Properties

Label 189.2.u.a.142.20
Level $189$
Weight $2$
Character 189.142
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(4,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([2, 12]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.u (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 142.20
Character \(\chi\) \(=\) 189.142
Dual form 189.2.u.a.4.20

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.373934 - 2.12069i) q^{2} +(-1.62126 - 0.609530i) q^{3} +(-2.47810 - 0.901956i) q^{4} +(-1.18205 - 0.430229i) q^{5} +(-1.89887 + 3.21026i) q^{6} +(-2.62839 + 0.302569i) q^{7} +(-0.686013 + 1.18821i) q^{8} +(2.25695 + 1.97641i) q^{9} +O(q^{10})\) \(q+(0.373934 - 2.12069i) q^{2} +(-1.62126 - 0.609530i) q^{3} +(-2.47810 - 0.901956i) q^{4} +(-1.18205 - 0.430229i) q^{5} +(-1.89887 + 3.21026i) q^{6} +(-2.62839 + 0.302569i) q^{7} +(-0.686013 + 1.18821i) q^{8} +(2.25695 + 1.97641i) q^{9} +(-1.35439 + 2.34587i) q^{10} +(0.527955 - 0.192160i) q^{11} +(3.46787 + 2.97278i) q^{12} +(-3.76711 - 1.37111i) q^{13} +(-0.341193 + 5.68714i) q^{14} +(1.65416 + 1.41800i) q^{15} +(-1.77704 - 1.49111i) q^{16} +(1.82298 - 3.15749i) q^{17} +(5.03529 - 4.04723i) q^{18} +(1.32067 + 2.28747i) q^{19} +(2.54118 + 2.13231i) q^{20} +(4.44573 + 1.11154i) q^{21} +(-0.210090 - 1.19148i) q^{22} +(-0.669703 - 3.79808i) q^{23} +(1.83645 - 1.50825i) q^{24} +(-2.61809 - 2.19684i) q^{25} +(-4.31636 + 7.47615i) q^{26} +(-2.45441 - 4.57994i) q^{27} +(6.78634 + 1.62090i) q^{28} +(7.38407 - 2.68758i) q^{29} +(3.62569 - 2.97772i) q^{30} +(-7.43614 - 2.70653i) q^{31} +(-5.92875 + 4.97481i) q^{32} +(-0.973077 - 0.0102636i) q^{33} +(-6.01437 - 5.04666i) q^{34} +(3.23705 + 0.773162i) q^{35} +(-3.81032 - 6.93341i) q^{36} +6.30064 q^{37} +(5.34485 - 1.94537i) q^{38} +(5.27171 + 4.51909i) q^{39} +(1.32210 - 1.10938i) q^{40} +(2.95635 + 1.07602i) q^{41} +(4.01964 - 9.01235i) q^{42} +(0.190954 - 1.08296i) q^{43} -1.48165 q^{44} +(-1.81751 - 3.30721i) q^{45} -8.30496 q^{46} +(-7.72021 + 2.80993i) q^{47} +(1.97216 + 3.50064i) q^{48} +(6.81690 - 1.59054i) q^{49} +(-5.63780 + 4.73067i) q^{50} +(-4.88010 + 4.00794i) q^{51} +(8.09860 + 6.79553i) q^{52} +(-2.59291 - 4.49105i) q^{53} +(-10.6304 + 3.49245i) q^{54} -0.706739 q^{55} +(1.44360 - 3.33065i) q^{56} +(-0.746866 - 4.51356i) q^{57} +(-2.93836 - 16.6643i) q^{58} +(6.22586 - 5.22411i) q^{59} +(-2.82021 - 5.00594i) q^{60} +(9.96675 - 3.62760i) q^{61} +(-8.52034 + 14.7577i) q^{62} +(-6.53015 - 4.51190i) q^{63} +(6.01330 + 10.4153i) q^{64} +(3.86300 + 3.24144i) q^{65} +(-0.385633 + 2.05975i) q^{66} +(1.78355 + 10.1150i) q^{67} +(-7.36544 + 6.18034i) q^{68} +(-1.22928 + 6.56586i) q^{69} +(2.85008 - 6.57567i) q^{70} +(-4.01075 - 6.94683i) q^{71} +(-3.89668 + 1.32589i) q^{72} +3.24640 q^{73} +(2.35603 - 13.3617i) q^{74} +(2.90556 + 5.15744i) q^{75} +(-1.20956 - 6.85977i) q^{76} +(-1.32953 + 0.664814i) q^{77} +(11.5549 - 9.48981i) q^{78} +(-2.46342 + 13.9708i) q^{79} +(1.45902 + 2.52710i) q^{80} +(1.18762 + 8.92130i) q^{81} +(3.38739 - 5.86714i) q^{82} +(13.4275 - 4.88722i) q^{83} +(-10.0144 - 6.76437i) q^{84} +(-3.51329 + 2.94800i) q^{85} +(-2.22521 - 0.809909i) q^{86} +(-13.6096 - 0.143548i) q^{87} +(-0.133858 + 0.759145i) q^{88} +(3.34480 + 5.79337i) q^{89} +(-7.69319 + 2.61768i) q^{90} +(10.3163 + 2.46402i) q^{91} +(-1.76610 + 10.0161i) q^{92} +(10.4062 + 8.92053i) q^{93} +(3.07212 + 17.4229i) q^{94} +(-0.576956 - 3.27208i) q^{95} +(12.6443 - 4.45170i) q^{96} +(-0.378721 + 2.14784i) q^{97} +(-0.823964 - 15.0513i) q^{98} +(1.57135 + 0.609759i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} - 15 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} - 15 q^{9} + 3 q^{10} - 15 q^{11} - 3 q^{12} - 12 q^{13} - 30 q^{14} + 9 q^{16} + 27 q^{17} - 3 q^{18} + 3 q^{19} - 18 q^{20} + 15 q^{21} - 12 q^{22} - 36 q^{23} - 72 q^{24} - 3 q^{25} + 30 q^{26} - 12 q^{27} - 12 q^{28} - 30 q^{29} - 3 q^{30} - 3 q^{31} - 75 q^{32} + 15 q^{33} - 18 q^{34} + 15 q^{35} - 60 q^{36} - 6 q^{37} + 69 q^{38} + 51 q^{39} + 51 q^{40} - 39 q^{42} - 12 q^{43} - 6 q^{44} - 21 q^{45} - 6 q^{46} - 21 q^{47} + 90 q^{48} - 42 q^{49} - 39 q^{50} + 33 q^{51} + 9 q^{52} + 9 q^{53} - 9 q^{54} - 24 q^{55} + 111 q^{56} - 18 q^{57} - 3 q^{58} + 27 q^{59} - 63 q^{60} - 21 q^{61} + 75 q^{62} + 63 q^{63} - 30 q^{64} - 90 q^{65} - 3 q^{66} - 3 q^{67} - 30 q^{68} - 6 q^{69} + 39 q^{70} - 18 q^{71} + 183 q^{72} - 42 q^{73} + 51 q^{74} - 45 q^{75} - 24 q^{76} + 15 q^{77} - 30 q^{78} + 15 q^{79} + 102 q^{80} - 87 q^{81} - 6 q^{82} - 42 q^{83} + 135 q^{84} - 63 q^{85} - 93 q^{86} + 75 q^{87} - 51 q^{88} + 75 q^{89} - 39 q^{90} - 21 q^{91} - 66 q^{92} + 81 q^{93} + 33 q^{94} + 15 q^{95} - 171 q^{96} - 12 q^{97} - 36 q^{98} + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.373934 2.12069i 0.264412 1.49955i −0.506294 0.862361i \(-0.668985\pi\)
0.770705 0.637192i \(-0.219904\pi\)
\(3\) −1.62126 0.609530i −0.936033 0.351912i
\(4\) −2.47810 0.901956i −1.23905 0.450978i
\(5\) −1.18205 0.430229i −0.528627 0.192404i 0.0638983 0.997956i \(-0.479647\pi\)
−0.592525 + 0.805552i \(0.701869\pi\)
\(6\) −1.89887 + 3.21026i −0.775209 + 1.31058i
\(7\) −2.62839 + 0.302569i −0.993439 + 0.114360i
\(8\) −0.686013 + 1.18821i −0.242542 + 0.420096i
\(9\) 2.25695 + 1.97641i 0.752316 + 0.658803i
\(10\) −1.35439 + 2.34587i −0.428296 + 0.741830i
\(11\) 0.527955 0.192160i 0.159184 0.0579384i −0.261199 0.965285i \(-0.584118\pi\)
0.420383 + 0.907347i \(0.361896\pi\)
\(12\) 3.46787 + 2.97278i 1.00109 + 0.858168i
\(13\) −3.76711 1.37111i −1.04481 0.380279i −0.238107 0.971239i \(-0.576527\pi\)
−0.806701 + 0.590960i \(0.798749\pi\)
\(14\) −0.341193 + 5.68714i −0.0911876 + 1.51995i
\(15\) 1.65416 + 1.41800i 0.427103 + 0.366127i
\(16\) −1.77704 1.49111i −0.444260 0.372778i
\(17\) 1.82298 3.15749i 0.442137 0.765803i −0.555711 0.831376i \(-0.687554\pi\)
0.997848 + 0.0655721i \(0.0208872\pi\)
\(18\) 5.03529 4.04723i 1.18683 0.953942i
\(19\) 1.32067 + 2.28747i 0.302982 + 0.524781i 0.976810 0.214108i \(-0.0686843\pi\)
−0.673828 + 0.738889i \(0.735351\pi\)
\(20\) 2.54118 + 2.13231i 0.568226 + 0.476798i
\(21\) 4.44573 + 1.11154i 0.970137 + 0.242558i
\(22\) −0.210090 1.19148i −0.0447914 0.254025i
\(23\) −0.669703 3.79808i −0.139643 0.791953i −0.971514 0.236984i \(-0.923841\pi\)
