Properties

Label 189.2.u.a.142.18
Level $189$
Weight $2$
Character 189.142
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(4,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([2, 12]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.u (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 142.18
Character \(\chi\) \(=\) 189.142
Dual form 189.2.u.a.4.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.340870 - 1.93317i) q^{2} +(-0.913186 + 1.47176i) q^{3} +(-1.74157 - 0.633879i) q^{4} +(1.35943 + 0.494793i) q^{5} +(2.53389 + 2.26702i) q^{6} +(-0.147009 - 2.64166i) q^{7} +(0.143948 - 0.249325i) q^{8} +(-1.33218 - 2.68799i) q^{9} +O(q^{10})\) \(q+(0.340870 - 1.93317i) q^{2} +(-0.913186 + 1.47176i) q^{3} +(-1.74157 - 0.633879i) q^{4} +(1.35943 + 0.494793i) q^{5} +(2.53389 + 2.26702i) q^{6} +(-0.147009 - 2.64166i) q^{7} +(0.143948 - 0.249325i) q^{8} +(-1.33218 - 2.68799i) q^{9} +(1.41991 - 2.45935i) q^{10} +(5.77303 - 2.10121i) q^{11} +(2.52330 - 1.98433i) q^{12} +(1.44936 + 0.527524i) q^{13} +(-5.15690 - 0.616271i) q^{14} +(-1.96963 + 1.54893i) q^{15} +(-3.27240 - 2.74587i) q^{16} +(-3.07473 + 5.32559i) q^{17} +(-5.65044 + 1.65908i) q^{18} +(0.261335 + 0.452646i) q^{19} +(-2.05390 - 1.72343i) q^{20} +(4.02215 + 2.19597i) q^{21} +(-2.09415 - 11.8765i) q^{22} +(1.43536 + 8.14035i) q^{23} +(0.235496 + 0.439537i) q^{24} +(-2.22699 - 1.86866i) q^{25} +(1.51384 - 2.62204i) q^{26} +(5.17262 + 0.493980i) q^{27} +(-1.41847 + 4.69382i) q^{28} +(-4.17265 + 1.51872i) q^{29} +(2.32295 + 4.33562i) q^{30} +(-4.80431 - 1.74863i) q^{31} +(-5.98261 + 5.02001i) q^{32} +(-2.17937 + 10.4153i) q^{33} +(9.24719 + 7.75932i) q^{34} +(1.10723 - 3.66390i) q^{35} +(0.616224 + 5.52576i) q^{36} +0.210999 q^{37} +(0.964123 - 0.350912i) q^{38} +(-2.09993 + 1.65139i) q^{39} +(0.319051 - 0.267715i) q^{40} +(-3.94198 - 1.43476i) q^{41} +(5.61621 - 7.02697i) q^{42} +(-0.0927634 + 0.526087i) q^{43} -11.3860 q^{44} +(-0.481011 - 4.31329i) q^{45} +16.2259 q^{46} +(9.52785 - 3.46786i) q^{47} +(7.02958 - 2.30871i) q^{48} +(-6.95678 + 0.776696i) q^{49} +(-4.37156 + 3.66817i) q^{50} +(-5.03022 - 9.38854i) q^{51} +(-2.18977 - 1.83744i) q^{52} +(2.29554 + 3.97599i) q^{53} +(2.71814 - 9.83117i) q^{54} +8.88771 q^{55} +(-0.679793 - 0.343608i) q^{56} +(-0.904836 - 0.0287262i) q^{57} +(1.51361 + 8.58413i) q^{58} +(3.47012 - 2.91178i) q^{59} +(4.41208 - 1.44905i) q^{60} +(-5.25075 + 1.91112i) q^{61} +(-5.01804 + 8.69149i) q^{62} +(-6.90493 + 3.91433i) q^{63} +(3.39342 + 5.87758i) q^{64} +(1.70929 + 1.43427i) q^{65} +(19.3917 + 7.76336i) q^{66} +(1.91687 + 10.8711i) q^{67} +(8.73064 - 7.32588i) q^{68} +(-13.2914 - 5.32114i) q^{69} +(-6.70552 - 3.38937i) q^{70} +(0.605511 + 1.04878i) q^{71} +(-0.861946 - 0.0547843i) q^{72} -2.51612 q^{73} +(0.0719234 - 0.407898i) q^{74} +(4.78389 - 1.57116i) q^{75} +(-0.168211 - 0.953969i) q^{76} +(-6.39938 - 14.9415i) q^{77} +(2.47661 + 4.62243i) q^{78} +(0.432703 - 2.45398i) q^{79} +(-3.08997 - 5.35198i) q^{80} +(-5.45059 + 7.16178i) q^{81} +(-4.11734 + 7.13145i) q^{82} +(-2.29898 + 0.836760i) q^{83} +(-5.61288 - 6.37399i) q^{84} +(-6.81495 + 5.71843i) q^{85} +(0.985396 + 0.358655i) q^{86} +(1.57521 - 7.52803i) q^{87} +(0.307130 - 1.74182i) q^{88} +(2.13820 + 3.70347i) q^{89} +(-8.50229 - 0.540396i) q^{90} +(1.18047 - 3.90627i) q^{91} +(2.66021 - 15.0868i) q^{92} +(6.96079 - 5.47399i) q^{93} +(-3.45619 - 19.6010i) q^{94} +(0.131302 + 0.744648i) q^{95} +(-1.92503 - 13.3892i) q^{96} +(-2.30269 + 13.0592i) q^{97} +(-0.869871 + 13.7134i) q^{98} +(-13.3388 - 12.7187i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} - 15 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} - 15 q^{9} + 3 q^{10} - 15 q^{11} - 3 q^{12} - 12 q^{13} - 30 q^{14} + 9 q^{16} + 27 q^{17} - 3 q^{18} + 3 q^{19} - 18 q^{20} + 15 q^{21} - 12 q^{22} - 36 q^{23} - 72 q^{24} - 3 q^{25} + 30 q^{26} - 12 q^{27} - 12 q^{28} - 30 q^{29} - 3 q^{30} - 3 q^{31} - 75 q^{32} + 15 q^{33} - 18 q^{34} + 15 q^{35} - 60 q^{36} - 6 q^{37} + 69 q^{38} + 51 q^{39} + 51 q^{40} - 39 q^{42} - 12 q^{43} - 6 q^{44} - 21 q^{45} - 6 q^{46} - 21 q^{47} + 90 q^{48} - 42 q^{49} - 39 q^{50} + 33 q^{51} + 9 q^{52} + 9 q^{53} - 9 q^{54} - 24 q^{55} + 111 q^{56} - 18 q^{57} - 3 q^{58} + 27 q^{59} - 63 q^{60} - 21 q^{61} + 75 q^{62} + 63 q^{63} - 30 q^{64} - 90 q^{65} - 3 q^{66} - 3 q^{67} - 30 q^{68} - 6 q^{69} + 39 q^{70} - 18 q^{71} + 183 q^{72} - 42 q^{73} + 51 q^{74} - 45 q^{75} - 24 q^{76} + 15 q^{77} - 30 q^{78} + 15 q^{79} + 102 q^{80} - 87 q^{81} - 6 q^{82} - 42 q^{83} + 135 q^{84} - 63 q^{85} - 93 q^{86} + 75 q^{87} - 51 q^{88} + 75 q^{89} - 39 q^{90} - 21 q^{91} - 66 q^{92} + 81 q^{93} + 33 q^{94} + 15 q^{95} - 171 q^{96} - 12 q^{97} - 36 q^{98} + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.340870 1.93317i 0.241032 1.36696i −0.588500 0.808497i \(-0.700281\pi\)
0.829531 0.558460i \(-0.188608\pi\)
\(3\) −0.913186 + 1.47176i −0.527228 + 0.849724i
\(4\) −1.74157 0.633879i −0.870784 0.316940i
\(5\) 1.35943 + 0.494793i 0.607956 + 0.221278i 0.627609 0.778529i \(-0.284034\pi\)
−0.0196525 + 0.999807i \(0.506256\pi\)
\(6\) 2.53389 + 2.26702i 1.03446 + 0.925509i
\(7\) −0.147009 2.64166i −0.0555641 0.998455i
\(8\) 0.143948 0.249325i 0.0508932 0.0881495i
\(9\) −1.33218 2.68799i −0.444060 0.895997i
\(10\) 1.41991 2.45935i 0.449014 0.777715i
\(11\) 5.77303 2.10121i 1.74063 0.633539i 0.741342 0.671128i \(-0.234190\pi\)
0.999293 + 0.0375885i \(0.0119676\pi\)
\(12\) 2.52330 1.98433i 0.728413 0.572826i
\(13\) 1.44936 + 0.527524i 0.401980 + 0.146309i 0.535095 0.844792i \(-0.320276\pi\)
−0.133115 + 0.991101i \(0.542498\pi\)
\(14\) −5.15690 0.616271i −1.37824 0.164705i
\(15\) −1.96963 + 1.54893i −0.508557 + 0.399931i
\(16\) −3.27240 2.74587i −0.818100 0.686467i
\(17\) −3.07473 + 5.32559i −0.745732 + 1.29165i 0.204120 + 0.978946i \(0.434567\pi\)
−0.949852 + 0.312700i \(0.898766\pi\)
\(18\) −5.65044 + 1.65908i −1.33182 + 0.391048i
