Properties

Label 189.2.u.a.142.7
Level $189$
Weight $2$
Character 189.142
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(4,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([2, 12]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.u (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 142.7
Character \(\chi\) \(=\) 189.142
Dual form 189.2.u.a.4.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.266701 + 1.51254i) q^{2} +(-1.44858 + 0.949540i) q^{3} +(-0.337258 - 0.122752i) q^{4} +(3.71318 + 1.35149i) q^{5} +(-1.04988 - 2.44427i) q^{6} +(2.56740 - 0.639091i) q^{7} +(-1.26026 + 2.18283i) q^{8} +(1.19675 - 2.75096i) q^{9} +O(q^{10})\) \(q+(-0.266701 + 1.51254i) q^{2} +(-1.44858 + 0.949540i) q^{3} +(-0.337258 - 0.122752i) q^{4} +(3.71318 + 1.35149i) q^{5} +(-1.04988 - 2.44427i) q^{6} +(2.56740 - 0.639091i) q^{7} +(-1.26026 + 2.18283i) q^{8} +(1.19675 - 2.75096i) q^{9} +(-3.03449 + 5.25589i) q^{10} +(-0.965994 + 0.351593i) q^{11} +(0.605101 - 0.142424i) q^{12} +(-3.84523 - 1.39955i) q^{13} +(0.281920 + 4.05374i) q^{14} +(-6.66212 + 1.56808i) q^{15} +(-3.51537 - 2.94975i) q^{16} +(0.513661 - 0.889686i) q^{17} +(3.84176 + 2.54381i) q^{18} +(-2.28787 - 3.96272i) q^{19} +(-1.08640 - 0.911600i) q^{20} +(-3.11224 + 3.36362i) q^{21} +(-0.274166 - 1.55487i) q^{22} +(0.114726 + 0.650644i) q^{23} +(-0.247105 - 4.35866i) q^{24} +(8.13099 + 6.82271i) q^{25} +(3.14240 - 5.44279i) q^{26} +(0.878570 + 5.12134i) q^{27} +(-0.944326 - 0.0996150i) q^{28} +(6.27669 - 2.28453i) q^{29} +(-0.594988 - 10.4949i) q^{30} +(-8.69005 - 3.16292i) q^{31} +(1.53751 - 1.29012i) q^{32} +(1.06546 - 1.42656i) q^{33} +(1.20869 + 1.01421i) q^{34} +(10.3970 + 1.09675i) q^{35} +(-0.741298 + 0.780881i) q^{36} +3.18970 q^{37} +(6.60394 - 2.40364i) q^{38} +(6.89903 - 1.62385i) q^{39} +(-7.62964 + 6.40203i) q^{40} +(-5.19385 - 1.89041i) q^{41} +(-4.25757 - 5.60446i) q^{42} +(0.455851 - 2.58526i) q^{43} +0.368948 q^{44} +(8.16163 - 8.59744i) q^{45} -1.01472 q^{46} +(-2.95417 + 1.07523i) q^{47} +(7.89319 + 0.934948i) q^{48} +(6.18313 - 3.28161i) q^{49} +(-12.4882 + 10.4788i) q^{50} +(0.100716 + 1.77652i) q^{51} +(1.12504 + 0.944017i) q^{52} +(2.27046 + 3.93255i) q^{53} +(-7.98054 - 0.0369978i) q^{54} -4.06209 q^{55} +(-1.84056 + 6.40963i) q^{56} +(7.07692 + 3.56787i) q^{57} +(1.78144 + 10.1030i) q^{58} +(-5.31915 + 4.46329i) q^{59} +(2.43934 + 0.288939i) q^{60} +(12.1841 - 4.43464i) q^{61} +(7.10169 - 12.3005i) q^{62} +(1.31442 - 7.82766i) q^{63} +(-3.04769 - 5.27875i) q^{64} +(-12.3866 - 10.3936i) q^{65} +(1.87357 + 1.99202i) q^{66} +(1.41867 + 8.04565i) q^{67} +(-0.282447 + 0.237001i) q^{68} +(-0.784002 - 0.833571i) q^{69} +(-4.43177 + 15.4333i) q^{70} +(0.478414 + 0.828638i) q^{71} +(4.49668 + 6.07922i) q^{72} +2.34044 q^{73} +(-0.850698 + 4.82455i) q^{74} +(-18.2568 - 2.16252i) q^{75} +(0.285173 + 1.61730i) q^{76} +(-2.25540 + 1.52004i) q^{77} +(0.616147 + 10.8681i) q^{78} +(0.996418 - 5.65097i) q^{79} +(-9.06667 - 15.7039i) q^{80} +(-6.13559 - 6.58441i) q^{81} +(4.24452 - 7.35172i) q^{82} +(-0.970385 + 0.353191i) q^{83} +(1.46252 - 0.752376i) q^{84} +(3.10972 - 2.60936i) q^{85} +(3.78873 + 1.37898i) q^{86} +(-6.92302 + 9.26929i) q^{87} +(0.449933 - 2.55170i) q^{88} +(-7.43653 - 12.8804i) q^{89} +(10.8272 + 14.6377i) q^{90} +(-10.7667 - 1.13576i) q^{91} +(0.0411755 - 0.233518i) q^{92} +(15.5915 - 3.66982i) q^{93} +(-0.838447 - 4.75507i) q^{94} +(-3.13973 - 17.8063i) q^{95} +(-1.00217 + 3.32877i) q^{96} +(-0.448435 + 2.54320i) q^{97} +(3.31451 + 10.2274i) q^{98} +(-0.188831 + 3.07818i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} - 15 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} - 15 q^{9} + 3 q^{10} - 15 q^{11} - 3 q^{12} - 12 q^{13} - 30 q^{14} + 9 q^{16} + 27 q^{17} - 3 q^{18} + 3 q^{19} - 18 q^{20} + 15 q^{21} - 12 q^{22} - 36 q^{23} - 72 q^{24} - 3 q^{25} + 30 q^{26} - 12 q^{27} - 12 q^{28} - 30 q^{29} - 3 q^{30} - 3 q^{31} - 75 q^{32} + 15 q^{33} - 18 q^{34} + 15 q^{35} - 60 q^{36} - 6 q^{37} + 69 q^{38} + 51 q^{39} + 51 q^{40} - 39 q^{42} - 12 q^{43} - 6 q^{44} - 21 q^{45} - 6 q^{46} - 21 q^{47} + 90 q^{48} - 42 q^{49} - 39 q^{50} + 33 q^{51} + 9 q^{52} + 9 q^{53} - 9 q^{54} - 24 q^{55} + 111 q^{56} - 18 q^{57} - 3 q^{58} + 27 q^{59} - 63 q^{60} - 21 q^{61} + 75 q^{62} + 63 q^{63} - 30 q^{64} - 90 q^{65} - 3 q^{66} - 3 q^{67} - 30 q^{68} - 6 q^{69} + 39 q^{70} - 18 q^{71} + 183 q^{72} - 42 q^{73} + 51 q^{74} - 45 q^{75} - 24 q^{76} + 15 q^{77} - 30 q^{78} + 15 q^{79} + 102 q^{80} - 87 q^{81} - 6 q^{82} - 42 q^{83} + 135 q^{84} - 63 q^{85} - 93 q^{86} + 75 q^{87} - 51 q^{88} + 75 q^{89} - 39 q^{90} - 21 q^{91} - 66 q^{92} + 81 q^{93} + 33 q^{94} + 15 q^{95} - 171 q^{96} - 12 q^{97} - 36 q^{98} + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.266701 + 1.51254i −0.188586 + 1.06953i 0.732674 + 0.680580i \(0.238272\pi\)
−0.921260 + 0.388946i \(0.872839\pi\)
\(3\) −1.44858 + 0.949540i −0.836336 + 0.548217i
\(4\) −0.337258 0.122752i −0.168629 0.0613759i
\(5\) 3.71318 + 1.35149i 1.66059 + 0.604404i 0.990455 0.137839i \(-0.0440156\pi\)
0.670131 + 0.742243i \(0.266238\pi\)
\(6\) −1.04988 2.44427i −0.428611 0.997870i
\(7\) 2.56740 0.639091i 0.970387 0.241554i
\(8\) −1.26026 + 2.18283i −0.445568 + 0.771747i
\(9\) 1.19675 2.75096i 0.398916 0.916988i
\(10\) −3.03449 + 5.25589i −0.959590 + 1.66206i
\(11\) −0.965994 + 0.351593i −0.291258 + 0.106009i −0.483517 0.875335i \(-0.660641\pi\)
0.192259 + 0.981344i \(0.438419\pi\)
\(12\) 0.605101 0.142424i 0.174678 0.0411144i
\(13\) −3.84523 1.39955i −1.06647 0.388165i −0.251617 0.967827i \(-0.580962\pi\)
−0.814857 + 0.579662i \(0.803185\pi\)
\(14\) 0.281920 + 4.05374i 0.0753462 + 1.08341i
\(15\) −6.66212 + 1.56808i −1.72015 + 0.404877i
\(16\) −3.51537 2.94975i −0.878843 0.737437i
\(17\) 0.513661 0.889686i 0.124581 0.215781i −0.796988 0.603995i \(-0.793575\pi\)
0.921569 + 0.388214i \(0.126908\pi\)
\(18\) 3.84176 + 2.54381i 0.905512 + 0.599582i
\(19\) −2.28787 3.96272i −0.524874 0.909109i −0.999580 0.0289648i \(-0.990779\pi\)
0.474706 0.880144i \(-0.342554\pi\)
\(20\) −1.08640 0.911600i −0.242927 0.203840i
\(21\) −3.11224 + 3.36362i −0.679146 + 0.734003i
\(22\) −0.274166 1.55487i −0.0584524 0.331500i
\(23\) 0.114726 + 0.650644i 0.0239221 + 0.135669i 0.994430 0.105401i \(-0.0336127\pi\)
