Properties

Label 189.2.u.a.142.3
Level $189$
Weight $2$
Character 189.142
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(4,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([2, 12]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.u (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 142.3
Character \(\chi\) \(=\) 189.142
Dual form 189.2.u.a.4.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.422628 + 2.39684i) q^{2} +(-0.118761 + 1.72797i) q^{3} +(-3.68685 - 1.34190i) q^{4} +(-2.38847 - 0.869333i) q^{5} +(-4.09149 - 1.01494i) q^{6} +(2.35689 + 1.20212i) q^{7} +(2.34068 - 4.05418i) q^{8} +(-2.97179 - 0.410433i) q^{9} +O(q^{10})\) \(q+(-0.422628 + 2.39684i) q^{2} +(-0.118761 + 1.72797i) q^{3} +(-3.68685 - 1.34190i) q^{4} +(-2.38847 - 0.869333i) q^{5} +(-4.09149 - 1.01494i) q^{6} +(2.35689 + 1.20212i) q^{7} +(2.34068 - 4.05418i) q^{8} +(-2.97179 - 0.410433i) q^{9} +(3.09309 - 5.35738i) q^{10} +(-3.38549 + 1.23222i) q^{11} +(2.75663 - 6.21142i) q^{12} +(0.574547 + 0.209118i) q^{13} +(-3.87737 + 5.14103i) q^{14} +(1.78584 - 4.02398i) q^{15} +(2.71689 + 2.27974i) q^{16} +(1.08999 - 1.88792i) q^{17} +(2.23970 - 6.94945i) q^{18} +(3.24371 + 5.61826i) q^{19} +(7.63938 + 6.41020i) q^{20} +(-2.35714 + 3.92987i) q^{21} +(-1.52263 - 8.63526i) q^{22} +(1.57559 + 8.93560i) q^{23} +(6.72753 + 4.52612i) q^{24} +(1.11884 + 0.938815i) q^{25} +(-0.744042 + 1.28872i) q^{26} +(1.06215 - 5.08644i) q^{27} +(-7.07636 - 7.59475i) q^{28} +(-2.61993 + 0.953577i) q^{29} +(8.89008 + 5.98103i) q^{30} +(-3.24433 - 1.18084i) q^{31} +(0.559852 - 0.469771i) q^{32} +(-1.72718 - 5.99638i) q^{33} +(4.06438 + 3.41042i) q^{34} +(-4.58431 - 4.92014i) q^{35} +(10.4058 + 5.50106i) q^{36} -9.19651 q^{37} +(-14.8370 + 5.40021i) q^{38} +(-0.429584 + 0.967967i) q^{39} +(-9.11508 + 7.64846i) q^{40} +(1.95368 + 0.711080i) q^{41} +(-8.42309 - 7.31056i) q^{42} +(-0.636164 + 3.60787i) q^{43} +14.1353 q^{44} +(6.74124 + 3.56378i) q^{45} -22.0831 q^{46} +(6.26093 - 2.27879i) q^{47} +(-4.26199 + 4.42397i) q^{48} +(4.10982 + 5.66651i) q^{49} +(-2.72304 + 2.28490i) q^{50} +(3.13283 + 2.10769i) q^{51} +(-1.83765 - 1.54197i) q^{52} +(1.94162 + 3.36298i) q^{53} +(11.7425 + 4.69548i) q^{54} +9.15736 q^{55} +(10.3903 - 6.74146i) q^{56} +(-10.0934 + 4.93781i) q^{57} +(-1.17832 - 6.68257i) q^{58} +(3.38076 - 2.83679i) q^{59} +(-11.9839 + 12.4394i) q^{60} +(4.10389 - 1.49370i) q^{61} +(4.20143 - 7.27709i) q^{62} +(-6.51078 - 4.53979i) q^{63} +(4.43600 + 7.68339i) q^{64} +(-1.19050 - 0.998945i) q^{65} +(15.1023 - 1.60553i) q^{66} +(1.66173 + 9.42416i) q^{67} +(-6.55204 + 5.49781i) q^{68} +(-15.6276 + 1.66137i) q^{69} +(13.7303 - 8.90849i) q^{70} +(1.53557 + 2.65969i) q^{71} +(-8.61998 + 11.0875i) q^{72} +13.4626 q^{73} +(3.88670 - 22.0426i) q^{74} +(-1.75512 + 1.82182i) q^{75} +(-4.41989 - 25.0664i) q^{76} +(-9.46049 - 1.16557i) q^{77} +(-2.13851 - 1.43874i) q^{78} +(1.77158 - 10.0471i) q^{79} +(-4.50736 - 7.80698i) q^{80} +(8.66309 + 2.43944i) q^{81} +(-2.53002 + 4.38213i) q^{82} +(-1.25509 + 0.456814i) q^{83} +(13.9639 - 11.3258i) q^{84} +(-4.24464 + 3.56168i) q^{85} +(-8.37862 - 3.04957i) q^{86} +(-1.33661 - 4.64042i) q^{87} +(-2.92872 + 16.6096i) q^{88} +(8.18109 + 14.1701i) q^{89} +(-11.3909 + 14.6515i) q^{90} +(1.10276 + 1.18354i) q^{91} +(6.18176 - 35.0585i) q^{92} +(2.42576 - 5.46588i) q^{93} +(2.81586 + 15.9695i) q^{94} +(-2.86336 - 16.2389i) q^{95} +(0.745264 + 1.02320i) q^{96} +(0.474040 - 2.68841i) q^{97} +(-15.3187 + 7.45576i) q^{98} +(10.5667 - 2.27238i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} - 15 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} - 15 q^{9} + 3 q^{10} - 15 q^{11} - 3 q^{12} - 12 q^{13} - 30 q^{14} + 9 q^{16} + 27 q^{17} - 3 q^{18} + 3 q^{19} - 18 q^{20} + 15 q^{21} - 12 q^{22} - 36 q^{23} - 72 q^{24} - 3 q^{25} + 30 q^{26} - 12 q^{27} - 12 q^{28} - 30 q^{29} - 3 q^{30} - 3 q^{31} - 75 q^{32} + 15 q^{33} - 18 q^{34} + 15 q^{35} - 60 q^{36} - 6 q^{37} + 69 q^{38} + 51 q^{39} + 51 q^{40} - 39 q^{42} - 12 q^{43} - 6 q^{44} - 21 q^{45} - 6 q^{46} - 21 q^{47} + 90 q^{48} - 42 q^{49} - 39 q^{50} + 33 q^{51} + 9 q^{52} + 9 q^{53} - 9 q^{54} - 24 q^{55} + 111 q^{56} - 18 q^{57} - 3 q^{58} + 27 q^{59} - 63 q^{60} - 21 q^{61} + 75 q^{62} + 63 q^{63} - 30 q^{64} - 90 q^{65} - 3 q^{66} - 3 q^{67} - 30 q^{68} - 6 q^{69} + 39 q^{70} - 18 q^{71} + 183 q^{72} - 42 q^{73} + 51 q^{74} - 45 q^{75} - 24 q^{76} + 15 q^{77} - 30 q^{78} + 15 q^{79} + 102 q^{80} - 87 q^{81} - 6 q^{82} - 42 q^{83} + 135 q^{84} - 63 q^{85} - 93 q^{86} + 75 q^{87} - 51 q^{88} + 75 q^{89} - 39 q^{90} - 21 q^{91} - 66 q^{92} + 81 q^{93} + 33 q^{94} + 15 q^{95} - 171 q^{96} - 12 q^{97} - 36 q^{98} + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.422628 + 2.39684i −0.298843 + 1.69482i 0.352315 + 0.935881i \(0.385394\pi\)
−0.651159 + 0.758942i \(0.725717\pi\)
\(3\) −0.118761 + 1.72797i −0.0685668 + 0.997647i
\(4\) −3.68685 1.34190i −1.84343 0.670952i
\(5\) −2.38847 0.869333i −1.06816 0.388777i −0.252670 0.967553i \(-0.581309\pi\)
−0.815487 + 0.578775i \(0.803531\pi\)
\(6\) −4.09149 1.01494i −1.67034 0.414348i
\(7\) 2.35689 + 1.20212i 0.890819 + 0.454358i
\(8\) 2.34068 4.05418i 0.827556 1.43337i
\(9\) −2.97179 0.410433i −0.990597 0.136811i
\(10\) 3.09309 5.35738i 0.978120 1.69415i
\(11\) −3.38549 + 1.23222i −1.02076 + 0.371528i −0.797557 0.603243i \(-0.793875\pi\)
−0.223207 + 0.974771i \(0.571653\pi\)
\(12\) 2.75663 6.21142i 0.795771 1.79308i
\(13\) 0.574547 + 0.209118i 0.159351 + 0.0579989i 0.420464 0.907309i \(-0.361867\pi\)
−0.261113 + 0.965308i \(0.584090\pi\)
\(14\) −3.87737 + 5.14103i −1.03627 + 1.37400i
\(15\) 1.78584 4.02398i 0.461103 1.03899i
\(16\) 2.71689 + 2.27974i 0.679222 + 0.569935i
\(17\) 1.08999 1.88792i 0.264361 0.457887i −0.703035 0.711156i \(-0.748172\pi\)
0.967396 + 0.253268i \(0.0815055\pi\)
\(18\) 2.23970 6.94945i 0.527903 1.63800i
\(19\) 3.24371 + 5.61826i 0.744157 + 1.28892i 0.950588 + 0.310456i \(0.100482\pi\)
−0.206431 + 0.978461i \(0.566185\pi\)
\(20\) 7.63938 + 6.41020i 1.70822 + 1.43336i
\(21\) −2.35714 + 3.92987i −0.514369 + 0.857569i
\(22\) −1.52263 8.63526i −0.324626 1.84104i
\(23\) 1.57559 + 8.93560i 0.328533 + 1.86320i 0.483589 + 0.875295i \(0.339333\pi\)