\(19\) 0.261335 + 0.452646i 0.0599545 + 0.103844i 0.894445 0.447178i \(-0.147571\pi\)
−0.834490 + 0.551023i \(0.814238\pi\)
\(20\) −2.05390 1.72343i −0.459267 0.385371i
\(21\) 4.02215 + 2.19597i 0.877706 + 0.479200i
\(22\) −2.09415 11.8765i −0.446474 2.53208i
\(23\) 1.43536 + 8.14035i 0.299294 + 1.69738i 0.649219 + 0.760602i \(0.275096\pi\)
−0.349925 + 0.936778i \(0.613793\pi\)
\(24\) 0.235496 + 0.439537i 0.0480704 + 0.0897201i
\(25\) −2.22699 1.86866i −0.445398 0.373733i
\(26\) 1.51384 2.62204i 0.296888 0.514225i
\(27\) 5.17262 + 0.493980i 0.995471 + 0.0950664i
\(28\) −1.41847 + 4.69382i −0.268066 + 0.887050i
\(29\) −4.17265 + 1.51872i −0.774842 + 0.282019i −0.699020 0.715102i \(-0.746380\pi\)
−0.0758217 + 0.997121i \(0.524158\pi\)
\(30\) 2.32295 + 4.33562i 0.424110 + 0.791572i
\(31\) −4.80431 1.74863i −0.862879 0.314062i −0.127599 0.991826i \(-0.540727\pi\)
−0.735280 + 0.677763i \(0.762949\pi\)
\(32\) −5.98261 + 5.02001i −1.05759 + 0.887420i
\(33\) −2.17937 + 10.4153i −0.379379 + 1.81308i
\(34\) 9.24719 + 7.75932i 1.58588 + 1.33071i
\(35\) 1.10723 3.66390i 0.187156 0.619312i
\(36\) 0.616224 + 5.52576i 0.102704 + 0.920960i
\(37\) 0.210999 0.0346881 0.0173440 0.999850i \(-0.494479\pi\)
0.0173440 + 0.999850i \(0.494479\pi\)
\(38\) 0.964123 0.350912i 0.156401 0.0569255i
\(39\) −2.09993 + 1.65139i −0.336258 + 0.264434i
\(40\) 0.319051 0.267715i 0.0504464 0.0423295i
\(41\) −3.94198 1.43476i −0.615634 0.224072i 0.0153328 0.999882i \(-0.495119\pi\)
−0.630966 + 0.775810i \(0.717341\pi\)
\(42\) 5.61621 7.02697i 0.866601 1.08428i
\(43\) −0.0927634 + 0.526087i −0.0141463 + 0.0802275i −0.991064 0.133390i \(-0.957414\pi\)
0.976917 + 0.213618i \(0.0685247\pi\)
\(44\) −11.3860 −1.71651
\(45\) −0.481011 4.31329i −0.0717049 0.642988i
\(46\) 16.2259 2.39239
\(47\) 9.52785 3.46786i 1.38978 0.505839i 0.464652 0.885493i \(-0.346179\pi\)
0.925128 + 0.379655i \(0.123957\pi\)
\(48\) 7.02958 2.30871i 1.01463 0.333234i
\(49\) −6.95678 + 0.776696i −0.993825 + 0.110957i
\(50\) −4.37156 + 3.66817i −0.618232 + 0.518758i
\(51\) −5.03022 9.38854i −0.704371 1.31466i
\(52\) −2.18977 1.83744i −0.303667 0.254807i
\(53\) 2.29554 + 3.97599i 0.315316 + 0.546144i 0.979505 0.201421i \(-0.0645560\pi\)
−0.664188 + 0.747565i \(0.731223\pi\)
\(54\) 2.71814 9.83117i 0.369892 1.33785i
\(55\) 8.88771 1.19842
\(56\) −0.679793 0.343608i −0.0908412 0.0459166i
\(57\) −0.904836 0.0287262i −0.119849 0.00380488i
\(58\) 1.51361 + 8.58413i 0.198747 + 1.12715i
\(59\) 3.47012 2.91178i 0.451771 0.379081i −0.388322 0.921524i \(-0.626945\pi\)
0.840093 + 0.542443i \(0.182501\pi\)
\(60\) 4.41208 1.44905i 0.569597 0.187072i
\(61\) −5.25075 + 1.91112i −0.672290 + 0.244694i −0.655534 0.755166i \(-0.727556\pi\)
−0.0167566 + 0.999860i \(0.505334\pi\)
\(62\) −5.01804 + 8.69149i −0.637291 + 1.10382i
\(63\) −6.90493 + 3.91433i −0.869939 + 0.493160i
\(64\) 3.39342 + 5.87758i 0.424178 + 0.734697i
\(65\) 1.70929 + 1.43427i 0.212012 + 0.177899i
\(66\) 19.3917 + 7.76336i 2.38696 + 0.955604i
\(67\) 1.91687 + 10.8711i 0.234183 + 1.32812i 0.844327 + 0.535828i \(0.180000\pi\)
−0.610144 + 0.792290i \(0.708889\pi\)
\(68\) 8.73064 7.32588i 1.05875 0.888393i
\(69\) −13.2914 5.32114i −1.60010 0.640590i
\(70\) −6.70552 3.38937i −0.801463 0.405107i
\(71\) 0.605511 + 1.04878i 0.0718610 + 0.124467i 0.899717 0.436474i \(-0.143773\pi\)
−0.827856 + 0.560941i \(0.810440\pi\)
\(72\) −0.861946 0.0547843i −0.101581 0.00645639i
\(73\) −2.51612 −0.294490 −0.147245 0.989100i \(-0.547041\pi\)
−0.147245 + 0.989100i \(0.547041\pi\)
\(74\) 0.0719234 0.407898i 0.00836092 0.0474171i
\(75\) 4.78389 1.57116i 0.552396 0.181422i
\(76\) −0.168211 0.953969i −0.0192951 0.109428i
\(77\) −6.39938 14.9415i −0.729277 1.70274i
\(78\) 2.47661 + 4.62243i 0.280421 + 0.523387i
\(79\) 0.432703 2.45398i 0.0486829 0.276094i −0.950743 0.309981i \(-0.899677\pi\)
0.999426 + 0.0338864i \(0.0107885\pi\)
\(80\) −3.08997 5.35198i −0.345469 0.598369i
\(81\) −5.45059 + 7.16178i −0.605621 + 0.795753i
\(82\) −4.11734 + 7.13145i −0.454684 + 0.787537i
\(83\) −2.29898 + 0.836760i −0.252346 + 0.0918464i −0.465096 0.885260i \(-0.653980\pi\)
0.212750 + 0.977107i \(0.431758\pi\)
\(84\) −5.61288 6.37399i −0.612415 0.695459i
\(85\) −6.81495 + 5.71843i −0.739185 + 0.620250i
\(86\) 0.985396 + 0.358655i 0.106258 + 0.0386747i
\(87\) 1.57521 7.52803i 0.168880 0.807090i
\(88\) 0.307130 1.74182i 0.0327402 0.185679i
\(89\) 2.13820 + 3.70347i 0.226649 + 0.392567i 0.956813 0.290705i \(-0.0938897\pi\)
−0.730164 + 0.683272i \(0.760556\pi\)
\(90\) −8.50229 0.540396i −0.896220 0.0569627i
\(91\) 1.18047 3.90627i 0.123747 0.409489i
\(92\) 2.66021 15.0868i 0.277346 1.57291i
\(93\) 6.96079 5.47399i 0.721801 0.567626i
\(94\) −3.45619 19.6010i −0.356479 2.02169i
\(95\) 0.131302 + 0.744648i 0.0134713 + 0.0763993i
\(96\) −1.92503 13.3892i −0.196472 1.36653i
\(97\) −2.30269 + 13.0592i −0.233803 + 1.32596i 0.611317 + 0.791386i \(0.290640\pi\)
−0.845120 + 0.534577i \(0.820471\pi\)
\(98\) −0.869871 + 13.7134i −0.0878703 + 1.38526i
\(99\) −13.3388 12.7187i −1.34060 1.27827i
\(100\) 2.69394 + 4.66605i 0.269394 + 0.466605i
\(101\) −1.90749 + 10.8179i −0.189803 + 1.07643i 0.729825 + 0.683634i \(0.239602\pi\)
−0.919628 + 0.392791i \(0.871510\pi\)
\(102\) −19.8643 + 6.52399i −1.96686 + 0.645971i
\(103\) 0.364941 + 0.132828i 0.0359588 + 0.0130879i 0.359937 0.932977i \(-0.382798\pi\)
−0.323978 + 0.946065i \(0.605020\pi\)
\(104\) 0.340157 0.285425i 0.0333551 0.0279883i
\(105\) 4.38129 + 4.97540i 0.427570 + 0.485549i
\(106\) 8.46874 3.08237i 0.822557 0.299386i
\(107\) 1.52761 2.64590i 0.147680 0.255789i −0.782690 0.622412i \(-0.786153\pi\)
0.930370 + 0.366623i \(0.119486\pi\)
\(108\) −8.69535 4.13911i −0.836710 0.398286i
\(109\) −4.74367 8.21628i −0.454361 0.786977i 0.544290 0.838897i \(-0.316799\pi\)
−0.998651 + 0.0519205i \(0.983466\pi\)
\(110\) 3.02955 17.1814i 0.288857 1.63819i
\(111\) −0.192682 + 0.310541i −0.0182885 + 0.0294753i
\(112\) −6.77259 + 9.04824i −0.639950 + 0.854979i
