.6292i 1.40771 1.64902i
\(346\) −7.92423 44.9405i −0.426009 2.41602i
\(347\) 7.62044 6.39431i 0.409087 0.343265i −0.414907 0.909864i \(-0.636186\pi\)
0.823993 + 0.566599i \(0.191741\pi\)
\(348\) −0.220723 + 0.124949i −0.0118320 + 0.00669796i
\(349\) −19.2188 16.1265i −1.02876 0.863233i −0.0380577 0.999276i \(-0.512117\pi\)
−0.990703 + 0.136043i \(0.956562\pi\)
\(350\) −51.8064 + 25.2639i −2.76917 + 1.35041i
\(351\) 0.457127 + 0.573841i 0.0243997 + 0.0306294i
\(352\) −6.99537 + 12.1163i −0.372854 + 0.645803i
\(353\) −1.71986 + 9.75380i −0.0915388 + 0.519142i 0.904214 + 0.427079i \(0.140457\pi\)
−0.995753 + 0.0920634i \(0.970654\pi\)
\(354\) −9.55656 5.62616i −0.507925 0.299027i
\(355\) 55.1161 + 20.0606i 2.92526 + 1.06471i
\(356\) −0.944515 0.343775i −0.0500592 0.0182201i
\(357\) 3.10280 0.861090i 0.164218 0.0455737i
\(358\) 5.98745 33.9565i 0.316447 1.79466i
\(359\) 8.26238 + 14.3109i 0.436072 + 0.755298i 0.997382 0.0723067i \(-0.0230360\pi\)
−0.561311 + 0.827605i \(0.689703\pi\)
\(360\) 18.2844 + 7.00868i 0.963673 + 0.369390i
\(361\) −11.3982 + 19.7423i −0.599907 + 1.03907i
\(362\) −0.864792 + 4.90448i −0.0454525 + 0.257774i
\(363\) 5.39808 + 6.54520i 0.283326 + 0.343534i
\(364\) 0.412999 0.0433837i 0.0216470 0.00227392i
\(365\) −40.6109 + 34.0766i −2.12567 + 1.78365i
\(366\) −0.657455 + 0.110182i −0.0343657 + 0.00575932i
\(367\) −24.3072 20.3962i −1.26883 1.06467i −0.994683 0.102982i \(-0.967162\pi\)
−0.274142 0.961689i \(-0.588394\pi\)
\(368\) −13.9203 + 24.1106i −0.725644 + 1.25685i
\(369\) 1.54917 + 9.75082i 0.0806464 + 0.507607i
\(370\) 2.85046 4.93715i 0.148188 0.256670i
\(371\) −6.83708 + 7.07919i −0.354964 + 0.367533i
\(372\) −2.98188 8.41417i −0.154603 0.436254i
\(373\) −18.3549 + 15.4016i −0.950381 + 0.797465i −0.979362 0.202115i \(-0.935218\pi\)
0.0289804 + 0.999580i \(0.490774\pi\)
\(374\) −2.34548 + 1.96809i −0.121282 + 0.101768i
\(375\) −45.6960 26.9023i −2.35973 1.38923i
\(376\) −8.76496 + 3.19019i −0.452019 + 0.164521i
\(377\) 0.0185992 0.000957907
\(378\) 19.9767 13.7490i 1.02749 0.707173i
\(379\) 18.5458 0.952632 0.476316 0.879274i \(-0.341972\pi\)
0.476316 + 0.879274i \(0.341972\pi\)
\(380\) 28.1303 10.2386i 1.44305 0.525228i
\(381\) 0.153283 18.0602i 0.00785290 0.925251i
\(382\) −11.0216 + 9.24826i −0.563916 + 0.473182i
\(383\) −17.3412 + 14.5510i −0.886096 + 0.743523i −0.967423 0.253164i \(-0.918529\pi\)
0.0813271 + 0.996687i \(0.474084\pi\)
\(384\) −19.2447 3.56202i −0.982075 0.181774i
\(385\) 7.50198 + 26.1682i 0.382336 + 1.33366i
\(386\) −2.61552 + 4.53021i −0.133126 + 0.230581i
\(387\) −3.44043 + 17.7449i −0.174887 + 0.902023i
\(388\) −1.02377 + 1.77322i −0.0519741 + 0.0900218i
\(389\) 7.05404 + 5.91904i 0.357654 + 0.300107i 0.803855 0.594826i \(-0.202779\pi\)
−0.446201 + 0.894933i \(0.647223\pi\)
\(390\) 1.14329 + 1.38624i 0.0578927 + 0.0701952i
\(391\) −3.00470 + 2.52124i −0.151954 + 0.127505i
\(392\) 0.381551 + 10.9626i 0.0192713 + 0.553695i
\(393\) 10.3183 1.72924i 0.520490 0.0872284i
\(394\) 5.48850 31.1268i 0.276507 1.56815i
\(395\) 12.0128 20.8067i 0.604429 1.04690i
\(396\) −4.23945 + 7.06329i −0.213040 + 0.354944i