0.831871 0.554969i \(-0.187270\pi\)
\(24\) 1.83645 1.50825i 0.374864 0.307870i
\(25\) −2.61809 2.19684i −0.523618 0.439367i
\(26\) −4.31636 + 7.47615i −0.846507 + 1.46619i
\(27\) −2.45441 4.57994i −0.472352 0.881410i
\(28\) 6.78634 + 1.62090i 1.28250 + 0.306321i
\(29\) 7.38407 2.68758i 1.37119 0.499071i 0.451693 0.892174i \(-0.350820\pi\)
0.919495 + 0.393102i \(0.128598\pi\)
\(30\) 3.62569 2.97772i 0.661958 0.543655i
\(31\) −7.43614 2.70653i −1.33557 0.486107i −0.427155 0.904178i \(-0.640484\pi\)
−0.908414 + 0.418071i \(0.862706\pi\)
\(32\) −5.92875 + 4.97481i −1.04806 + 0.879431i
\(33\) −0.973077 0.0102636i −0.169391 0.00178666i
\(34\) −6.01437 5.04666i −1.03146 0.865495i
\(35\) 3.23705 + 0.773162i 0.547162 + 0.130688i
\(36\) −3.81032 6.93341i −0.635053 1.15557i
\(37\) 6.30064 1.03582 0.517910 0.855435i \(-0.326710\pi\)
0.517910 + 0.855435i \(0.326710\pi\)
\(38\) 5.34485 1.94537i 0.867049 0.315580i
\(39\) 5.27171 + 4.51909i 0.844150 + 0.723634i
\(40\) 1.32210 1.10938i 0.209043 0.175408i
\(41\) 2.95635 + 1.07602i 0.461705 + 0.168047i 0.562391 0.826871i \(-0.309882\pi\)
−0.100686 + 0.994918i \(0.532104\pi\)
\(42\) 4.01964 9.01235i 0.620244 1.39064i
\(43\) 0.190954 1.08296i 0.0291203 0.165149i −0.966780 0.255611i \(-0.917723\pi\)
0.995900 + 0.0904620i \(0.0288344\pi\)
\(44\) −1.48165 −0.223367
\(45\) −1.81751 3.30721i −0.270938 0.493010i
\(46\) −8.30496 −1.22450
\(47\) −7.72021 + 2.80993i −1.12611 + 0.409870i −0.836878 0.547390i \(-0.815622\pi\)
−0.289230 + 0.957260i \(0.593399\pi\)
\(48\) 1.97216 + 3.50064i 0.284657 + 0.505273i
\(49\) 6.81690 1.59054i 0.973843 0.227220i
\(50\) −5.63780 + 4.73067i −0.797305 + 0.669018i
\(51\) −4.88010 + 4.00794i −0.683350 + 0.561224i
\(52\) 8.09860 + 6.79553i 1.12307 + 0.942370i
\(53\) −2.59291 4.49105i −0.356163 0.616893i 0.631153 0.775658i \(-0.282582\pi\)
−0.987316 + 0.158765i \(0.949249\pi\)
\(54\) −10.6304 + 3.49245i −1.44662 + 0.475262i
\(55\) −0.706739 −0.0952967
\(56\) 1.44360 3.33065i 0.192909 0.445077i
\(57\) −0.746866 4.51356i −0.0989248 0.597835i
\(58\) −2.93836 16.6643i −0.385826 2.18813i
\(59\) 6.22586 5.22411i 0.810538 0.680122i −0.140198 0.990123i \(-0.544774\pi\)
0.950736 + 0.310002i \(0.100330\pi\)
\(60\) −2.82021 5.00594i −0.364087 0.646264i
\(61\) 9.96675 3.62760i 1.27611 0.464466i 0.386967 0.922094i \(-0.373523\pi\)
0.889144 + 0.457627i \(0.151301\pi\)
\(62\) −8.52034 + 14.7577i −1.08208 + 1.87422i
\(63\) −6.53015 4.51190i −0.822721 0.568445i
\(64\) 6.01330 + 10.4153i 0.751662 + 1.30192i
\(65\) 3.86300 + 3.24144i 0.479146 + 0.402051i
\(66\) −0.385633 + 2.05975i −0.0474681 + 0.253538i
\(67\) 1.78355 + 10.1150i 0.217896 + 1.23575i 0.875810 + 0.482656i \(0.160328\pi\)
−0.657914 + 0.753093i \(0.728561\pi\)
\(68\) −7.36544 + 6.18034i −0.893191 + 0.749476i
\(69\) −1.22928 + 6.56586i −0.147988 + 0.790437i
\(70\) 2.85008 6.57567i 0.340650 0.785943i
\(71\) −4.01075 6.94683i −0.475989 0.824437i 0.523633 0.851944i \(-0.324576\pi\)
−0.999622 + 0.0275070i \(0.991243\pi\)
\(72\) −3.89668 + 1.32589i −0.459229 + 0.156257i
\(73\) 3.24640 0.379963 0.189981 0.981788i \(-0.439157\pi\)
0.189981 + 0.981788i \(0.439157\pi\)
\(74\) 2.35603 13.3617i 0.273883 1.55327i
\(75\) 2.90556 + 5.15744i 0.335505 + 0.595530i
\(76\) −1.20956 6.85977i −0.138746 0.786869i
\(77\) −1.32953 + 0.664814i −0.151514 + 0.0757626i
\(78\) 11.5549 9.48981i 1.30833 1.07451i
\(79\) −2.46342 + 13.9708i −0.277156 + 1.57183i 0.454871 + 0.890557i \(0.349685\pi\)
−0.732027 + 0.681275i \(0.761426\pi\)
\(80\) 1.45902 + 2.52710i 0.163124 + 0.282538i
\(81\) 1.18762 + 8.92130i 0.131958 + 0.991255i
\(82\) 3.38739 5.86714i 0.374075 0.647917i
\(83\) 13.4275 4.88722i 1.47386 0.536442i 0.524716 0.851277i \(-0.324172\pi\)
0.949146 + 0.314835i \(0.101949\pi\)
\(84\) −10.0144 6.76437i −1.09266 0.738053i
\(85\) −3.51329 + 2.94800i −0.381069 + 0.319755i
\(86\) −2.22521 0.809909i −0.239950 0.0873348i
\(87\) −13.6096 0.143548i −1.45911 0.0153900i
\(88\) −0.133858 + 0.759145i −0.0142693 + 0.0809251i
\(89\) 3.34480 + 5.79337i 0.354549 + 0.614096i 0.987041 0.160471i \(-0.0513012\pi\)
−0.632492 + 0.774567i \(0.717968\pi\)
\(90\) −7.69319 + 2.61768i −0.810933 + 0.275928i
\(91\) 10.3163 + 2.46402i 1.08144 + 0.258299i
\(92\) −1.76610 + 10.0161i −0.184129 + 1.04425i
\(93\) 10.4062 + 8.92053i 1.07907 + 0.925016i
\(94\) 3.07212 + 17.4229i 0.316865 + 1.79703i
\(95\) −0.576956 3.27208i −0.0591944 0.335708i
\(96\) 12.6443 4.45170i 1.29051 0.454350i
\(97\) −0.378721 + 2.14784i −0.0384533 + 0.218080i −0.997979 0.0635407i \(-0.979761\pi\)
0.959526 + 0.281620i \(0.0908719\pi\)
\(98\) −0.823964 15.0513i −0.0832329 1.52041i
\(99\) 1.57135 + 0.609759i 0.157927 + 0.0612831i
\(100\) 4.50644 + 7.80539i 0.450644 + 0.780539i
\(101\) −2.18580 + 12.3963i −0.217495 + 1.23347i 0.659030 + 0.752117i \(0.270967\pi\)
−0.876524 + 0.481358i \(0.840144\pi\)
\(102\) 6.67476 + 11.8479i 0.660899 + 1.17311i
\(103\) 0.0637281 + 0.0231951i 0.00627932 + 0.00228548i 0.345158 0.938545i \(-0.387825\pi\)
−0.338879 + 0.940830i \(0.610048\pi\)
\(104\) 4.21346 3.53551i 0.413163 0.346685i
\(105\) −4.77683 3.22657i −0.466171 0.314881i
\(106\) −10.4937 + 3.81939i −1.01924 + 0.370972i
\(107\) 2.34433 4.06050i 0.226635 0.392543i −0.730174 0.683261i \(-0.760561\pi\)
0.956809 + 0.290718i \(0.0938943\pi\)
\(108\) 1.95138 + 13.5633i 0.187772 + 1.30513i
\(109\) −7.09903 12.2959i −0.679964 1.17773i −0.974991 0.222243i \(-0.928662\pi\)
0.295027 0.955489i \(-0.404671\pi\)
\(110\) −0.264274 + 1.49877i −0.0251976 + 0.142902i
\(111\) −10.2150 3.84043i −0.969561 0.364517i
\(112\) 5.12193 + 3.38156i 0.483976 + 0.319527i
\(113\) −0.270466 1.53389i −0.0254433 0.144296i 0.969440 0.245330i \(-0.0788962\pi\)
−0.994883 + 0.101033i \(0.967785\pi\)
\(114\) −9.85113 0.103905i −0.922643 0.00973163i
\(115\) −0.842424 + 4.77762i −0.0785564 + 0.445516i
\(116\) −20.7226 −1.92404
\(117\) −5.79228 10.5399i −0.535496 0.974412i
\(118\) −8.75065 15.1566i −0.805563 1.39528i
\(119\) −3.83614 + 8.85070i −0.351659 + 0.811342i
\(120\) −2.81966 + 0.992722i −0.257399 + 0.0906227i
\(121\) −8.18468 + 6.86776i −0.744062 + 0.624342i
\(122\) −3.96609 22.4928i −0.359073 2.03641i
\(123\) −4.13714 3.54650i −0.373033 0.319777i
\(124\) 15.9863 + 13.4141i 1.43562 + 1.20463i