\(113\) −1.14880 6.51516i −0.108070 0.612894i −0.989950 0.141420i \(-0.954833\pi\)
0.881880 0.471474i \(-0.156278\pi\)
\(114\) −0.363964 + 1.73941i −0.0340884 + 0.162911i
\(115\) −2.07651 + 11.7764i −0.193635 + 1.09816i
\(116\) 8.22964 0.764103
\(117\) −0.512831 4.59863i −0.0474112 0.425143i
\(118\) −4.44610 7.70087i −0.409296 0.708922i
\(119\) 14.5204 + 7.33950i 1.33109 + 0.672811i
\(120\) 0.102661 + 0.714042i 0.00937164 + 0.0651828i
\(121\) 20.4863 17.1901i 1.86239 1.56273i
\(122\) 1.90469 + 10.8020i 0.172443 + 0.977971i
\(123\) 5.71139 4.49146i 0.514979 0.404981i
\(124\) 7.25862 + 6.09070i 0.651843 + 0.546961i
\(125\) −5.71953 9.90651i −0.511570 0.886065i
\(126\) 5.21339 + 14.6827i 0.464446 + 1.30804i
\(127\) 5.10620 8.84420i 0.453102 0.784796i −0.545475 0.838127i \(-0.683651\pi\)
0.998577 + 0.0533316i \(0.0169840\pi\)
\(128\) −2.15844 + 0.785610i −0.190781 + 0.0694387i
\(129\) −0.689566 0.616941i −0.0607129 0.0543187i
\(130\) 3.35533 2.81545i 0.294282 0.246932i
\(131\) −0.746289 4.23242i −0.0652036 0.369788i −0.999897 0.0143337i \(-0.995437\pi\)
0.934694 0.355454i \(-0.115674\pi\)
\(132\) 10.3976 16.7576i 0.904994 1.45856i
\(133\) 1.15732 0.756903i 0.100352 0.0656318i
\(134\) 21.6691 1.87193
\(135\) 6.78740 + 3.23090i 0.584167 + 0.278072i
\(136\) 0.885201 + 1.53321i 0.0759054 + 0.131472i
\(137\) 15.8747 + 13.3204i 1.35627 + 1.13804i 0.977116 + 0.212707i \(0.0682279\pi\)
0.379150 + 0.925335i \(0.376217\pi\)
\(138\) −14.8173 + 23.8808i −1.26133 + 2.03287i
\(139\) −5.21632 + 4.37701i −0.442443 + 0.371254i −0.836623 0.547780i \(-0.815473\pi\)
0.394180 + 0.919033i \(0.371029\pi\)
\(140\) −4.25078 + 5.67908i −0.359257 + 0.479970i
\(141\) −3.59684 + 17.1896i −0.302909 + 1.44762i
\(142\) 2.23386 0.813060i 0.187462 0.0682305i
\(143\) 9.47565 0.792393
\(144\) −3.02144 + 12.4542i −0.251787 + 1.03785i
\(145\) −6.42388 −0.533475
\(146\) −0.857671 + 4.86409i −0.0709814 + 0.402555i
\(147\) 5.20972 10.9480i 0.429691 0.902976i
\(148\) −0.367470 0.133748i −0.0302058 0.0109940i
\(149\) 10.0252 8.41218i 0.821300 0.689152i −0.131976 0.991253i \(-0.542132\pi\)
0.953276 + 0.302101i \(0.0976878\pi\)
\(150\) −1.40664 9.78363i −0.114852 0.798830i
\(151\) −4.58320 + 1.66815i −0.372975 + 0.135752i −0.521705 0.853126i \(-0.674704\pi\)
0.148730 + 0.988878i \(0.452482\pi\)
\(152\) 0.150474 0.0122051
\(153\) 18.4112 + 1.17020i 1.48846 + 0.0946049i
\(154\) −31.0658 + 7.27798i −2.50336 + 0.586476i
\(155\) −5.66592 4.75427i −0.455098 0.381872i
\(156\) 4.70395 1.54491i 0.376617 0.123692i
\(157\) 2.46848 2.07130i 0.197007 0.165308i −0.538948 0.842339i \(-0.681178\pi\)
0.735955 + 0.677031i \(0.236734\pi\)
\(158\) −4.59647 1.67298i −0.365675 0.133095i
\(159\) −7.94797 0.252327i −0.630315 0.0200109i
\(160\) −10.6168 + 3.86420i −0.839333 + 0.305492i
\(161\) 21.2930 4.98845i 1.67813 0.393145i
\(162\) 11.9870 + 12.9781i 0.941787 + 1.01966i
\(163\) 2.56220 4.43785i 0.200687 0.347600i −0.748063 0.663628i \(-0.769016\pi\)
0.948750 + 0.316028i \(0.102349\pi\)
\(164\) 5.95576 + 4.99748i 0.465067 + 0.390237i
\(165\) −8.11613 + 13.0806i −0.631840 + 1.01832i
\(166\) 0.833946 + 4.72955i 0.0647268 + 0.367084i
\(167\) −1.92645 10.9254i −0.149073 0.845434i −0.964006 0.265880i \(-0.914338\pi\)
0.814933 0.579555i \(-0.196774\pi\)
\(168\) 1.12649 0.686717i 0.0869105 0.0529814i
\(169\) −8.13621 6.82709i −0.625863 0.525161i
\(170\) 8.73167 + 15.1237i 0.669689 + 1.15994i
\(171\) 0.868563 1.30547i 0.0664206 0.0998321i
\(172\) 0.495029 0.857416i 0.0377456 0.0653774i
\(173\) −11.8238 9.92137i −0.898949 0.754308i 0.0710355 0.997474i \(-0.477370\pi\)
−0.969985 + 0.243166i \(0.921814\pi\)
\(174\) −14.0160 5.61123i −1.06255 0.425386i
\(175\) −4.60900 + 6.15766i −0.348407 + 0.465476i
\(176\) −24.6613 8.97599i −1.85892 0.676590i
\(177\) 1.11658 + 7.76619i 0.0839274 + 0.583743i
\(178\) 7.88829 2.87110i 0.591252 0.215198i
\(179\) −2.49789 + 4.32647i −0.186701 + 0.323376i −0.944148 0.329521i \(-0.893113\pi\)
0.757447 + 0.652896i \(0.226446\pi\)
\(180\) −1.89639 + 7.81680i −0.141349 + 0.582630i
\(181\) 4.06394 7.03895i 0.302070 0.523201i −0.674534 0.738243i \(-0.735656\pi\)
0.976605 + 0.215042i \(0.0689890\pi\)
\(182\) −7.14911 3.61359i −0.529927 0.267857i
\(183\) 1.98220 9.47308i 0.146529 0.700270i
\(184\) 2.23621 + 0.813912i 0.164855 + 0.0600024i
\(185\) 0.286839 + 0.104401i 0.0210888 + 0.00767571i
\(186\) −8.20943 15.3223i −0.601944 1.12349i
\(187\) −6.56033 + 37.2055i −0.479739 + 2.72074i
\(188\) −18.7916 −1.37052
\(189\) 0.544508 13.7369i 0.0396071 0.999215i
\(190\) 1.48429 0.107682
\(191\) −1.97463 + 11.1987i −0.142879 + 0.810308i 0.826166 + 0.563426i \(0.190517\pi\)
−0.969046 + 0.246882i \(0.920594\pi\)
\(192\) −11.7492 0.373008i −0.847928 0.0269195i
\(193\) 1.10605 + 0.402570i 0.0796154 + 0.0289776i 0.381521 0.924360i \(-0.375400\pi\)
−0.301905 + 0.953338i \(0.597623\pi\)
\(194\) 24.4608 + 8.90299i 1.75618 + 0.639198i
\(195\) −3.67180 + 1.20592i −0.262943 + 0.0863579i
\(196\) 12.6080 + 3.05709i 0.900574 + 0.218363i
\(197\) −1.20617 + 2.08915i −0.0859360 + 0.148846i −0.905790 0.423728i \(-0.860721\pi\)
0.819854 + 0.572573i \(0.194055\pi\)
\(198\) −29.1341 + 21.4507i −2.07047 + 1.52443i
\(199\) 0.256961 0.445070i 0.0182155 0.0315501i −0.856774 0.515692i \(-0.827535\pi\)
0.874989 + 0.484142i \(0.160868\pi\)
\(200\) −0.786474 + 0.286253i −0.0556121 + 0.0202411i
\(201\) −17.7502 7.10617i −1.25200 0.501231i
\(202\) 20.2627 + 7.37502i 1.42568 + 0.518905i
\(203\) 4.62537 + 10.7995i 0.324637 + 0.757975i
\(204\) 2.80926 + 19.5393i 0.196688 + 1.36803i
\(205\) −4.64894 3.90092i −0.324696 0.272452i
\(206\) 0.381176 0.660217i 0.0265578 0.0459995i
\(207\) 19.9690 14.7027i 1.38794 1.02191i
\(208\) −3.29437 5.70602i −0.228424 0.395642i
\(209\) 2.45980 + 2.06402i 0.170148 + 0.142771i
\(210\) 11.1117 6.77382i 0.766783 0.467438i
\(211\) −2.37333 13.4598i −0.163387 0.926611i −0.950712 0.310074i \(-0.899646\pi\)
0.787326 0.616537i \(-0.211465\pi\)