\(397\) 8.17669 + 14.1624i 0.410376 + 0.710793i 0.994931 0.100562i \(-0.0320640\pi\)
−0.584554 + 0.811355i \(0.698731\pi\)
\(398\) 3.60454 20.4424i 0.180679 1.02468i
\(399\) −7.41266 + 28.6841i −0.371097 + 1.43600i
\(400\) 57.8813 + 21.0671i 2.89406 + 1.05335i
\(401\) −34.4552 12.5407i −1.72061 0.626251i −0.722718 0.691143i \(-0.757108\pi\)
−0.997892 + 0.0648916i \(0.979330\pi\)
\(402\) −40.7992 + 23.0960i −2.03488 + 1.15192i
\(403\) −0.113673 + 0.644670i −0.00566244 + 0.0321133i
\(404\) 4.52118 7.83092i 0.224937 0.389603i
\(405\) 34.7717 + 14.0099i 1.72782 + 0.696159i
\(406\) 0.0429209 0.613287i 0.00213013 0.0304369i
\(407\) −1.46819 1.23195i −0.0727753 0.0610657i
\(408\) −1.64353 0.967581i −0.0813667 0.0479024i
\(409\) 1.23796 1.03877i 0.0612132 0.0513640i −0.611668 0.791115i \(-0.709501\pi\)
0.672881 + 0.739751i \(0.265057\pi\)
\(410\) 4.19902 + 23.8138i 0.207375 + 1.17608i
\(411\) −1.48320 4.18524i −0.0731608 0.206443i
\(412\) −1.23655 + 7.01280i −0.0609203 + 0.345496i
\(413\) 8.63148 4.20923i 0.424727 0.207123i
\(414\) −15.2020 + 25.3279i −0.747138 + 1.24480i
\(415\) 10.0233 0.492023
\(416\) −0.612606 0.514038i −0.0300355 0.0252028i
\(417\) 3.47963 + 4.21906i 0.170398 + 0.206608i
\(418\) −4.89173 27.7424i −0.239262 1.35692i
\(419\) 11.2741 9.46013i 0.550778 0.462158i −0.324426 0.945911i \(-0.605171\pi\)
0.875204 + 0.483753i \(0.160727\pi\)
\(420\) 17.2726 12.3252i 0.842816 0.601406i
\(421\) 12.7240 4.63116i 0.620130 0.225709i −0.0127998 0.999918i \(-0.504074\pi\)
0.632930 + 0.774209i \(0.281852\pi\)
\(422\) −8.59612 −0.418452
\(423\) −16.8813 + 5.82174i −0.820796 + 0.283062i
\(424\) 5.82912 0.283087
\(425\) 6.64777 + 5.57814i 0.322464 + 0.270580i
\(426\) −42.3043 7.83016i −2.04965 0.379373i
\(427\) 0.234825 0.527343i 0.0113640 0.0255199i
\(428\) 2.30342 + 13.0633i 0.111340 + 0.631440i
\(429\) 0.525701 0.297594i 0.0253811 0.0143680i
\(430\) −7.68741 + 43.5975i −0.370720 + 2.10246i
\(431\) −10.9091 18.8951i −0.525472 0.910145i −0.999560 0.0296670i \(-0.990555\pi\)
0.474088 0.880478i \(-0.342778\pi\)
\(432\) −25.3994 5.14857i −1.22203 0.247711i
\(433\) 10.1358 0.487096 0.243548 0.969889i \(-0.421689\pi\)
0.243548 + 0.969889i \(0.421689\pi\)
\(434\) 20.9949 + 5.23592i 1.00779 + 0.251332i
\(435\) 0.827043 0.468180i 0.0396537 0.0224475i
\(436\) −0.334761 0.121843i −0.0160321 0.00583522i
\(437\) −6.26659 35.5396i −0.299772 1.70009i
\(438\) 25.2475 29.5754i 1.20637 1.41317i
\(439\) 2.18007 + 1.82930i 0.104049 + 0.0873077i 0.693328 0.720622i \(-0.256144\pi\)
−0.589279 + 0.807930i \(0.700588\pi\)
\(440\) 8.06167 13.9632i 0.384325 0.665671i
\(441\) 0.374127 + 20.9967i 0.0178156 + 0.999841i
\(442\) −0.0875055 0.151564i −0.00416221 0.00720916i
\(443\) −1.10720 + 6.27927i −0.0526049 + 0.298337i −0.999747 0.0224760i \(-0.992845\pi\)
0.947142 + 0.320813i \(0.103956\pi\)
\(444\) −0.522849 + 1.39945i −0.0248133 + 0.0664148i
\(445\) 3.53908 + 1.28812i 0.167768 + 0.0610627i
\(446\) 5.98733 + 33.9558i 0.283508 + 1.60785i
\(447\) 13.8939 + 16.8464i 0.657157 + 0.796807i
\(448\) −0.0292968 + 0.0303342i −0.00138414 + 0.00143316i