−0.970508 + 0.241070i \(0.922502\pi\)
\(24\) −0.247105 4.35866i −0.0504402 0.889708i
\(25\) 8.13099 + 6.82271i 1.62620 + 1.36454i
\(26\) 3.14240 5.44279i 0.616275 1.06742i
\(27\) 0.878570 + 5.12134i 0.169081 + 0.985602i
\(28\) −0.944326 0.0996150i −0.178461 0.0188255i
\(29\) 6.27669 2.28453i 1.16555 0.424226i 0.314475 0.949266i \(-0.398172\pi\)
0.851078 + 0.525039i \(0.175949\pi\)
\(30\) −0.594988 10.4949i −0.108629 1.91610i
\(31\) −8.69005 3.16292i −1.56078 0.568077i −0.589865 0.807502i \(-0.700819\pi\)
−0.970915 + 0.239425i \(0.923041\pi\)
\(32\) 1.53751 1.29012i 0.271796 0.228064i
\(33\) 1.06546 1.42656i 0.185474 0.248332i
\(34\) 1.20869 + 1.01421i 0.207289 + 0.173936i
\(35\) 10.3970 + 1.09675i 1.75741 + 0.185385i
\(36\) −0.741298 + 0.780881i −0.123550 + 0.130147i
\(37\) 3.18970 0.524384 0.262192 0.965016i \(-0.415555\pi\)
0.262192 + 0.965016i \(0.415555\pi\)
\(38\) 6.60394 2.40364i 1.07130 0.389921i
\(39\) 6.89903 1.62385i 1.10473 0.260023i
\(40\) −7.62964 + 6.40203i −1.20635 + 1.01225i
\(41\) −5.19385 1.89041i −0.811143 0.295232i −0.0970471 0.995280i \(-0.530940\pi\)
−0.714096 + 0.700048i \(0.753162\pi\)
\(42\) −4.25757 5.60446i −0.656958 0.864787i
\(43\) 0.455851 2.58526i 0.0695166 0.394248i −0.930119 0.367258i \(-0.880297\pi\)
0.999636 0.0269903i \(-0.00859232\pi\)
\(44\) 0.368948 0.0556209
\(45\) 8.16163 8.59744i 1.21666 1.28163i
\(46\) −1.01472 −0.149613
\(47\) −2.95417 + 1.07523i −0.430911 + 0.156839i −0.548364 0.836240i \(-0.684749\pi\)
0.117453 + 0.993078i \(0.462527\pi\)
\(48\) 7.89319 + 0.934948i 1.13928 + 0.134948i
\(49\) 6.18313 3.28161i 0.883304 0.468801i
\(50\) −12.4882 + 10.4788i −1.76609 + 1.48193i
\(51\) 0.100716 + 1.77652i 0.0141031 + 0.248763i
\(52\) 1.12504 + 0.944017i 0.156014 + 0.130912i
\(53\) 2.27046 + 3.93255i 0.311872 + 0.540178i 0.978768 0.204973i \(-0.0657107\pi\)
−0.666896 + 0.745151i \(0.732377\pi\)
\(54\) −7.98054 0.0369978i −1.08601 0.00503476i
\(55\) −4.06209 −0.547732
\(56\) −1.84056 + 6.40963i −0.245956 + 0.856523i
\(57\) 7.07692 + 3.56787i 0.937361 + 0.472576i
\(58\) 1.78144 + 10.1030i 0.233914 + 1.32659i
\(59\) −5.31915 + 4.46329i −0.692494 + 0.581071i −0.919627 0.392792i \(-0.871509\pi\)
0.227133 + 0.973864i \(0.427065\pi\)
\(60\) 2.43934 + 0.288939i 0.314917 + 0.0373019i
\(61\) 12.1841 4.43464i 1.56001 0.567798i 0.589273 0.807934i \(-0.299414\pi\)
0.970739 + 0.240136i \(0.0771922\pi\)
\(62\) 7.10169 12.3005i 0.901915 1.56216i
\(63\) 1.31442 7.82766i 0.165601 0.986193i
\(64\) −3.04769 5.27875i −0.380961 0.659844i
\(65\) −12.3866 10.3936i −1.53636 1.28916i
\(66\) 1.87357 + 1.99202i 0.230620 + 0.245201i
\(67\) 1.41867 + 8.04565i 0.173318 + 0.982933i 0.940068 + 0.340987i \(0.110761\pi\)
−0.766750 + 0.641945i \(0.778128\pi\)
\(68\) −0.282447 + 0.237001i −0.0342517 + 0.0287406i
\(69\) −0.784002 0.833571i −0.0943828 0.100350i
\(70\) −4.43177 + 15.4333i −0.529697 + 1.84463i
\(71\) 0.478414 + 0.828638i 0.0567773 + 0.0983412i 0.893017 0.450023i \(-0.148584\pi\)
−0.836240 + 0.548364i \(0.815251\pi\)
\(72\) 4.49668 + 6.07922i 0.529938 + 0.716443i
\(73\) 2.34044 0.273928 0.136964 0.990576i \(-0.456266\pi\)
0.136964 + 0.990576i \(0.456266\pi\)
\(74\) −0.850698 + 4.82455i −0.0988917 + 0.560843i
\(75\) −18.2568 2.16252i −2.10811 0.249706i
\(76\) 0.285173 + 1.61730i 0.0327116 + 0.185517i
\(77\) −2.25540 + 1.52004i −0.257026 + 0.173225i
\(78\) 0.616147 + 10.8681i 0.0697649 + 1.23057i
\(79\) 0.996418 5.65097i 0.112106 0.635784i −0.876037 0.482244i \(-0.839822\pi\)
0.988143 0.153539i \(-0.0490672\pi\)
\(80\) −9.06667 15.7039i −1.01368 1.75575i
\(81\) −6.13559 6.58441i −0.681732 0.731602i
\(82\) 4.24452 7.35172i 0.468729 0.811862i
\(83\) −0.970385 + 0.353191i −0.106514 + 0.0387678i −0.394727 0.918798i \(-0.629161\pi\)
0.288214 + 0.957566i \(0.406939\pi\)
\(84\) 1.46252 0.752376i 0.159574 0.0820909i
\(85\) 3.10972 2.60936i 0.337296 0.283025i
\(86\) 3.78873 + 1.37898i 0.408549 + 0.148700i
\(87\) −6.92302 + 9.26929i −0.742225 + 0.993772i
\(88\) 0.449933 2.55170i 0.0479631 0.272012i
\(89\) −7.43653 12.8804i −0.788271 1.36532i −0.927026 0.374998i \(-0.877643\pi\)
0.138755 0.990327i \(-0.455690\pi\)
\(90\) 10.8272 + 14.6377i 1.14129 + 1.54295i
\(91\) −10.7667 1.13576i −1.12866 0.119060i
\(92\) 0.0411755 0.233518i 0.00429284 0.0243459i
\(93\) 15.5915 3.66982i 1.61677 0.380543i
\(94\) −0.838447 4.75507i −0.0864792 0.490448i
\(95\) −3.13973 17.8063i −0.322130 1.82689i
\(96\) −1.00217 + 3.32877i −0.102284 + 0.339741i
\(97\) −0.448435 + 2.54320i −0.0455316 + 0.258223i −0.999073 0.0430380i \(-0.986296\pi\)
0.953542 + 0.301261i \(0.0974075\pi\)
\(98\) 3.31451 + 10.2274i 0.334816 + 1.03313i
\(99\) −0.188831 + 3.07818i −0.0189783 + 0.309369i
\(100\) −1.90474 3.29910i −0.190474 0.329910i
\(101\) −2.16311 + 12.2676i −0.215238 + 1.22067i 0.665256 + 0.746615i \(0.268322\pi\)
−0.880494 + 0.474058i \(0.842789\pi\)
\(102\) −2.71392 0.321463i −0.268718 0.0318296i
\(103\) 10.4317 + 3.79681i 1.02786 + 0.374111i 0.800266 0.599645i \(-0.204691\pi\)
0.227595 + 0.973756i \(0.426914\pi\)
\(104\) 7.90096 6.62969i 0.774753 0.650095i
\(105\) −16.1022 + 8.28360i −1.57141 + 0.808397i
\(106\) −6.55367 + 2.38534i −0.636549 + 0.231685i
\(107\) −3.10276 + 5.37415i −0.299956 + 0.519538i −0.976125 0.217207i \(-0.930305\pi\)
0.676170 + 0.736746i \(0.263639\pi\)
\(108\) 0.332349 1.83506i 0.0319803 0.176578i
\(109\) 3.36985 + 5.83675i 0.322773 + 0.559059i 0.981059 0.193709i \(-0.0620517\pi\)
−0.658286 + 0.752768i \(0.728718\pi\)
\(110\) 1.08336 6.14406i 0.103295 0.585813i
\(111\) −4.62053 + 3.02875i −0.438561 + 0.287476i
\(112\) −10.9105 5.32655i −1.03095 0.503312i
\(113\) 2.24063 + 12.7072i 0.210781 + 1.19540i 0.888080 + 0.459689i \(0.152039\pi\)
−0.677299 + 0.735708i \(0.736850\pi\)
\(114\) −7.28396 + 9.75256i −0.682205 + 0.913411i
\(115\) −0.453339 + 2.57101i −0.0422741 + 0.239748i
\(116\) −2.39729 −0.222583
\(117\) −8.45187 + 8.90317i −0.781376 + 0.823099i
\(118\) −5.33228 9.23578i −0.490876 0.850222i
\(119\) 0.750184 2.61246i 0.0687693 0.239484i
\(120\) 4.97313 16.5185i 0.453983 1.50792i
\(121\) −7.61696 + 6.39139i −0.692451 + 0.581035i
\(122\) 3.45806 + 19.6116i 0.313078 + 1.77555i
\(123\) 9.31871 2.19337i 0.840239 0.197770i
\(124\) 2.54253 + 2.13344i 0.228326 + 0.191588i
\(125\) 11.0923 + 19.2124i 0.992127 + 1.71841i