\(212\) −1.47754 8.37955i −0.101478 0.575510i
\(213\) −2.09650 0.0665583i −0.143650 0.00456050i
\(214\) −4.59426 3.85504i −0.314057 0.263525i
\(215\) −0.386409 + 0.669281i −0.0263529 + 0.0456446i
\(216\) 0.867747 1.21855i 0.0590427 0.0829121i
\(217\) −3.91301 + 12.9484i −0.265632 + 0.878997i
\(218\) −17.5004 + 6.36964i −1.18528 + 0.431406i
\(219\) 2.29769 3.70314i 0.155263 0.250235i
\(220\) −15.4786 5.63373i −1.04356 0.379826i
\(221\) −7.26578 + 6.09671i −0.488749 + 0.410109i
\(222\) 0.534650 + 0.478341i 0.0358833 + 0.0321041i
\(223\) −15.5446 13.0435i −1.04094 0.873455i −0.0488311 0.998807i \(-0.515550\pi\)
−0.992112 + 0.125352i \(0.959994\pi\)
\(224\) 14.1407 + 15.0661i 0.944813 + 1.00664i
\(225\) −2.05620 + 8.47552i −0.137080 + 0.565035i
\(226\) −12.9865 −0.863849
\(227\) −19.7926 + 7.20391i −1.31368 + 0.478140i −0.901428 0.432929i \(-0.857480\pi\)
−0.412252 + 0.911070i \(0.635258\pi\)
\(228\) 1.55763 + 0.623586i 0.103156 + 0.0412980i
\(229\) 4.85440 4.07333i 0.320788 0.269173i −0.468146 0.883651i \(-0.655078\pi\)
0.788934 + 0.614478i \(0.210633\pi\)
\(230\) 22.0581 + 8.02848i 1.45447 + 0.529382i
\(231\) 27.8342 + 4.22601i 1.83136 + 0.278051i
\(232\) −0.221989 + 1.25896i −0.0145743 + 0.0826548i
\(233\) −4.85761 −0.318233 −0.159116 0.987260i \(-0.550864\pi\)
−0.159116 + 0.987260i \(0.550864\pi\)
\(234\) −9.06473 0.576144i −0.592580 0.0376637i
\(235\) 14.6683 0.956857
\(236\) −7.88916 + 2.87142i −0.513541 + 0.186914i
\(237\) 3.21654 + 2.87778i 0.208937 + 0.186932i
\(238\) 19.1381 25.5687i 1.24054 1.65737i
\(239\) 6.25548 5.24897i 0.404633 0.339528i −0.417648 0.908609i \(-0.637145\pi\)
0.822281 + 0.569081i \(0.192701\pi\)
\(240\) 10.6986 + 0.339652i 0.690590 + 0.0219244i
\(241\) 18.3434 + 15.3919i 1.18160 + 0.991481i 0.999967 + 0.00811480i \(0.00258305\pi\)
0.181634 + 0.983366i \(0.441861\pi\)
\(242\) −26.2482 45.4631i −1.68730 2.92248i
\(243\) −5.56305 14.5620i −0.356870 0.934154i
\(244\) 10.3560 0.662973
\(245\) −9.84156 2.38630i −0.628755 0.152455i
\(246\) −6.73591 12.5721i −0.429466 0.801568i
\(247\) 0.139987 + 0.793908i 0.00890719 + 0.0505152i
\(248\) −1.12754 + 0.946122i −0.0715991 + 0.0600788i
\(249\) 0.867883 4.14767i 0.0549999 0.262848i
\(250\) −21.1006 + 7.67999i −1.33452 + 0.485725i
\(251\) 2.85033 4.93692i 0.179911 0.311616i −0.761939 0.647649i \(-0.775752\pi\)
0.941850 + 0.336034i \(0.109086\pi\)
\(252\) 14.5066 2.44019i 0.913831 0.153718i
\(253\) 25.3910 + 43.9785i 1.59632 + 2.76490i
\(254\) −15.3568 12.8859i −0.963570 0.808532i
\(255\) −2.19285 15.2520i −0.137322 0.955117i
\(256\) 3.14001 + 17.8079i 0.196251 + 1.11299i
\(257\) −1.45089 + 1.21745i −0.0905043 + 0.0759422i −0.686917 0.726736i \(-0.741037\pi\)
0.596413 + 0.802678i \(0.296592\pi\)
\(258\) −1.42771 + 1.12275i −0.0888850 + 0.0698995i
\(259\) −0.0310188 0.557389i −0.00192741 0.0346345i
\(260\) −2.06770 3.58136i −0.128233 0.222106i
\(261\) 9.64103 + 9.19283i 0.596765 + 0.569022i
\(262\) −8.43637 −0.521201
\(263\) 3.44586 19.5424i 0.212481 1.20504i −0.672745 0.739875i \(-0.734885\pi\)
0.885225 0.465163i \(-0.154004\pi\)
\(264\) 2.28309 + 2.04263i 0.140514 + 0.125715i
\(265\) 1.15334 + 6.54090i 0.0708489 + 0.401804i
\(266\) −1.06873 2.49530i −0.0655278 0.152997i
\(267\) −7.40321 0.235033i −0.453069 0.0143838i
\(268\) 3.55261 20.1479i 0.217010 1.23073i
\(269\) −4.03933 6.99633i −0.246283 0.426574i 0.716209 0.697886i \(-0.245876\pi\)
−0.962491 + 0.271312i \(0.912542\pi\)
\(270\) 8.55951 12.0199i 0.520915 0.731507i
\(271\) 15.1891 26.3082i 0.922670 1.59811i 0.127403 0.991851i \(-0.459336\pi\)
0.795266 0.606260i \(-0.207331\pi\)
\(272\) 24.6851 8.98465i 1.49676 0.544775i
\(273\) 4.67112 + 5.30453i 0.282709 + 0.321045i
\(274\) 31.1619 26.1479i 1.88256 1.57965i
\(275\) −16.7829 6.10849i −1.01205 0.368356i
\(276\) 19.7750 + 17.6923i 1.19031 + 1.06495i
\(277\) 1.59381 9.03893i 0.0957626 0.543097i −0.898748 0.438465i \(-0.855522\pi\)
0.994511 0.104632i \(-0.0333665\pi\)
\(278\) 6.68343 + 11.5760i 0.400845 + 0.694284i
\(279\) 1.69992 + 15.2434i 0.101772 + 0.912600i
\(280\) −0.754118 0.803469i −0.0450671 0.0480164i
\(281\) −2.10895 + 11.9605i −0.125810 + 0.713502i 0.855014 + 0.518605i \(0.173548\pi\)
−0.980824 + 0.194897i \(0.937563\pi\)
\(282\) 32.0043 + 12.8127i 1.90583 + 0.762986i
\(283\) 2.87589 + 16.3100i 0.170954 + 0.969526i 0.942711 + 0.333610i \(0.108267\pi\)
−0.771758 + 0.635917i \(0.780622\pi\)
\(284\) −0.389742 2.21034i −0.0231269 0.131159i
\(285\) −1.21585 0.486758i −0.0720207 0.0288330i
\(286\) 3.22996 18.3180i 0.190992 1.08317i
\(287\) −3.21066 + 10.6243i −0.189519 + 0.627133i
\(288\) 21.4637 + 9.39365i 1.26476 + 0.553526i
\(289\) −10.4080 18.0271i −0.612233 1.06042i
\(290\) −2.18971 + 12.4185i −0.128584 + 0.729237i
\(291\) −17.1173 15.3145i −1.00343 0.897753i
\(292\) 4.38200 + 1.59492i 0.256437 + 0.0933355i
\(293\) −24.4096 + 20.4821i −1.42603 + 1.19658i −0.478010 + 0.878355i \(0.658642\pi\)
−0.948016 + 0.318223i \(0.896914\pi\)
\(294\) −19.3885 13.8031i −1.13076 0.805014i
\(295\) 6.15811 2.24137i 0.358539 0.130498i
\(296\) 0.0303729 0.0526073i 0.00176539 0.00305774i
\(297\) 30.8997 8.01701i 1.79298 0.465194i
\(298\) −12.8449 22.2480i −0.744083 1.28879i
\(299\) −2.21387 + 12.5555i −0.128031 + 0.726103i
\(300\) −9.32740 0.296121i −0.538518 0.0170965i
\(301\) 1.40338 + 0.167710i 0.0808896 + 0.00966665i
\(302\) 1.66254 + 9.42873i 0.0956684 + 0.542562i
\(303\) −14.1796 12.6862i −0.814595 0.728802i
\(304\) 0.387713 2.19883i 0.0222369 0.126112i
\(305\) −8.08365 −0.462868
\(306\) 8.53803 35.1932i 0.488087 2.01186i
\(307\) −13.1085 22.7045i −0.748139 1.29582i −0.948714 0.316137i \(-0.897614\pi\)
0.200574 0.979678i \(-0.435719\pi\)
\(308\) 1.67385 + 30.0781i 0.0953764 + 1.71386i
\(309\) −0.528751 + 0.415811i −0.0300796 + 0.0236547i
\(310\) −11.1222 + 9.33260i −0.631696 + 0.530056i
\(311\) −3.99530 22.6585i −0.226553 1.28485i −0.859694 0.510809i \(-0.829346\pi\)
0.633141 0.774036i \(-0.281765\pi\)
\(312\) 0.109452 + 0.761277i 0.00619652 + 0.0430988i