\(449\) −2.33757 4.04880i −0.110317 0.191074i 0.805581 0.592485i \(-0.201853\pi\)
−0.915898 + 0.401411i \(0.868520\pi\)
\(450\) 61.0260 + 23.3921i 2.87679 + 1.10272i
\(451\) 8.12942 0.382799
\(452\) 2.21032 0.804489i 0.103965 0.0378400i
\(453\) −27.6287 5.11383i −1.29811 0.240269i
\(454\) 20.4086 + 7.42813i 0.957824 + 0.348620i
\(455\) −1.54750 + 0.162558i −0.0725477 + 0.00762082i
\(456\) 15.2703 8.64434i 0.715096 0.404808i
\(457\) −18.0410 + 6.56637i −0.843921 + 0.307162i −0.727559 0.686045i \(-0.759345\pi\)
−0.116361 + 0.993207i \(0.537123\pi\)
\(458\) 22.6120 + 39.1651i 1.05659 + 1.83006i
\(459\) −3.11455 1.90552i −0.145375 0.0889420i
\(460\) −12.9235 + 22.3841i −0.602561 + 1.04367i
\(461\) −1.41824 1.19004i −0.0660540 0.0554259i 0.609163 0.793045i \(-0.291506\pi\)
−0.675217 + 0.737619i \(0.735950\pi\)
\(462\) −8.59967 18.0212i −0.400093 0.838420i
\(463\) −2.62612 14.8935i −0.122046 0.692158i −0.983019 0.183506i \(-0.941255\pi\)
0.860972 0.508652i \(-0.169856\pi\)
\(464\) −0.503292 + 0.422312i −0.0233647 + 0.0196053i
\(465\) 11.1730 + 31.5277i 0.518137 + 1.46206i
\(466\) −12.1561 + 4.42447i −0.563122 + 0.204960i
\(467\) 12.3675 + 21.4212i 0.572300 + 0.991253i 0.996329 + 0.0856044i \(0.0272821\pi\)
−0.424029 + 0.905649i \(0.639385\pi\)
\(468\) −0.355520 0.308750i −0.0164339 0.0142720i
\(469\) 2.83434 40.4992i 0.130877 1.87008i
\(470\) −41.0976 + 14.9583i −1.89569 + 0.689975i
\(471\) −9.28549 11.2587i −0.427853 0.518773i
\(472\) −5.34476 1.94533i −0.246013 0.0895413i
\(473\) 13.9855 + 5.09030i 0.643053 + 0.234052i
\(474\) −6.16775 + 16.5085i −0.283294 + 0.758259i
\(475\) −75.0277 + 27.3079i −3.44251 + 1.25297i
\(476\) −1.85757 + 0.905866i −0.0851418 + 0.0415203i
\(477\) 11.1579 + 0.189415i 0.510886 + 0.00867273i
\(478\) −13.0915 22.6752i −0.598793 1.03714i
\(479\) −29.7795 + 10.8389i −1.36066 + 0.495240i −0.916259 0.400586i \(-0.868806\pi\)
−0.444403 + 0.895827i \(0.646584\pi\)
\(480\) −40.1799 7.43696i −1.83396 0.339449i
\(481\) 0.0839205 0.0704177i 0.00382645 0.00321077i
\(482\) −5.36018 30.3991i −0.244149 1.38464i
\(483\) −11.0167 23.0862i −0.501276 1.05046i
\(484\) −4.17124 3.50008i −0.189602 0.159095i
\(485\) 3.83605 6.64423i 0.174186 0.301699i
\(486\) −26.8531 5.91947i −1.21808 0.268512i
\(487\) 15.0234 + 26.0213i 0.680775 + 1.17914i 0.974745 + 0.223323i \(0.0716904\pi\)
−0.293969 + 0.955815i \(0.594976\pi\)
\(488\) −0.321284 + 0.116938i −0.0145439 + 0.00529353i
\(489\) −0.119487 + 14.0783i −0.00540337 + 0.636641i
\(490\) 1.78904 + 51.4020i 0.0808204 + 2.32211i
\(491\) 29.0255 + 10.5644i 1.30990 + 0.476766i 0.900210 0.435456i \(-0.143413\pi\)
0.409695 + 0.912223i \(0.365635\pi\)
\(492\) −2.11666 5.97272i −0.0954264 0.269271i
\(493\) −0.0869805 + 0.0316583i −0.00391740 + 0.00142582i
\(494\) 1.61020 0.0724462
\(495\) 15.8851 26.4660i 0.713983 1.18956i
\(496\) −11.5619 20.0257i −0.519143 0.899182i
\(497\) 25.8815 26.7980i 1.16094 1.20205i
\(498\) −7.25106 + 1.21520i −0.324928 + 0.0544543i
\(499\) 2.68427 + 15.2233i 0.120164 + 0.681486i 0.984063 + 0.177820i \(0.0569046\pi\)
−0.863899 + 0.503666i \(0.831984\pi\)