−0.155057 + 0.987906i \(0.549556\pi\)
\(24\) 6.72753 + 4.52612i 1.37325 + 0.923889i
\(25\) 1.11884 + 0.938815i 0.223767 + 0.187763i
\(26\) −0.744042 + 1.28872i −0.145919 + 0.252739i
\(27\) 1.06215 5.08644i 0.204411 0.978885i
\(28\) −7.07636 7.59475i −1.33731 1.43527i
\(29\) −2.61993 + 0.953577i −0.486509 + 0.177075i −0.573616 0.819124i \(-0.694460\pi\)
0.0871072 + 0.996199i \(0.472238\pi\)
\(30\) 8.89008 + 5.98103i 1.62310 + 1.09198i
\(31\) −3.24433 1.18084i −0.582699 0.212085i 0.0338162 0.999428i \(-0.489234\pi\)
−0.616515 + 0.787343i \(0.711456\pi\)
\(32\) 0.559852 0.469771i 0.0989687 0.0830446i
\(33\) −1.72718 5.99638i −0.300663 1.04384i
\(34\) 4.06438 + 3.41042i 0.697036 + 0.584882i
\(35\) −4.58431 4.92014i −0.774891 0.831656i
\(36\) 10.4058 + 5.50106i 1.73430 + 0.916844i
\(37\) −9.19651 −1.51190 −0.755948 0.654632i \(-0.772824\pi\)
−0.755948 + 0.654632i \(0.772824\pi\)
\(38\) −14.8370 + 5.40021i −2.40687 + 0.876030i
\(39\) −0.429584 + 0.967967i −0.0687885 + 0.154999i
\(40\) −9.11508 + 7.64846i −1.44122 + 1.20933i
\(41\) 1.95368 + 0.711080i 0.305113 + 0.111052i 0.490039 0.871700i \(-0.336982\pi\)
−0.184926 + 0.982752i \(0.559205\pi\)
\(42\) −8.42309 7.31056i −1.29971 1.12804i
\(43\) −0.636164 + 3.60787i −0.0970141 + 0.550194i 0.897097 + 0.441833i \(0.145672\pi\)
−0.994112 + 0.108362i \(0.965440\pi\)
\(44\) 14.1353 2.13098
\(45\) 6.74124 + 3.56378i 1.00492 + 0.531257i
\(46\) −22.0831 −3.25598
\(47\) 6.26093 2.27879i 0.913250 0.332396i 0.157700 0.987487i \(-0.449592\pi\)
0.755550 + 0.655091i \(0.227370\pi\)
\(48\) −4.26199 + 4.42397i −0.615166 + 0.638545i
\(49\) 4.10982 + 5.66651i 0.587117 + 0.809502i
\(50\) −2.72304 + 2.28490i −0.385096 + 0.323134i
\(51\) 3.13283 + 2.10769i 0.438683 + 0.295135i
\(52\) −1.83765 1.54197i −0.254837 0.213833i
\(53\) 1.94162 + 3.36298i 0.266702 + 0.461941i 0.968008 0.250919i \(-0.0807328\pi\)
−0.701306 + 0.712860i \(0.747399\pi\)
\(54\) 11.7425 + 4.69548i 1.59795 + 0.638974i
\(55\) 9.15736 1.23478
\(56\) 10.3903 6.74146i 1.38846 0.900865i
\(57\) −10.0934 + 4.93781i −1.33691 + 0.654029i
\(58\) −1.17832 6.68257i −0.154721 0.877465i
\(59\) 3.38076 2.83679i 0.440137 0.369319i −0.395624 0.918413i \(-0.629472\pi\)
0.835761 + 0.549094i \(0.185027\pi\)
\(60\) −11.9839 + 12.4394i −1.54712 + 1.60592i
\(61\) 4.10389 1.49370i 0.525450 0.191248i −0.0656557 0.997842i \(-0.520914\pi\)
0.591106 + 0.806594i \(0.298692\pi\)
\(62\) 4.20143 7.27709i 0.533582 0.924192i
\(63\) −6.51078 4.53979i −0.820282 0.571960i
\(64\) 4.43600 + 7.68339i 0.554501 + 0.960423i
\(65\) −1.19050 0.998945i −0.147663 0.123904i
\(66\) 15.1023 1.60553i 1.85897 0.197627i
\(67\) 1.66173 + 9.42416i 0.203013 + 1.15134i 0.900536 + 0.434781i \(0.143174\pi\)
−0.697523 + 0.716562i \(0.745715\pi\)
\(68\) −6.55204 + 5.49781i −0.794551 + 0.666707i
\(69\) −15.6276 + 1.66137i −1.88134 + 0.200006i
\(70\) 13.7303 8.90849i 1.64108 1.06477i
\(71\) 1.53557 + 2.65969i 0.182239 + 0.315647i 0.942643 0.333804i \(-0.108332\pi\)
−0.760404 + 0.649450i \(0.774999\pi\)
\(72\) −8.61998 + 11.0875i −1.01587 + 1.30667i
\(73\) 13.4626 1.57568 0.787839 0.615881i \(-0.211200\pi\)
0.787839 + 0.615881i \(0.211200\pi\)
\(74\) 3.88670 22.0426i 0.451820 2.56240i
\(75\) −1.75512 + 1.82182i −0.202664 + 0.210366i
\(76\) −4.41989 25.0664i −0.506996 2.87532i
\(77\) −9.46049 1.16557i −1.07812 0.132829i
\(78\) −2.13851 1.43874i −0.242139 0.162905i
\(79\) 1.77158 10.0471i 0.199318 1.13039i −0.706815 0.707398i \(-0.749869\pi\)
0.906133 0.422992i \(-0.139020\pi\)
\(80\) −4.50736 7.80698i −0.503938 0.872846i
\(81\) 8.66309 + 2.43944i 0.962566 + 0.271049i
\(82\) −2.53002 + 4.38213i −0.279394 + 0.483925i
\(83\) −1.25509 + 0.456814i −0.137764 + 0.0501419i −0.409982 0.912094i \(-0.634465\pi\)
0.272218 + 0.962236i \(0.412243\pi\)
\(84\) 13.9639 11.3258i 1.52359 1.23575i
\(85\) −4.24464 + 3.56168i −0.460396 + 0.386318i
\(86\) −8.37862 3.04957i −0.903490 0.328843i
\(87\) −1.33661 4.64042i −0.143300 0.497506i
\(88\) −2.92872 + 16.6096i −0.312203 + 1.77059i
\(89\) 8.18109 + 14.1701i 0.867194 + 1.50202i 0.864852 + 0.502026i \(0.167412\pi\)
0.00234149 + 0.999997i \(0.499255\pi\)
\(90\) −11.3909 + 14.6515i −1.20070 + 1.54441i
\(91\) 1.10276 + 1.18354i 0.115600 + 0.124069i
\(92\) 6.18176 35.0585i 0.644493 3.65510i
\(93\) 2.42576 5.46588i 0.251540 0.566786i
\(94\) 2.81586 + 15.9695i 0.290434 + 1.64713i
\(95\) −2.86336 16.2389i −0.293774 1.66608i
\(96\) 0.745264 + 1.02320i 0.0760632 + 0.104430i
\(97\) 0.474040 2.68841i 0.0481314 0.272967i −0.951239 0.308456i \(-0.900188\pi\)
0.999370 + 0.0354890i \(0.0112989\pi\)
\(98\) −15.3187 + 7.45576i −1.54742 + 0.753146i
\(99\) 10.5667 2.27238i 1.06200 0.228383i
\(100\) −2.86518 4.96264i −0.286518 0.496264i
\(101\) −0.515530 + 2.92371i −0.0512971 + 0.290920i −0.999655 0.0262833i \(-0.991633\pi\)
0.948357 + 0.317204i \(0.102744\pi\)
\(102\) −6.37581 + 6.61812i −0.631299 + 0.655292i
\(103\) −5.98310 2.17767i −0.589532 0.214572i 0.0299915 0.999550i \(-0.490452\pi\)
−0.619524 + 0.784978i \(0.712674\pi\)
\(104\) 2.19263 1.83984i 0.215005 0.180411i
\(105\) 9.04632 7.33726i 0.882831 0.716043i
\(106\) −8.88112 + 3.23246i −0.862611 + 0.313965i
\(107\) 7.61176 13.1840i 0.735857 1.27454i −0.218490 0.975839i \(-0.570113\pi\)
0.954346 0.298702i \(-0.0965537\pi\)
\(108\) −10.7415 + 17.3276i −1.03360 + 1.66735i
\(109\) −0.868969 1.50510i −0.0832321 0.144162i 0.821404 0.570346i \(-0.193191\pi\)
−0.904637 + 0.426184i \(0.859858\pi\)
\(110\) −3.87015 + 21.9487i −0.369005 + 2.09273i
\(111\) 1.09219 15.8913i 0.103666 1.50834i
\(112\) 3.66288 + 8.63911i 0.346109 + 0.816319i
\(113\) 0.205896 + 1.16770i 0.0193691 + 0.109848i 0.992960 0.118454i \(-0.0377938\pi\)
−0.973590 + 0.228302i \(0.926683\pi\)
\(114\) −7.56938 26.2792i −0.708937 2.46128i
\(115\) 4.00476 22.7121i 0.373446 2.11792i
\(116\) 10.9389 1.01565
\(117\) −1.62160 0.857268i −0.149917 0.0792544i
\(118\) 5.37054 + 9.30204i 0.494398 + 0.856322i
\(119\) 4.83848 3.13931i 0.443543 0.287780i
\(120\) −12.1338 16.6590i −1.10766 1.52075i
\(121\) 1.51670 1.27266i 0.137882 0.115697i
\(122\) 1.84573 + 10.4677i 0.167105 + 0.947698i
\(123\) −1.46075 + 3.29145i −0.131711 + 0.296780i
\(124\) 10.3768 + 8.70716i 0.931863 + 0.781926i
\(125\) 4.49823 + 7.79116i 0.402334 + 0.696863i