\(313\) 15.8934 + 13.3362i 0.898350 + 0.753806i 0.969867 0.243634i \(-0.0783395\pi\)
−0.0715169 + 0.997439i \(0.522784\pi\)
\(314\) −3.16275 5.47805i −0.178484 0.309144i
\(315\) −11.3236 + 1.90476i −0.638010 + 0.107321i
\(316\) −2.30911 + 3.99950i −0.129898 + 0.224989i
\(317\) −8.95912 + 3.26085i −0.503194 + 0.183148i −0.581130 0.813811i \(-0.697389\pi\)
0.0779359 + 0.996958i \(0.475167\pi\)
\(318\) −3.19702 + 15.2788i −0.179280 + 0.856791i
\(319\) −20.8977 + 17.5352i −1.17005 + 0.981785i
\(320\) 1.70494 + 9.66921i 0.0953092 + 0.540525i
\(321\) 2.49915 + 4.66449i 0.139489 + 0.260346i
\(322\) −2.38536 42.8635i −0.132931 2.38869i
\(323\) −3.21415 −0.178840
\(324\) 14.0323 9.01772i 0.779571 0.500984i
\(325\) −2.24194 3.88316i −0.124361 0.215399i
\(326\) −7.70575 6.46589i −0.426782 0.358113i
\(327\) 16.4243 + 0.521428i 0.908265 + 0.0288350i
\(328\) −0.925160 + 0.776301i −0.0510834 + 0.0428641i
\(329\) −10.5616 24.6596i −0.582279 1.35953i
\(330\) 22.5205 + 20.1487i 1.23971 + 1.10915i
\(331\) 8.09808 2.94746i 0.445110 0.162007i −0.109734 0.993961i \(-0.535000\pi\)
0.554845 + 0.831954i \(0.312778\pi\)
\(332\) 4.53424 0.248849
\(333\) −0.281089 0.567164i −0.0154036 0.0310804i
\(334\) −21.7774 −1.19160
\(335\) −2.77309 + 15.7270i −0.151510 + 0.859257i
\(336\) −7.13225 18.2304i −0.389096 0.994549i
\(337\) 3.05610 + 1.11233i 0.166476 + 0.0605924i 0.423914 0.905703i \(-0.360656\pi\)
−0.257437 + 0.966295i \(0.582878\pi\)
\(338\) −15.9713 + 13.4015i −0.868725 + 0.728947i
\(339\) 10.6378 + 4.25879i 0.577768 + 0.231306i
\(340\) 15.4935 5.63917i 0.840253 0.305827i
\(341\) −31.4097 −1.70093
\(342\) −2.22764 2.12408i −0.120457 0.114857i
\(343\) 3.07448 + 18.2633i 0.166006 + 0.986125i
\(344\) 0.117813 + 0.0988572i 0.00635207 + 0.00533002i
\(345\) −15.4359 13.8102i −0.831042 0.743517i
\(346\) −23.2101 + 19.4756i −1.24778 + 1.04701i
\(347\) 14.2496 + 5.18644i 0.764960 + 0.278423i 0.694887 0.719119i \(-0.255454\pi\)
0.0700734 + 0.997542i \(0.477677\pi\)
\(348\) −7.51520 + 12.1121i −0.402857 + 0.649276i
\(349\) 19.8864 7.23804i 1.06449 0.387443i 0.250378 0.968148i \(-0.419445\pi\)
0.814114 + 0.580705i \(0.197223\pi\)
\(350\) 10.3327 + 11.0089i 0.552308 + 0.588453i
\(351\) 7.23640 + 3.44464i 0.386251 + 0.183861i
\(352\) −23.9897 + 41.5514i −1.27866 + 2.21470i
\(353\) −18.6692 15.6653i −0.993662 0.833781i −0.00756826 0.999971i \(-0.502409\pi\)
−0.986094 + 0.166190i \(0.946854\pi\)
\(354\) 15.3940 + 0.488719i 0.818181 + 0.0259751i
\(355\) 0.304224 + 1.72534i 0.0161466 + 0.0915717i
\(356\) −1.37627 7.80521i −0.0729421 0.413675i
\(357\) −24.0619 + 14.6683i −1.27349 + 0.776331i
\(358\) 7.51235 + 6.30361i 0.397040 + 0.333156i
\(359\) 3.21333 + 5.56566i 0.169593 + 0.293744i 0.938277 0.345885i \(-0.112421\pi\)
−0.768684 + 0.639629i \(0.779088\pi\)
\(360\) −1.14465 0.500960i −0.0603284 0.0264029i
\(361\) 9.36341 16.2179i 0.492811 0.853574i
\(362\) −12.2222 10.2557i −0.642385 0.539025i
\(363\) 6.59190 + 45.8488i 0.345985 + 2.40644i
\(364\) −4.53198 + 6.05477i −0.237540 + 0.317356i
\(365\) −3.42050 1.24496i −0.179037 0.0651641i
\(366\) −17.6374 7.06102i −0.921922 0.369086i
\(367\) −15.2406 + 5.54713i −0.795554 + 0.289558i −0.707643 0.706570i \(-0.750241\pi\)
−0.0879112 + 0.996128i \(0.528019\pi\)
\(368\) 17.6552 30.5798i 0.920343 1.59408i
\(369\) 1.39480 + 12.5074i 0.0726104 + 0.651107i
\(370\) 0.299600 0.518922i 0.0155754 0.0269775i
\(371\) 10.1658 6.64854i 0.527780 0.345175i
\(372\) −15.5926 + 5.12103i −0.808436 + 0.265513i
\(373\) −9.09507 3.31034i −0.470925 0.171403i 0.0956463 0.995415i \(-0.469508\pi\)
−0.566571 + 0.824013i \(0.691730\pi\)
\(374\) 69.6883 + 25.3645i 3.60350 + 1.31157i
\(375\) 19.8030 + 0.628695i 1.02263 + 0.0324657i
\(376\) 0.506890 2.87472i 0.0261409 0.148252i
\(377\) −6.84884 −0.352733
\(378\) −26.3702 5.73514i −1.35634 0.294984i
\(379\) −19.2837 −0.990539 −0.495269 0.868739i \(-0.664931\pi\)
−0.495269 + 0.868739i \(0.664931\pi\)
\(380\) 0.243346 1.38009i 0.0124834 0.0707969i
\(381\) 8.35366 + 15.5915i 0.427971 + 0.798778i
\(382\) 20.9759 + 7.63459i 1.07322 + 0.390620i
\(383\) 26.6245 + 9.69053i 1.36045 + 0.495163i 0.916193 0.400737i \(-0.131246\pi\)
0.444256 + 0.895900i \(0.353468\pi\)
\(384\) 0.814830 3.89413i 0.0415816 0.198722i
\(385\) −1.30657 23.4783i −0.0665891 1.19657i
\(386\) 1.15526 2.00096i 0.0588010 0.101846i
\(387\) 1.53769 0.451496i 0.0781654 0.0229508i
\(388\) 12.2883 21.2839i 0.623842 1.08053i
\(389\) 10.9284 3.97762i 0.554094 0.201674i −0.0497708 0.998761i \(-0.515849\pi\)
0.603864 + 0.797087i \(0.293627\pi\)
\(390\) 1.07965 + 7.50928i 0.0546700 + 0.380247i
\(391\) −47.7655 17.3852i −2.41561 0.879209i
\(392\) −0.807762 + 1.84630i −0.0407981 + 0.0932522i
\(393\) 6.91062 + 2.76662i 0.348595 + 0.139558i
\(394\) 3.62753 + 3.04386i 0.182752 + 0.153347i
\(395\) 1.80244 3.12192i 0.0906907 0.157081i
\(396\) 15.1683 + 30.6056i 0.762235 + 1.53799i
\(397\) 12.8424 + 22.2437i 0.644543 + 1.11638i 0.984407 + 0.175907i \(0.0562857\pi\)
−0.339864 + 0.940475i \(0.610381\pi\)
\(398\) −0.772805 0.648460i −0.0387372 0.0325044i
\(399\) 0.0571340 + 2.39450i 0.00286028 + 0.119875i
\(400\) 2.15648 + 12.2300i 0.107824 + 0.611502i
\(401\) −2.27770 12.9175i −0.113743 0.645068i −0.987365 0.158463i \(-0.949346\pi\)
0.873622 0.486605i \(-0.161765\pi\)
\(402\) −19.7879 + 31.8918i −0.986933 + 1.59062i
\(403\) −6.04073 5.06878i −0.300910 0.252494i
\(404\) 10.1793 17.6311i 0.506439 0.877178i
\(405\) −10.9533 + 7.03904i −0.544274 + 0.349773i
\(406\) 22.4539 5.26040i 1.11437 0.261069i
\(407\) 1.21811 0.443354i 0.0603793 0.0219763i
\(408\) −3.06488 0.0973020i −0.151734 0.00481717i
\(409\) −0.778401 0.283315i −0.0384894 0.0140090i 0.322704 0.946500i \(-0.395408\pi\)
−0.361193 + 0.932491i \(0.617630\pi\)
\(410\) −9.12583 + 7.65748i −0.450693 + 0.378176i
\(411\) −34.1011 + 11.1997i −1.68208 + 0.552443i
\(412\) −0.551374 0.462658i −0.0271642 0.0227935i
\(413\) −8.20207 8.73883i −0.403597 0.430010i