\(500\) 31.9809 + 11.6401i 1.43023 + 0.520561i
\(501\) 34.2347 5.73735i 1.52949 0.256326i
\(502\) 4.05787 23.0133i 0.181112 1.02714i
\(503\) −12.4023 21.4813i −0.552989 0.957806i −0.998057 0.0623088i \(-0.980154\pi\)
0.445067 0.895497i \(-0.353180\pi\)
\(504\) 8.79126 8.79867i 0.391594 0.391924i
\(505\) −16.9408 + 29.3423i −0.753854 + 1.30571i
\(506\) 18.6324 + 15.6344i 0.828309 + 0.695034i
\(507\) −7.50977 21.1908i −0.333520 0.941116i
\(508\) 2.01287 + 11.4156i 0.0893067 + 0.506484i
\(509\) −1.28303 0.466983i −0.0568691 0.0206987i 0.313429 0.949612i \(-0.398522\pi\)
−0.370298 + 0.928913i \(0.620744\pi\)
\(510\) −7.70625 4.53684i −0.341239 0.200895i
\(511\) 9.27981 + 32.3696i 0.410515 + 1.43195i
\(512\) 12.6175 0.557620
\(513\) 29.5108 16.0505i 1.30293 0.708647i
\(514\) 19.1446 + 33.1594i 0.844430 + 1.46260i
\(515\) 4.63331 26.2768i 0.204168 1.15789i
\(516\) 0.0984576 11.6005i 0.00433435 0.510686i
\(517\) 2.55319 + 14.4798i 0.112289 + 0.636823i
\(518\) −2.12828 2.92968i −0.0935113 0.128723i
\(519\) −14.9672 42.2339i −0.656988 1.85386i
\(520\) 0.705986 + 0.592392i 0.0309595 + 0.0259781i
\(521\) −26.5548 −1.16339 −0.581693 0.813408i \(-0.697610\pi\)
−0.581693 + 0.813408i \(0.697610\pi\)
\(522\) −0.541540 + 0.438960i −0.0237026 + 0.0192128i
\(523\) −34.0011 −1.48676 −0.743381 0.668868i \(-0.766779\pi\)
−0.743381 + 0.668868i \(0.766779\pi\)
\(524\) −6.30983 + 2.29659i −0.275646 + 0.100327i
\(525\) −46.0687 + 32.8731i −2.01060 + 1.43470i
\(526\) 14.6522 12.2947i 0.638866 0.536072i
\(527\) −0.565716 3.20833i −0.0246430 0.139757i
\(528\) −7.46827 + 19.9894i −0.325015 + 0.869927i
\(529\) 6.25013 + 5.24448i 0.271745 + 0.228021i
\(530\) 27.3319 1.18722
\(531\) −10.1676 3.89737i −0.441234 0.169131i
\(532\) 1.32749 18.9682i 0.0575540 0.822377i
\(533\) −0.0806895 + 0.457613i −0.00349505 + 0.0198214i
\(534\) −2.71641 0.502785i −0.117551 0.0217576i
\(535\) −8.63085 48.9480i −0.373144 2.11620i
\(536\) −18.4201 + 15.4563i −0.795625 + 0.667609i
\(537\) 0.287337 33.8549i 0.0123995 1.46095i
\(538\) 18.0851 + 15.1752i 0.779705 + 0.654250i
\(539\) 17.1226 + 2.40845i 0.737524 + 0.103739i
\(540\) −23.5807 4.77990i −1.01475 0.205694i
\(541\) −1.17215 + 2.03023i −0.0503948 + 0.0872863i −0.890122 0.455722i \(-0.849381\pi\)
0.839728 + 0.543008i \(0.182715\pi\)
\(542\) −6.56444 + 37.2288i −0.281967 + 1.59911i
\(543\) −0.0415013 + 4.88980i −0.00178099 + 0.209841i
\(544\) 3.73986 + 1.36120i 0.160345 + 0.0583609i
\(545\) 1.25434 + 0.456543i 0.0537300 + 0.0195561i
\(546\) 1.09978 0.305212i 0.0470664 0.0130619i
\(547\) 3.75899 21.3183i 0.160723 0.911504i −0.792643 0.609686i \(-0.791296\pi\)
0.953366 0.301818i \(-0.0975934\pi\)
\(548\) 1.42491 + 2.46802i 0.0608693 + 0.105429i
\(549\) −0.618792 + 0.213399i −0.0264094 + 0.00910764i
\(550\) 26.9066 46.6036i 1.14730 1.98718i
\(551\) 0.147884 0.838690i 0.00630005 0.0357294i
\(552\) −5.30247 + 14.1925i −0.225688 + 0.604071i
\(553\) −8.96927 12.3466i −0.381412 0.525033i
\(554\) 7.39207 6.20268i 0.314059 0.263527i
\(555\) 1.95910 5.24369i 0.0831593 0.222582i
\(556\) −2.68880 2.25617i −0.114030 0.0956828i