\(125\) 5.29432 + 9.17003i 0.473539 + 0.820193i
\(126\) −12.0102 + 12.1612i −1.06995 + 1.08341i
\(127\) 4.37260 7.57356i 0.388005 0.672045i −0.604176 0.796851i \(-0.706498\pi\)
0.992181 + 0.124806i \(0.0398309\pi\)
\(128\) 9.79088 3.56359i 0.865400 0.314980i
\(129\) −0.969680 + 1.63936i −0.0853756 + 0.144337i
\(130\) 8.31859 6.98012i 0.729588 0.612197i
\(131\) −3.14989 17.8639i −0.275207 1.56078i −0.738303 0.674469i \(-0.764372\pi\)
0.463096 0.886308i \(-0.346739\pi\)
\(132\) 2.40213 + 0.903107i 0.209079 + 0.0786054i
\(133\) −4.16336 5.61277i −0.361009 0.486689i
\(134\) 22.1178 1.91068
\(135\) 0.930802 + 6.46966i 0.0801107 + 0.556820i
\(136\) 2.50117 + 4.33216i 0.214474 + 0.371479i
\(137\) −13.8684 11.6370i −1.18486 0.994215i −0.999934 0.0114625i \(-0.996351\pi\)
−0.184925 0.982753i \(-0.559204\pi\)
\(138\) 13.4645 + 5.06212i 1.14617 + 0.430916i
\(139\) −1.87847 + 1.57622i −0.159330 + 0.133693i −0.718967 0.695044i \(-0.755385\pi\)
0.559637 + 0.828738i \(0.310940\pi\)
\(140\) −7.32440 4.83566i −0.619025 0.408688i
\(141\) 14.2292 + 0.150083i 1.19831 + 0.0126393i
\(142\) −16.2318 + 5.90790i −1.36214 + 0.495780i
\(143\) −2.25233 −0.188350
\(144\) −1.06364 6.87752i −0.0886365 0.573127i
\(145\) −9.88458 −0.820870
\(146\) 1.21394 6.88461i 0.100467 0.569774i
\(147\) −12.0214 1.57643i −0.991511 0.130022i
\(148\) −15.6136 5.68290i −1.28343 0.467132i
\(149\) 9.39990 7.88746i 0.770070 0.646166i −0.170657 0.985331i \(-0.554589\pi\)
0.940727 + 0.339165i \(0.110144\pi\)
\(150\) 12.0238 4.23323i 0.981740 0.345642i
\(151\) −22.2462 + 8.09696i −1.81037 + 0.658921i −0.813351 + 0.581774i \(0.802359\pi\)
−0.997020 + 0.0771470i \(0.975419\pi\)
\(152\) −3.62399 −0.293944
\(153\) 10.3548 3.52334i 0.837140 0.284845i
\(154\) 0.912706 + 3.06812i 0.0735479 + 0.247236i
\(155\) 7.62542 + 6.39849i 0.612488 + 0.513939i
\(156\) −8.98783 15.9536i −0.719602 1.27731i
\(157\) 6.34814 5.32672i 0.506637 0.425119i −0.353307 0.935507i \(-0.614943\pi\)
0.859944 + 0.510389i \(0.170498\pi\)
\(158\) 28.7064 + 10.4483i 2.28376 + 0.831222i
\(159\) 1.46634 + 8.86160i 0.116289 + 0.702770i
\(160\) 9.14836 3.32973i 0.723241 0.263238i
\(161\) 2.90942 + 9.78020i 0.229295 + 0.770788i
\(162\) 19.3634 + 0.817400i 1.52133 + 0.0642210i
\(163\) −9.36043 + 16.2127i −0.733165 + 1.26988i 0.222358 + 0.974965i \(0.428625\pi\)
−0.955524 + 0.294915i \(0.904709\pi\)
\(164\) −6.35562 5.33300i −0.496291 0.416437i
\(165\) 1.14581 + 0.430778i 0.0892009 + 0.0335361i
\(166\) −5.34325 30.3031i −0.414717 2.35198i
\(167\) −3.09189 17.5350i −0.239258 1.35690i −0.833459 0.552581i \(-0.813643\pi\)
0.594201 0.804316i \(-0.297468\pi\)
\(168\) −4.37057 + 4.51992i −0.337197 + 0.348720i
\(169\) 2.35256 + 1.97403i 0.180966 + 0.151848i
\(170\) 4.93804 + 8.55294i 0.378730 + 0.655980i
\(171\) −1.54029 + 7.77287i −0.117789 + 0.594407i
\(172\) −1.44998 + 2.51145i −0.110560 + 0.191496i
\(173\) −12.0380 10.1011i −0.915231 0.767970i 0.0578763 0.998324i \(-0.481567\pi\)
−0.973107 + 0.230354i \(0.926012\pi\)
\(174\) −5.39353 + 28.8081i −0.408883 + 2.18394i
\(175\) 7.54606 + 4.98200i 0.570429 + 0.376604i
\(176\) −1.22473 0.445765i −0.0923174 0.0336008i
\(177\) −13.2780 + 4.67479i −0.998033 + 0.351379i
\(178\) 13.5367 4.92694i 1.01462 0.369290i
\(179\) 3.21640 5.57097i 0.240405 0.416394i −0.720424 0.693533i \(-0.756053\pi\)
0.960830 + 0.277139i \(0.0893863\pi\)
\(180\) 1.52101 + 9.83492i 0.113370 + 0.733052i
\(181\) 4.24299 7.34908i 0.315379 0.546253i −0.664139 0.747609i \(-0.731202\pi\)
0.979518 + 0.201357i \(0.0645350\pi\)
\(182\) 9.08303 20.9563i 0.673279 1.55338i
\(183\) −18.3698 0.193756i −1.35793 0.0143229i
\(184\) 4.97234 + 1.80978i 0.366565 + 0.133419i
\(185\) −7.44764 2.71072i −0.547562 0.199296i
\(186\) 22.8089 18.7326i 1.67243 1.37354i
\(187\) 0.355707 2.01731i 0.0260119 0.147521i
\(188\) 21.6659 1.58015
\(189\) 7.83691 + 11.2953i 0.570051 + 0.821609i
\(190\) −7.15480 −0.519064
\(191\) −2.76767 + 15.6962i −0.200262 + 1.13574i 0.704462 + 0.709742i \(0.251188\pi\)
−0.904724 + 0.425999i \(0.859923\pi\)
\(192\) −3.40064 20.5512i −0.245420 1.48316i
\(193\) 19.0137 + 6.92041i 1.36863 + 0.498142i 0.918713 0.394926i \(-0.129230\pi\)
0.449922 + 0.893068i \(0.351452\pi\)
\(194\) 4.41327 + 1.60630i 0.316854 + 0.115326i
\(195\) −4.28716 7.60982i −0.307010 0.544950i
\(196\) −18.3276 2.20702i −1.30911 0.157645i
\(197\) 0.836616 1.44906i 0.0596065 0.103241i −0.834682 0.550732i \(-0.814349\pi\)
0.894289 + 0.447490i \(0.147682\pi\)
\(198\) 1.88069 3.10434i 0.133655 0.220616i
\(199\) 9.34464 16.1854i 0.662424 1.14735i −0.317553 0.948241i \(-0.602861\pi\)
0.979977 0.199112i \(-0.0638057\pi\)
\(200\) 4.40635 1.60378i 0.311576 0.113404i
\(201\) 3.27381 17.4862i 0.230917 1.23338i
\(202\) 25.4713 + 9.27078i 1.79215 + 0.652290i
\(203\) −18.5951 + 9.29821i −1.30512 + 0.652607i
\(204\) 15.7084 5.53046i 1.09981 0.387210i
\(205\) −3.03161 2.54382i −0.211736 0.177668i
\(206\) 0.0730198 0.126474i 0.00508753 0.00881186i
\(207\) 5.99506 9.89566i 0.416686 0.687796i
\(208\) 4.64981 + 8.05371i 0.322406 + 0.558424i
\(209\) 1.13681 + 0.953899i 0.0786350 + 0.0659826i
\(210\) −8.62878 + 8.92364i −0.595442 + 0.615790i
\(211\) −1.23023 6.97695i −0.0846922 0.480313i −0.997423 0.0717509i \(-0.977141\pi\)
0.912730 0.408562i \(-0.133970\pi\)
\(212\) 2.37477 + 13.4680i 0.163100 + 0.924984i
\(213\) 2.26817 + 13.7073i 0.155412 + 0.939207i
\(214\) −7.73442 6.48995i −0.528714 0.443644i
\(215\) −0.691636 + 1.19795i −0.0471692 + 0.0816995i
\(216\) 7.12569 + 0.225543i 0.484842 + 0.0153462i
\(217\) 20.3640 + 4.86389i 1.38240 + 0.330182i
\(218\) −28.7303 + 10.4570i −1.94586 + 0.708236i
\(219\) −5.26325 1.97878i −0.355658 0.133713i
\(220\) 1.75137 + 0.637448i 0.118078 + 0.0429767i
\(221\) −11.1966 + 9.39508i −0.753167 + 0.631982i
\(222\) −11.9641 + 20.2267i −0.802976 + 1.35753i
\(223\) 18.1735 + 15.2493i 1.21698 + 1.02117i 0.998977 + 0.0452241i \(0.0144002\pi\)
0.218008 + 0.975947i \(0.430044\pi\)
\(224\) 14.0779 14.8696i 0.940617 0.993518i
\(225\) −1.56704 10.1326i −0.104469 0.675504i
\(226\) −3.35404 −0.223107
\(227\) 1.43364 0.521804i 0.0951543 0.0346333i −0.294004 0.955804i \(-0.594988\pi\)
0.389159 + 0.921171i \(0.372766\pi\)
\(228\) −2.22022 + 11.8587i −0.147038 + 0.785362i
\(229\) 1.52233 1.27739i 0.100599 0.0844123i −0.591101 0.806597i \(-0.701307\pi\)