\(414\) −21.6159 43.6152i −1.06236 2.14357i
\(415\) −3.53933 −0.173739
\(416\) −11.3191 + 4.11983i −0.554966 + 0.201991i
\(417\) −1.67846 11.6742i −0.0821945 0.571689i
\(418\) 4.82858 4.05166i 0.236173 0.198173i
\(419\) 32.0519 + 11.6659i 1.56584 + 0.569918i 0.972064 0.234716i \(-0.0754160\pi\)
0.593772 + 0.804633i \(0.297638\pi\)
\(420\) −4.47652 11.4422i −0.218432 0.558323i
\(421\) 5.69948 32.3233i 0.277776 1.57534i −0.452230 0.891902i \(-0.649371\pi\)
0.730005 0.683442i \(-0.239518\pi\)
\(422\) −26.8291 −1.30602
\(423\) −22.0144 20.9910i −1.07038 1.02062i
\(424\) 1.32175 0.0641898
\(425\) 16.7991 6.11439i 0.814878 0.296591i
\(426\) −0.843301 + 4.03020i −0.0408581 + 0.195264i
\(427\) 5.82044 + 13.5898i 0.281671 + 0.657655i
\(428\) −4.33762 + 3.63970i −0.209667 + 0.175931i
\(429\) −8.65303 + 13.9459i −0.417772 + 0.673315i
\(430\) 1.16212 + 0.975133i 0.0560423 + 0.0470251i
\(431\) −5.99431 10.3825i −0.288736 0.500105i 0.684772 0.728757i \(-0.259902\pi\)
−0.973508 + 0.228652i \(0.926568\pi\)
\(432\) −15.5705 15.8198i −0.749134 0.761132i
\(433\) −39.2151 −1.88456 −0.942279 0.334829i \(-0.891321\pi\)
−0.942279 + 0.334829i \(0.891321\pi\)
\(434\) 23.6977 + 11.9782i 1.13753 + 0.574974i
\(435\) 5.86620 9.45444i 0.281263 0.453306i
\(436\) 3.05330 + 17.3161i 0.146227 + 0.829292i
\(437\) −3.30959 + 2.77707i −0.158319 + 0.132845i
\(438\) −6.37559 5.70411i −0.304637 0.272553i
\(439\) 27.5030 10.0103i 1.31264 0.477764i 0.411551 0.911387i \(-0.364987\pi\)
0.901094 + 0.433623i \(0.142765\pi\)
\(440\) 1.27936 2.21592i 0.0609913 0.105640i
\(441\) 11.3554 + 17.6651i 0.540735 + 0.841193i
\(442\) 9.30929 + 16.1242i 0.442798 + 0.766948i
\(443\) 18.3069 + 15.3613i 0.869788 + 0.729839i 0.964053 0.265708i \(-0.0856058\pi\)
−0.0942654 + 0.995547i \(0.530050\pi\)
\(444\) 0.532414 0.418692i 0.0252673 0.0198702i
\(445\) 1.07429 + 6.09258i 0.0509261 + 0.288816i
\(446\) −30.5139 + 25.6042i −1.44488 + 1.21240i
\(447\) 3.22583 + 22.4367i 0.152576 + 1.06122i
\(448\) 15.0277 9.82834i 0.709993 0.464345i
\(449\) 13.9265 + 24.1213i 0.657231 + 1.13836i 0.981330 + 0.192334i \(0.0616056\pi\)
−0.324099 + 0.946023i \(0.605061\pi\)
\(450\) 15.6837 + 6.86404i 0.739338 + 0.323574i
\(451\) −25.7719 −1.21355
\(452\) −2.12911 + 12.0748i −0.100145 + 0.567950i
\(453\) 1.73019 8.26872i 0.0812916 0.388498i
\(454\) 7.17969 + 40.7180i 0.336959 + 1.91099i
\(455\) 3.53757 4.72622i 0.165844 0.221569i
\(456\) −0.137411 + 0.221463i −0.00643487 + 0.0103709i
\(457\) −2.05518 + 11.6555i −0.0961373 + 0.545222i 0.898256 + 0.439473i \(0.144835\pi\)
−0.994393 + 0.105749i \(0.966276\pi\)
\(458\) −6.21971 10.7729i −0.290628 0.503383i
\(459\) −18.5352 + 26.0284i −0.865147 + 1.21490i
\(460\) 11.0812 19.1932i 0.516665 0.894889i
\(461\) 18.8632 6.86563i 0.878545 0.319764i 0.136923 0.990582i \(-0.456279\pi\)
0.741622 + 0.670818i \(0.234057\pi\)
\(462\) 17.6574 52.3678i 0.821498 2.43637i
\(463\) 17.8497 14.9777i 0.829548 0.696073i −0.125639 0.992076i \(-0.540098\pi\)
0.955187 + 0.296003i \(0.0956537\pi\)
\(464\) 17.8248 + 6.48769i 0.827495 + 0.301183i
\(465\) 12.1712 3.99737i 0.564427 0.185373i
\(466\) −1.65581 + 9.39059i −0.0767041 + 0.435011i
\(467\) 1.77483 + 3.07409i 0.0821292 + 0.142252i 0.904164 0.427185i \(-0.140495\pi\)
−0.822035 + 0.569437i \(0.807161\pi\)
\(468\) −2.02184 + 8.33389i −0.0934597 + 0.385234i
\(469\) 28.4360 6.66188i 1.31305 0.307617i
\(470\) 5.00000 28.3564i 0.230633 1.30798i
\(471\) 0.794286 + 5.52451i 0.0365988 + 0.254556i
\(472\) −0.226462 1.28433i −0.0104238 0.0591160i
\(473\) 0.569895 + 3.23203i 0.0262038 + 0.148609i
\(474\) 6.65966 5.23718i 0.305888 0.240552i
\(475\) 0.263853 1.49639i 0.0121064 0.0686589i
\(476\) −20.6360 21.9865i −0.945849 1.00775i
\(477\) 7.62935 11.4671i 0.349324 0.525043i
\(478\) −8.01485 13.8821i −0.366591 0.634953i
\(479\) −4.85253 + 27.5201i −0.221718 + 1.25742i 0.647143 + 0.762369i \(0.275964\pi\)
−0.868861 + 0.495056i \(0.835148\pi\)
\(480\) 4.00793 19.1542i 0.182936 0.874265i
\(481\) 0.305814 + 0.111307i 0.0139439 + 0.00507517i
\(482\) 36.0079 30.2142i 1.64012 1.37622i
\(483\) −12.1027 + 35.8937i −0.550692 + 1.63322i
\(484\) −46.5748 + 16.9518i −2.11704 + 0.770538i
\(485\) −9.59196 + 16.6138i −0.435548 + 0.754392i
\(486\) −30.0471 + 5.79057i −1.36297 + 0.262666i
\(487\) 17.2087 + 29.8064i 0.779801 + 1.35066i 0.932056 + 0.362314i \(0.118013\pi\)
−0.152255 + 0.988341i \(0.548653\pi\)
\(488\) −0.279345 + 1.58424i −0.0126453 + 0.0717153i
\(489\) 4.19171 + 7.82354i 0.189556 + 0.353793i
\(490\) −7.96781 + 18.2120i −0.359949 + 0.822734i
\(491\) 2.16203 + 12.2615i 0.0975709 + 0.553352i 0.993929 + 0.110022i \(0.0350921\pi\)
−0.896358 + 0.443330i \(0.853797\pi\)
\(492\) −12.7938 + 4.20185i −0.576790 + 0.189434i
\(493\) 4.74170 26.8915i 0.213555 1.21113i
\(494\) 1.58248 0.0711990
\(495\) −11.8400 23.8901i −0.532170 1.07378i
\(496\) 10.9201 + 18.9142i 0.490328 + 0.849273i
\(497\) 2.68150 1.75374i 0.120282 0.0786659i
\(498\) −7.72233 3.09158i −0.346046 0.138537i
\(499\) −17.8874 + 15.0093i −0.800750 + 0.671909i −0.948381 0.317133i \(-0.897280\pi\)
0.147631 + 0.989043i \(0.452835\pi\)
\(500\) 3.68142 + 20.8784i 0.164638 + 0.933709i
\(501\) 17.8388 + 7.14167i 0.796981 + 0.319066i
\(502\) −8.57231 7.19302i −0.382601 0.321040i
\(503\) −8.13524 14.0907i −0.362733 0.628271i 0.625677 0.780082i \(-0.284823\pi\)
−0.988410 + 0.151811i \(0.951489\pi\)
\(504\) −0.0180080 + 2.28503i −0.000802142 + 0.101783i
\(505\) −7.94575 + 13.7624i −0.353581 + 0.612420i
\(506\) 93.6729 34.0942i 4.16427 1.51567i
\(507\) 17.4778 5.74018i 0.776214 0.254930i
\(508\) −14.4989 + 12.1661i −0.643287 + 0.539782i
\(509\) 5.00564 + 28.3884i 0.221871 + 1.25829i 0.868577 + 0.495554i \(0.165035\pi\)
−0.646706 + 0.762739i \(0.723854\pi\)
\(510\) −30.2322 0.959793i −1.33870 0.0425003i
\(511\) 0.369892 + 6.64675i 0.0163631 + 0.294035i
\(512\) 30.9021 1.36569
\(513\) 1.12819 + 2.47046i 0.0498108 + 0.109073i
\(514\) 1.85896 + 3.21982i 0.0819953 + 0.142020i