\(126\) 13.6328 13.6867i 1.21451 1.21931i
\(127\) 0.268900 0.465748i 0.0238610 0.0413284i −0.853848 0.520522i \(-0.825737\pi\)
0.877709 + 0.479193i \(0.159071\pi\)
\(128\) −18.9171 + 6.88527i −1.67205 + 0.608578i
\(129\) −6.15875 1.52775i −0.542247 0.134511i
\(130\) 2.89745 2.43125i 0.254123 0.213235i
\(131\) −2.03108 11.5188i −0.177456 1.00640i −0.935271 0.353934i \(-0.884844\pi\)
0.757814 0.652470i \(-0.226267\pi\)
\(132\) −1.67873 + 24.4255i −0.146115 + 2.12596i
\(133\) 0.891224 + 17.1409i 0.0772790 + 1.48631i
\(134\) −23.2905 −2.01199
\(135\) −6.95872 + 11.2254i −0.598911 + 0.966133i
\(136\) −5.10264 8.83803i −0.437548 0.757855i
\(137\) −5.34063 4.48132i −0.456281 0.382865i 0.385480 0.922716i \(-0.374036\pi\)
−0.841760 + 0.539851i \(0.818480\pi\)
\(138\) 2.62262 38.1590i 0.223252 3.24831i
\(139\) −12.1427 + 10.1889i −1.02993 + 0.864215i −0.990843 0.135021i \(-0.956890\pi\)
−0.0390880 + 0.999236i \(0.512445\pi\)
\(140\) 10.2993 + 24.2915i 0.870452 + 2.05301i
\(141\) 3.19414 + 11.0894i 0.268995 + 0.933892i
\(142\) −7.02382 + 2.55646i −0.589426 + 0.214534i
\(143\) −2.20280 −0.184208
\(144\) −7.13835 7.89001i −0.594862 0.657501i
\(145\) 7.08661 0.588511
\(146\) −5.68967 + 32.2677i −0.470881 + 2.67050i
\(147\) −10.2797 + 6.42870i −0.847853 + 0.530231i
\(148\) 33.9061 + 12.3408i 2.78707 + 1.01441i
\(149\) 1.45505 1.22093i 0.119202 0.100023i −0.581238 0.813734i \(-0.697431\pi\)
0.700440 + 0.713711i \(0.252987\pi\)
\(150\) −3.62486 4.97670i −0.295969 0.406346i
\(151\) 9.23710 3.36203i 0.751705 0.273598i 0.0623818 0.998052i \(-0.480130\pi\)
0.689323 + 0.724454i \(0.257908\pi\)
\(152\) 30.3699 2.46332
\(153\) −4.01409 + 5.16313i −0.324520 + 0.417414i
\(154\) 6.79194 22.1827i 0.547310 1.78753i
\(155\) 6.72245 + 5.64081i 0.539960 + 0.453080i
\(156\) 2.88273 2.99229i 0.230803 0.239575i
\(157\) 2.35730 1.97801i 0.188133 0.157862i −0.543857 0.839178i \(-0.683036\pi\)
0.731990 + 0.681316i \(0.238592\pi\)
\(158\) 23.3327 + 8.49240i 1.85625 + 0.675619i
\(159\) −6.04174 + 2.95568i −0.479141 + 0.234400i
\(160\) −1.74558 + 0.635338i −0.138000 + 0.0502279i
\(161\) −7.02817 + 22.9542i −0.553897 + 1.80905i
\(162\) −9.50822 + 19.7331i −0.747036 + 1.55038i
\(163\) −4.07453 + 7.05730i −0.319142 + 0.552770i −0.980309 0.197468i \(-0.936728\pi\)
0.661167 + 0.750239i \(0.270061\pi\)
\(164\) −6.24871 5.24329i −0.487942 0.409432i
\(165\) −1.08754 + 15.8237i −0.0846648 + 1.23187i
\(166\) −0.564477 3.20131i −0.0438119 0.248470i
\(167\) −3.47178 19.6894i −0.268654 1.52361i −0.758424 0.651762i \(-0.774030\pi\)
0.489769 0.871852i \(-0.337081\pi\)
\(168\) 10.4151 + 18.7548i 0.803542 + 1.44697i
\(169\) −9.67220 8.11594i −0.744016 0.624303i
\(170\) −6.74287 11.6790i −0.517154 0.895738i
\(171\) −7.33370 18.0276i −0.560822 1.37861i
\(172\) 7.18685 12.4480i 0.547992 0.949150i
\(173\) −7.33285 6.15299i −0.557506 0.467803i 0.319967 0.947429i \(-0.396328\pi\)
−0.877473 + 0.479625i \(0.840773\pi\)
\(174\) 11.6873 1.24247i 0.886008 0.0941916i
\(175\) 1.50840 + 3.55765i 0.114024 + 0.268933i
\(176\) −12.0071 4.37024i −0.905072 0.329419i
\(177\) 4.50040 + 6.17876i 0.338271 + 0.464424i
\(178\) −37.4210 + 13.6201i −2.80482 + 1.02087i
\(179\) −8.30387 + 14.3827i −0.620660 + 1.07501i 0.368703 + 0.929547i \(0.379802\pi\)
−0.989363 + 0.145468i \(0.953531\pi\)
\(180\) −20.0717 22.1852i −1.49605 1.65359i
\(181\) 9.94849 17.2313i 0.739465 1.28079i −0.213271 0.976993i \(-0.568412\pi\)
0.952736 0.303799i \(-0.0982550\pi\)
\(182\) −3.30282 + 2.14294i −0.244821 + 0.158845i
\(183\) 2.09368 + 7.26882i 0.154770 + 0.537326i
\(184\) 39.9144 + 14.5277i 2.94253 + 1.07099i
\(185\) 21.9656 + 7.99482i 1.61494 + 0.587791i
\(186\) 12.0757 + 8.12420i 0.885431 + 0.595695i
\(187\) −1.36383 + 7.73464i −0.0997328 + 0.565613i
\(188\) −26.1410 −1.90653
\(189\) 8.61787 10.7113i 0.626858 0.779134i
\(190\) 40.1323 2.91150
\(191\) 4.05437 22.9935i 0.293364 1.66375i −0.380413 0.924817i \(-0.624218\pi\)
0.673777 0.738934i \(-0.264671\pi\)
\(192\) −13.8035 + 6.75281i −0.996183 + 0.487342i
\(193\) −9.95836 3.62455i −0.716818 0.260901i −0.0422438 0.999107i \(-0.513451\pi\)
−0.674574 + 0.738207i \(0.735673\pi\)
\(194\) 6.24336 + 2.27240i 0.448247 + 0.163149i
\(195\) 1.86754 1.93851i 0.133737 0.138820i
\(196\) −7.54838 26.4066i −0.539170 1.88618i
\(197\) 3.65213 6.32568i 0.260204 0.450686i −0.706092 0.708120i \(-0.749544\pi\)
0.966296 + 0.257434i \(0.0828770\pi\)
\(198\) 0.980743 + 26.2871i 0.0696984 + 1.86814i
\(199\) −3.09698 + 5.36413i −0.219539 + 0.380253i −0.954667 0.297675i \(-0.903789\pi\)
0.735128 + 0.677928i \(0.237122\pi\)
\(200\) 6.42496 2.33849i 0.454313 0.165356i
\(201\) −16.4820 + 1.75221i −1.16255 + 0.123591i
\(202\) −6.78980 2.47129i −0.477729 0.173879i
\(203\) −7.32119 0.901997i −0.513847 0.0633078i
\(204\) −8.72195 11.9747i −0.610659 0.838395i
\(205\) −4.04814 3.39679i −0.282734 0.237242i
\(206\) 7.74815 13.4202i 0.539839 0.935029i
\(207\) −1.01485 27.2014i −0.0705372 1.89063i
\(208\) 1.08425 + 1.87797i 0.0751789 + 0.130214i
\(209\) −17.9045 15.0236i −1.23848 1.03921i
\(210\) 13.7630 + 24.7835i 0.949738 + 1.71023i
\(211\) 4.53736 + 25.7326i 0.312365 + 1.77151i 0.586631 + 0.809855i \(0.300454\pi\)
−0.274266 + 0.961654i \(0.588435\pi\)
\(212\) −2.64566 15.0043i −0.181705 1.03050i
\(213\) −4.77824 + 2.33756i −0.327399 + 0.160167i
\(214\) 28.3829 + 23.8161i 1.94022 + 1.62803i
\(215\) 4.65589 8.06425i 0.317529 0.549977i
\(216\) −18.1352 16.2119i −1.23394 1.10308i
\(217\) −6.22701 6.68318i −0.422717 0.453684i
\(218\) 3.97473 1.44668i 0.269203 0.0979818i
\(219\) −1.59884 + 23.2630i −0.108039 + 1.57197i
\(220\) −33.7618 12.2883i −2.27622 0.828477i
\(221\) 1.02105 0.856761i 0.0686831 0.0576320i
\(222\) 37.6274 + 9.33392i 2.52539 + 0.626452i
\(223\) 11.5176 + 9.66439i 0.771273 + 0.647175i 0.941035 0.338310i \(-0.109855\pi\)
−0.169761 + 0.985485i \(0.554300\pi\)
\(224\) 1.88423 0.434189i 0.125895 0.0290105i
\(225\) −2.93963 3.24917i −0.195975 0.216611i
\(226\) −2.88580 −0.191961
\(227\) 11.6587 4.24343i 0.773817 0.281646i 0.0752247 0.997167i \(-0.476033\pi\)
0.698592 + 0.715520i \(0.253810\pi\)
\(228\) 43.8391 4.66053i 2.90331 0.308651i
\(229\) −11.1913 + 9.39062i −0.739542 + 0.620550i −0.932715 0.360615i \(-0.882567\pi\)