\(557\) 4.57436 7.92303i 0.193822 0.335709i −0.752692 0.658373i \(-0.771245\pi\)
0.946514 + 0.322664i \(0.104578\pi\)
\(558\) −11.9052 21.4532i −0.503986 0.908188i
\(559\) −0.425352 + 0.736731i −0.0179905 + 0.0311604i
\(560\) 38.1840 39.5361i 1.61357 1.67071i
\(561\) −1.95194 + 2.28653i −0.0824109 + 0.0965375i
\(562\) −19.3795 + 16.2613i −0.817473 + 0.685941i
\(563\) 25.9935 21.8111i 1.09549 0.919229i 0.0983804 0.995149i \(-0.468634\pi\)
0.997114 + 0.0759200i \(0.0241894\pi\)
\(564\) 9.97362 5.64596i 0.419965 0.237738i
\(565\) −8.28200 + 3.01440i −0.348426 + 0.126817i
\(566\) −14.0508 −0.590599
\(567\) 17.1139 16.5565i 0.718714 0.695306i
\(568\) −22.0659 −0.925866
\(569\) −17.5317 + 6.38100i −0.734965 + 0.267506i −0.682265 0.731105i \(-0.739005\pi\)
−0.0527002 + 0.998610i \(0.516783\pi\)
\(570\) 71.6000 40.5320i 2.99900 1.69770i
\(571\) 3.01139 2.52686i 0.126023 0.105746i −0.577598 0.816321i \(-0.696010\pi\)
0.703621 + 0.710576i \(0.251565\pi\)
\(572\) −0.297005 + 0.249216i −0.0124184 + 0.0104203i
\(573\) −9.17234 + 10.7446i −0.383180 + 0.448864i
\(574\) 14.9031 + 3.71666i 0.622041 + 0.155131i
\(575\) 34.4689 59.7019i 1.43745 2.48974i
\(576\) 0.0478115 0.000811641i 0.00199214 3.38184e-5i
\(577\) −3.97502 + 6.88494i −0.165482 + 0.286624i −0.936826 0.349794i \(-0.886251\pi\)
0.771344 + 0.636418i \(0.219585\pi\)
\(578\) −22.3048 18.7159i −0.927756 0.778480i
\(579\) −1.79763 + 4.81148i −0.0747068 + 0.199958i
\(580\) −0.467253 + 0.392072i −0.0194016 + 0.0162799i
\(581\) 2.58987 5.81605i 0.107446 0.241290i
\(582\) −1.96955 + 5.27166i −0.0816406 + 0.218517i
\(583\) 1.59559 9.04904i 0.0660826 0.374773i
\(584\) 9.97214 17.2723i 0.412650 0.714731i
\(585\) 1.33213 + 1.15688i 0.0550766 + 0.0478311i
\(586\) −15.7164 27.2215i −0.649236 1.12451i
\(587\) −3.92585 + 22.2646i −0.162037 + 0.918958i 0.790030 + 0.613068i \(0.210065\pi\)
−0.952067 + 0.305890i \(0.901046\pi\)
\(588\) −2.68873 13.2072i −0.110881 0.544654i
\(589\) 28.1662 + 10.2516i 1.16057 + 0.422412i
\(590\) −25.0608 9.12138i −1.03174 0.375521i
\(591\) 0.263393 31.0337i 0.0108345 1.27655i
\(592\) −0.671980 + 3.81099i −0.0276182 + 0.156631i
\(593\) −11.6835 + 20.2365i −0.479785 + 0.831011i −0.999731 0.0231874i \(-0.992619\pi\)
0.519946 + 0.854199i \(0.325952\pi\)
\(594\) −8.28298 + 21.0720i −0.339855 + 0.864593i
\(595\) 6.96028 3.39426i 0.285344 0.139151i
\(596\) −10.7361 9.00870i −0.439770 0.369011i
\(597\) 0.172982 20.3812i 0.00707966 0.834146i
\(598\) −1.06501 + 0.893652i −0.0435516 + 0.0365441i
\(599\) −5.69406 32.2926i −0.232653 1.31944i −0.847500 0.530795i \(-0.821893\pi\)
0.614847 0.788646i \(-0.289218\pi\)
\(600\) 32.9603 + 6.10066i 1.34560 + 0.249059i
\(601\) 6.43928 36.5190i 0.262664 1.48964i −0.512943 0.858423i \(-0.671445\pi\)
0.775606 0.631217i \(-0.217444\pi\)
\(602\) 23.3113 + 15.7256i 0.950098 + 0.640929i
\(603\) −35.7613 + 28.9873i −1.45631 + 1.18045i
\(604\) 18.0336 0.733778
\(605\) 15.6295 + 13.1147i 0.635430 + 0.533189i
\(606\) 8.69794 23.2807i 0.353330 0.945714i
\(607\) 2.60941 + 14.7987i 0.105913 + 0.600661i 0.990852 + 0.134954i \(0.0430887\pi\)
−0.884939 + 0.465707i \(0.845800\pi\)