\(515\) 0.430391 + 0.361141i 0.0189653 + 0.0159138i
\(516\) 0.809860 + 1.51155i 0.0356521 + 0.0665422i
\(517\) 47.7179 40.0401i 2.09863 1.76096i
\(518\) −1.08810 0.130033i −0.0478085 0.00571331i
\(519\) 25.3993 8.34183i 1.11490 0.366166i
\(520\) 0.603646 0.219709i 0.0264716 0.00963489i
\(521\) −30.1743 −1.32196 −0.660981 0.750403i \(-0.729860\pi\)
−0.660981 + 0.750403i \(0.729860\pi\)
\(522\) 21.0576 15.5042i 0.921668 0.678600i
\(523\) −26.5611 −1.16144 −0.580718 0.814105i \(-0.697228\pi\)
−0.580718 + 0.814105i \(0.697228\pi\)
\(524\) −1.38313 + 7.84410i −0.0604222 + 0.342671i
\(525\) −4.85376 12.4065i −0.211835 0.541462i
\(526\) −36.6042 13.3229i −1.59602 0.580904i
\(527\) 24.0844 20.2092i 1.04913 0.880328i
\(528\) 35.7309 28.0989i 1.55499 1.22285i
\(529\) −42.5920 + 15.5022i −1.85183 + 0.674010i
\(530\) 13.0378 0.566326
\(531\) −12.4497 5.44863i −0.540269 0.236451i
\(532\) −2.49534 + 0.584598i −0.108187 + 0.0253455i
\(533\) −4.95648 4.15898i −0.214689 0.180145i
\(534\) −2.97789 + 14.2316i −0.128866 + 0.615859i
\(535\) 3.38586 2.84107i 0.146383 0.122830i
\(536\) 2.98636 + 1.08695i 0.128991 + 0.0469490i
\(537\) −4.08651 7.62718i −0.176346 0.329137i
\(538\) −14.9020 + 5.42388i −0.642470 + 0.233840i
\(539\) −38.5297 + 19.1016i −1.65959 + 0.822762i
\(540\) −9.77273 9.92924i −0.420551 0.427286i
\(541\) 15.4672 26.7899i 0.664985 1.15179i −0.314304 0.949322i \(-0.601771\pi\)
0.979289 0.202466i \(-0.0648954\pi\)
\(542\) −45.6808 38.3307i −1.96216 1.64645i
\(543\) 6.64854 + 12.4090i 0.285316 + 0.532523i
\(544\) −8.33959 47.2962i −0.357557 2.02781i
\(545\) −2.38334 13.5166i −0.102091 0.578987i
\(546\) 11.8468 7.22192i 0.506997 0.309070i
\(547\) 11.6176 + 9.74829i 0.496731 + 0.416807i 0.856431 0.516261i \(-0.172677\pi\)
−0.359700 + 0.933068i \(0.617121\pi\)
\(548\) −19.2033 33.2611i −0.820324 1.42084i
\(549\) 12.1320 + 11.5680i 0.517782 + 0.493711i
\(550\) −17.5295 + 30.3621i −0.747462 + 1.29464i
\(551\) −1.77790 1.49184i −0.0757413 0.0635545i
\(552\) −3.23996 + 2.54791i −0.137902 + 0.108446i
\(553\) −6.54620 0.782299i −0.278373 0.0332667i
\(554\) −16.9305 6.16220i −0.719308 0.261807i
\(555\) −0.415591 + 0.326822i −0.0176409 + 0.0138728i
\(556\) 11.8591 4.31635i 0.502937 0.183054i
\(557\) 2.13863 3.70421i 0.0906165 0.156952i −0.817154 0.576419i \(-0.804450\pi\)
0.907771 + 0.419467i \(0.137783\pi\)
\(558\) 30.0476 + 1.90979i 1.27202 + 0.0808479i
\(559\) −0.411971 + 0.713555i −0.0174245 + 0.0301802i
\(560\) −13.6839 + 8.94944i −0.578249 + 0.378183i
\(561\) −48.7669 43.6308i −2.05894 1.84209i
\(562\) 22.4027 + 8.15393i 0.945003 + 0.343953i
\(563\) −19.9668 7.26732i −0.841500 0.306281i −0.114930 0.993374i \(-0.536664\pi\)
−0.726570 + 0.687093i \(0.758887\pi\)
\(564\) 17.1602 27.6568i 0.722577 1.16456i
\(565\) 1.66194 9.42532i 0.0699183 0.396526i
\(566\) 32.5102 1.36651
\(567\) 19.7203 + 13.3458i 0.828175 + 0.560470i
\(568\) 0.348648 0.0146289
\(569\) 0.0271387 0.153911i 0.00113771 0.00645230i −0.984234 0.176873i \(-0.943402\pi\)
0.985371 + 0.170421i \(0.0545128\pi\)
\(570\) −1.35543 + 2.18452i −0.0567728 + 0.0914996i
\(571\) −43.7965 15.9406i −1.83283 0.667095i −0.992071 0.125682i \(-0.959888\pi\)
−0.840757 0.541412i \(-0.817890\pi\)
\(572\) −16.5025 6.00642i −0.690004 0.251141i
\(573\) −14.6786 13.1327i −0.613208 0.548625i
\(574\) 19.4442 + 9.82825i 0.811584 + 0.410223i
\(575\) 12.0150 20.8107i 0.501062 0.867865i
\(576\) 11.2782 16.9515i 0.469926 0.706312i
\(577\) 18.6484 32.2999i 0.776341 1.34466i −0.157697 0.987488i \(-0.550407\pi\)
0.934038 0.357174i \(-0.116260\pi\)
\(578\) −38.3973 + 13.9755i −1.59712 + 0.581303i
\(579\) −1.60252 + 1.26023i −0.0665985 + 0.0523732i
\(580\) 11.1876 + 4.07197i 0.464541 + 0.169079i
\(581\) 2.54841 + 5.95012i 0.105726 + 0.246853i
\(582\) −35.4404 + 27.8704i −1.46905 + 1.15527i
\(583\) 21.6066 + 18.1301i 0.894854 + 0.750872i
\(584\) −0.362190 + 0.627331i −0.0149875 + 0.0259592i
\(585\) 1.57821 6.50526i 0.0652508 0.268959i
\(586\) 31.2749 + 54.1697i 1.29195 + 2.23773i
\(587\) −12.5480 10.5290i −0.517912 0.434580i 0.345991 0.938238i \(-0.387543\pi\)
−0.863903 + 0.503658i \(0.831987\pi\)
\(588\) −16.0128 + 15.7644i −0.660357 + 0.650112i
\(589\) −0.464027 2.63163i −0.0191199 0.108434i
\(590\) −2.23383 12.6687i −0.0919654 0.521562i
\(591\) −1.97327 3.68298i −0.0811697 0.151497i
\(592\) −0.690474 0.579377i −0.0283783 0.0238122i
\(593\) 14.8230 25.6742i 0.608708 1.05431i −0.382745 0.923854i \(-0.625021\pi\)
0.991454 0.130460i \(-0.0416453\pi\)
\(594\) −4.96547 62.4670i −0.203736 2.56305i
\(595\) 16.1080 + 17.1622i 0.660364 + 0.703580i
\(596\) −22.7919 + 8.29559i −0.933595 + 0.339801i
\(597\) 0.420384 + 0.784618i 0.0172052 + 0.0321123i
\(598\) 23.5172 + 8.55958i 0.961692 + 0.350027i
\(599\) −14.0234 + 11.7670i −0.572979 + 0.480786i −0.882633 0.470063i \(-0.844231\pi\)
0.309654 + 0.950849i \(0.399787\pi\)
\(600\) 0.296900 1.41891i 0.0121209 0.0579266i
\(601\) 8.60000 + 7.21625i 0.350801 + 0.294357i 0.801112 0.598515i \(-0.204242\pi\)
−0.450310 + 0.892872i \(0.648687\pi\)
\(602\) 0.802583 2.65581i 0.0327109 0.108243i
\(603\) 26.6678 19.6348i 1.08600 0.799592i
\(604\) 9.03936 0.367806
\(605\) 36.3553 13.2322i 1.47805 0.537967i
\(606\) −29.3579 + 23.0872i −1.19258 + 0.937852i
\(607\) 1.84308 1.54652i 0.0748081 0.0627715i −0.604617 0.796516i \(-0.706674\pi\)
0.679425 + 0.733745i \(0.262229\pi\)
\(608\) −3.83576 1.39610i −0.155560 0.0566194i
\(609\) −20.1181 3.05448i −0.815227 0.123774i
\(610\) −2.75547 + 15.6271i −0.111566 + 0.632721i
\(611\) 15.6387 0.632673
\(612\) −31.3227 13.7085i −1.26614 0.554133i
\(613\) 13.5830 0.548614 0.274307 0.961642i \(-0.411552\pi\)
0.274307 + 0.961642i \(0.411552\pi\)
\(614\) −48.3600 + 17.6016i −1.95165 + 0.710342i
\(615\) 9.98659 3.27987i 0.402698 0.132257i
\(616\) −4.64646 0.555272i −0.187211 0.0223725i
\(617\) −28.2255 + 23.6840i −1.13631 + 0.953481i −0.999312 0.0370902i \(-0.988191\pi\)
−0.137002 + 0.990571i \(0.543747\pi\)
\(618\) 0.623599 + 1.16390i 0.0250848 + 0.0468190i