0.193173 + 0.981165i \(0.438122\pi\)
\(230\) 52.7449 + 19.1976i 3.47789 + 1.26585i
\(231\) 3.13761 16.2091i 0.206439 1.06648i
\(232\) −2.26645 + 12.8537i −0.148800 + 0.843886i
\(233\) 7.75544 0.508076 0.254038 0.967194i \(-0.418241\pi\)
0.254038 + 0.967194i \(0.418241\pi\)
\(234\) 2.74007 3.52442i 0.179124 0.230399i
\(235\) −16.9351 −1.10472
\(236\) −16.2710 + 5.92218i −1.05915 + 0.385501i
\(237\) 17.1508 + 4.25446i 1.11406 + 0.276357i
\(238\) 5.47955 + 12.9238i 0.355187 + 0.837728i
\(239\) 11.8099 9.90971i 0.763921 0.641006i −0.175223 0.984529i \(-0.556065\pi\)
0.939144 + 0.343523i \(0.111620\pi\)
\(240\) 14.0256 6.86144i 0.905346 0.442904i
\(241\) 6.41850 + 5.38576i 0.413452 + 0.346927i 0.825666 0.564160i \(-0.190800\pi\)
−0.412214 + 0.911087i \(0.635244\pi\)
\(242\) 2.40937 + 4.17316i 0.154880 + 0.268261i
\(243\) −5.24413 + 14.6799i −0.336411 + 0.941715i
\(244\) −17.1348 −1.09695
\(245\) −4.89011 17.1071i −0.312417 1.09293i
\(246\) −7.27174 4.89224i −0.463629 0.311918i
\(247\) 0.688781 + 3.90627i 0.0438261 + 0.248550i
\(248\) −12.3813 + 10.3891i −0.786212 + 0.659710i
\(249\) −0.640308 2.22301i −0.0405778 0.140877i
\(250\) −20.5753 + 7.48878i −1.30129 + 0.473632i
\(251\) −5.15077 + 8.92139i −0.325114 + 0.563113i −0.981535 0.191281i \(-0.938736\pi\)
0.656422 + 0.754394i \(0.272069\pi\)
\(252\) 17.9123 + 25.4744i 1.12837 + 1.60473i
\(253\) −16.3447 28.3099i −1.02758 1.77983i
\(254\) 1.00268 + 0.841348i 0.0629137 + 0.0527908i
\(255\) −5.65039 7.75762i −0.353841 0.485801i
\(256\) −5.42678 30.7768i −0.339174 1.92355i
\(257\) −1.11040 + 0.931732i −0.0692646 + 0.0581199i −0.676763 0.736201i \(-0.736618\pi\)
0.607498 + 0.794321i \(0.292173\pi\)
\(258\) 6.26463 14.1159i 0.390019 0.878816i
\(259\) −21.6751 11.0553i −1.34683 0.686942i
\(260\) 3.04869 + 5.28049i 0.189072 + 0.327482i
\(261\) 8.17727 1.75853i 0.506160 0.108850i
\(262\) 28.4672 1.75871
\(263\) −2.14263 + 12.1514i −0.132120 + 0.749290i 0.844702 + 0.535237i \(0.179778\pi\)
−0.976822 + 0.214053i \(0.931333\pi\)
\(264\) −28.3532 7.03334i −1.74502 0.432872i
\(265\) −1.71395 9.72030i −0.105287 0.597113i
\(266\) −41.4607 5.10811i −2.54212 0.313198i
\(267\) −25.4571 + 12.4539i −1.55795 + 0.762164i
\(268\) 6.51975 36.9753i 0.398257 2.25863i
\(269\) −1.92905 3.34120i −0.117616 0.203717i 0.801206 0.598388i \(-0.204192\pi\)
−0.918822 + 0.394671i \(0.870859\pi\)
\(270\) −23.9647 21.4231i −1.45844 1.30377i
\(271\) −7.34960 + 12.7299i −0.446456 + 0.773285i −0.998152 0.0607603i \(-0.980647\pi\)
0.551696 + 0.834045i \(0.313981\pi\)
\(272\) 7.26534 2.64437i 0.440526 0.160338i
\(273\) −2.17609 + 1.76498i −0.131703 + 0.106821i
\(274\) 12.9981 10.9067i 0.785245 0.658899i
\(275\) −4.94463 1.79970i −0.298173 0.108526i
\(276\) 59.8460 + 14.8455i 3.60231 + 0.893595i
\(277\) −1.02553 + 5.81610i −0.0616184 + 0.349455i 0.938374 + 0.345621i \(0.112332\pi\)
−0.999993 + 0.00383449i \(0.998779\pi\)
\(278\) −19.2894 33.4103i −1.15690 2.00381i
\(279\) 9.15682 + 4.84079i 0.548205 + 0.289811i
\(280\) −30.6776 + 7.06914i −1.83333 + 0.422462i
\(281\) −2.69676 + 15.2941i −0.160875 + 0.912367i 0.792341 + 0.610078i \(0.208862\pi\)
−0.953216 + 0.302289i \(0.902249\pi\)
\(282\) −27.9294 + 2.96917i −1.66317 + 0.176812i
\(283\) −3.75047 21.2700i −0.222942 1.26437i −0.866580 0.499039i \(-0.833687\pi\)
0.643637 0.765331i \(-0.277425\pi\)
\(284\) −2.09238 11.8665i −0.124160 0.704144i
\(285\) 28.4005 3.01926i 1.68230 0.178845i
\(286\) 0.930966 5.27977i 0.0550492 0.312199i
\(287\) 3.74979 + 4.02448i 0.221343 + 0.237558i
\(288\) −1.85657 + 1.16628i −0.109400 + 0.0687238i
\(289\) 6.12384 + 10.6068i 0.360226 + 0.623930i
\(290\) −2.99500 + 16.9855i −0.175872 + 0.997422i
\(291\) 4.58921 + 1.13841i 0.269024 + 0.0667346i
\(292\) −49.6346 18.0655i −2.90465 1.05720i
\(293\) −8.59601 + 7.21291i −0.502184 + 0.421383i −0.858369 0.513033i \(-0.828522\pi\)
0.356185 + 0.934416i \(0.384077\pi\)
\(294\) −11.0641 27.3557i −0.645272 1.59542i
\(295\) −10.5410 + 3.83659i −0.613718 + 0.223375i
\(296\) −21.5261 + 37.2843i −1.25118 + 2.16710i
\(297\) 2.67170 + 18.5289i 0.155028 + 1.07516i
\(298\) 2.31143 + 4.00352i 0.133898 + 0.231918i
\(299\) −0.963345 + 5.46340i −0.0557117 + 0.315957i
\(300\) 8.91559 4.36159i 0.514742 0.251817i
\(301\) −5.83645 + 7.73858i −0.336407 + 0.446044i
\(302\) 4.15440 + 23.5608i 0.239059 + 1.35577i
\(303\) −4.99088 1.23805i −0.286718 0.0711239i
\(304\) −3.99539 + 22.6590i −0.229151 + 1.29958i
\(305\) −11.1006 −0.635616
\(306\) −10.6787 11.8032i −0.610463 0.674745i
\(307\) −5.09131 8.81840i −0.290576 0.503293i 0.683370 0.730072i \(-0.260514\pi\)
−0.973946 + 0.226780i \(0.927180\pi\)
\(308\) 33.3153 + 16.9923i 1.89832 + 0.968228i
\(309\) 4.47352 10.0800i 0.254490 0.573432i
\(310\) −16.3612 + 13.7287i −0.929255 + 0.779737i
\(311\) 1.64089 + 9.30596i 0.0930464 + 0.527693i 0.995328 + 0.0965463i \(0.0307796\pi\)
−0.902282 + 0.431146i \(0.858109\pi\)
\(312\) 2.91879 + 4.00731i 0.165244 + 0.226869i
\(313\) −19.1615 16.0784i −1.08307 0.908806i −0.0869005 0.996217i \(-0.527696\pi\)
−0.996172 + 0.0874110i \(0.972141\pi\)
\(314\) 3.74471 + 6.48604i 0.211326 + 0.366028i
\(315\) 11.6042 + 16.5032i 0.653825 + 0.929850i
\(316\) −20.0138 + 34.6650i −1.12587 + 1.95006i
\(317\) 4.30082 1.56537i 0.241558 0.0879200i −0.218404 0.975858i \(-0.570085\pi\)
0.459962 + 0.887938i \(0.347863\pi\)
\(318\) −4.53088 15.7302i −0.254079 0.882108i
\(319\) 7.69474 6.45666i 0.430823 0.361503i
\(320\) −3.91585 22.2079i −0.218903 1.24146i
\(321\) 21.8776 + 14.7187i 1.22109 + 0.821516i
\(322\) −52.0473 26.5465i −2.90048 1.47938i
\(323\) 14.1424 0.786906
\(324\) −28.6660 20.6189i −1.59256 1.14549i
\(325\) 0.446501 + 0.773362i 0.0247674 + 0.0428984i
\(326\) −15.1932 12.7486i −0.841475 0.706081i
\(327\) 2.70397 1.32281i 0.149530 0.0731515i
\(328\) 7.45578 6.25614i 0.411676 0.345437i
\(329\) 17.4957 + 2.15553i 0.964568 + 0.118838i
\(330\) −37.4672 9.29419i −2.06250 0.511628i
\(331\) 24.0569 8.75600i 1.32229 0.481273i 0.418097 0.908402i \(-0.362697\pi\)
0.904191 + 0.427129i \(0.140475\pi\)
\(332\) 5.24032 0.287600
\(333\) 27.3301 + 3.77455i 1.49768 + 0.206844i
\(334\) 48.6597 2.66254
\(335\) 4.22372 23.9539i 0.230767 1.30874i
\(336\) −15.3632 + 5.30337i −0.838130 + 0.289322i