\(608\) −28.0503 + 23.5370i −1.13759 + 0.954551i
\(609\) −0.0579670 0.600867i −0.00234894 0.0243483i
\(610\) −1.50645 + 0.548304i −0.0609945 + 0.0222002i
\(611\) −0.840426 −0.0340000
\(612\) 2.18815 + 0.838750i 0.0884508 + 0.0339045i
\(613\) −28.1322 −1.13625 −0.568125 0.822942i \(-0.692331\pi\)
−0.568125 + 0.822942i \(0.692331\pi\)
\(614\) 2.03626 + 1.70862i 0.0821766 + 0.0689544i
\(615\) 7.93107 + 22.3796i 0.319812 + 0.902433i
\(616\) −6.01920 8.28572i −0.242520 0.333841i
\(617\) 0.135031 + 0.765797i 0.00543613 + 0.0308298i 0.987405 0.158212i \(-0.0505729\pi\)
−0.981969 + 0.189042i \(0.939462\pi\)
\(618\) −0.166105 + 19.5709i −0.00668172 + 0.787259i
\(619\) −1.90778 + 10.8196i −0.0766802 + 0.434875i 0.922163 + 0.386800i \(0.126420\pi\)
−0.998844 + 0.0480749i \(0.984691\pi\)
\(620\) −10.7340 18.5918i −0.431087 0.746664i
\(621\) −10.6110 + 26.9944i −0.425804 + 1.08325i
\(622\) −10.3435 −0.414737
\(623\) 1.66188 1.72073i 0.0665820 0.0689397i
\(624\) −1.05109 0.618803i −0.0420775 0.0247719i
\(625\) −61.8056 22.4954i −2.47222 0.899816i
\(626\) −0.571668 3.24209i −0.0228484 0.129580i
\(627\) −9.23945 26.0715i −0.368988 1.04120i
\(628\) 7.17513 + 6.02065i 0.286319 + 0.240250i
\(629\) −0.272600 + 0.472157i −0.0108693 + 0.0188262i
\(630\) 41.2209 41.2556i 1.64228 1.64366i
\(631\) 21.9799 + 38.0704i 0.875008 + 1.51556i 0.856755 + 0.515724i \(0.172477\pi\)
0.0182532 + 0.999833i \(0.494190\pi\)
\(632\) −1.56954 + 8.90132i −0.0624330 + 0.354075i
\(633\) −8.32440 + 1.39508i −0.330865 + 0.0554493i
\(634\) 16.4287 + 5.97957i 0.652469 + 0.237479i
\(635\) −7.54218 42.7738i −0.299302 1.69743i
\(636\) −7.06381 + 1.18382i −0.280098 + 0.0469414i
\(637\) −0.305527 + 0.939944i −0.0121054 + 0.0372419i
\(638\) 0.286994 + 0.497088i 0.0113622 + 0.0196799i
\(639\) −42.2379 0.717024i −1.67090 0.0283650i
\(640\) −47.0667 −1.86048
\(641\) 30.7822 11.2038i 1.21582 0.442524i 0.347104 0.937827i \(-0.387165\pi\)
0.868720 + 0.495303i \(0.164943\pi\)
\(642\) 12.1781 + 34.3637i 0.480630 + 1.35623i
\(643\) 15.9951 + 5.82174i 0.630785 + 0.229587i 0.637573 0.770390i \(-0.279938\pi\)
−0.00678774 + 0.999977i \(0.502161\pi\)
\(644\) 9.64925 + 13.2827i 0.380234 + 0.523410i
\(645\) −0.368918 + 43.4670i −0.0145261 + 1.71151i
\(646\) −7.53021 + 2.74077i −0.296272 + 0.107834i
\(647\) 14.6339 + 25.3466i 0.575317 + 0.996479i 0.996007 + 0.0892745i \(0.0284548\pi\)
−0.420690 + 0.907205i \(0.638212\pi\)
\(648\) −14.0952 0.478694i −0.553711 0.0188049i
\(649\) −4.48291 + 7.76464i −0.175970 + 0.304789i
\(650\) 2.35629 + 1.97717i 0.0924215 + 0.0775508i
\(651\) 21.1810 + 1.66311i 0.830150 + 0.0651825i
\(652\) −1.56907 8.89865i −0.0614496 0.348498i
\(653\) 17.4521 14.6441i 0.682954 0.573066i −0.233914 0.972257i \(-0.575153\pi\)
0.916868 + 0.399191i \(0.130709\pi\)
\(654\) −0.962768 0.178200i −0.0376472 0.00696817i
\(655\) 23.6428 8.60527i 0.923800 0.336236i
\(656\) −8.20708 14.2151i −0.320433 0.555006i
\(657\) 19.6496 32.7379i 0.766604 1.27723i
\(658\) −1.93943 + 27.7121i −0.0756069 + 1.08033i
\(659\) −1.59882 + 0.581922i −0.0622810 + 0.0226684i −0.372973 0.927842i \(-0.621662\pi\)