0.691700 + 0.722185i \(0.256862\pi\)
\(230\) 9.81684 + 3.57304i 0.647303 + 0.235599i
\(231\) 2.56074 0.267446i 0.168484 0.0175967i
\(232\) −1.87216 + 10.6175i −0.122913 + 0.697076i
\(233\) 10.2291 0.670128 0.335064 0.942195i \(-0.391242\pi\)
0.335064 + 0.942195i \(0.391242\pi\)
\(234\) −24.5177 + 8.34240i −1.60277 + 0.545359i
\(235\) 10.3345 0.674152
\(236\) −20.1402 + 7.33045i −1.31102 + 0.477172i
\(237\) 12.5094 21.1487i 0.812574 1.37375i
\(238\) 17.3351 + 11.4448i 1.12367 + 0.741859i
\(239\) 4.61717 3.87426i 0.298660 0.250605i −0.481126 0.876651i \(-0.659772\pi\)
0.779786 + 0.626046i \(0.215328\pi\)
\(240\) −0.825107 4.98639i −0.0532604 0.321870i
\(241\) −7.48242 6.27849i −0.481985 0.404433i 0.369159 0.929366i \(-0.379646\pi\)
−0.851143 + 0.524933i \(0.824090\pi\)
\(242\) 11.5038 + 19.9252i 0.739495 + 1.28084i
\(243\) 3.51235 15.1876i 0.225317 0.974285i
\(244\) −27.9706 −1.79063
\(245\) −8.74219 1.05274i −0.558518 0.0672572i
\(246\) −9.06803 + 7.44742i −0.578156 + 0.474830i
\(247\) −1.83872 10.4279i −0.116995 0.663513i
\(248\) 8.31722 6.97897i 0.528144 0.443165i
\(249\) −24.7484 0.261035i −1.56836 0.0165424i
\(250\) 21.4265 7.79861i 1.35513 0.493227i
\(251\) −8.67976 + 15.0338i −0.547862 + 0.948924i 0.450559 + 0.892747i \(0.351225\pi\)
−0.998421 + 0.0561775i \(0.982109\pi\)
\(252\) 12.1129 + 17.0709i 0.763038 + 1.07536i
\(253\) −1.08341 1.87652i −0.0681134 0.117976i
\(254\) −14.4261 12.1049i −0.905174 0.759531i
\(255\) 7.49283 2.63801i 0.469219 0.165198i
\(256\) 0.280681 + 1.59182i 0.0175426 + 0.0994888i
\(257\) −1.53786 + 1.29042i −0.0959292 + 0.0804942i −0.689491 0.724294i \(-0.742166\pi\)
0.593562 + 0.804788i \(0.297721\pi\)
\(258\) 3.11397 + 2.66940i 0.193867 + 0.166190i
\(259\) −16.5606 + 1.90638i −1.02902 + 0.118457i
\(260\) −6.64927 11.5169i −0.412370 0.714247i
\(261\) 21.9772 + 8.52820i 1.36036 + 0.527883i
\(262\) −39.0616 −2.41324
\(263\) 0.152054 0.862344i 0.00937608 0.0531744i −0.979761 0.200172i \(-0.935850\pi\)
0.989137 + 0.146998i \(0.0469610\pi\)
\(264\) 0.679739 1.14918i 0.0418351 0.0707271i
\(265\) 1.13275 + 6.42417i 0.0695845 + 0.394633i
\(266\) −13.4598 + 6.73037i −0.825270 + 0.412665i
\(267\) −1.89156 11.4313i −0.115761 0.699584i
\(268\) 4.70349 26.6748i 0.287311 1.62942i
\(269\) 1.56979 + 2.71895i 0.0957115 + 0.165777i 0.909905 0.414816i \(-0.136154\pi\)
−0.814194 + 0.580593i \(0.802821\pi\)
\(270\) 14.0682 + 0.445287i 0.856162 + 0.0270993i
\(271\) 7.48337 12.9616i 0.454582 0.787360i −0.544082 0.839032i \(-0.683122\pi\)
0.998664 + 0.0516725i \(0.0164552\pi\)
\(272\) −7.94768 + 2.89272i −0.481899 + 0.175397i
\(273\) −15.2235 10.2829i −0.921366 0.622349i
\(274\) −29.8643 + 25.0591i −1.80417 + 1.51388i
\(275\) −1.80438 0.656739i −0.108808 0.0396029i
\(276\) 8.96840 15.1621i 0.539834 0.912653i
\(277\) −2.72267 + 15.4410i −0.163589 + 0.927760i 0.786918 + 0.617058i \(0.211675\pi\)
−0.950507 + 0.310703i \(0.899436\pi\)
\(278\) 2.64025 + 4.57305i 0.158352 + 0.274273i
\(279\) −11.4338 20.8053i −0.684521 1.24558i
\(280\) −3.13934 + 3.31590i −0.187612 + 0.198163i
\(281\) −3.33633 + 18.9213i −0.199029 + 1.12875i 0.707535 + 0.706679i \(0.249807\pi\)
−0.906563 + 0.422070i \(0.861304\pi\)
\(282\) 5.63906 30.1195i 0.335801 1.79359i
\(283\) −0.775260 4.39672i −0.0460844 0.261358i 0.953057 0.302791i \(-0.0979186\pi\)
−0.999141 + 0.0414337i \(0.986807\pi\)
\(284\) 3.67333 + 20.8325i 0.217972 + 1.23618i
\(285\) −1.05904 + 5.65655i −0.0627319 + 0.335065i
\(286\) −0.842225 + 4.77650i −0.0498018 + 0.282440i
\(287\) −8.09603 1.93371i −0.477893 0.114144i
\(288\) −23.2131 0.489738i −1.36785 0.0288581i
\(289\) 1.85351 + 3.21038i 0.109030 + 0.188846i
\(290\) −3.69619 + 20.9621i −0.217048 + 1.23094i
\(291\) 1.92317 3.25135i 0.112738 0.190598i
\(292\) −8.04492 2.92811i −0.470794 0.171355i
\(293\) −18.4319 + 15.4662i −1.07681 + 0.903547i −0.995652 0.0931547i \(-0.970305\pi\)
−0.0811537 + 0.996702i \(0.525860\pi\)
\(294\) −7.83834 + 24.9042i −0.457142 + 1.45244i
\(295\) −9.60681 + 3.49659i −0.559330 + 0.203580i
\(296\) −4.32232 + 7.48649i −0.251230 + 0.435143i
\(297\) −2.17590 1.94636i −0.126258 0.112939i
\(298\) −13.2119 22.8837i −0.765344 1.32561i
\(299\) −2.68475 + 15.2260i −0.155263 + 0.880542i
\(300\) −2.54849 15.4014i −0.147137 0.889198i
\(301\) −0.174234 + 2.90421i −0.0100427 + 0.167396i
\(302\) 8.85249 + 50.2050i 0.509404 + 2.88897i
\(303\) 11.0996 18.7652i 0.637657 1.07803i
\(304\) 1.06399 6.03419i 0.0610240 0.346084i
\(305\) −13.3418 −0.763952
\(306\) −3.59987 23.2769i −0.205791 1.33065i
\(307\) 6.54938 + 11.3439i 0.373793 + 0.647428i 0.990146 0.140042i \(-0.0447238\pi\)
−0.616353 + 0.787470i \(0.711390\pi\)
\(308\) 3.89435 0.448300i 0.221901 0.0255443i
\(309\) −0.0891815 0.0764494i −0.00507336 0.00434906i
\(310\) 16.4206 13.7785i 0.932627 0.782567i
\(311\) 0.323474 + 1.83451i 0.0183425 + 0.104026i 0.992605 0.121393i \(-0.0387361\pi\)
−0.974262 + 0.225419i \(0.927625\pi\)
\(312\) −8.98609 + 3.16374i −0.508737 + 0.179112i
\(313\) −16.3079 13.6840i −0.921778 0.773464i 0.0525448 0.998619i \(-0.483267\pi\)
−0.974323 + 0.225155i \(0.927711\pi\)
\(314\) −8.92253 15.4543i −0.503528 0.872135i
\(315\) 5.77778 + 8.14273i 0.325541 + 0.458791i
\(316\) 18.7056 32.3991i 1.05227 1.82259i
\(317\) 16.7454 6.09481i 0.940513 0.342319i 0.174144 0.984720i \(-0.444284\pi\)
0.766368 + 0.642401i \(0.222062\pi\)
\(318\) 19.3410 + 0.204000i 1.08459 + 0.0114398i
\(319\) 3.38201 2.83784i 0.189356 0.158889i
\(320\) −2.62701 14.8985i −0.146854 0.832851i
\(321\) −6.27575 + 5.15417i −0.350278 + 0.287678i
\(322\) 21.8287 2.51282i 1.21647 0.140034i
\(323\) 9.63020 0.535839
\(324\) 5.10356 23.1791i 0.283531 1.28773i
\(325\) 6.85050 + 11.8654i 0.379997 + 0.658175i
\(326\) 30.8820 + 25.9130i 1.71039 + 1.43519i
\(327\) 4.01465 + 24.2619i 0.222011 + 1.34168i
\(328\) −3.30664 + 2.77460i −0.182579 + 0.153202i
\(329\) 19.4415 9.72148i 1.07185 0.535963i
\(330\) 1.34200 2.26881i 0.0738748 0.124894i
\(331\) 22.7316 8.27362i 1.24944 0.454759i 0.369228 0.929339i \(-0.379622\pi\)
0.880213 + 0.474579i \(0.157400\pi\)
\(332\) −37.6829 −2.06812
\(333\) 14.2202 + 12.4526i 0.779263 + 0.682400i
\(334\) −38.3424 −2.09800
\(335\) 2.24354 12.7238i 0.122578 0.695174i
\(336\) −6.24280 8.60434i −0.340573 0.469405i