\(126\) 11.4891 + 4.07576i 1.02353 + 0.363097i
\(127\) 3.75782 6.50873i 0.333452 0.577556i −0.649734 0.760162i \(-0.725120\pi\)
0.983186 + 0.182605i \(0.0584531\pi\)
\(128\) 12.5692 4.57482i 1.11097 0.404360i
\(129\) 1.79447 + 4.17780i 0.157995 + 0.367834i
\(130\) 19.0242 15.9632i 1.66853 1.40006i
\(131\) 0.000374193 0.00212215i 3.26934e−5 0.000185413i 0.984824 0.173555i \(-0.0555256\pi\)
−0.984791 + 0.173741i \(0.944414\pi\)
\(132\) −0.534449 + 0.350331i −0.0465178 + 0.0304924i
\(133\) −8.40643 8.71173i −0.728930 0.755403i
\(134\) −12.5477 −1.08396
\(135\) −3.65914 + 20.2038i −0.314929 + 1.73887i
\(136\) 1.29469 + 2.24247i 0.111019 + 0.192290i
\(137\) −15.8189 13.2736i −1.35150 1.13404i −0.978508 0.206208i \(-0.933888\pi\)
−0.372991 0.927835i \(-0.621668\pi\)
\(138\) 1.46990 0.963519i 0.125126 0.0820202i
\(139\) 4.80878 4.03504i 0.407875 0.342248i −0.415653 0.909523i \(-0.636447\pi\)
0.823528 + 0.567275i \(0.192003\pi\)
\(140\) −3.37183 1.64613i −0.284971 0.139124i
\(141\) 3.25837 4.36266i 0.274404 0.367402i
\(142\) −1.38094 + 0.502621i −0.115886 + 0.0421790i
\(143\) 4.20654 0.351768
\(144\) −12.3217 + 6.14056i −1.02681 + 0.511713i
\(145\) 26.3940 2.19190
\(146\) −0.624198 + 3.54000i −0.0516590 + 0.292973i
\(147\) −5.84071 + 10.6248i −0.481734 + 0.876318i
\(148\) −1.07575 0.391542i −0.0884263 0.0321845i
\(149\) 1.00778 0.845625i 0.0825602 0.0692763i −0.600574 0.799570i \(-0.705061\pi\)
0.683134 + 0.730293i \(0.260617\pi\)
\(150\) 8.14000 27.0373i 0.664628 2.20759i
\(151\) 11.9386 4.34528i 0.971546 0.353614i 0.192998 0.981199i \(-0.438179\pi\)
0.778548 + 0.627585i \(0.215957\pi\)
\(152\) 11.5332 0.935470
\(153\) −1.83277 2.47779i −0.148171 0.200318i
\(154\) −1.69760 3.81677i −0.136797 0.307564i
\(155\) −27.9931 23.4890i −2.24846 1.88668i
\(156\) −2.52608 0.299214i −0.202248 0.0239563i
\(157\) −16.1725 + 13.5703i −1.29070 + 1.08303i −0.299031 + 0.954243i \(0.596664\pi\)
−0.991672 + 0.128786i \(0.958892\pi\)
\(158\) 8.28156 + 3.01424i 0.658846 + 0.239800i
\(159\) −7.02305 3.54071i −0.556964 0.280797i
\(160\) 7.45263 2.71254i 0.589182 0.214445i
\(161\) 0.710369 + 1.59715i 0.0559849 + 0.125873i
\(162\) 11.5956 7.52425i 0.911032 0.591161i
\(163\) 1.90159 3.29365i 0.148944 0.257979i −0.781893 0.623412i \(-0.785746\pi\)
0.930837 + 0.365433i \(0.119079\pi\)
\(164\) 1.51962 + 1.27511i 0.118662 + 0.0995693i
\(165\) 5.88424 3.85711i 0.458088 0.300276i
\(166\) −0.275412 1.56194i −0.0213762 0.121230i
\(167\) −3.56546 20.2207i −0.275904 1.56473i −0.736077 0.676898i \(-0.763324\pi\)
0.460173 0.887829i \(-0.347787\pi\)
\(168\) −3.42000 11.0325i −0.263859 0.851178i
\(169\) 2.86846 + 2.40693i 0.220651 + 0.185148i
\(170\) 3.11740 + 5.39949i 0.239093 + 0.414122i
\(171\) −13.6393 + 1.55149i −1.04302 + 0.118645i
\(172\) −0.471085 + 0.815942i −0.0359199 + 0.0622150i
\(173\) 5.70462 + 4.78675i 0.433714 + 0.363930i 0.833351 0.552744i \(-0.186419\pi\)
−0.399637 + 0.916674i \(0.630864\pi\)
\(174\) −12.1738 12.9435i −0.922891 0.981241i
\(175\) 25.2359 + 12.3202i 1.90765 + 0.931320i
\(176\) 4.43294 + 1.61346i 0.334145 + 0.121619i
\(177\) 3.46711 11.5162i 0.260604 0.865608i
\(178\) 21.4655 7.81281i 1.60891 0.585594i
\(179\) −9.27576 + 16.0661i −0.693302 + 1.20084i 0.277447 + 0.960741i \(0.410512\pi\)
−0.970750 + 0.240094i \(0.922822\pi\)
\(180\) −3.80793 + 1.89770i −0.283826 + 0.141446i
\(181\) 2.32939 4.03463i 0.173142 0.299891i −0.766374 0.642394i \(-0.777941\pi\)
0.939517 + 0.342503i \(0.111275\pi\)
\(182\) 4.58937 15.9821i 0.340186 1.18467i
\(183\) −13.4387 + 17.9932i −0.993417 + 1.33010i
\(184\) −1.56483 0.569552i −0.115361 0.0419879i
\(185\) 11.8440 + 4.31085i 0.870785 + 0.316940i
\(186\) 1.39247 + 24.5615i 0.102101 + 1.80094i
\(187\) −0.183386 + 1.04003i −0.0134105 + 0.0760546i
\(188\) 1.12830 0.0822901
\(189\) 5.52864 + 12.5871i 0.402150 + 0.915574i
\(190\) 27.7701 2.01466
\(191\) −2.34002 + 13.2709i −0.169318 + 0.960251i 0.775182 + 0.631738i \(0.217658\pi\)
−0.944500 + 0.328512i \(0.893453\pi\)
\(192\) 9.42720 + 4.75277i 0.680349 + 0.343002i
\(193\) −19.9632 7.26601i −1.43698 0.523019i −0.498059 0.867143i \(-0.665954\pi\)
−0.938924 + 0.344124i \(0.888176\pi\)
\(194\) −3.72709 1.35655i −0.267589 0.0973946i
\(195\) 27.8120 + 3.29433i 1.99166 + 0.235912i
\(196\) −2.48813 + 0.347758i −0.177724 + 0.0248399i
\(197\) 3.33745 5.78063i 0.237783 0.411853i −0.722295 0.691585i \(-0.756913\pi\)
0.960078 + 0.279733i \(0.0902459\pi\)
\(198\) −4.60551 1.10657i −0.327299 0.0786405i
\(199\) 5.52535 9.57019i 0.391682 0.678413i −0.600990 0.799257i \(-0.705227\pi\)
0.992672 + 0.120844i \(0.0385600\pi\)
\(200\) −25.1400 + 9.15019i −1.77766 + 0.647016i
\(201\) −9.69471 10.3077i −0.683812 0.727046i
\(202\) −17.9783 6.54358i −1.26495 0.460405i
\(203\) 14.6548 9.87669i 1.02856 0.693208i
\(204\) 0.184104 0.611508i 0.0128898 0.0428141i
\(205\) −16.7309 14.0389i −1.16853 0.980516i
\(206\) −8.52496 + 14.7657i −0.593962 + 1.02877i
\(207\) 1.92720 + 0.463049i 0.133949 + 0.0321842i
\(208\) 9.38910 + 16.2624i 0.651017 + 1.12759i
\(209\) 3.60334 + 3.02356i 0.249248 + 0.209144i
\(210\) −8.23479 26.5645i −0.568254 1.83312i
\(211\) −0.562697 3.19121i −0.0387377 0.219692i 0.959294 0.282411i \(-0.0911341\pi\)
−0.998031 + 0.0627185i \(0.980023\pi\)
\(212\) −0.283003 1.60499i −0.0194367 0.110231i
\(213\) −1.47984 0.746072i −0.101397 0.0511200i
\(214\) −7.30109 6.12634i −0.499092 0.418788i
\(215\) 5.18661 8.98346i 0.353724 0.612667i
\(216\) −12.2862 4.53644i −0.835973 0.308666i
\(217\) −24.3323 2.56676i −1.65178 0.174243i
\(218\) −9.72705 + 3.54035i −0.658799 + 0.239783i
\(219\) −3.39031 + 2.22234i −0.229096 + 0.150172i
\(220\) 1.36997 + 0.498628i 0.0923634 + 0.0336175i
\(221\) −3.22030 + 2.70215i −0.216621 + 0.181767i
\(222\) −3.34880 7.79650i −0.224757 0.523267i
\(223\) −4.05086 3.39907i −0.271265 0.227619i 0.496999 0.867751i \(-0.334435\pi\)
−0.768265 + 0.640132i \(0.778880\pi\)
\(224\) 3.12290 4.29487i 0.208657 0.286963i
\(225\) 28.4997 14.2030i 1.89998 0.946866i
\(226\) −19.8178 −1.31826
\(227\) 23.4134 8.52176i 1.55400 0.565609i 0.584648 0.811287i \(-0.301233\pi\)
0.969351 + 0.245678i \(0.0790106\pi\)
\(228\) −1.94878 2.07200i −0.129061 0.137221i
\(229\) −7.51971 + 6.30978i −0.496916 + 0.416962i −0.856497 0.516152i \(-0.827364\pi\)