0.310692 + 0.950511i \(0.399439\pi\)
\(660\) −6.93350 + 18.5580i −0.269886 + 0.722371i
\(661\) 14.6772 + 5.34207i 0.570877 + 0.207782i 0.611298 0.791400i \(-0.290648\pi\)
−0.0404209 + 0.999183i \(0.512870\pi\)
\(662\) −16.0977 5.85907i −0.625653 0.227719i
\(663\) −0.109337 0.132572i −0.00424630 0.00514865i
\(664\) −3.54344 + 1.28971i −0.137512 + 0.0500503i
\(665\) −4.97408 + 71.0734i −0.192886 + 2.75611i
\(666\) −0.781527 + 4.03092i −0.0302836 + 0.156195i
\(667\) 0.367656 + 0.636799i 0.0142357 + 0.0246569i
\(668\) −20.9351 + 7.61975i −0.810003 + 0.294817i
\(669\) 11.3088 + 31.9108i 0.437224 + 1.23374i
\(670\) −86.3688 + 72.4721i −3.33672 + 2.79984i
\(671\) 0.0935884 + 0.530766i 0.00361294 + 0.0204900i
\(672\) −14.6973 + 21.3930i −0.566960 + 0.825252i
\(673\) −27.8478 23.3671i −1.07346 0.900736i −0.0780940 0.996946i \(-0.524883\pi\)
−0.995361 + 0.0962102i \(0.969328\pi\)
\(674\) 19.2834 33.3997i 0.742767 1.28651i
\(675\) 62.8933 + 12.7487i 2.42076 + 0.490699i
\(676\) 7.21466 + 12.4961i 0.277487 + 0.480621i
\(677\) 30.0579 10.9402i 1.15522 0.420466i 0.307833 0.951440i \(-0.400396\pi\)
0.847388 + 0.530975i \(0.178174\pi\)
\(678\) 5.62592 3.18477i 0.216062 0.122311i
\(679\) −2.86416 3.94266i −0.109916 0.151305i
\(680\) −4.30993 1.56869i −0.165278 0.0601563i
\(681\) 20.9690 + 3.88119i 0.803535 + 0.148727i
\(682\) −18.9837 + 6.90949i −0.726922 + 0.264578i
\(683\) −1.48087 −0.0566638 −0.0283319 0.999599i \(-0.509020\pi\)
−0.0283319 + 0.999599i \(0.509020\pi\)
\(684\) −16.7492 + 13.5765i −0.640421 + 0.519111i
\(685\) −5.33912 9.24762i −0.203997 0.353333i
\(686\) 30.2885 + 12.2435i 1.15642 + 0.467458i
\(687\) 28.2534 + 34.2574i 1.07793 + 1.30700i
\(688\) −5.21820 29.5939i −0.198942 1.12826i
\(689\) 0.493542 + 0.179635i 0.0188024 + 0.00684353i
\(690\) −24.8625 + 66.5463i −0.946498 + 2.53337i
\(691\) 1.52814 8.66651i 0.0581332 0.329689i −0.941847 0.336043i \(-0.890911\pi\)
0.999980 + 0.00635346i \(0.00202238\pi\)
\(692\) 14.3790 + 24.9052i 0.546609 + 0.946755i
\(693\) −11.2525 16.0559i −0.427448 0.609911i
\(694\) −8.77388 + 15.1968i −0.333052 + 0.576863i
\(695\) 10.0749 + 8.45380i 0.382161 + 0.320671i
\(696\) −0.232136 + 0.271928i −0.00879908 + 0.0103074i
\(697\) −0.401568 2.27740i −0.0152105 0.0862628i
\(698\) 41.5867 + 15.1363i 1.57408 + 0.572918i
\(699\) −11.0538 + 6.25745i −0.418094 + 0.236678i
\(700\) 25.2337 26.1273i 0.953745 0.987518i
\(701\) 1.01529 0.0383469 0.0191734 0.999816i \(-0.493897\pi\)
0.0191734 + 0.999816i \(0.493897\pi\)
\(702\) −1.10395 0.675409i −0.0416658 0.0254917i
\(703\) −2.50807 4.34411i −0.0945937 0.163841i
\(704\) 0.00683708 0.0387750i 0.000257682 0.00146139i
\(705\) −37.3709 + 21.1553i −1.40747 + 0.796753i
\(706\) −3.03381 17.2056i −0.114179 0.647540i
\(707\) 12.6487 + 17.4116i 0.475704 + 0.654830i
\(708\) 6.87193 + 1.27193i 0.258263 + 0.0478022i
\(709\) 34.2643 + 28.7511i 1.28682 + 1.07977i 0.992265 + 0.124138i \(0.0396166\pi\)
0.294557 + 0.955634i \(0.404828\pi\)
\(710\) −103.464 −3.88293
\(711\) −3.29361 + 16.9876i −0.123520 + 0.637085i
\(712\) −1.41688 −0.0530998
\(713\) −24.3192 + 8.85147i −0.910762 + 0.331490i