\(337\) 2.83251 + 1.03095i 0.154297 + 0.0561594i 0.418014 0.908441i \(-0.362726\pi\)
−0.263717 + 0.964600i \(0.584949\pi\)
\(338\) 23.5404 19.7527i 1.28043 1.07441i
\(339\) −2.04220 + 0.217107i −0.110917 + 0.0117916i
\(340\) 20.4288 7.43547i 1.10791 0.403245i
\(341\) 12.4387 0.673594
\(342\) 46.3088 9.95873i 2.50409 0.538507i
\(343\) 2.87456 + 18.2958i 0.155212 + 0.987881i
\(344\) 13.1379 + 11.0240i 0.708346 + 0.594373i
\(345\) 38.7704 + 9.61744i 2.08733 + 0.517786i
\(346\) 17.8468 14.9753i 0.959450 0.805074i
\(347\) 21.6903 + 7.89462i 1.16440 + 0.423806i 0.850666 0.525707i \(-0.176199\pi\)
0.313730 + 0.949512i \(0.398421\pi\)
\(348\) −1.29912 + 18.9022i −0.0696400 + 1.01326i
\(349\) 9.45461 3.44120i 0.506094 0.184203i −0.0763390 0.997082i \(-0.524323\pi\)
0.582433 + 0.812879i \(0.302101\pi\)
\(350\) −9.16462 + 2.11184i −0.489870 + 0.112882i
\(351\) 1.67392 2.70028i 0.0893473 0.144130i
\(352\) −1.31651 + 2.28027i −0.0701703 + 0.121539i
\(353\) 8.76282 + 7.35288i 0.466398 + 0.391354i 0.845478 0.534009i \(-0.179315\pi\)
−0.379081 + 0.925364i \(0.623760\pi\)
\(354\) −16.7115 + 8.17543i −0.888206 + 0.434519i
\(355\) −1.35551 7.68751i −0.0719432 0.408010i
\(356\) −11.1476 63.2211i −0.590821 3.35071i
\(357\) 4.85002 + 8.73360i 0.256690 + 0.462231i
\(358\) −30.9637 25.9816i −1.63648 1.37317i
\(359\) −5.47308 9.47965i −0.288858 0.500317i 0.684679 0.728844i \(-0.259942\pi\)
−0.973537 + 0.228528i \(0.926609\pi\)
\(360\) 30.2273 18.9885i 1.59312 1.00078i
\(361\) −11.5432 + 19.9935i −0.607539 + 1.05229i
\(362\) 37.0962 + 31.1274i 1.94973 + 1.63602i
\(363\) 2.01901 + 2.77197i 0.105970 + 0.145491i
\(364\) −2.47750 5.84333i −0.129856 0.306274i
\(365\) −32.1551 11.7035i −1.68307 0.612588i
\(366\) −18.3071 + 1.94622i −0.956925 + 0.101731i
\(367\) 14.0887 5.12787i 0.735425 0.267673i 0.0529654 0.998596i \(-0.483133\pi\)
0.682459 + 0.730924i \(0.260910\pi\)
\(368\) −16.0901 + 27.8689i −0.838757 + 1.45277i
\(369\) −5.51407 2.91503i −0.287051 0.151751i
\(370\) −28.4456 + 49.2692i −1.47882 + 2.56138i
\(371\) 0.533470 + 10.2602i 0.0276964 + 0.532684i
\(372\) −16.2781 + 16.8968i −0.843981 + 0.876056i
\(373\) −9.97641 3.63112i −0.516559 0.188012i 0.0705679 0.997507i \(-0.477519\pi\)
−0.587127 + 0.809495i \(0.699741\pi\)
\(374\) −17.9623 6.53775i −0.928809 0.338059i
\(375\) −13.9971 + 6.84754i −0.722810 + 0.353605i
\(376\) 5.41621 30.7168i 0.279320 1.58410i
\(377\) −1.70468 −0.0877957
\(378\) 22.0312 + 25.1826i 1.13316 + 1.29525i
\(379\) 4.75796 0.244400 0.122200 0.992505i \(-0.461005\pi\)
0.122200 + 0.992505i \(0.461005\pi\)
\(380\) −11.2343 + 63.7128i −0.576307 + 3.26840i
\(381\) 0.772865 + 0.519964i 0.0395951 + 0.0266386i
\(382\) 53.3983 + 19.4354i 2.73209 + 0.994401i
\(383\) 16.3737 + 5.95954i 0.836658 + 0.304519i 0.724588 0.689182i \(-0.242030\pi\)
0.112069 + 0.993700i \(0.464252\pi\)
\(384\) −9.65095 33.5060i −0.492498 1.70985i
\(385\) 21.5828 + 11.0082i 1.09996 + 0.561031i
\(386\) 12.8961 22.3368i 0.656396 1.13691i
\(387\) 3.37133 10.4607i 0.171374 0.531748i
\(388\) −5.35531 + 9.27566i −0.271874 + 0.470900i
\(389\) −20.0293 + 7.29007i −1.01553 + 0.369621i −0.795552 0.605885i \(-0.792819\pi\)
−0.219973 + 0.975506i \(0.570597\pi\)
\(390\) 3.85703 + 5.29546i 0.195308 + 0.268146i
\(391\) 18.5870 + 6.76513i 0.939987 + 0.342127i
\(392\) 32.5928 3.39845i 1.64619 0.171648i
\(393\) 20.1454 2.14166i 1.01620 0.108033i
\(394\) 13.6182 + 11.4270i 0.686073 + 0.575683i
\(395\) −12.9657 + 22.4572i −0.652374 + 1.12994i
\(396\) −42.0072 5.80160i −2.11094 0.291541i
\(397\) −13.7760 23.8608i −0.691399 1.19754i −0.971380 0.237532i \(-0.923662\pi\)
0.279981 0.960005i \(-0.409672\pi\)
\(398\) −11.5481 9.69001i −0.578854 0.485716i
\(399\) −29.7249 0.495664i −1.48811 0.0248142i
\(400\) 0.899499 + 5.10131i 0.0449749 + 0.255066i
\(401\) 1.42889 + 8.10364i 0.0713553 + 0.404676i 0.999475 + 0.0323946i \(0.0103133\pi\)
−0.928120 + 0.372282i \(0.878576\pi\)
\(402\) 2.76601 40.2454i 0.137956 2.00726i
\(403\) −1.61709 1.35690i −0.0805528 0.0675918i
\(404\) 5.82402 10.0875i 0.289756 0.501872i
\(405\) −18.5709 13.3576i −0.922793 0.663747i
\(406\) 5.25608 17.1665i 0.260855 0.851961i
\(407\) 31.1347 11.3321i 1.54329 0.561711i
\(408\) 15.8779 7.76761i 0.786072 0.384554i
\(409\) 16.5254 + 6.01477i 0.817131 + 0.297411i 0.716566 0.697519i \(-0.245713\pi\)
0.100565 + 0.994931i \(0.467935\pi\)
\(410\) 9.85242 8.26716i 0.486576 0.408286i
\(411\) 8.37787 8.69626i 0.413250 0.428955i
\(412\) 19.1366 + 16.0575i 0.942791 + 0.791096i
\(413\) 11.3782 2.62192i 0.559885 0.129016i
\(414\) 65.6264 + 9.06363i 3.22536 + 0.445453i
\(415\) 3.39486 0.166647
\(416\) 0.419899 0.152831i 0.0205872 0.00749314i
\(417\) −16.1641 22.1923i −0.791562 1.08676i
\(418\) 43.5762 36.5648i 2.13138 1.78844i
\(419\) −27.2312 9.91134i −1.33033 0.484201i −0.423576 0.905860i \(-0.639225\pi\)
−0.906754 + 0.421660i \(0.861448\pi\)
\(420\) −43.1983 + 14.9121i −2.10786 + 0.727635i
\(421\) 1.96282 11.1317i 0.0956621 0.542527i −0.898880 0.438194i \(-0.855618\pi\)
0.994542 0.104333i \(-0.0332706\pi\)
\(422\) −63.5947 −3.09574
\(423\) −19.5415 + 4.20240i −0.950138 + 0.204328i
\(424\) 18.1788 0.882842
\(425\) 2.99193 1.08897i 0.145130 0.0528229i
\(426\) −3.58334 12.4406i −0.173614 0.602749i
\(427\) 11.4680 + 1.41290i 0.554976 + 0.0683750i
\(428\) −45.7550 + 38.3930i −2.21165 + 1.85580i
\(429\) 0.261608 3.80639i 0.0126305 0.183774i
\(430\) 17.3610 + 14.5676i 0.837222 + 0.702513i
\(431\) 14.3539 + 24.8616i 0.691402 + 1.19754i 0.971379 + 0.237536i \(0.0763399\pi\)
−0.279977 + 0.960007i \(0.590327\pi\)
\(432\) 14.4815 11.3979i 0.696741 0.548379i
\(433\) 6.39115 0.307139 0.153569 0.988138i \(-0.450923\pi\)
0.153569 + 0.988138i \(0.450923\pi\)
\(434\) 18.6502 12.1007i 0.895239 0.580850i
\(435\) −0.841614 + 12.2455i −0.0403523 + 0.587126i
\(436\) 1.18406 + 6.71515i 0.0567063 + 0.321597i
\(437\) −45.0918 + 37.8365i −2.15703 + 1.80997i
\(438\) −55.0821 13.6638i −2.63193 0.652880i
\(439\) 22.7699 8.28757i 1.08675 0.395544i 0.264333 0.964431i \(-0.414848\pi\)
0.822416 + 0.568887i \(0.192626\pi\)
\(440\) 21.4345 37.1256i 1.02185 1.76989i
\(441\) −9.88781 18.5265i −0.470848 0.882214i
\(442\) 1.62200 + 2.80938i 0.0771505 + 0.133629i
\(443\) 17.0625 + 14.3171i 0.810664 + 0.680228i 0.950766 0.309909i \(-0.100299\pi\)