0.359581 + 0.933114i \(0.382920\pi\)
\(230\) −3.76785 1.37138i −0.248445 0.0904264i
\(231\) 1.82378 4.34348i 0.119996 0.285780i
\(232\) −2.92351 + 16.5801i −0.191938 + 1.08853i
\(233\) −13.4934 −0.883979 −0.441990 0.897020i \(-0.645727\pi\)
−0.441990 + 0.897020i \(0.645727\pi\)
\(234\) −11.2123 15.1583i −0.732969 0.990927i
\(235\) −12.4226 −0.810358
\(236\) 2.34180 0.852346i 0.152438 0.0554830i
\(237\) 3.92243 + 9.13200i 0.254789 + 0.593187i
\(238\) 3.75137 + 1.83143i 0.243165 + 0.118714i
\(239\) 3.07319 2.57871i 0.198788 0.166803i −0.537960 0.842970i \(-0.680805\pi\)
0.736748 + 0.676168i \(0.236360\pi\)
\(240\) 28.0453 + 14.1392i 1.81032 + 0.912681i
\(241\) −9.43228 7.91462i −0.607587 0.509826i 0.286287 0.958144i \(-0.407579\pi\)
−0.893874 + 0.448318i \(0.852023\pi\)
\(242\) −7.63577 13.2255i −0.490846 0.850170i
\(243\) 15.1400 + 3.71204i 0.971234 + 0.238127i
\(244\) −4.65354 −0.297912
\(245\) 27.3941 3.82879i 1.75015 0.244613i
\(246\) 0.832245 + 14.6799i 0.0530620 + 0.935955i
\(247\) 3.25139 + 18.4395i 0.206881 + 1.17328i
\(248\) 17.8558 14.9828i 1.13385 0.951410i
\(249\) 1.07031 1.43304i 0.0678280 0.0908155i
\(250\) −32.0179 + 11.6536i −2.02499 + 0.737036i
\(251\) −8.59559 + 14.8880i −0.542549 + 0.939722i 0.456208 + 0.889873i \(0.349207\pi\)
−0.998757 + 0.0498487i \(0.984126\pi\)
\(252\) −1.40416 + 2.47859i −0.0884536 + 0.156137i
\(253\) −0.339587 0.588182i −0.0213496 0.0369787i
\(254\) 8.84249 + 7.41973i 0.554827 + 0.465555i
\(255\) −2.02697 + 6.73266i −0.126934 + 0.421616i
\(256\) 1.45046 + 8.22596i 0.0906537 + 0.514123i
\(257\) −13.6306 + 11.4375i −0.850256 + 0.713449i −0.959846 0.280527i \(-0.909491\pi\)
0.109590 + 0.993977i \(0.465046\pi\)
\(258\) −6.79766 + 1.59999i −0.423204 + 0.0996107i
\(259\) 8.18926 2.03851i 0.508856 0.126667i
\(260\) 2.90164 + 5.02578i 0.179952 + 0.311686i
\(261\) 1.22696 20.0010i 0.0759469 1.23803i
\(262\) −0.00330964 −0.000204470
\(263\) 0.710104 4.02720i 0.0437869 0.248328i −0.955056 0.296426i \(-0.904205\pi\)
0.998843 + 0.0480985i \(0.0153162\pi\)
\(264\) 1.77118 + 4.12356i 0.109008 + 0.253788i
\(265\) 3.11584 + 17.6708i 0.191404 + 1.08551i
\(266\) 15.4188 10.3916i 0.945389 0.637151i
\(267\) 23.0029 + 11.5970i 1.40775 + 0.709727i
\(268\) 0.509162 2.88760i 0.0311020 0.176388i
\(269\) −4.51787 7.82518i −0.275459 0.477110i 0.694792 0.719211i \(-0.255497\pi\)
−0.970251 + 0.242102i \(0.922163\pi\)
\(270\) −29.5832 10.9230i −1.80038 0.664752i
\(271\) −14.7472 + 25.5429i −0.895828 + 1.55162i −0.0630509 + 0.998010i \(0.520083\pi\)
−0.832777 + 0.553609i \(0.813250\pi\)
\(272\) −4.43006 + 1.61241i −0.268612 + 0.0977667i
\(273\) 16.6748 8.57818i 1.00921 0.519175i
\(274\) 24.2958 20.3866i 1.46776 1.23160i
\(275\) −10.2533 3.73190i −0.618297 0.225042i
\(276\) 0.162089 + 0.377366i 0.00975659 + 0.0227148i
\(277\) −1.72756 + 9.79746i −0.103799 + 0.588672i 0.887895 + 0.460047i \(0.152167\pi\)
−0.991693 + 0.128625i \(0.958944\pi\)
\(278\) 4.82065 + 8.34961i 0.289123 + 0.500776i
\(279\) −19.1009 + 20.1208i −1.14354 + 1.20460i
\(280\) −15.4969 + 21.3126i −0.926116 + 1.27367i
\(281\) 1.64701 9.34066i 0.0982524 0.557217i −0.895450 0.445163i \(-0.853146\pi\)
0.993702 0.112054i \(-0.0357431\pi\)
\(282\) 5.72968 + 6.09194i 0.341198 + 0.362770i
\(283\) 3.98159 + 22.5807i 0.236681 + 1.34228i 0.839045 + 0.544062i \(0.183114\pi\)
−0.602364 + 0.798221i \(0.705774\pi\)
\(284\) −0.0596322 0.338191i −0.00353852 0.0200679i
\(285\) 21.4560 + 22.8125i 1.27094 + 1.35130i
\(286\) −1.12189 + 6.36255i −0.0663387 + 0.376226i
\(287\) −14.5429 1.53410i −0.858437 0.0905548i
\(288\) −1.70907 5.77358i −0.100708 0.340211i
\(289\) 7.97231 + 13.8084i 0.468959 + 0.812261i
\(290\) −7.03932 + 39.9220i −0.413363 + 2.34430i
\(291\) −1.76528 4.10982i −0.103482 0.240922i
\(292\) −0.789331 0.287293i −0.0461921 0.0168126i
\(293\) −16.0403 + 13.4594i −0.937083 + 0.786306i −0.977075 0.212894i \(-0.931711\pi\)
0.0399926 + 0.999200i \(0.487267\pi\)
\(294\) −14.5127 11.6679i −0.846396 0.680488i
\(295\) −25.7831 + 9.38426i −1.50115 + 0.546373i
\(296\) −4.01985 + 6.96258i −0.233649 + 0.404692i
\(297\) −2.64932 4.63828i −0.153729 0.269141i
\(298\) 1.01026 + 1.74983i 0.0585231 + 0.101365i
\(299\) 0.469460 2.66244i 0.0271496 0.153973i
\(300\) 5.89179 + 2.97038i 0.340163 + 0.171495i
\(301\) −0.481862 6.92874i −0.0277741 0.399366i
\(302\) 3.38837 + 19.2164i 0.194979 + 1.10578i
\(303\) −8.51516 19.8245i −0.489183 1.13889i
\(304\) −3.64628 + 20.6791i −0.209128 + 1.18603i
\(305\) 51.2351 2.93371
\(306\) 4.23656 2.11131i 0.242188 0.120695i
\(307\) 4.45173 + 7.71062i 0.254073 + 0.440068i 0.964643 0.263558i \(-0.0848962\pi\)
−0.710570 + 0.703627i \(0.751563\pi\)
\(308\) 0.947238 0.235791i 0.0539739 0.0134354i
\(309\) −18.7163 + 4.40530i −1.06473 + 0.250609i
\(310\) 42.9938 36.0761i 2.44189 2.04899i
\(311\) −3.25554 18.4631i −0.184605 1.04694i −0.926462 0.376387i \(-0.877166\pi\)
0.741858 0.670557i \(-0.233945\pi\)
\(312\) −5.14998 + 17.1059i −0.291560 + 0.968430i
\(313\) −0.183264 0.153777i −0.0103587 0.00869197i 0.637594 0.770373i \(-0.279930\pi\)
−0.647952 + 0.761681i \(0.724374\pi\)
\(314\) −16.2124 28.0807i −0.914919 1.58469i
\(315\) 15.4597 27.2891i 0.871054 1.53757i
\(316\) −1.02972 + 1.78352i −0.0579261 + 0.100331i
\(317\) 23.0058 8.37341i 1.29213 0.470298i 0.397706 0.917513i \(-0.369806\pi\)
0.894426 + 0.447215i \(0.147584\pi\)
\(318\) 7.22852 9.67832i 0.405355 0.542733i
\(319\) −5.26002 + 4.41368i −0.294505 + 0.247119i
\(320\) −4.18246 23.7199i −0.233806 1.32598i
\(321\) −0.608375 10.7311i −0.0339562 0.598949i
\(322\) −2.60520 + 0.648500i −0.145182 + 0.0361395i
\(323\) −4.70077 −0.261558
\(324\) 1.26103 + 2.97380i 0.0700571 + 0.165211i
\(325\) −21.7168 37.6146i −1.20463 2.08648i
\(326\) 4.47462 + 3.75465i 0.247826 + 0.207951i
\(327\) −10.4237 5.25517i −0.576432 0.290611i
\(328\) 10.6720 8.95490i 0.589264 0.494451i
\(329\) −6.89739 + 4.64854i −0.380265 + 0.256282i
\(330\) 4.26470 + 9.92884i 0.234764 + 0.546565i
\(331\) 5.97592 2.17506i 0.328466 0.119552i −0.172523 0.985005i \(-0.555192\pi\)
0.500989 + 0.865454i \(0.332970\pi\)
\(332\) 0.370625 0.0203407
\(333\) 3.81727 8.77476i 0.209185 0.480854i
\(334\) 31.5356 1.72555
\(335\) −5.60584 + 31.7923i −0.306280 + 1.73700i
\(336\) 20.8625 2.64408i 1.13814 0.144246i