\(337\) −22.1062 8.04599i −1.20420 0.438293i −0.339512 0.940602i \(-0.610262\pi\)
−0.864689 + 0.502308i \(0.832484\pi\)
\(338\) 5.06600 4.25088i 0.275554 0.231217i
\(339\) −0.496456 + 2.65169i −0.0269638 + 0.144020i
\(340\) 11.3653 4.13661i 0.616367 0.224339i
\(341\) −4.44603 −0.240766
\(342\) 15.9079 + 6.17301i 0.860199 + 0.333798i
\(343\) −17.4363 + 6.24315i −0.941469 + 0.337098i
\(344\) 1.15578 + 0.969816i 0.0623156 + 0.0522890i
\(345\) 4.27789 7.23227i 0.230314 0.389372i
\(346\) −25.9226 + 21.7517i −1.39361 + 1.16938i
\(347\) 20.9104 + 7.61076i 1.12253 + 0.408567i 0.835574 0.549377i \(-0.185135\pi\)
0.286954 + 0.957944i \(0.407357\pi\)
\(348\) 33.5966 + 12.6310i 1.80097 + 0.677094i
\(349\) −7.49093 + 2.72647i −0.400980 + 0.145945i −0.534635 0.845083i \(-0.679551\pi\)
0.133655 + 0.991028i \(0.457329\pi\)
\(350\) 13.3870 14.1399i 0.715565 0.755809i
\(351\) 2.96641 + 20.6184i 0.158335 + 1.10053i
\(352\) −2.17415 + 3.76574i −0.115883 + 0.200715i
\(353\) 22.9621 + 19.2675i 1.22215 + 1.02550i 0.998710 + 0.0507858i \(0.0161726\pi\)
0.223438 + 0.974718i \(0.428272\pi\)
\(354\) 4.94868 + 29.9065i 0.263019 + 1.58951i
\(355\) 1.75216 + 9.93701i 0.0929952 + 0.527402i
\(356\) −3.06341 17.3734i −0.162360 0.920791i
\(357\) 11.6141 12.0110i 0.614685 0.635690i
\(358\) −10.6116 8.90417i −0.560839 0.470600i
\(359\) −3.88481 6.72868i −0.205032 0.355126i 0.745111 0.666941i \(-0.232397\pi\)
−0.950143 + 0.311814i \(0.899063\pi\)
\(360\) 5.17649 + 0.109211i 0.272825 + 0.00575592i
\(361\) 6.01166 10.4125i 0.316403 0.548027i
\(362\) −13.9985 11.7461i −0.735745 0.617363i
\(363\) 17.4556 6.14560i 0.916180 0.322560i
\(364\) −23.3424 15.4109i −1.22347 0.807753i
\(365\) −3.83739 1.39670i −0.200858 0.0731065i
\(366\) −7.27999 + 38.8841i −0.380531 + 2.03251i
\(367\) 30.1778 10.9838i 1.57527 0.573352i 0.601102 0.799173i \(-0.294729\pi\)
0.974169 + 0.225821i \(0.0725064\pi\)
\(368\) −4.47327 + 7.74794i −0.233185 + 0.403889i
\(369\) 4.54567 + 8.27149i 0.236638 + 0.430596i
\(370\) −8.53352 + 14.7805i −0.443637 + 0.768401i
\(371\) 8.17403 + 11.0197i 0.424375 + 0.572115i
\(372\) −17.7417 31.4919i −0.919862 1.63278i
\(373\) 9.31908 + 3.39187i 0.482524 + 0.175624i 0.571817 0.820381i \(-0.306239\pi\)
−0.0892935 + 0.996005i \(0.528461\pi\)
\(374\) −4.14508 1.50869i −0.214337 0.0780123i
\(375\) −2.99405 18.0940i −0.154612 0.934371i
\(376\) 1.95738 11.1009i 0.100944 0.572484i
\(377\) −31.5016 −1.62241
\(378\) 26.8842 12.3960i 1.38277 0.637579i
\(379\) 20.2706 1.04123 0.520614 0.853792i \(-0.325703\pi\)
0.520614 + 0.853792i \(0.325703\pi\)
\(380\) −1.52152 + 8.62895i −0.0780521 + 0.442656i
\(381\) −11.7054 + 9.61346i −0.599686 + 0.492512i
\(382\) 32.2519 + 11.7387i 1.65015 + 0.600606i
\(383\) 33.5257 + 12.2024i 1.71308 + 0.623511i 0.997205 0.0747134i \(-0.0238042\pi\)
0.715879 + 0.698225i \(0.246026\pi\)
\(384\) −18.0456 0.190337i −0.920888 0.00971312i
\(385\) 1.85759 0.213837i 0.0946715 0.0108982i
\(386\) 21.7859 37.7343i 1.10887 1.92063i
\(387\) 2.57134 2.06677i 0.130708 0.105060i
\(388\) 2.87576 4.98097i 0.145995 0.252870i
\(389\) 8.00687 2.91426i 0.405964 0.147759i −0.130963 0.991387i \(-0.541807\pi\)
0.536928 + 0.843628i \(0.319585\pi\)
\(390\) −17.7412 + 6.24615i −0.898359 + 0.316286i
\(391\) −13.2132 4.80922i −0.668222 0.243213i
\(392\) −2.78659 + 9.19104i −0.140744 + 0.464218i
\(393\) −5.78180 + 30.8820i −0.291653 + 1.55779i
\(394\) −2.76017 2.31606i −0.139055 0.116681i
\(395\) 8.92250 15.4542i 0.448940 0.777587i
\(396\) −3.34400 2.92834i −0.168042 0.147155i
\(397\) −5.28373 9.15168i −0.265183 0.459310i 0.702429 0.711754i \(-0.252099\pi\)
−0.967611 + 0.252444i \(0.918766\pi\)
\(398\) −30.8299 25.8693i −1.54536 1.29671i
\(399\) 3.32872 + 11.6374i 0.166644 + 0.582600i
\(400\) 1.37671 + 7.80773i 0.0688357 + 0.390387i
\(401\) −2.24904 12.7549i −0.112312 0.636951i −0.988046 0.154158i \(-0.950733\pi\)
0.875735 0.482793i \(-0.160378\pi\)
\(402\) −35.8586 13.4814i −1.78846 0.672393i
\(403\) 24.3017 + 20.3916i 1.21056 + 1.01578i
\(404\) 16.5975 28.7477i 0.825757 1.43025i
\(405\) 2.43438 11.0563i 0.120965 0.549393i
\(406\) 12.7653 + 42.9113i 0.633530 + 2.12965i
\(407\) 3.32645 1.21073i 0.164886 0.0600137i
\(408\) −1.41447 8.54808i −0.0700265 0.423193i
\(409\) −2.79886 1.01870i −0.138395 0.0503715i 0.271894 0.962327i \(-0.412350\pi\)
−0.410289 + 0.911956i \(0.634572\pi\)
\(410\) −6.52827 + 5.47787i −0.322408 + 0.270533i
\(411\) 15.3912 + 27.3198i 0.759191 + 1.34758i
\(412\) −0.137004 0.114960i −0.00674970 0.00566367i
\(413\) −14.7833 + 15.6148i −0.727441 + 0.768353i
\(414\) −18.7439 16.4140i −0.921210 0.806703i
\(415\) −17.9746 −0.882337
\(416\) 29.1553 10.6116i 1.42945 0.520279i
\(417\) 4.00623 1.41048i 0.196186 0.0690715i
\(418\) 2.44802 2.05413i 0.119736 0.100471i
\(419\) 28.4030 + 10.3378i 1.38758 + 0.505036i 0.924466 0.381265i \(-0.124511\pi\)
0.463110 + 0.886301i \(0.346734\pi\)
\(420\) 8.92726 + 12.3043i 0.435606 + 0.600387i
\(421\) 2.47000 14.0081i 0.120380 0.682711i −0.863564 0.504238i \(-0.831773\pi\)
0.983945 0.178473i \(-0.0571156\pi\)
\(422\) −15.2560 −0.742649
\(423\) −22.9777 8.91642i −1.11721 0.433531i
\(424\) 7.11508 0.345539
\(425\) −11.7092 + 4.26180i −0.567980 + 0.206728i
\(426\) 29.9170 + 0.315551i 1.44948 + 0.0152885i
\(427\) −25.0989 + 12.5504i −1.21462 + 0.607356i
\(428\) −9.47188 + 7.94785i −0.457841 + 0.384174i
\(429\) 3.65161 + 1.37286i 0.176302 + 0.0662825i
\(430\) 2.28185 + 1.91470i 0.110041 + 0.0923350i
\(431\) −6.53397 11.3172i −0.314730 0.545129i 0.664650 0.747155i \(-0.268581\pi\)
−0.979380 + 0.202026i \(0.935247\pi\)
\(432\) −2.46762 + 11.7985i −0.118724 + 0.567658i
\(433\) −4.56247 −0.219258 −0.109629 0.993973i \(-0.534966\pi\)
−0.109629 + 0.993973i \(0.534966\pi\)
\(434\) 17.9296 41.3669i 0.860648 1.98568i
\(435\) 16.0254 + 6.02495i 0.768361 + 0.288874i
\(436\) 6.50179 + 36.8735i 0.311379 + 1.76592i
\(437\) 7.80351 6.54793i 0.373293 0.313230i
\(438\) −6.16448 + 10.4218i −0.294550 + 0.497972i
\(439\) −4.12263 + 1.50051i −0.196762 + 0.0716156i −0.438522 0.898721i \(-0.644498\pi\)
0.241759 + 0.970336i \(0.422276\pi\)
\(440\) 0.484832 0.839754i 0.0231135 0.0400337i
\(441\) 18.5290 + 9.88322i 0.882331 + 0.470629i
\(442\) 15.7372 + 27.2577i 0.748544 + 1.29652i