−0.140102 + 0.990137i \(0.544743\pi\)
\(444\) −25.3514 + 57.1233i −1.20312 + 2.71095i
\(445\) −7.22180 40.9569i −0.342346 1.94154i
\(446\) −28.0316 + 23.5213i −1.32734 + 1.11377i
\(447\) 1.93693 + 2.65929i 0.0916139 + 0.125780i
\(448\) 1.21881 + 23.4415i 0.0575836 + 1.10751i
\(449\) 0.443176 + 0.767604i 0.0209148 + 0.0362255i 0.876293 0.481778i \(-0.160009\pi\)
−0.855379 + 0.518003i \(0.826675\pi\)
\(450\) 9.03011 5.67263i 0.425683 0.267410i
\(451\) −7.49036 −0.352707
\(452\) 0.807828 4.58142i 0.0379970 0.215492i
\(453\) 4.71249 + 16.3608i 0.221412 + 0.768695i
\(454\) 5.24352 + 29.7375i 0.246091 + 1.39565i
\(455\) −1.60501 3.78552i −0.0752442 0.177468i
\(456\) −3.60677 + 52.4784i −0.168902 + 2.45753i
\(457\) −0.609436 + 3.45628i −0.0285082 + 0.161678i −0.995738 0.0922232i \(-0.970603\pi\)
0.967230 + 0.253901i \(0.0817138\pi\)
\(458\) −17.7781 30.7925i −0.830715 1.43884i
\(459\) −8.44504 7.54942i −0.394181 0.352377i
\(460\) −45.2425 + 78.3622i −2.10944 + 3.65366i
\(461\) −16.8870 + 6.14638i −0.786508 + 0.286266i −0.703884 0.710315i \(-0.748552\pi\)
−0.0826244 + 0.996581i \(0.526330\pi\)
\(462\) 37.5245 + 14.3707i 1.74580 + 0.668588i
\(463\) 21.3499 17.9147i 0.992212 0.832565i 0.00632577 0.999980i \(-0.497986\pi\)
0.985887 + 0.167415i \(0.0535420\pi\)
\(464\) −9.29197 3.38200i −0.431369 0.157005i
\(465\) −10.5455 + 10.9463i −0.489038 + 0.507623i
\(466\) −3.27766 + 18.5886i −0.151835 + 0.861098i
\(467\) 9.41870 + 16.3137i 0.435845 + 0.754906i 0.997364 0.0725575i \(-0.0231161\pi\)
−0.561519 + 0.827464i \(0.689783\pi\)
\(468\) 4.82824 + 5.33666i 0.223186 + 0.246687i
\(469\) −7.41244 + 24.2093i −0.342275 + 1.11788i
\(470\) 7.15724 40.5907i 0.330139 1.87231i
\(471\) 3.13799 + 4.30826i 0.144591 + 0.198514i
\(472\) −3.58758 20.3462i −0.165132 0.936510i
\(473\) −2.29195 12.9983i −0.105384 0.597662i
\(474\) −17.4457 + 39.3097i −0.801306 + 1.80555i
\(475\) −1.64533 + 9.33115i −0.0754931 + 0.428143i
\(476\) −22.0514 + 5.08139i −1.01073 + 0.232905i
\(477\) −4.38981 10.7910i −0.200996 0.494085i
\(478\) 18.7608 + 32.4947i 0.858099 + 1.48627i
\(479\) −1.36662 + 7.75049i −0.0624425 + 0.354129i 0.937538 + 0.347883i \(0.113099\pi\)
−0.999980 + 0.00624600i \(0.998012\pi\)
\(480\) −0.890541 3.09177i −0.0406475 0.141119i
\(481\) −5.28382 1.92315i −0.240922 0.0876883i
\(482\) −15.6215 + 13.1080i −0.711538 + 0.597051i
\(483\) −38.8296 14.8706i −1.76681 0.676634i
\(484\) −7.29965 + 2.65686i −0.331802 + 0.120766i
\(485\) −3.46936 + 6.00910i −0.157535 + 0.272859i
\(486\) −32.9691 18.7735i −1.49551 0.851582i
\(487\) −7.08994 12.2801i −0.321276 0.556466i 0.659476 0.751726i \(-0.270778\pi\)
−0.980752 + 0.195260i \(0.937445\pi\)
\(488\) 3.55020 20.1342i 0.160710 0.911432i
\(489\) −11.7109 7.87882i −0.529587 0.356293i
\(490\) 43.0697 4.49087i 1.94569 0.202877i
\(491\) 2.15381 + 12.2149i 0.0972002 + 0.551250i 0.994051 + 0.108916i \(0.0347381\pi\)
−0.896851 + 0.442333i \(0.854151\pi\)
\(492\) 9.80238 10.1749i 0.441925 0.458721i
\(493\) −1.05542 + 5.98561i −0.0475339 + 0.269578i
\(494\) −9.65381 −0.434346
\(495\) −27.2138 3.75848i −1.22317 0.168931i
\(496\) −6.12248 10.6044i −0.274907 0.476154i
\(497\) 0.421906 + 8.11451i 0.0189251 + 0.363986i
\(498\) 5.59881 0.595210i 0.250889 0.0266720i
\(499\) −27.6000 + 23.1591i −1.23554 + 1.03674i −0.237685 + 0.971342i \(0.576389\pi\)
−0.997859 + 0.0654026i \(0.979167\pi\)
\(500\) −6.12931 34.7611i −0.274111 1.55456i
\(501\) 34.4351 3.66080i 1.53845 0.163553i
\(502\) −19.2063 16.1160i −0.857220 0.719293i
\(503\) −16.3462 28.3124i −0.728841 1.26239i −0.957373 0.288853i \(-0.906726\pi\)
0.228532 0.973536i \(-0.426607\pi\)
\(504\) −33.6448 + 15.7697i −1.49866 + 0.702437i
\(505\) 3.77301 6.53504i 0.167897 0.290806i
\(506\) 74.7621 27.2112i 3.32358 1.20969i
\(507\) 15.1728 15.7495i 0.673849 0.699458i
\(508\) −1.61638 + 1.35630i −0.0717153 + 0.0601763i
\(509\) −1.42748 8.09565i −0.0632720 0.358833i −0.999962 0.00867461i \(-0.997239\pi\)
0.936690 0.350159i \(-0.113872\pi\)
\(510\) 20.9818 10.2645i 0.929089 0.454519i
\(511\) 31.7298 + 16.1837i 1.40364 + 0.715923i
\(512\) 35.7983 1.58208
\(513\) 32.0222 10.5315i 1.41382 0.464975i
\(514\) −1.76393 3.05522i −0.0778036 0.134760i
\(515\) 12.3973 + 10.4026i 0.546292 + 0.458394i
\(516\) 20.6563 + 13.8970i 0.909342 + 0.611783i
\(517\) −18.3884 + 15.4297i −0.808719 + 0.678596i
\(518\) 35.6583 47.2795i 1.56674 2.07734i
\(519\) 11.5031 11.9402i 0.504929 0.524118i
\(520\) −6.83647 + 2.48827i −0.299799 + 0.109118i
\(521\) 5.67165 0.248479 0.124240 0.992252i \(-0.460351\pi\)
0.124240 + 0.992252i \(0.460351\pi\)
\(522\) 0.758968 + 20.3428i 0.0332191 + 0.890381i
\(523\) 6.90693 0.302019 0.151009 0.988532i \(-0.451748\pi\)
0.151009 + 0.988532i \(0.451748\pi\)
\(524\) −7.96887 + 45.1937i −0.348121 + 1.97430i
\(525\) −6.32667 + 2.18397i −0.276119 + 0.0953162i
\(526\) −28.2196 10.2711i −1.23043 0.447840i
\(527\) −5.76562 + 4.83793i −0.251154 + 0.210743i
\(528\) 8.97765 20.2290i 0.390702 0.880355i
\(529\) −55.7495 + 20.2912i −2.42389 + 0.882224i
\(530\) 24.0224 1.04347
\(531\) −11.2112 + 7.04278i −0.486525 + 0.305631i
\(532\) 19.7157 64.3920i 0.854782 2.79175i
\(533\) 0.973779 + 0.817097i 0.0421790 + 0.0353924i
\(534\) −19.0911 66.2800i −0.826151 2.86822i
\(535\) −29.6417 + 24.8724i −1.28152 + 1.07533i
\(536\) 42.0968 + 15.3220i 1.81830 + 0.661809i
\(537\) −23.8668 16.0570i −1.02993 0.692910i
\(538\) 8.82361 3.21153i 0.380413 0.138459i
\(539\) −20.8961 14.1197i −0.900061 0.608180i
\(540\) 40.7192 32.0486i 1.75228 1.37915i
\(541\) 9.42354 16.3220i 0.405150 0.701740i −0.589189 0.807995i \(-0.700553\pi\)
0.994339 + 0.106255i \(0.0338861\pi\)
\(542\) −27.4054 22.9958i −1.17716 0.987755i
\(543\) 28.5937 + 19.2371i 1.22707 + 0.825545i
\(544\) −0.276657 1.56900i −0.0118616 0.0672703i
\(545\) 0.767077 + 4.35031i 0.0328580 + 0.186347i
\(546\) −3.31069 5.96168i −0.141685 0.255136i
\(547\) −4.28734 3.59751i −0.183313 0.153818i 0.546513 0.837450i \(-0.315955\pi\)
−0.729827 + 0.683632i \(0.760399\pi\)
\(548\) 13.6766 + 23.6886i 0.584235 + 1.01193i
\(549\) −12.8090 + 2.75458i −0.546674 + 0.117563i
\(550\) 6.40333 11.0909i 0.273039 0.472918i
\(551\) −13.8557 11.6263i −0.590274 0.495299i
\(552\) −29.8437 + 67.2458i −1.27023 + 2.86217i