\(337\) −8.03107 2.92307i −0.437480 0.159230i 0.113885 0.993494i \(-0.463671\pi\)
−0.551365 + 0.834264i \(0.685893\pi\)
\(338\) −4.40559 + 3.69673i −0.239633 + 0.201076i
\(339\) −15.3118 16.2798i −0.831620 0.884200i
\(340\) −1.36908 + 0.498304i −0.0742488 + 0.0270243i
\(341\) 9.50660 0.514811
\(342\) 1.29093 21.0437i 0.0698055 1.13791i
\(343\) 13.7773 12.3768i 0.743906 0.668284i
\(344\) 5.06869 + 4.25314i 0.273286 + 0.229314i
\(345\) −1.78458 4.15477i −0.0960787 0.223685i
\(346\) −8.76157 + 7.35183i −0.471025 + 0.395237i
\(347\) −9.50707 3.46029i −0.510366 0.185758i 0.0739843 0.997259i \(-0.476429\pi\)
−0.584351 + 0.811501i \(0.698651\pi\)
\(348\) 3.47266 2.27633i 0.186154 0.122024i
\(349\) 18.4035 6.69832i 0.985116 0.358553i 0.201289 0.979532i \(-0.435487\pi\)
0.783827 + 0.620979i \(0.213265\pi\)
\(350\) −25.3652 + 34.8844i −1.35583 + 1.86465i
\(351\) 3.78926 20.9223i 0.202256 1.11675i
\(352\) −1.03163 + 1.78683i −0.0549858 + 0.0952382i
\(353\) −0.767605 0.644097i −0.0408555 0.0342818i 0.622131 0.782913i \(-0.286267\pi\)
−0.662987 + 0.748631i \(0.730711\pi\)
\(354\) 16.4940 + 8.31552i 0.876644 + 0.441965i
\(355\) 0.656546 + 3.72346i 0.0348458 + 0.197620i
\(356\) 0.926929 + 5.25688i 0.0491272 + 0.278614i
\(357\) 1.39394 + 4.49668i 0.0737750 + 0.237989i
\(358\) −21.8267 18.3148i −1.15358 0.967966i
\(359\) 1.26860 + 2.19728i 0.0669542 + 0.115968i 0.897559 0.440894i \(-0.145339\pi\)
−0.830605 + 0.556862i \(0.812005\pi\)
\(360\) 8.48099 + 28.6505i 0.446987 + 1.51001i
\(361\) −0.968741 + 1.67791i −0.0509864 + 0.0883110i
\(362\) 5.48127 + 4.59934i 0.288089 + 0.241736i
\(363\) 4.96487 16.4910i 0.260588 0.865555i
\(364\) 3.49173 + 1.70467i 0.183017 + 0.0893492i
\(365\) 8.69048 + 3.16308i 0.454880 + 0.165563i
\(366\) −23.6313 25.1254i −1.23523 1.31332i
\(367\) −27.0699 + 9.85264i −1.41304 + 0.514304i −0.932020 0.362407i \(-0.881955\pi\)
−0.481018 + 0.876711i \(0.659733\pi\)
\(368\) 1.51593 2.62567i 0.0790234 0.136873i
\(369\) −11.4162 + 12.0257i −0.594302 + 0.626035i
\(370\) −9.67912 + 16.7647i −0.503194 + 0.871557i
\(371\) 8.34245 + 8.64542i 0.433118 + 0.448848i
\(372\) −5.70884 0.676212i −0.295990 0.0350600i
\(373\) −31.9072 11.6133i −1.65209 0.601313i −0.663002 0.748618i \(-0.730718\pi\)
−0.989091 + 0.147305i \(0.952940\pi\)
\(374\) −1.52418 0.554755i −0.0788134 0.0286857i
\(375\) −34.3111 17.2981i −1.77182 0.893270i
\(376\) 1.37597 7.80353i 0.0709604 0.402436i
\(377\) −27.3326 −1.40770
\(378\) −20.5129 + 5.00530i −1.05507 + 0.257445i
\(379\) 10.2534 0.526680 0.263340 0.964703i \(-0.415176\pi\)
0.263340 + 0.964703i \(0.415176\pi\)
\(380\) −1.12686 + 6.39073i −0.0578066 + 0.327837i
\(381\) 0.736815 + 12.9966i 0.0377482 + 0.665835i
\(382\) −19.4487 7.07875i −0.995082 0.362180i
\(383\) −7.96500 2.89902i −0.406992 0.148133i 0.130408 0.991460i \(-0.458371\pi\)
−0.537400 + 0.843327i \(0.680594\pi\)
\(384\) −13.8635 + 18.5619i −0.707468 + 0.947235i
\(385\) −10.4290 + 2.59604i −0.531512 + 0.132307i
\(386\) 16.3143 28.2573i 0.830378 1.43826i
\(387\) −6.56641 4.34793i −0.333790 0.221018i
\(388\) 0.463420 0.802667i 0.0235266 0.0407493i
\(389\) 9.60401 3.49557i 0.486943 0.177233i −0.0868692 0.996220i \(-0.527686\pi\)
0.573812 + 0.818987i \(0.305464\pi\)
\(390\) −12.4003 + 41.1881i −0.627913 + 2.08564i
\(391\) 0.637800 + 0.232140i 0.0322549 + 0.0117398i
\(392\) −0.629136 + 17.6324i −0.0317761 + 0.890570i
\(393\) −0.00255712 0.00271879i −0.000128989 0.000137145i
\(394\) 7.85332 + 6.58972i 0.395644 + 0.331985i
\(395\) 11.3371 19.6364i 0.570432 0.988016i
\(396\) 0.441537 1.01496i 0.0221881 0.0510037i
\(397\) −1.77719 3.07819i −0.0891948 0.154490i 0.817976 0.575252i \(-0.195096\pi\)
−0.907171 + 0.420762i \(0.861763\pi\)
\(398\) 13.0017 + 10.9097i 0.651715 + 0.546854i
\(399\) 20.4495 + 4.63736i 1.02376 + 0.232158i
\(400\) −8.45818 47.9687i −0.422909 2.39844i
\(401\) −0.682523 3.87078i −0.0340836 0.193298i 0.963012 0.269459i \(-0.0868448\pi\)
−0.997096 + 0.0761611i \(0.975734\pi\)
\(402\) 18.1763 11.9146i 0.906553 0.594244i
\(403\) 28.9886 + 24.3243i 1.44402 + 1.21168i
\(404\) 2.23540 3.87182i 0.111215 0.192630i
\(405\) −13.8838 32.7413i −0.689892 1.62693i
\(406\) 11.0304 + 24.8000i 0.547430 + 1.23081i
\(407\) −3.08124 + 1.12148i −0.152731 + 0.0555896i
\(408\) −4.00477 2.01903i −0.198266 0.0999567i
\(409\) 21.5696 + 7.85068i 1.06655 + 0.388191i 0.814884 0.579624i \(-0.196801\pi\)
0.251662 + 0.967815i \(0.419023\pi\)
\(410\) 25.6964 21.5619i 1.26906 1.06487i
\(411\) 35.5187 + 4.20719i 1.75201 + 0.207525i
\(412\) −3.05209 2.56101i −0.150366 0.126172i
\(413\) −10.8039 + 14.8585i −0.531627 + 0.731139i
\(414\) −1.21437 + 2.79146i −0.0596828 + 0.137193i
\(415\) −4.08055 −0.200306
\(416\) −7.71766 + 2.80900i −0.378389 + 0.137722i
\(417\) −3.13445 + 10.4112i −0.153494 + 0.509838i
\(418\) −5.53426 + 4.64380i −0.270690 + 0.227136i
\(419\) 14.6795 + 5.34289i 0.717139 + 0.261017i 0.674711 0.738082i \(-0.264268\pi\)
0.0424280 + 0.999100i \(0.486491\pi\)
\(420\) 6.44742 0.817134i 0.314602 0.0398721i
\(421\) 4.50895 25.5716i 0.219753 1.24628i −0.652713 0.757606i \(-0.726369\pi\)
0.872466 0.488676i \(-0.162520\pi\)
\(422\) 4.97691 0.242272
\(423\) −0.577478 + 9.41360i −0.0280780 + 0.457705i
\(424\) −11.4455 −0.555841
\(425\) 10.2466 3.72947i 0.497035 0.180906i
\(426\) 1.52314 2.03934i 0.0737963 0.0988065i
\(427\) 28.4473 19.1723i 1.37666 0.927810i
\(428\) 1.70612 1.43160i 0.0824683 0.0691991i
\(429\) −6.09349 + 3.99428i −0.294197 + 0.192845i
\(430\) 12.2046 + 10.2408i 0.588556 + 0.493857i
\(431\) −1.46799 2.54263i −0.0707105 0.122474i 0.828502 0.559985i \(-0.189193\pi\)
−0.899213 + 0.437511i \(0.855860\pi\)
\(432\) 12.0182 20.5950i 0.578224 0.990876i
\(433\) 12.6175 0.606360 0.303180 0.952933i \(-0.401952\pi\)
0.303180 + 0.952933i \(0.401952\pi\)
\(434\) 10.3718 36.1189i 0.497861 1.73376i
\(435\) −38.2338 + 25.0622i −1.83317 + 1.20164i
\(436\) −0.420036 2.38214i −0.0201161 0.114084i
\(437\) 2.31584 1.94322i 0.110782 0.0929568i
\(438\) −2.45718 5.72067i −0.117408 0.273344i
\(439\) 20.3014 7.38912i 0.968935 0.352664i 0.191406 0.981511i \(-0.438695\pi\)
0.777529 + 0.628847i \(0.216473\pi\)
\(440\) 5.11928 8.86685i 0.244052 0.422710i
\(441\) −1.62795 20.9368i −0.0775212 0.996991i
\(442\) −3.22825 5.59150i −0.153552 0.265960i
\(443\) 18.6104 + 15.6160i 0.884209 + 0.741939i 0.967040 0.254624i \(-0.0819518\pi\)