\(443\) −23.1955 19.4633i −1.10205 0.924730i −0.104489 0.994526i \(-0.533321\pi\)
−0.997561 + 0.0697956i \(0.977765\pi\)
\(444\) 21.8498 + 18.7304i 1.03695 + 0.888907i
\(445\) −1.46123 8.28706i −0.0692691 0.392844i
\(446\) 39.1348 32.8380i 1.85308 1.55492i
\(447\) −20.0473 + 7.05807i −0.948205 + 0.333835i
\(448\) −18.9567 25.5562i −0.895618 1.20742i
\(449\) −8.20302 14.2081i −0.387125 0.670519i 0.604937 0.796273i \(-0.293198\pi\)
−0.992061 + 0.125754i \(0.959865\pi\)
\(450\) −22.0740 0.465704i −1.04058 0.0219535i
\(451\) 1.76759 0.0832325
\(452\) −0.713258 + 4.04509i −0.0335488 + 0.190265i
\(453\) 41.0021 + 0.432472i 1.92645 + 0.0203193i
\(454\) −0.570494 3.23543i −0.0267746 0.151846i
\(455\) −11.1342 7.35096i −0.521981 0.344618i
\(456\) 5.87541 + 2.20893i 0.275142 + 0.103443i
\(457\) −2.35879 + 13.3774i −0.110340 + 0.625767i 0.878613 + 0.477534i \(0.158469\pi\)
−0.988953 + 0.148232i \(0.952642\pi\)
\(458\) −2.13969 3.70606i −0.0999813 0.173173i
\(459\) −18.9354 0.599346i −0.883831 0.0279751i
\(460\) 6.39682 11.0796i 0.298253 0.516590i
\(461\) −0.559614 + 0.203683i −0.0260638 + 0.00948646i −0.355019 0.934859i \(-0.615526\pi\)
0.328955 + 0.944345i \(0.393303\pi\)
\(462\) 0.390377 5.53053i 0.0181620 0.257303i
\(463\) −5.41109 + 4.54044i −0.251475 + 0.211012i −0.759807 0.650149i \(-0.774707\pi\)
0.508332 + 0.861161i \(0.330262\pi\)
\(464\) −17.1293 6.23455i −0.795207 0.289432i
\(465\) −8.46270 15.0215i −0.392448 0.696606i
\(466\) 3.82500 21.6926i 0.177190 1.00489i
\(467\) −6.15178 10.6552i −0.284670 0.493063i 0.687859 0.725844i \(-0.258551\pi\)
−0.972529 + 0.232781i \(0.925217\pi\)
\(468\) 4.84737 + 31.3433i 0.224070 + 1.44884i
\(469\) −7.74838 26.0467i −0.357787 1.20272i
\(470\) 3.86444 21.9163i 0.178253 1.01093i
\(471\) −13.5388 + 4.76661i −0.623833 + 0.219634i
\(472\) 1.93632 + 10.9814i 0.0891265 + 0.505462i
\(473\) −0.107285 0.608446i −0.00493299 0.0279764i
\(474\) −40.1720 34.4368i −1.84516 1.58173i
\(475\) 1.56756 8.89009i 0.0719247 0.407905i
\(476\) 17.4893 18.4729i 0.801621 0.846705i
\(477\) 3.02409 15.2607i 0.138463 0.698740i
\(478\) −6.48959 11.2403i −0.296827 0.514119i
\(479\) −1.22758 + 6.96196i −0.0560896 + 0.318100i −0.999924 0.0123185i \(-0.996079\pi\)
0.943834 + 0.330419i \(0.107190\pi\)
\(480\) −16.8614 0.177847i −0.769615 0.00811756i
\(481\) −23.7352 8.63890i −1.08223 0.393900i
\(482\) −16.1127 + 13.5201i −0.733911 + 0.615825i
\(483\) 1.24440 17.6296i 0.0566222 0.802175i
\(484\) 26.4769 9.63681i 1.20350 0.438037i
\(485\) 1.37173 2.37590i 0.0622869 0.107884i
\(486\) −30.8948 13.1278i −1.40142 0.595488i
\(487\) −12.5927 21.8113i −0.570632 0.988363i −0.996501 0.0835787i \(-0.973365\pi\)
0.425869 0.904785i \(-0.359968\pi\)
\(488\) −2.52697 + 14.3312i −0.114391 + 0.648741i
\(489\) 25.0578 20.5796i 1.13315 0.930640i
\(490\) −5.50154 + 18.1458i −0.248534 + 0.819743i
\(491\) 0.552850 + 3.13537i 0.0249498 + 0.141497i 0.994738 0.102451i \(-0.0326685\pi\)
−0.969788 + 0.243948i \(0.921557\pi\)
\(492\) 7.05347 + 12.5201i 0.317995 + 0.564450i
\(493\) 4.97498 28.2145i 0.224062 1.27072i
\(494\) −22.8019 −1.02591
\(495\) −1.59507 1.39680i −0.0716932 0.0627817i
\(496\) 9.17856 + 15.8977i 0.412130 + 0.713830i
\(497\) 12.6437 + 17.0455i 0.567149 + 0.764594i
\(498\) −9.80784 + 52.3860i −0.439500 + 2.34747i
\(499\) 11.3551 9.52808i 0.508325 0.426536i −0.352214 0.935919i \(-0.614571\pi\)
0.860539 + 0.509384i \(0.170127\pi\)
\(500\) −4.84891 27.4995i −0.216850 1.22982i
\(501\) −5.67534 + 30.3133i −0.253556 + 1.35430i
\(502\) 28.6363 + 24.0287i 1.27810 + 1.07245i
\(503\) −10.8253 18.7499i −0.482674 0.836017i 0.517128 0.855908i \(-0.327001\pi\)
−0.999802 + 0.0198916i \(0.993668\pi\)
\(504\) 9.84085 4.66396i 0.438346 0.207749i
\(505\) 7.91695 13.7126i 0.352300 0.610201i
\(506\) −4.38464 + 1.59588i −0.194921 + 0.0709455i
\(507\) −2.61087 4.63436i −0.115953 0.205819i
\(508\) −17.6668 + 14.8242i −0.783836 + 0.657717i
\(509\) −1.60162 9.08323i −0.0709905 0.402607i −0.999509 0.0313219i \(-0.990028\pi\)
0.928519 0.371285i \(-0.121083\pi\)
\(510\) −2.79256 16.8764i −0.123657 0.747299i
\(511\) −8.53282 + 0.982260i −0.377470 + 0.0434526i
\(512\) 24.3192 1.07477
\(513\) 7.23499 11.6630i 0.319433 0.514933i
\(514\) 2.16152 + 3.74386i 0.0953405 + 0.165135i
\(515\) −0.0653503 0.0548354i −0.00287968 0.00241634i
\(516\) 3.88160 3.18789i 0.170878 0.140339i
\(517\) −3.53596 + 2.96703i −0.155512 + 0.130490i
\(518\) −2.14973 + 35.8327i −0.0944539 + 1.57440i
\(519\) 13.3598 + 23.7139i 0.586428 + 1.04093i
\(520\) −6.50158 + 2.36638i −0.285113 + 0.103773i
\(521\) 13.1565 0.576397 0.288199 0.957571i \(-0.406944\pi\)
0.288199 + 0.957571i \(0.406944\pi\)
\(522\) 26.3037 43.4178i 1.15128 1.90035i
\(523\) −25.5674 −1.11799 −0.558993 0.829172i \(-0.688812\pi\)
−0.558993 + 0.829172i \(0.688812\pi\)
\(524\) −8.30671 + 47.1097i −0.362880 + 2.05800i
\(525\) −9.19743 12.6766i −0.401409 0.553254i
\(526\) −1.77190 0.644920i −0.0772587 0.0281199i
\(527\) −22.1017 + 18.5456i −0.962767 + 0.807857i
\(528\) 1.71389 + 1.46921i 0.0745876 + 0.0639390i
\(529\) 7.63606 2.77930i 0.332002 0.120839i
\(530\) 14.0472 0.610173
\(531\) 24.3764 + 0.514280i 1.05785 + 0.0223179i
\(532\) 5.25476 + 17.6642i 0.227823 + 0.765840i
\(533\) −9.66154 8.10699i −0.418488 0.351153i
\(534\) −24.9495 0.263157i −1.07967 0.0113879i
\(535\) −4.51805 + 3.79109i −0.195332 + 0.163903i
\(536\) −13.2423 4.81981i −0.571982 0.208184i
\(537\) −8.61029 + 7.07149i −0.371561 + 0.305157i
\(538\) 6.35304 2.31232i 0.273899 0.0996910i
\(539\) 3.29338 2.14967i 0.141856 0.0925928i
\(540\) 3.52872 16.8720i 0.151852 0.726057i
\(541\) −16.0161 + 27.7407i −0.688587 + 1.19267i 0.283708 + 0.958911i \(0.408435\pi\)
−0.972295 + 0.233757i \(0.924898\pi\)
\(542\) −24.6892 20.7167i −1.06049 0.889857i
\(543\) −11.3585 + 9.32851i −0.487438 + 0.400325i
\(544\) 4.89994 + 27.7889i 0.210083 + 1.19144i
\(545\) 3.10133 + 17.5885i 0.132846 + 0.753409i
\(546\) −27.4994 + 28.4391i −1.17687 + 1.21708i
\(547\) 2.92116 + 2.45114i 0.124900 + 0.104803i 0.703098 0.711093i \(-0.251800\pi\)
−0.578198 + 0.815896i \(0.696244\pi\)
\(548\) 23.8713 + 41.3464i 1.01973 + 1.76623i
\(549\) 29.6640 + 11.5111i 1.26603 + 0.491280i
\(550\) −2.06746 + 3.58094i −0.0881566 + 0.152692i
\(551\) 15.8997 + 13.3414i 0.677349 + 0.568363i