\(553\) 16.2533 21.5503i 0.691159 0.916412i
\(554\) −13.5068 4.91609i −0.573851 0.208865i
\(555\) −16.4235 + 37.0065i −0.697139 + 1.57084i
\(556\) 58.4409 21.2708i 2.47845 0.902081i
\(557\) 12.0504 20.8720i 0.510593 0.884374i −0.489331 0.872098i \(-0.662759\pi\)
0.999925 0.0122757i \(-0.00390759\pi\)
\(558\) −15.4725 + 19.9016i −0.655005 + 0.842502i
\(559\) −1.11998 + 1.93985i −0.0473699 + 0.0820471i
\(560\) −1.23842 23.8185i −0.0523328 1.00652i
\(561\) −13.2033 3.27523i −0.557443 0.138280i
\(562\) −35.5177 12.9274i −1.49823 0.545309i
\(563\) 6.07227 + 2.21013i 0.255916 + 0.0931457i 0.466792 0.884367i \(-0.345410\pi\)
−0.210877 + 0.977513i \(0.567632\pi\)
\(564\) 3.10454 45.1710i 0.130725 1.90204i
\(565\) 0.523339 2.96800i 0.0220170 0.124865i
\(566\) 52.5659 2.20951
\(567\) 17.4854 + 16.1635i 0.734318 + 0.678805i
\(568\) 14.3771 0.603250
\(569\) −5.87629 + 33.3261i −0.246347 + 1.39710i 0.570997 + 0.820952i \(0.306557\pi\)
−0.817344 + 0.576150i \(0.804554\pi\)
\(570\) −4.76616 + 69.3475i −0.199632 + 2.90465i
\(571\) 30.8936 + 11.2443i 1.29286 + 0.470561i 0.894663 0.446741i \(-0.147415\pi\)
0.398192 + 0.917302i \(0.369638\pi\)
\(572\) 8.12140 + 2.95595i 0.339573 + 0.123594i
\(573\) 39.2507 + 9.73659i 1.63972 + 0.406752i
\(574\) −11.2308 + 7.28679i −0.468765 + 0.304145i
\(575\) −6.62605 + 11.4766i −0.276325 + 0.478609i
\(576\) −10.0294 24.6541i −0.417890 1.02725i
\(577\) 17.7456 30.7363i 0.738758 1.27957i −0.214296 0.976769i \(-0.568746\pi\)
0.953055 0.302798i \(-0.0979208\pi\)
\(578\) −28.0109 + 10.1952i −1.16510 + 0.424062i
\(579\) 7.44579 16.7773i 0.309436 0.697242i
\(580\) −26.1273 9.50955i −1.08488 0.394863i
\(581\) −3.50724 0.432104i −0.145505 0.0179267i
\(582\) −4.66811 + 10.5185i −0.193499 + 0.436005i
\(583\) −10.7173 8.99285i −0.443864 0.372446i
\(584\) 31.5117 54.5798i 1.30396 2.25853i
\(585\) 3.12791 + 3.45727i 0.129323 + 0.142941i
\(586\) −13.6553 23.6516i −0.564095 0.977041i
\(587\) −16.8088 14.1043i −0.693775 0.582146i 0.226220 0.974076i \(-0.427363\pi\)
−0.919995 + 0.391930i \(0.871808\pi\)
\(588\) 46.5263 9.90733i 1.91871 0.408572i
\(589\) −3.88939 22.0578i −0.160259 0.908876i
\(590\) −4.74081 26.8864i −0.195176 1.10690i
\(591\) 10.4969 + 7.06204i 0.431784 + 0.290493i
\(592\) −24.9859 20.9656i −1.02691 0.861683i
\(593\) 6.03316 10.4497i 0.247752 0.429119i −0.715150 0.698971i \(-0.753642\pi\)
0.962902 + 0.269852i \(0.0869748\pi\)
\(594\) −45.5399 1.42719i −1.86853 0.0585584i
\(595\) −14.2857 + 3.29190i −0.585656 + 0.134955i
\(596\) −7.00292 + 2.54885i −0.286851 + 0.104405i
\(597\) −8.90128 5.98856i −0.364305 0.245095i
\(598\) −12.6878 4.61797i −0.518842 0.188843i
\(599\) −32.1156 + 26.9482i −1.31221 + 1.10107i −0.324314 + 0.945949i \(0.605133\pi\)
−0.987895 + 0.155125i \(0.950422\pi\)
\(600\) 3.27782 + 11.3799i 0.133817 + 0.464582i
\(601\) 4.41327 + 3.70317i 0.180021 + 0.151055i 0.728345 0.685210i \(-0.240290\pi\)
−0.548324 + 0.836266i \(0.684734\pi\)
\(602\) −16.0815 17.2596i −0.655433 0.703448i
\(603\) −1.07034 28.6887i −0.0435877 1.16829i
\(604\) −38.5673 −1.56928
\(605\) −4.72897 + 1.72120i −0.192260 + 0.0699769i
\(606\) 5.07668 11.4391i 0.206226 0.464682i
\(607\) −22.3759 + 18.7756i −0.908208 + 0.762077i −0.971777 0.235901i \(-0.924196\pi\)
0.0635694 + 0.997977i \(0.479752\pi\)
\(608\) 4.45529 + 1.62159i 0.180686 + 0.0657643i
\(609\) 2.42810 12.5437i 0.0983916 0.508297i
\(610\) 4.69140 26.6063i 0.189949 1.07726i
\(611\) 4.07373 0.164806
\(612\) 21.7278 13.6492i 0.878293 0.551735i
\(613\) 11.9338 0.482002 0.241001 0.970525i \(-0.422524\pi\)
0.241001 + 0.970525i \(0.422524\pi\)
\(614\) 23.2880 8.47615i 0.939829 0.342070i
\(615\) 6.35033 6.59167i 0.256070 0.265802i
\(616\) −26.8694 + 35.6263i −1.08260 + 1.43542i
\(617\) −0.736782 + 0.618233i −0.0296617 + 0.0248891i −0.657498 0.753456i \(-0.728385\pi\)
0.627836 + 0.778345i \(0.283941\pi\)
\(618\) 22.2696 + 14.9824i 0.895814 + 0.602681i
\(619\) 2.75373 + 2.31065i 0.110682 + 0.0928729i 0.696449 0.717606i \(-0.254762\pi\)
−0.585767 + 0.810479i \(0.699207\pi\)
\(620\) −17.2153 29.8177i −0.691381 1.19751i
\(621\) 47.1239 + 1.47683i 1.89102 + 0.0592631i
\(622\) −22.9984 −0.922152
\(623\) 2.24780 + 43.2319i 0.0900560 + 1.73205i
\(624\) −3.37385 + 1.65052i −0.135062 + 0.0660736i
\(625\) −5.23888 29.7112i −0.209555 1.18845i
\(626\) 46.6356 39.1319i 1.86393 1.56403i
\(627\) 28.0868 29.1542i 1.12168 1.16431i
\(628\) −11.3453 + 4.12936i −0.452727 + 0.164779i
\(629\) −10.0241 + 17.3622i −0.399687 + 0.692278i
\(630\) −44.4598 + 20.8388i −1.77132 + 0.830238i
\(631\) −3.22485 5.58561i −0.128379 0.222360i 0.794669 0.607042i \(-0.207644\pi\)
−0.923049 + 0.384683i \(0.874311\pi\)
\(632\) −36.5862 30.6994i −1.45532 1.22116i
\(633\) −45.0042 + 4.78440i −1.78876 + 0.190163i
\(634\) 1.93430 + 10.9700i 0.0768209 + 0.435673i
\(635\) −1.04715 + 0.878662i −0.0415548 + 0.0348686i
\(636\) 26.2412 2.78971i 1.04053 0.110619i
\(637\) 1.17632 + 4.11511i 0.0466073 + 0.163047i
\(638\) 12.2236 + 21.1718i 0.483936 + 0.838201i
\(639\) −3.47177 8.53428i −0.137341 0.337611i
\(640\) 51.1686 2.02262
\(641\) 0.851835 4.83099i 0.0336454 0.190813i −0.963353 0.268238i \(-0.913559\pi\)
0.996998 + 0.0774250i \(0.0246698\pi\)
\(642\) −44.5244 + 46.2165i −1.75724 + 1.82402i
\(643\) 8.27088 + 46.9065i 0.326172 + 1.84981i 0.501311 + 0.865267i \(0.332851\pi\)
−0.175140 + 0.984544i \(0.556038\pi\)
\(644\) 56.7142 75.1977i 2.23485 2.96320i
\(645\) 13.3819 + 9.00299i 0.526911 + 0.354492i
\(646\) −5.97698 + 33.8972i −0.235161 + 1.33367i
\(647\) −9.63930 16.6958i −0.378960 0.656378i 0.611951 0.790895i \(-0.290385\pi\)
−0.990911 + 0.134518i \(0.957052\pi\)
\(648\) 30.1675 29.4118i 1.18509 1.15540i
\(649\) −7.94997 + 13.7698i −0.312064 + 0.540510i
\(650\) −2.04233 + 0.743347i −0.0801067 + 0.0291565i
\(651\) 12.2879 9.96641i 0.481600 0.390614i
\(652\) 24.4924 20.5516i 0.959197 0.804862i
\(653\) −22.5630 8.21227i −0.882960 0.321371i −0.139556 0.990214i \(-0.544568\pi\)
−0.743404 + 0.668843i \(0.766790\pi\)
\(654\) 2.02779 + 7.04005i 0.0792929 + 0.275288i
\(655\) −5.16251 + 29.2781i −0.201716 + 1.14399i
\(656\) 3.68684 + 6.38580i 0.143947 + 0.249324i
\(657\) −40.0081 5.52549i −1.56086 0.215570i
\(658\) −12.5606 + 41.0234i −0.489664 + 1.59926i