−0.0828312 + 0.996564i \(0.526396\pi\)
\(444\) 1.93009 0.454292i 0.0915982 0.0215597i
\(445\) −10.2054 57.8778i −0.483784 2.74367i
\(446\) 6.22160 5.22054i 0.294601 0.247200i
\(447\) −0.656886 + 2.18188i −0.0310697 + 0.103199i
\(448\) −11.1983 11.6049i −0.529068 0.548282i
\(449\) 16.9480 + 29.3549i 0.799827 + 1.38534i 0.919728 + 0.392556i \(0.128409\pi\)
−0.119901 + 0.992786i \(0.538258\pi\)
\(450\) 13.8816 + 46.8949i 0.654387 + 2.21065i
\(451\) 5.68188 0.267549
\(452\) 0.804167 4.56066i 0.0378248 0.214515i
\(453\) −13.1679 + 17.6306i −0.618682 + 0.828358i
\(454\) 6.64512 + 37.6864i 0.311871 + 1.76871i
\(455\) −38.4437 18.7683i −1.80227 0.879873i
\(456\) −16.7068 + 10.9513i −0.782367 + 0.512841i
\(457\) −1.22041 + 6.92129i −0.0570884 + 0.323764i −0.999956 0.00940397i \(-0.997007\pi\)
0.942867 + 0.333168i \(0.108118\pi\)
\(458\) −7.53827 13.0567i −0.352240 0.610098i
\(459\) 5.00767 + 1.84898i 0.233738 + 0.0863030i
\(460\) 0.468488 0.811446i 0.0218434 0.0378339i
\(461\) −3.49395 + 1.27169i −0.162729 + 0.0592286i −0.422100 0.906549i \(-0.638707\pi\)
0.259371 + 0.965778i \(0.416485\pi\)
\(462\) 6.08328 + 3.91694i 0.283020 + 0.182233i
\(463\) 5.94542 4.98880i 0.276307 0.231849i −0.494094 0.869408i \(-0.664500\pi\)
0.770401 + 0.637559i \(0.220056\pi\)
\(464\) −28.8037 10.4837i −1.33718 0.486693i
\(465\) 62.8539 + 7.44504i 2.91478 + 0.345256i
\(466\) 3.59870 20.4092i 0.166706 0.945439i
\(467\) −17.5196 30.3448i −0.810709 1.40419i −0.912368 0.409370i \(-0.865749\pi\)
0.101659 0.994819i \(-0.467585\pi\)
\(468\) 3.94334 1.96518i 0.182281 0.0908406i
\(469\) 8.78419 + 19.7498i 0.405616 + 0.911960i
\(470\) 3.31311 18.7896i 0.152822 0.866699i
\(471\) 10.5415 35.0141i 0.485727 1.61336i
\(472\) −3.03912 17.2357i −0.139887 0.793337i
\(473\) 0.468610 + 2.65762i 0.0215467 + 0.122197i
\(474\) −14.8586 + 3.49732i −0.682479 + 0.160637i
\(475\) 8.43377 47.8303i 0.386968 2.19460i
\(476\) −0.573690 + 0.788986i −0.0262950 + 0.0361631i
\(477\) 13.5355 1.53968i 0.619747 0.0704971i
\(478\) 3.08077 + 5.33606i 0.140911 + 0.244066i
\(479\) −0.0169280 + 0.0960035i −0.000773460 + 0.00438651i −0.985192 0.171454i \(-0.945153\pi\)
0.984419 + 0.175841i \(0.0562645\pi\)
\(480\) −8.22005 + 11.0059i −0.375192 + 0.502348i
\(481\) −12.2651 4.46415i −0.559242 0.203548i
\(482\) 14.4868 12.1558i 0.659855 0.553684i
\(483\) −2.54558 1.63906i −0.115828 0.0745800i
\(484\) 3.35343 1.22055i 0.152429 0.0554796i
\(485\) −5.10222 + 8.83731i −0.231680 + 0.401282i
\(486\) −9.65247 + 21.9099i −0.437845 + 0.993853i
\(487\) 2.40070 + 4.15814i 0.108786 + 0.188423i 0.915279 0.402821i \(-0.131970\pi\)
−0.806493 + 0.591244i \(0.798637\pi\)
\(488\) −5.67501 + 32.1846i −0.256896 + 1.45693i
\(489\) 0.372855 + 6.57674i 0.0168611 + 0.297411i
\(490\) −1.51485 + 42.4558i −0.0684341 + 1.91796i
\(491\) −0.878760 4.98370i −0.0396579 0.224911i 0.958537 0.284968i \(-0.0919829\pi\)
−0.998195 + 0.0600567i \(0.980872\pi\)
\(492\) −3.41205 0.404157i −0.153827 0.0182208i
\(493\) 1.19158 6.75776i 0.0536659 0.304354i
\(494\) −28.7577 −1.29387
\(495\) −4.86129 + 11.1746i −0.218499 + 0.502263i
\(496\) 21.2190 + 36.7523i 0.952759 + 1.65023i
\(497\) 1.75786 + 1.82170i 0.0788507 + 0.0817143i
\(498\) 1.88208 + 2.00108i 0.0843381 + 0.0896704i
\(499\) 18.2063 15.2769i 0.815027 0.683889i −0.136775 0.990602i \(-0.543674\pi\)
0.951802 + 0.306713i \(0.0992293\pi\)
\(500\) −1.38261 7.84115i −0.0618320 0.350667i
\(501\) 24.3652 + 25.9057i 1.08856 + 1.15738i
\(502\) −20.2262 16.9718i −0.902740 0.757489i
\(503\) 8.71394 + 15.0930i 0.388535 + 0.672963i 0.992253 0.124236i \(-0.0396478\pi\)
−0.603718 + 0.797198i \(0.706315\pi\)
\(504\) 15.4300 + 12.7340i 0.687305 + 0.567219i
\(505\) −24.6116 + 42.6285i −1.09520 + 1.89694i
\(506\) 0.980215 0.356769i 0.0435759 0.0158603i
\(507\) −6.44066 0.762896i −0.286040 0.0338814i
\(508\) −2.06631 + 1.73384i −0.0916777 + 0.0769267i
\(509\) 4.89841 + 27.7802i 0.217118 + 1.23134i 0.877193 + 0.480138i \(0.159413\pi\)
−0.660075 + 0.751200i \(0.729476\pi\)
\(510\) −9.64281 4.86148i −0.426991 0.215270i
\(511\) 6.00885 1.49575i 0.265816 0.0661682i
\(512\) 13.9228 0.615307
\(513\) 18.2844 15.1985i 0.807274 0.671030i
\(514\) −13.6643 23.6673i −0.602706 1.04392i
\(515\) 33.6033 + 28.1965i 1.48074 + 1.24249i
\(516\) −0.0923680 1.62927i −0.00406628 0.0717245i
\(517\) 2.47567 2.07733i 0.108880 0.0913611i
\(518\) 0.899240 + 12.9302i 0.0395103 + 0.568122i
\(519\) −12.8088 1.51720i −0.562243 0.0665977i
\(520\) 38.2976 13.9392i 1.67946 0.611274i
\(521\) −7.47780 −0.327608 −0.163804 0.986493i \(-0.552376\pi\)
−0.163804 + 0.986493i \(0.552376\pi\)
\(522\) 29.9250 + 7.19010i 1.30978 + 0.314702i
\(523\) −11.8867 −0.519769 −0.259884 0.965640i \(-0.583684\pi\)
−0.259884 + 0.965640i \(0.583684\pi\)
\(524\) 0.000134299 0 0.000761646i 5.86686e−6 0 3.32726e-5i
\(525\) −48.2546 + 6.11570i −2.10600 + 0.266911i
\(526\) 5.90191 + 2.14812i 0.257336 + 0.0936625i
\(527\) −7.27775 + 6.10675i −0.317024 + 0.266014i
\(528\) −7.95350 + 1.87204i −0.346131 + 0.0814699i
\(529\) 21.2028 7.71717i 0.921859 0.335529i
\(530\) −27.5587 −1.19708
\(531\) 5.91268 + 19.9742i 0.256589 + 0.866807i
\(532\) 1.76575 + 3.97000i 0.0765552 + 0.172121i
\(533\) 17.3258 + 14.5381i 0.750465 + 0.629715i
\(534\) −23.6759 + 31.6998i −1.02455 + 1.37178i
\(535\) −18.7842 + 15.7618i −0.812113 + 0.681444i
\(536\) −19.3502 7.04289i −0.835801 0.304207i
\(537\) −1.81875 32.0806i −0.0784847 1.38438i
\(538\) 13.0408 4.74647i 0.562229 0.204635i
\(539\) −4.81907 + 5.34396i −0.207572 + 0.230181i
\(540\) 3.71413 6.36474i 0.159831 0.273895i
\(541\) −13.5657 + 23.4965i −0.583236 + 1.01020i 0.411856 + 0.911249i \(0.364881\pi\)
−0.995093 + 0.0989464i \(0.968453\pi\)
\(542\) −34.7015 29.1180i −1.49056 1.25073i
\(543\) 0.456736 + 8.05632i 0.0196004 + 0.345730i
\(544\) −0.358047 2.03059i −0.0153511 0.0870606i
\(545\) 4.62457 + 26.2272i 0.198095 + 1.12345i
\(546\) 8.52762 + 27.5091i 0.364949 + 1.17728i
\(547\) 6.93653 + 5.82044i 0.296585 + 0.248864i 0.778921 0.627122i \(-0.215767\pi\)
−0.482336 + 0.875986i \(0.660212\pi\)
\(548\) 3.70568 + 6.41843i 0.158299 + 0.274182i
\(549\) 2.38173 38.8251i 0.101650 1.65701i
\(550\) 8.37920 14.5132i 0.357290 0.618845i
\(551\) −23.4132 19.6460i −0.997437 0.836949i
\(552\) 2.80759 0.660830i 0.119499 0.0281268i