\(552\) −6.95832 5.96491i −0.296166 0.253883i
\(553\) 2.24772 37.4660i 0.0955829 1.59322i
\(554\) 31.7275 + 11.5478i 1.34797 + 0.490621i
\(555\) 10.4223 + 8.93433i 0.442401 + 0.379241i
\(556\) 6.07672 2.21175i 0.257710 0.0937989i
\(557\) −20.8040 + 36.0337i −0.881495 + 1.52679i −0.0318169 + 0.999494i \(0.510129\pi\)
−0.849679 + 0.527301i \(0.823204\pi\)
\(558\) −48.3971 + 16.4676i −2.04881 + 0.697129i
\(559\) −2.20420 + 3.81779i −0.0932278 + 0.161475i
\(560\) −4.59950 6.20076i −0.194364 0.262030i
\(561\) −1.80630 + 3.05377i −0.0762622 + 0.128930i
\(562\) 38.8785 + 14.1506i 1.63999 + 0.596908i
\(563\) 38.6210 + 14.0569i 1.62768 + 0.592428i 0.984824 0.173558i \(-0.0555263\pi\)
0.642858 + 0.765985i \(0.277749\pi\)
\(564\) −35.1260 13.2060i −1.47907 0.556073i
\(565\) −0.340221 + 1.92949i −0.0143132 + 0.0811742i
\(566\) −9.61396 −0.404105
\(567\) −5.82085 23.0893i −0.244453 0.969661i
\(568\) 11.0057 0.461790
\(569\) 4.09993 23.2519i 0.171878 0.974769i −0.769808 0.638276i \(-0.779648\pi\)
0.941686 0.336493i \(-0.109241\pi\)
\(570\) 11.5998 + 4.36106i 0.485861 + 0.182665i
\(571\) −19.2801 7.01738i −0.806847 0.293668i −0.0945261 0.995522i \(-0.530134\pi\)
−0.712321 + 0.701854i \(0.752356\pi\)
\(572\) 5.58152 + 2.03151i 0.233375 + 0.0849416i
\(573\) 14.0544 23.7607i 0.587132 0.992616i
\(574\) −7.12819 + 16.4461i −0.297525 + 0.686445i
\(575\) −6.59041 + 11.4149i −0.274839 + 0.476035i
\(576\) −7.01326 + 35.3916i −0.292219 + 1.47465i
\(577\) −15.2320 + 26.3826i −0.634116 + 1.09832i 0.352586 + 0.935779i \(0.385302\pi\)
−0.986702 + 0.162541i \(0.948031\pi\)
\(578\) 7.50130 2.73025i 0.312013 0.113563i
\(579\) −26.6079 22.8092i −1.10579 0.947917i
\(580\) 24.4950 + 8.91546i 1.01710 + 0.370194i
\(581\) −33.8141 + 16.9083i −1.40285 + 0.701474i
\(582\) −6.17596 5.29424i −0.256002 0.219453i
\(583\) −2.23194 1.87282i −0.0924374 0.0775642i
\(584\) −2.22708 + 3.85741i −0.0921570 + 0.159621i
\(585\) 2.31218 + 14.9506i 0.0955967 + 0.618132i
\(586\) 25.9067 + 44.8717i 1.07020 + 1.85363i
\(587\) −1.75988 1.47672i −0.0726382 0.0609507i 0.605746 0.795658i \(-0.292875\pi\)
−0.678384 + 0.734708i \(0.737319\pi\)
\(588\) 28.3685 + 14.7494i 1.16990 + 0.608254i
\(589\) −3.62958 20.5843i −0.149554 0.848163i
\(590\) 3.82287 + 21.6805i 0.157385 + 0.892574i
\(591\) −2.23962 + 1.83936i −0.0921255 + 0.0756611i
\(592\) −11.1965 9.39497i −0.460173 0.386131i
\(593\) −5.24746 + 9.08887i −0.215487 + 0.373235i −0.953423 0.301636i \(-0.902467\pi\)
0.737936 + 0.674871i \(0.235801\pi\)
\(594\) −4.94127 + 3.88659i −0.202743 + 0.159469i
\(595\) 8.34232 8.81151i 0.342002 0.361236i
\(596\) −30.4081 + 11.0676i −1.24556 + 0.453348i
\(597\) −25.0155 + 20.5448i −1.02382 + 0.840845i
\(598\) 31.2857 + 11.3870i 1.27937 + 0.465651i
\(599\) 19.4788 16.3447i 0.795883 0.667825i −0.151311 0.988486i \(-0.548349\pi\)
0.947194 + 0.320661i \(0.103905\pi\)
\(600\) −8.12137 0.0856606i −0.331554 0.00349708i
\(601\) −8.19333 6.87502i −0.334213 0.280438i 0.460201 0.887815i \(-0.347777\pi\)
−0.794414 + 0.607377i \(0.792222\pi\)
\(602\) 6.09377 + 1.45548i 0.248364 + 0.0593210i
\(603\) −15.9661 + 26.3541i −0.650188 + 1.07322i
\(604\) 62.4315 2.54030
\(605\) 12.6294 4.59672i 0.513457 0.186883i
\(606\) −35.6446 30.5558i −1.44796 1.24124i
\(607\) 12.5731 10.5501i 0.510325 0.428214i −0.350918 0.936406i \(-0.614131\pi\)
0.861244 + 0.508192i \(0.169686\pi\)
\(608\) −19.2096 6.99174i −0.779054 0.283552i
\(609\) 35.8149 3.74055i 1.45129 0.151575i
\(610\) −4.98898 + 28.2939i −0.201998 + 1.14559i
\(611\) 32.9356 1.33243
\(612\) −28.8383 0.608415i −1.16572 0.0245937i
\(613\) 28.6417 1.15683 0.578413 0.815744i \(-0.303672\pi\)
0.578413 + 0.815744i \(0.303672\pi\)
\(614\) 26.5058 9.64733i 1.06969 0.389335i
\(615\) 3.36448 + 5.97204i 0.135669 + 0.240816i
\(616\) 0.122137 2.03583i 0.00492105 0.0820261i
\(617\) −1.12125 + 0.940841i −0.0451399 + 0.0378768i −0.665078 0.746773i \(-0.731602\pi\)
0.619939 + 0.784650i \(0.287157\pi\)
\(618\) −0.195473 + 0.160539i −0.00786309 + 0.00645783i
\(619\) 11.9651 + 10.0399i 0.480917 + 0.403537i 0.850758 0.525558i \(-0.176143\pi\)
−0.369841 + 0.929095i \(0.620588\pi\)
\(620\) −13.1254 22.7339i −0.527130 0.913016i
\(621\) −15.7512 + 12.3892i −0.632075 + 0.497163i
\(622\) 4.01139 0.160842
\(623\) −10.5444 14.2152i −0.422451 0.569521i
\(624\) −2.62956 15.8913i −0.105267 0.636162i
\(625\) 0.654451 + 3.71158i 0.0261781 + 0.148463i
\(626\) −35.1175 + 29.4671i −1.40358 + 1.17774i
\(627\) −1.26164 2.23944i −0.0503849 0.0894345i
\(628\) −20.5358 + 7.47443i −0.819469 + 0.298262i
\(629\) 11.4859 19.8942i 0.457974 0.793234i
\(630\) 19.4287 9.20802i 0.774057 0.366856i
\(631\) 15.8431 + 27.4411i 0.630705 + 1.09241i 0.987408 + 0.158195i \(0.0505673\pi\)
−0.356703 + 0.934218i \(0.616099\pi\)
\(632\) −14.9102 12.5112i −0.593098 0.497668i
\(633\) −2.25815 + 12.0613i −0.0897533 + 0.479393i
\(634\) −6.66352 37.7907i −0.264642 1.50086i
\(635\) −8.42698 + 7.07107i −0.334414 + 0.280607i
\(636\) 4.35902 23.2825i 0.172846 0.923213i
\(637\) −27.8608 3.35502i −1.10389 0.132931i
\(638\) −4.75353 8.23335i −0.188194 0.325962i
\(639\) 4.67771 23.6055i 0.185047 0.933820i
\(640\) −13.1064 −0.518077
\(641\) 5.56536 31.5627i 0.219819 1.24665i −0.652528 0.757765i \(-0.726291\pi\)
0.872346 0.488888i \(-0.162597\pi\)
\(642\) 8.58367 + 15.2362i 0.338770 + 0.601326i
\(643\) 4.23474 + 24.0164i 0.167002 + 0.947115i 0.946976 + 0.321303i \(0.104121\pi\)
−0.779974 + 0.625811i \(0.784768\pi\)
\(644\) 1.61146 26.8605i 0.0635006 1.05845i
\(645\) 1.85151 1.52061i 0.0729030 0.0598740i
\(646\) 3.60106 20.4226i 0.141682 0.803518i
\(647\) −2.24162 3.88259i −0.0881271 0.152641i 0.818592 0.574375i \(-0.194755\pi\)
−0.906719 + 0.421734i \(0.861421\pi\)
\(648\) −11.4151 4.70898i −0.448427 0.184986i
\(649\) 2.28311 3.95445i 0.0896197 0.155226i
\(650\) 27.7245 10.0909i 1.08744 0.395797i
\(651\) −30.0506 20.2981i −1.17778 0.795544i
\(652\) 37.8193 31.7342i 1.48112 1.24281i
\(653\) −33.5381 12.2069i −1.31245 0.477692i −0.411417 0.911447i \(-0.634966\pi\)
−0.901031 + 0.433755i \(0.857188\pi\)
\(654\) 52.9530 + 0.558525i 2.07063 + 0.0218401i
\(655\) −3.96227 + 22.4711i −0.154819 + 0.878020i
\(656\) −3.64908 6.32039i −0.142473 0.246770i
\(657\) 7.32696 + 6.41621i 0.285852 + 0.250320i
\(658\) −13.3464 44.8646i −0.520296 1.74901i