\(659\) 1.89295 10.7354i 0.0737387 0.418193i −0.925485 0.378785i \(-0.876342\pi\)
0.999223 0.0394075i \(-0.0125471\pi\)
\(660\) 25.2435 56.8802i 0.982600 2.21406i
\(661\) 0.301392 + 1.70928i 0.0117228 + 0.0664833i 0.990108 0.140308i \(-0.0448091\pi\)
−0.978385 + 0.206791i \(0.933698\pi\)
\(662\) 10.8196 + 61.3612i 0.420517 + 2.38487i
\(663\) 1.35920 + 1.86609i 0.0527870 + 0.0724731i
\(664\) −1.08575 + 6.15760i −0.0421353 + 0.238961i
\(665\) 12.7725 41.7154i 0.495296 1.61765i
\(666\) −20.5975 + 63.9107i −0.798135 + 2.47649i
\(667\) −12.6487 21.9082i −0.489760 0.848289i
\(668\) −13.6214 + 77.2508i −0.527028 + 2.98892i
\(669\) −18.0677 + 18.7543i −0.698536 + 0.725083i
\(670\) 55.6287 + 20.2472i 2.14912 + 0.782217i
\(671\) −12.0531 + 10.1138i −0.465306 + 0.390438i
\(672\) 0.526495 + 3.30746i 0.0203100 + 0.127588i
\(673\) 9.44702 3.43844i 0.364156 0.132542i −0.153460 0.988155i \(-0.549042\pi\)
0.517616 + 0.855613i \(0.326819\pi\)
\(674\) −3.66812 + 6.35338i −0.141291 + 0.244723i
\(675\) 5.96359 4.69372i 0.229539 0.180662i
\(676\) 24.7692 + 42.9014i 0.952660 + 1.65006i
\(677\) −0.0295895 + 0.167810i −0.00113722 + 0.00644947i −0.985371 0.170423i \(-0.945487\pi\)
0.984234 + 0.176872i \(0.0565979\pi\)
\(678\) 0.342721 4.98659i 0.0131621 0.191509i
\(679\) 4.34905 5.76643i 0.166901 0.221295i
\(680\) 4.50432 + 25.5453i 0.172733 + 0.979616i
\(681\) 5.94793 + 20.6499i 0.227925 + 0.791307i
\(682\) −5.25695 + 29.8136i −0.201299 + 1.14162i
\(683\) −4.91521 −0.188075 −0.0940376 0.995569i \(-0.529977\pi\)
−0.0940376 + 0.995569i \(0.529977\pi\)
\(684\) 2.84690 + 76.3063i 0.108854 + 2.91764i
\(685\) 8.86018 + 15.3463i 0.338530 + 0.586352i
\(686\) −45.0670 0.842463i −1.72067 0.0321654i
\(687\) −14.8977 20.4535i −0.568381 0.780351i
\(688\) −9.95338 + 8.35188i −0.379469 + 0.318412i
\(689\) 0.412291 + 2.33822i 0.0157070 + 0.0890790i
\(690\) −39.4369 + 88.8618i −1.50134 + 3.38291i
\(691\) 11.3627 + 9.53447i 0.432259 + 0.362709i 0.832803 0.553569i \(-0.186734\pi\)
−0.400544 + 0.916277i \(0.631179\pi\)
\(692\) 18.7784 + 32.5251i 0.713847 + 1.23642i
\(693\) 27.6362 + 7.34671i 1.04981 + 0.279079i
\(694\) −28.0891 + 48.6517i −1.06625 + 1.84679i
\(695\) 37.8601 13.7799i 1.43611 0.522703i
\(696\) −21.9417 5.44289i −0.831697 0.206312i
\(697\) 3.47195 2.91331i 0.131509 0.110349i
\(698\) 4.25222 + 24.1156i 0.160949 + 0.912787i
\(699\) −0.921045 + 13.4012i −0.0348371 + 0.506880i
\(700\) −0.787223 15.1407i −0.0297542 0.572263i
\(701\) −45.2847 −1.71038 −0.855189 0.518316i \(-0.826559\pi\)
−0.855189 + 0.518316i \(0.826559\pi\)
\(702\) 5.76470 + 5.15334i 0.217575 + 0.194500i
\(703\) −29.8308 51.6684i −1.12509 1.94871i
\(704\) −24.4857 20.5459i −0.922838 0.774353i
\(705\) 2.01123 29.2634i 0.0757473 1.10212i
\(706\) −21.3271 + 17.8956i −0.802656 + 0.673508i
\(707\) −4.72970 + 6.27113i −0.177879 + 0.235850i
\(708\) −8.30100 28.8193i −0.311971 1.08309i
\(709\) 36.9340 13.4429i 1.38709 0.504858i 0.462767 0.886480i \(-0.346856\pi\)
0.924319 + 0.381622i \(0.124634\pi\)
\(710\) 18.9986 0.713005
\(711\) −9.38844 + 29.1309i −0.352094 + 1.09249i
\(712\) 76.5973 2.87060
\(713\) 5.43978 30.8506i 0.203722 1.15536i
\(714\) −22.9828 + 7.93367i −0.860111 + 0.296910i
\(715\) 5.26133 + 1.91497i 0.196763 + 0.0716157i
\(716\) 49.9153 41.8839i 1.86542 1.56528i
\(717\) 15.7212 + 21.5842i 0.587118 + 0.806075i
\(718\) 25.0343 9.11174i 0.934271 0.340047i
\(719\) −15.2633 −0.569224 −0.284612 0.958643i \(-0.591865\pi\)
−0.284612 + 0.958643i \(0.591865\pi\)
\(720\) 10.1907 + 25.0507i 0.379785 + 0.933583i
\(721\) −11.4837 12.3249i −0.427674 0.459004i
\(722\) −43.0427 36.1171i −1.60188 1.34414i
\(723\) −10.0687 + 10.4514i −0.374460 + 0.388691i
\(724\) −59.8013 + 50.1793i −2.22250 + 1.86490i
\(725\) −3.82651 1.39273i −0.142113 0.0517249i
\(726\) −7.49725 + 3.66773i −0.278249 + 0.136122i
\(727\) −21.4105 + 7.79278i −0.794071 + 0.289018i −0.707027 0.707186i \(-0.749964\pi\)
−0.0870436 + 0.996205i \(0.527742\pi\)
\(728\) 7.37948 1.70048i 0.273502 0.0630240i
\(729\) −24.7437 10.8051i −0.916432 0.400190i
\(730\) 41.6410 72.1244i 1.54120 2.66944i
\(731\) 6.11794 + 5.13356i 0.226280 + 0.189872i
\(732\) 2.03495 29.6086i 0.0752141 1.09436i
\(733\) 4.64472 + 26.3415i 0.171557 + 0.972946i 0.942044 + 0.335490i \(0.108902\pi\)
−0.770487 + 0.637456i \(0.779987\pi\)
\(734\) 6.33641 + 35.9356i 0.233881 + 1.32641i
\(735\) 30.1414 6.41832i 1.11178 0.236743i
\(736\) 5.07978 + 4.26244i 0.187243 + 0.157116i
\(737\) −17.2384 29.8578i −0.634985 1.09983i
\(738\) 9.31727 11.9844i 0.342974 0.441151i
\(739\) 20.4509 35.4221i 0.752300 1.30302i −0.194405 0.980921i \(-0.562278\pi\)
0.946705 0.322101i \(-0.104389\pi\)
\(740\) −70.2556 58.9514i −2.58265 2.16710i
\(741\) −6.83174 + 0.726283i −0.250970 + 0.0266807i
\(742\) −24.8176 3.05761i −0.911082 0.112249i
\(743\) 41.0686 + 14.9477i 1.50666 + 0.548379i 0.957775 0.287519i \(-0.0928303\pi\)
0.548885 + 0.835898i \(0.315053\pi\)
\(744\) −16.4817 22.6284i −0.604250 0.829596i
\(745\) −4.53674 + 1.65124i −0.166213 + 0.0604967i
\(746\) 12.9195 22.3773i 0.473017 0.819290i
\(747\) 3.91735 0.842428i 0.143328 0.0308228i
\(748\) 15.4074 26.6863i 0.563349 0.975749i
\(749\) 33.7887 21.9228i 1.23461 0.801043i
\(750\) −10.4969 36.4429i −0.383292 1.33071i
\(751\) −24.4329 8.89285i −0.891569 0.324505i −0.144700 0.989476i \(-0.546222\pi\)
−0.746869 + 0.664971i \(0.768444\pi\)
\(752\) 22.2053 + 8.08207i 0.809744 + 0.294723i
\(753\) −14.8042 9.95991i −0.539496 0.362959i
\(754\) 0.720447 4.08586i 0.0262371 0.148798i
\(755\) −24.9853 −0.909307
\(756\) −46.1464 + 27.9267i −1.67833 + 1.01568i
\(757\) 12.7481 0.463337 0.231669 0.972795i \(-0.425582\pi\)
0.231669 + 0.972795i \(0.425582\pi\)
\(758\) −2.01085 + 11.4041i −0.0730373 + 0.414215i
\(759\) 50.8599 24.8812i 1.84610 0.903129i
\(760\) −72.5377 26.4016i −2.63122 0.957685i
\(761\) −4.13311 1.50433i −0.149825 0.0545319i 0.266019 0.963968i \(-0.414292\pi\)
−0.415844 + 0.909436i \(0.636514\pi\)
\(762\) −1.57291 + 1.63268i −0.0569804 + 0.0591459i
\(763\) −0.238754 4.59195i −0.00864346 0.166240i
\(764\) −45.8029 + 79.3330i −1.65709 + 2.87017i
\(765\) 14.0760 8.84242i 0.508919 0.319698i
\(766\) −21.2041 + 36.7265i −0.766134 + 1.32698i
\(767\) 2.53563 0.922892i 0.0915562 0.0333237i
\(768\) 53.8260 5.72225i