\(553\) −1.05328 15.1451i −0.0447898 0.644036i
\(554\) −14.3583 5.22599i −0.610025 0.222031i
\(555\) −21.2502 + 5.00172i −0.902021 + 0.212311i
\(556\) −2.11711 + 0.770563i −0.0897853 + 0.0326792i
\(557\) −6.70466 + 11.6128i −0.284085 + 0.492050i −0.972387 0.233374i \(-0.925023\pi\)
0.688302 + 0.725425i \(0.258357\pi\)
\(558\) −25.3392 34.2571i −1.07270 1.45022i
\(559\) −5.37105 + 9.30293i −0.227171 + 0.393472i
\(560\) −33.3141 34.5239i −1.40778 1.45890i
\(561\) −0.721903 1.68070i −0.0304788 0.0709591i
\(562\) 13.6889 + 4.98234i 0.577429 + 0.210167i
\(563\) 33.3923 + 12.1538i 1.40732 + 0.512222i 0.930341 0.366694i \(-0.119511\pi\)
0.476976 + 0.878916i \(0.341733\pi\)
\(564\) −1.63444 + 1.07137i −0.0688222 + 0.0451128i
\(565\) −8.85382 + 50.2125i −0.372483 + 2.11246i
\(566\) −35.2161 −1.48024
\(567\) −19.9606 12.9836i −0.838266 0.545262i
\(568\) −2.41170 −0.101193
\(569\) −0.123170 + 0.698533i −0.00516356 + 0.0292840i −0.987281 0.158987i \(-0.949177\pi\)
0.982117 + 0.188271i \(0.0602883\pi\)
\(570\) −40.2271 + 26.3688i −1.68493 + 1.10447i
\(571\) −6.13497 2.23294i −0.256740 0.0934458i 0.210444 0.977606i \(-0.432509\pi\)
−0.467184 + 0.884160i \(0.654731\pi\)
\(572\) −1.41869 0.516360i −0.0593183 0.0215901i
\(573\) −9.21158 21.4459i −0.384819 0.895915i
\(574\) 6.19898 21.5875i 0.258740 0.901044i
\(575\) −3.50632 + 6.07312i −0.146224 + 0.253267i
\(576\) −18.1690 + 2.06675i −0.757040 + 0.0861145i
\(577\) 7.49345 12.9790i 0.311956 0.540324i −0.666830 0.745210i \(-0.732349\pi\)
0.978786 + 0.204886i \(0.0656824\pi\)
\(578\) −23.0120 + 8.37569i −0.957174 + 0.348383i
\(579\) 35.8176 8.43049i 1.48853 0.350359i
\(580\) −8.90159 3.23991i −0.369618 0.134530i
\(581\) −2.26565 + 1.52695i −0.0939950 + 0.0633485i
\(582\) 6.68707 1.57395i 0.277188 0.0652425i
\(583\) −3.57591 3.00054i −0.148099 0.124270i
\(584\) −2.94956 + 5.10878i −0.122054 + 0.211403i
\(585\) −43.4159 + 21.6365i −1.79503 + 0.894559i
\(586\) −16.0799 27.8512i −0.664254 1.15052i
\(587\) −19.4537 16.3236i −0.802940 0.673746i 0.145972 0.989289i \(-0.453369\pi\)
−0.948911 + 0.315542i \(0.897814\pi\)
\(588\) 3.27404 2.86633i 0.135019 0.118206i
\(589\) 7.34800 + 41.6726i 0.302769 + 1.71709i
\(590\) −7.31769 41.5007i −0.301264 1.70855i
\(591\) 0.654391 + 11.5427i 0.0269180 + 0.474804i
\(592\) −11.2130 9.40882i −0.460852 0.386700i
\(593\) 19.7263 34.1669i 0.810060 1.40307i −0.102761 0.994706i \(-0.532768\pi\)
0.912821 0.408359i \(-0.133899\pi\)
\(594\) 7.72216 2.77016i 0.316844 0.113661i
\(595\) 6.31628 8.68668i 0.258942 0.356119i
\(596\) −0.443682 + 0.161487i −0.0181739 + 0.00661477i
\(597\) 1.08339 + 19.1097i 0.0443400 + 0.782108i
\(598\) 3.90184 + 1.42015i 0.159558 + 0.0580744i
\(599\) −1.04353 + 0.875626i −0.0426375 + 0.0357771i −0.663857 0.747859i \(-0.731082\pi\)
0.621220 + 0.783636i \(0.286637\pi\)
\(600\) 27.7287 37.1262i 1.13202 1.51567i
\(601\) −4.73957 3.97697i −0.193331 0.162224i 0.540984 0.841033i \(-0.318052\pi\)
−0.734315 + 0.678809i \(0.762496\pi\)
\(602\) 10.6085 + 1.11907i 0.432370 + 0.0456098i
\(603\) 23.8311 + 5.72592i 0.970476 + 0.233177i
\(604\) −4.55976 −0.185534
\(605\) −36.9211 + 13.4382i −1.50105 + 0.546339i
\(606\) 32.2564 7.59228i 1.31033 0.308415i
\(607\) 1.60065 1.34310i 0.0649684 0.0545149i −0.609725 0.792613i \(-0.708720\pi\)
0.674694 + 0.738098i \(0.264276\pi\)
\(608\) −8.63001 3.14107i −0.349993 0.127387i
\(609\) −11.8503 + 28.2224i −0.480197 + 1.14363i
\(610\) −13.6645 + 77.4950i −0.553258 + 3.13768i
\(611\) 12.8643 0.520434
\(612\) 0.313963 + 1.06063i 0.0126912 + 0.0428734i
\(613\) −16.2931 −0.658071 −0.329036 0.944318i \(-0.606724\pi\)
−0.329036 + 0.944318i \(0.606724\pi\)
\(614\) −12.8499 + 4.67698i −0.518579 + 0.188747i
\(615\) 37.5664 + 4.44974i 1.51482 + 0.179431i
\(616\) −0.475607 6.83879i −0.0191628 0.275543i
\(617\) −3.46417 + 2.90678i −0.139462 + 0.117023i −0.709850 0.704353i \(-0.751237\pi\)
0.570388 + 0.821375i \(0.306793\pi\)
\(618\) −1.67153 29.4840i −0.0672390 1.18602i
\(619\) 26.7035 + 22.4069i 1.07331 + 0.900611i 0.995348 0.0963460i \(-0.0307155\pi\)
0.0779580 + 0.996957i \(0.475160\pi\)
\(620\) 6.55758 + 11.3581i 0.263359 + 0.456150i
\(621\) −3.23138 + 1.15919i −0.129671 + 0.0465166i
\(622\) 28.7944 1.15455
\(623\) −27.3244 28.3167i −1.09473 1.13448i
\(624\) −29.0426 14.6420i −1.16263 0.586149i
\(625\) 6.00667 + 34.0655i 0.240267 + 1.36262i
\(626\) 0.281470 0.236181i 0.0112498 0.00943970i
\(627\) −8.09070 0.958343i −0.323111 0.0382725i
\(628\) 7.12007 2.59149i 0.284122 0.103412i
\(629\) 1.63843 2.83784i 0.0653283 0.113152i
\(630\) 37.1527 + 30.6614i 1.48020 + 1.22158i
\(631\) −3.30722 5.72827i −0.131658 0.228039i 0.792658 0.609667i \(-0.208697\pi\)
−0.924316 + 0.381628i \(0.875364\pi\)
\(632\) 11.0794 + 9.29669i 0.440714 + 0.369803i
\(633\) 3.84529 + 4.08841i 0.152837 + 0.162500i
\(634\) 6.52944 + 37.0303i 0.259317 + 1.47066i
\(635\) 22.7499 19.0895i 0.902803 0.757542i
\(636\) 1.93395 + 2.05622i 0.0766861 + 0.0815346i
\(637\) −28.3683 + 3.96495i −1.12399 + 0.157097i
\(638\) −5.27301 9.13312i −0.208760 0.361584i
\(639\) 2.85209 0.324430i 0.112827 0.0128342i
\(640\) 52.8546 2.08926
\(641\) −1.87907 + 10.6567i −0.0742188 + 0.420916i 0.924948 + 0.380095i \(0.124109\pi\)
−0.999166 + 0.0408213i \(0.987003\pi\)
\(642\) 16.3934 + 1.94180i 0.646996 + 0.0766366i
\(643\) −6.31438 35.8107i −0.249015 1.41223i −0.810980 0.585073i \(-0.801066\pi\)
0.561965 0.827161i \(-0.310045\pi\)
\(644\) −0.0435250 0.625849i −0.00171512 0.0246619i
\(645\) 1.01697 + 17.9381i 0.0400430 + 0.706313i
\(646\) 1.25370 7.11009i 0.0493262 0.279743i
\(647\) 18.3584 + 31.7976i 0.721741 + 1.25009i 0.960301 + 0.278965i \(0.0899913\pi\)
−0.238560 + 0.971128i \(0.576675\pi\)
\(648\) 22.1051 5.09490i 0.868370 0.200147i
\(649\) 3.56900 6.18169i 0.140096 0.242653i
\(650\) 62.6854 22.8156i 2.45872 0.894902i
\(651\) 37.6844 19.3863i 1.47697 0.759810i
\(652\) −1.04563 + 0.877386i −0.0409499 + 0.0343611i
\(653\) −26.5467 9.66221i −1.03885 0.378111i −0.234407 0.972138i \(-0.575315\pi\)
−0.804445 + 0.594027i \(0.797537\pi\)
\(654\) 10.7287 14.3647i 0.419524 0.561704i
\(655\) −0.00147862 + 0.00838566i −5.77744e−5 + 0.000327655i
\(656\) 12.6821 + 21.9660i 0.495153 + 0.857630i
\(657\) 2.80091 6.43846i 0.109274 0.251188i
\(658\) −5.19155 11.6723i −0.202388 0.455035i