\(659\) 4.96812 28.1756i 0.193531 1.09757i −0.720965 0.692971i \(-0.756301\pi\)
0.914496 0.404595i \(-0.132588\pi\)
\(660\) −2.45088 2.10098i −0.0954005 0.0817805i
\(661\) −2.79990 15.8790i −0.108903 0.617622i −0.989589 0.143921i \(-0.954029\pi\)
0.880686 0.473701i \(-0.157082\pi\)
\(662\) −9.04564 51.3004i −0.351569 1.99385i
\(663\) 23.8792 8.40717i 0.927391 0.326507i
\(664\) −3.40442 + 19.3074i −0.132117 + 0.749273i
\(665\) 2.50650 + 8.42575i 0.0971978 + 0.326736i
\(666\) 31.7256 25.5002i 1.22934 0.988112i
\(667\) −15.1528 26.2454i −0.586718 1.01623i
\(668\) −8.15376 + 46.2423i −0.315478 + 1.78917i
\(669\) −20.1689 35.8003i −0.779775 1.38412i
\(670\) −26.1442 9.51571i −1.01004 0.367624i
\(671\) 4.56491 3.83042i 0.176226 0.147872i
\(672\) −31.8873 + 15.5266i −1.23008 + 0.598951i
\(673\) −11.1747 + 4.06725i −0.430752 + 0.156781i −0.548292 0.836287i \(-0.684722\pi\)
0.117539 + 0.993068i \(0.462499\pi\)
\(674\) −25.3293 + 43.8716i −0.975648 + 1.68987i
\(675\) −3.63551 + 17.3826i −0.139931 + 0.669058i
\(676\) −4.04939 7.01375i −0.155746 0.269760i
\(677\) 0.695464 3.94417i 0.0267288 0.151587i −0.968522 0.248927i \(-0.919922\pi\)
0.995251 + 0.0973397i \(0.0310333\pi\)
\(678\) 5.43775 + 2.04438i 0.208836 + 0.0785141i
\(679\) 0.345560 5.75995i 0.0132614 0.221046i
\(680\) −1.09268 6.19689i −0.0419023 0.237640i
\(681\) −2.64236 0.0278704i −0.101255 0.00106800i
\(682\) −1.66252 + 9.42864i −0.0636613 + 0.361041i
\(683\) 21.1456 0.809112 0.404556 0.914513i \(-0.367426\pi\)
0.404556 + 0.914513i \(0.367426\pi\)
\(684\) 10.8278 17.8727i 0.414011 0.683381i
\(685\) 11.3865 + 19.7221i 0.435057 + 0.753541i
\(686\) 6.71975 + 39.3114i 0.256561 + 1.50092i
\(687\) −3.24670 + 1.14307i −0.123869 + 0.0436108i
\(688\) −1.95414 + 1.63972i −0.0745011 + 0.0625138i
\(689\) 3.61002 + 20.4734i 0.137531 + 0.779975i
\(690\) −13.7377 11.7765i −0.522987 0.448322i
\(691\) 4.34782 + 3.64825i 0.165399 + 0.138786i 0.721730 0.692174i \(-0.243347\pi\)
−0.556332 + 0.830960i \(0.687792\pi\)
\(692\) 20.7207 + 35.8892i 0.787681 + 1.36430i
\(693\) −4.31463 1.12724i −0.163899 0.0428205i
\(694\) 23.9592 41.4985i 0.909477 1.57526i
\(695\) 2.89857 1.05499i 0.109949 0.0400182i
\(696\) 9.50696 16.0726i 0.360360 0.609231i
\(697\) 8.78689 7.37308i 0.332827 0.279275i
\(698\) 2.98089 + 16.9054i 0.112828 + 0.639880i
\(699\) −16.5839 6.23492i −0.627262 0.235826i
\(700\) −14.2064 19.1521i −0.536951 0.723882i
\(701\) −30.0373 −1.13449 −0.567246 0.823548i \(-0.691991\pi\)
−0.567246 + 0.823548i \(0.691991\pi\)
\(702\) 44.8344 + 1.41910i 1.69217 + 0.0535606i
\(703\) 8.32107 + 14.4125i 0.313835 + 0.543578i
\(704\) 5.17616 + 4.34331i 0.195084 + 0.163695i
\(705\) −16.7550 6.29921i −0.631028 0.237242i
\(706\) 49.4466 41.4906i 1.86095 1.56152i
\(707\) 1.99441 33.2436i 0.0750074 1.25025i
\(708\) 37.1206 + 0.391532i 1.39508 + 0.0147147i
\(709\) 27.2178 9.90647i 1.02219 0.372045i 0.224086 0.974569i \(-0.428060\pi\)
0.798101 + 0.602524i \(0.205838\pi\)
\(710\) 21.7285 0.815456
\(711\) −33.1717 + 26.6625i −1.24404 + 0.999923i
\(712\) −9.17832 −0.343972
\(713\) −5.29961 + 30.0556i −0.198472 + 1.12559i
\(714\) −21.1287 29.1213i −0.790721 1.08984i
\(715\) 2.66236 + 0.969020i 0.0995667 + 0.0362393i
\(716\) −12.9954 + 10.9044i −0.485659 + 0.407517i
\(717\) −9.84709 + 3.46688i −0.367746 + 0.129473i
\(718\) −15.7221 + 5.72238i −0.586744 + 0.213557i
\(719\) −11.3334 −0.422663 −0.211331 0.977414i \(-0.567780\pi\)
−0.211331 + 0.977414i \(0.567780\pi\)
\(720\) −1.70164 + 8.58715i −0.0634165 + 0.320024i
\(721\) −0.174521 0.0416838i −0.00649949 0.00155239i
\(722\) −19.8337 16.6425i −0.738134 0.619368i
\(723\) 8.30399 + 14.7398i 0.308829 + 0.548179i
\(724\) −17.1431 + 14.3848i −0.637119 + 0.534606i
\(725\) −25.2363 9.18527i −0.937254 0.341132i
\(726\) −6.50566 39.3159i −0.241448 1.45915i
\(727\) −15.0125 + 5.46412i −0.556785 + 0.202653i −0.605058 0.796181i \(-0.706850\pi\)
0.0482737 + 0.998834i \(0.484628\pi\)
\(728\) −10.0049 + 10.5676i −0.370806 + 0.391660i
\(729\) −14.9517 + 22.4821i −0.553767 + 0.832671i
\(730\) −4.39689 + 7.61564i −0.162736 + 0.281868i
\(731\) −3.07132 2.57714i −0.113597 0.0953190i
\(732\) 45.3475 + 17.0489i 1.67609 + 0.630145i
\(733\) 2.71416 + 15.3928i 0.100250 + 0.568546i 0.993012 + 0.118017i \(0.0376536\pi\)
−0.892762 + 0.450529i \(0.851235\pi\)
\(734\) −12.0088 68.1050i −0.443251 2.51380i
\(735\) 13.5317 + 7.03539i 0.499123 + 0.259504i
\(736\) 22.8652 + 19.1862i 0.842823 + 0.707212i
\(737\) 2.88534 + 4.99755i 0.106283 + 0.184087i
\(738\) 19.2410 6.54695i 0.708272 0.240997i
\(739\) 3.91928 6.78840i 0.144173 0.249715i −0.784891 0.619634i \(-0.787281\pi\)
0.929064 + 0.369919i \(0.120614\pi\)
\(740\) 16.0111 + 13.4349i 0.588579 + 0.493877i
\(741\) −3.37508 + 18.0271i −0.123987 + 0.662242i
\(742\) 26.4259 13.2139i 0.970126 0.485098i
\(743\) −15.2292 5.54298i −0.558705 0.203352i 0.0472049 0.998885i \(-0.484969\pi\)
−0.605910 + 0.795533i \(0.707191\pi\)
\(744\) −17.7382 + 6.24512i −0.650315 + 0.228957i
\(745\) −14.5045 + 5.27922i −0.531405 + 0.193416i
\(746\) 10.6778 18.4945i 0.390943 0.677132i
\(747\) 39.9644 + 15.5081i 1.46222 + 0.567410i
\(748\) −2.70101 + 4.67828i −0.0987586 + 0.171055i
\(749\) −4.93324 + 11.3819i −0.180257 + 0.415886i
\(750\) −39.4914 0.416537i −1.44202 0.0152098i
\(751\) −31.5364 11.4783i −1.15078 0.418850i −0.304985 0.952357i \(-0.598651\pi\)
−0.845795 + 0.533507i \(0.820874\pi\)
\(752\) 17.9090 + 6.51836i 0.653075 + 0.237700i
\(753\) 23.2357 19.0831i 0.846754 0.695425i
\(754\) −11.7795 + 66.8050i −0.428985 + 2.43289i
\(755\) 29.7796 1.08379
\(756\) −9.23285 35.0594i −0.335796 1.27510i
\(757\) −45.5849 −1.65681 −0.828405 0.560129i \(-0.810752\pi\)
−0.828405 + 0.560129i \(0.810752\pi\)
\(758\) 7.57986 42.9875i 0.275313 1.56138i
\(759\) 0.612691 + 3.70269i 0.0222393 + 0.134399i
\(760\) 4.28372 + 1.55915i 0.155387 + 0.0565562i
\(761\) 1.89014 + 0.687955i 0.0685175 + 0.0249383i 0.376052 0.926599i \(-0.377282\pi\)
−0.307534 + 0.951537i \(0.599504\pi\)
\(762\) 16.0101 + 28.4183i 0.579984 + 1.02949i
\(763\) 22.3794 + 30.1705i 0.810189 + 1.09224i
\(764\) 21.0159 36.4006i 0.760329 1.31693i
\(765\) −13.7557 0.290211i −0.497340 0.0104926i
\(766\) 38.4138 66.5347i 1.38795 2.40400i
\(767\) −30.6163 + 11.1434i −1.10549 + 0.402366i