\(714\) −4.62371 + 3.29933i −0.173038 + 0.123474i
\(715\) 1.11287 0.933808i 0.0416189 0.0349224i
\(716\) 3.77325 + 21.3991i 0.141013 + 0.799723i
\(717\) −16.3577 19.8338i −0.610890 0.740708i
\(718\) −22.3298 18.7369i −0.833340 0.699256i
\(719\) 5.26881 0.196493 0.0982467 0.995162i \(-0.468677\pi\)
0.0982467 + 0.995162i \(0.468677\pi\)
\(720\) −62.3152 1.05785i −2.32235 0.0394239i
\(721\) −14.0500 9.47806i −0.523251 0.352981i
\(722\) 6.98286 39.6017i 0.259875 1.47382i
\(723\) −10.1243 28.5683i −0.376525 1.06246i
\(724\) −0.544985 3.09077i −0.0202542 0.114867i
\(725\) 1.24624 1.04572i 0.0462841 0.0388369i
\(726\) −12.8967 7.59260i −0.478643 0.281788i
\(727\) 31.0047 + 26.0161i 1.14990 + 0.964882i 0.999717 0.0237758i \(-0.00756878\pi\)
0.150185 + 0.988658i \(0.452013\pi\)
\(728\) 0.526155 0.256585i 0.0195006 0.00950969i
\(729\) −26.9650 1.37432i −0.998704 0.0509007i
\(730\) 46.7579 80.9870i 1.73059 2.99746i
\(731\) 0.735175 4.16939i 0.0271914 0.154210i
\(732\) 0.365588 0.206955i 0.0135125 0.00764929i
\(733\) 23.1085 + 8.41079i 0.853530 + 0.310660i 0.731479 0.681864i \(-0.238830\pi\)
0.122052 + 0.992524i \(0.461053\pi\)
\(734\) 52.5972 + 19.1438i 1.94140 + 0.706610i
\(735\) 10.0746 + 49.4869i 0.371607 + 1.82535i
\(736\) 5.49004 31.1356i 0.202366 1.14767i
\(737\) 18.9520 + 32.8258i 0.698106 + 1.20915i
\(738\) −8.45076 15.2284i −0.311077 0.560564i
\(739\) −20.6453 + 35.7586i −0.759448 + 1.31540i 0.183684 + 0.982985i \(0.441198\pi\)
−0.943132 + 0.332417i \(0.892136\pi\)
\(740\) −0.623862 + 3.53810i −0.0229336 + 0.130063i
\(741\) 1.55930 0.261321i 0.0572823 0.00959987i
\(742\) 7.06218 15.8594i 0.259261 0.582219i
\(743\) −8.19507 + 6.87648i −0.300648 + 0.252274i −0.780614 0.625013i \(-0.785093\pi\)
0.479966 + 0.877287i \(0.340649\pi\)
\(744\) −8.00660 9.70804i −0.293536 0.355914i
\(745\) 40.2281 + 33.7554i 1.47384 + 1.23670i
\(746\) 21.1331 36.6037i 0.773739 1.34015i
\(747\) −6.82464 + 2.35357i −0.249700 + 0.0861126i
\(748\) 0.964765 1.67102i 0.0352753 0.0610986i
\(749\) −30.6324 7.63939i −1.11928 0.279137i
\(750\) 91.9766 + 17.0241i 3.35851 + 0.621631i
\(751\) 9.92649 8.32931i 0.362223 0.303941i −0.443453 0.896298i \(-0.646247\pi\)
0.805676 + 0.592357i \(0.201802\pi\)
\(752\) 22.7418 19.0827i 0.829309 0.695873i
\(753\) 0.194737 22.9445i 0.00709661 0.836142i
\(754\) −0.0308301 + 0.0112212i −0.00112277 + 0.000408654i
\(755\) −67.5716 −2.45918
\(756\) −8.86648 + 12.4477i −0.322471 + 0.452720i
\(757\) 28.7036 1.04325 0.521625 0.853175i \(-0.325326\pi\)
0.521625 + 0.853175i \(0.325326\pi\)
\(758\) −30.7416 + 11.1890i −1.11658 + 0.406403i
\(759\) 20.5807 + 12.1163i 0.747033 + 0.439795i
\(760\) 32.3260 27.1247i 1.17259 0.983918i
\(761\) −28.7049 + 24.0862i −1.04055 + 0.873125i −0.992068 0.125699i \(-0.959883\pi\)
−0.0484819 + 0.998824i \(0.515438\pi\)
\(762\) 10.6420 + 30.0291i 0.385518 + 1.08784i
\(763\) 0.589015 0.609872i 0.0213238 0.0220789i
\(764\) 4.53352 7.85229i 0.164017 0.284086i
\(765\) −8.19895 3.14278i −0.296434 0.113627i
\(766\) 19.9660 34.5822i 0.721402 1.24951i
\(767\) −0.392583 0.329416i −0.0141753 0.0118945i