\(659\) 8.23727 46.7159i 0.320879 1.81979i −0.216303 0.976326i \(-0.569400\pi\)
0.537182 0.843467i \(-0.319489\pi\)
\(660\) −2.45797 + 0.578540i −0.0956765 + 0.0225196i
\(661\) −5.27750 29.9302i −0.205271 1.16415i −0.897013 0.442005i \(-0.854267\pi\)
0.691742 0.722145i \(-0.256844\pi\)
\(662\) 1.69607 + 9.61889i 0.0659196 + 0.373849i
\(663\) 2.09905 6.97208i 0.0815203 0.270773i
\(664\) 0.451979 2.56330i 0.0175402 0.0994753i
\(665\) −19.4408 43.7094i −0.753883 1.69498i
\(666\) 12.2541 + 8.11401i 0.474836 + 0.314411i
\(667\) 2.20652 + 3.82180i 0.0854367 + 0.147981i
\(668\) −1.27965 + 7.25727i −0.0495112 + 0.280792i
\(669\) 9.09553 + 1.07737i 0.351654 + 0.0416533i
\(670\) −46.5920 16.9581i −1.80001 0.655148i
\(671\) −10.2106 + 8.56768i −0.394174 + 0.330751i
\(672\) −0.445603 + 9.18677i −0.0171895 + 0.354387i
\(673\) −36.1307 + 13.1505i −1.39274 + 0.506915i −0.926014 0.377489i \(-0.876788\pi\)
−0.466723 + 0.884404i \(0.654566\pi\)
\(674\) 6.56315 11.3677i 0.252803 0.437868i
\(675\) −27.7978 + 47.6358i −1.06994 + 1.83350i
\(676\) −0.671957 1.16386i −0.0258445 0.0447640i
\(677\) −3.35615 + 19.0337i −0.128987 + 0.731524i 0.849872 + 0.526989i \(0.176679\pi\)
−0.978859 + 0.204534i \(0.934432\pi\)
\(678\) 28.7076 18.8178i 1.10251 0.722692i
\(679\) 0.474023 + 6.81601i 0.0181913 + 0.261574i
\(680\) 1.77675 + 10.0765i 0.0681353 + 0.386414i
\(681\) −25.8243 + 34.5763i −0.989588 + 1.32497i
\(682\) −2.53542 + 14.3791i −0.0970864 + 0.550604i
\(683\) −21.1210 −0.808172 −0.404086 0.914721i \(-0.632410\pi\)
−0.404086 + 0.914721i \(0.632410\pi\)
\(684\) 4.79040 + 1.15100i 0.183166 + 0.0440094i
\(685\) −40.7993 70.6665i −1.55886 2.70003i
\(686\) 15.0459 + 24.1397i 0.574457 + 0.921656i
\(687\) 4.90148 16.2805i 0.187003 0.621138i
\(688\) −9.22835 + 7.74351i −0.351828 + 0.295218i
\(689\) −3.22664 18.2992i −0.122925 0.697143i
\(690\) 6.76020 1.59117i 0.257357 0.0605747i
\(691\) 28.3169 + 23.7607i 1.07722 + 0.903898i 0.995687 0.0927720i \(-0.0295728\pi\)
0.0815367 + 0.996670i \(0.474017\pi\)
\(692\) −1.33635 2.31462i −0.0508003 0.0879886i
\(693\) 1.48243 + 8.02361i 0.0563129 + 0.304792i
\(694\) 7.76937 13.4570i 0.294921 0.510819i
\(695\) 23.3092 8.48385i 0.884167 0.321811i
\(696\) −11.5085 26.7935i −0.436228 1.01560i
\(697\) −4.34975 + 3.64987i −0.164758 + 0.138249i
\(698\) 5.22323 + 29.6224i 0.197702 + 1.12123i
\(699\) 19.5462 12.8125i 0.739304 0.484613i
\(700\) −6.99866 7.25283i −0.264524 0.274131i
\(701\) 29.0101 1.09569 0.547847 0.836578i \(-0.315447\pi\)
0.547847 + 0.836578i \(0.315447\pi\)
\(702\) 30.6352 + 11.3114i 1.15625 + 0.426922i
\(703\) −7.29764 12.6399i −0.275236 0.476722i
\(704\) 4.80002 + 4.02770i 0.180908 + 0.151800i
\(705\) 17.9950 11.7957i 0.677732 0.444252i
\(706\) 1.17894 0.989250i 0.0443701 0.0372309i
\(707\) 2.28654 + 32.8783i 0.0859942 + 1.23652i
\(708\) −2.58294 + 3.45832i −0.0970729 + 0.129972i
\(709\) −26.4948 + 9.64331i −0.995032 + 0.362162i −0.787667 0.616102i \(-0.788711\pi\)
−0.207365 + 0.978264i \(0.566489\pi\)
\(710\) −5.80697 −0.217932
\(711\) −14.3531 9.50389i −0.538285 0.356424i
\(712\) 37.4878 1.40491
\(713\) 1.06096 6.01700i 0.0397333 0.225339i
\(714\) −7.17316 + 0.909113i −0.268449 + 0.0340227i
\(715\) 15.6196 + 5.68509i 0.584142 + 0.212610i
\(716\) 5.10046 4.27979i 0.190613 0.159943i
\(717\) −2.00316 + 6.65357i −0.0748093 + 0.248482i
\(718\) −3.66181 + 1.33279i −0.136658 + 0.0497393i
\(719\) −9.03032 −0.336774 −0.168387 0.985721i \(-0.553856\pi\)
−0.168387 + 0.985721i \(0.553856\pi\)
\(720\) −54.0515 + 6.14844i −2.01438 + 0.229139i
\(721\) 29.2088 + 3.08117i 1.08779 + 0.114749i
\(722\) −2.27954 1.91276i −0.0848356 0.0711855i
\(723\) 21.1786 + 2.50861i 0.787642 + 0.0932961i
\(724\) −1.28086 + 1.07477i −0.0476029 + 0.0399436i
\(725\) 66.6224 + 24.2486i 2.47429 + 0.900569i
\(726\) 23.6192 + 11.9077i 0.876590 + 0.441938i
\(727\) −29.6742 + 10.8005i −1.10055 + 0.400569i −0.827520 0.561436i \(-0.810249\pi\)
−0.273033 + 0.962005i \(0.588027\pi\)
\(728\) 16.0480 22.0705i 0.594777 0.817988i
\(729\) −25.4562 + 8.99891i −0.942823 + 0.333293i
\(730\) −7.10204 + 12.3011i −0.262858 + 0.455284i
\(731\) −2.06592 1.73351i −0.0764107 0.0641162i
\(732\) 6.74100 4.41872i 0.249155 0.163321i
\(733\) −4.79062 27.1690i −0.176946 1.00351i −0.935874 0.352335i \(-0.885388\pi\)
0.758928 0.651174i \(-0.225723\pi\)
\(734\) −7.68292 43.5720i −0.283582 1.60827i
\(735\) −36.0469 + 31.5581i −1.32961 + 1.16404i
\(736\) 1.01580 + 0.852360i 0.0374430 + 0.0314184i
\(737\) −4.19922 7.27326i −0.154680 0.267914i
\(738\) −15.1447 20.4747i −0.557484 0.753683i
\(739\) −3.66651 + 6.35058i −0.134875 + 0.233610i −0.925550 0.378626i \(-0.876397\pi\)
0.790675 + 0.612236i \(0.209730\pi\)
\(740\) −3.46530 2.90773i −0.127387 0.106890i
\(741\) −22.2190 23.6238i −0.816234 0.867840i
\(742\) −15.3015 + 10.3125i −0.561735 + 0.378585i
\(743\) −15.0951 5.49415i −0.553784 0.201561i 0.0499428 0.998752i \(-0.484096\pi\)
−0.603727 + 0.797191i \(0.706318\pi\)
\(744\) −11.6387 + 38.6586i −0.426697 + 1.41729i
\(745\) 4.88491 1.77796i 0.178969 0.0651395i
\(746\) 26.0752 45.1636i 0.954682 1.65356i
\(747\) −0.189690 + 3.09217i −0.00694038 + 0.113137i
\(748\) 0.189514 0.328248i 0.00692931 0.0120019i
\(749\) −4.53148 + 15.7806i −0.165577 + 0.576609i
\(750\) 35.3149 47.2834i 1.28952 1.72654i
\(751\) 7.75023 + 2.82085i 0.282810 + 0.102934i 0.479531 0.877525i \(-0.340807\pi\)
−0.196721 + 0.980460i \(0.563029\pi\)
\(752\) 13.5567 + 4.93423i 0.494362 + 0.179933i
\(753\) −1.68538 29.7282i −0.0614187 1.08336i
\(754\) 7.28965 41.3416i 0.265473 1.50557i
\(755\) 50.2026 1.82706
\(756\) −0.319494 4.92373i −0.0116199 0.179074i
\(757\) 32.9747 1.19849 0.599243 0.800567i \(-0.295468\pi\)
0.599243 + 0.800567i \(0.295468\pi\)
\(758\) −2.73458 + 15.5086i −0.0993246 + 0.563298i
\(759\) 1.05042 + 0.529575i 0.0381278 + 0.0192223i
\(760\) 42.8251 + 15.5870i 1.55343 + 0.565402i
\(761\) −7.91339 2.88024i −0.286860 0.104409i 0.194582 0.980886i \(-0.437665\pi\)
−0.481443 + 0.876478i \(0.659887\pi\)
\(762\) −19.8544 2.35175i −0.719247 0.0851948i
\(763\) 12.3820 + 12.8316i 0.448257 + 0.464537i
\(764\) 2.41822 4.18848i 0.0874882 0.151534i
\(765\) −3.45671 11.6775i −0.124978 0.422200i
\(766\) 6.50916 11.2742i 0.235185 0.407353i
\(767\) 26.6999 9.71798i 0.964079 0.350896i