\(619\) 22.2143 + 18.6400i 0.892869 + 0.749206i 0.968784 0.247908i \(-0.0797431\pi\)
−0.0759143 + 0.997114i \(0.524188\pi\)
\(620\) 6.85396 + 11.8714i 0.275262 + 0.476767i
\(621\) 3.40342 + 42.8159i 0.136574 + 1.71814i
\(622\) −45.1646 −1.81094
\(623\) 9.46899 6.19285i 0.379367 0.248111i
\(624\) 11.4063 + 0.362120i 0.456617 + 0.0144964i
\(625\) −0.349551 1.98240i −0.0139820 0.0792961i
\(626\) 31.1987 26.1788i 1.24695 1.04632i
\(627\) −5.28401 + 1.73542i −0.211023 + 0.0693058i
\(628\) −5.61199 + 2.04260i −0.223943 + 0.0815085i
\(629\) −0.648767 + 1.12370i −0.0258680 + 0.0448047i
\(630\) −0.177632 + 22.5396i −0.00707704 + 0.898001i
\(631\) 8.05903 + 13.9586i 0.320825 + 0.555685i 0.980658 0.195727i \(-0.0627066\pi\)
−0.659834 + 0.751412i \(0.729373\pi\)
\(632\) −0.549551 0.461128i −0.0218600 0.0183427i
\(633\) 21.9770 + 8.79833i 0.873506 + 0.349702i
\(634\) 3.24989 + 18.4310i 0.129070 + 0.731990i
\(635\) 11.3176 9.49657i 0.449124 0.376860i
\(636\) 13.6820 + 5.47750i 0.542526 + 0.217197i
\(637\) −10.4926 2.54416i −0.415732 0.100803i
\(638\) 26.7752 + 46.3760i 1.06004 + 1.83604i
\(639\) 2.01245 3.02477i 0.0796113 0.119658i
\(640\) −3.32297 −0.131352
\(641\) −4.87697 + 27.6587i −0.192629 + 1.09245i 0.723126 + 0.690716i \(0.242704\pi\)
−0.915755 + 0.401737i \(0.868407\pi\)
\(642\) 9.86913 3.24130i 0.389504 0.127924i
\(643\) −2.43658 13.8185i −0.0960894 0.544950i −0.994408 0.105606i \(-0.966322\pi\)
0.898319 0.439344i \(-0.144789\pi\)
\(644\) −40.2454 4.80949i −1.58589 0.189521i
\(645\) −0.632160 1.17988i −0.0248913 0.0464578i
\(646\) −1.09561 + 6.21349i −0.0431060 + 0.244467i
\(647\) 1.57354 + 2.72544i 0.0618621 + 0.107148i 0.895298 0.445468i \(-0.146963\pi\)
−0.833436 + 0.552616i \(0.813629\pi\)
\(648\) 1.00101 + 2.38989i 0.0393233 + 0.0938836i
\(649\) 13.9149 24.1012i 0.546206 0.946056i
\(650\) −8.27102 + 3.01040i −0.324416 + 0.118078i
\(651\) −15.4837 17.5834i −0.606856 0.689146i
\(652\) −7.27530 + 6.10470i −0.284923 + 0.239079i
\(653\) −15.3598 5.59049i −0.601074 0.218773i 0.0235193 0.999723i \(-0.492513\pi\)
−0.624593 + 0.780950i \(0.714735\pi\)
\(654\) 6.60655 31.5732i 0.258337 1.23461i
\(655\) 1.07964 6.12294i 0.0421850 0.239243i
\(656\) 8.96006 + 15.5193i 0.349831 + 0.605926i
\(657\) 3.35193 + 6.76332i 0.130771 + 0.263862i
\(658\) −51.2713 + 12.0116i −1.99876 + 0.468262i
\(659\) 0.934608 5.30042i 0.0364071 0.206475i −0.961178 0.275929i \(-0.911015\pi\)
0.997585 + 0.0694538i \(0.0221256\pi\)
\(660\) 22.4263 17.6361i 0.872944 0.686486i
\(661\) 0.528407 + 2.99675i 0.0205527 + 0.116560i 0.993358 0.115064i \(-0.0367073\pi\)
−0.972805 + 0.231624i \(0.925596\pi\)
\(662\) −2.93755 16.6597i −0.114171 0.647496i
\(663\) −2.33791 16.2609i −0.0907970 0.631523i
\(664\) −0.122308 + 0.693642i −0.00474646 + 0.0269185i
\(665\) 1.94781 0.456325i 0.0755328 0.0176955i
\(666\) −1.19224 + 0.350064i −0.0461984 + 0.0135647i
\(667\) −18.3522 31.7869i −0.710599 1.23079i
\(668\) −3.57036 + 20.2485i −0.138141 + 0.783438i
\(669\) 33.3920 10.9669i 1.29101 0.424004i
\(670\) 29.4577 + 10.7217i 1.13805 + 0.414216i
\(671\) −26.2971 + 22.0659i −1.01519 + 0.851845i
\(672\) −35.0868 + 7.05361i −1.35350 + 0.272099i
\(673\) −17.9522 + 6.53405i −0.692005 + 0.251869i −0.663993 0.747738i \(-0.731140\pi\)
−0.0280114 + 0.999608i \(0.508917\pi\)
\(674\) 3.19205 5.52880i 0.122953 0.212961i
\(675\) −10.5963 10.7660i −0.407851 0.414383i
\(676\) 9.84222 + 17.0472i 0.378547 + 0.655663i
\(677\) 6.31989 35.8419i 0.242893 1.37752i −0.582442 0.812872i \(-0.697903\pi\)
0.825335 0.564643i \(-0.190986\pi\)
\(678\) 11.8591 19.1131i 0.455446 0.734033i
\(679\) 34.8366 + 4.16312i 1.33691 + 0.159766i
\(680\) 0.444748 + 2.52229i 0.0170553 + 0.0967254i
\(681\) 7.47186 35.7085i 0.286322 1.36835i
\(682\) −10.7066 + 60.7202i −0.409977 + 2.32510i
\(683\) −10.7367 −0.410827 −0.205413 0.978675i \(-0.565854\pi\)
−0.205413 + 0.978675i \(0.565854\pi\)
\(684\) −2.34017 + 1.72301i −0.0894788 + 0.0658809i
\(685\) 14.9897 + 25.9629i 0.572727 + 0.991992i
\(686\) 36.3540 + 0.281919i 1.38800 + 0.0107637i
\(687\) 1.56200 + 10.8642i 0.0595942 + 0.414497i
\(688\) 1.74812 1.46685i 0.0666466 0.0559232i
\(689\) 1.22963 + 6.97359i 0.0468453 + 0.265673i
\(690\) −31.9591 + 25.1328i −1.21666 + 0.956788i
\(691\) −14.4709 12.1425i −0.550498 0.461923i 0.324612 0.945847i \(-0.394766\pi\)
−0.875110 + 0.483925i \(0.839211\pi\)
\(692\) 14.3031 + 24.7736i 0.543721 + 0.941752i
\(693\) −31.6375 + 37.1063i −1.20181 + 1.40955i
\(694\) 14.8835 25.7791i 0.564972 0.978560i
\(695\) −9.25695 + 3.36925i −0.351136 + 0.127803i
\(696\) −1.65018 1.47638i −0.0625498 0.0559621i
\(697\) 19.7615 16.5819i 0.748520 0.628083i
\(698\) −7.21370 40.9109i −0.273043 1.54850i
\(699\) 4.43590 7.14926i 0.167781 0.270410i
\(700\) 11.9301 7.80245i 0.450915 0.294905i
\(701\) 4.93738 0.186482 0.0932412 0.995644i \(-0.470277\pi\)
0.0932412 + 0.995644i \(0.470277\pi\)
\(702\) 9.12574 12.8150i 0.344429 0.483672i
\(703\) 0.0551416 + 0.0955081i 0.00207970 + 0.00360215i
\(704\) 31.9404 + 26.8012i 1.20380 + 1.01011i
\(705\) −13.3949 + 21.5883i −0.504482 + 0.813064i
\(706\) −36.6475 + 30.7509i −1.37925 + 1.15733i
\(707\) 28.8578 + 3.44863i 1.08531 + 0.129699i
\(708\) 2.97822 14.2331i 0.111928 0.534914i
\(709\) −21.9821 + 8.00085i −0.825557 + 0.300478i −0.720034 0.693939i \(-0.755874\pi\)
−0.105523 + 0.994417i \(0.533652\pi\)
\(710\) 3.43908 0.129066
\(711\) −7.17272 + 2.10605i −0.268998 + 0.0789829i
\(712\) 1.23116 0.0461395
\(713\) 7.33849 41.6187i 0.274829 1.55863i
\(714\) 20.1544 + 51.5157i 0.754260 + 1.92793i
\(715\) 12.8815 + 4.68848i 0.481741 + 0.175339i
\(716\) 7.09271 5.95149i 0.265067 0.222418i
\(717\) 2.01283 + 13.9999i 0.0751705 + 0.522835i
\(718\) 11.8547 4.31475i 0.442413 0.161025i
\(719\) 0.637405 0.0237712 0.0118856 0.999929i \(-0.496217\pi\)
0.0118856 + 0.999929i \(0.496217\pi\)
\(720\) −10.2697 + 15.4356i −0.382728 + 0.575251i
\(721\) 0.297237 0.983580i 0.0110697 0.0366304i
\(722\) −28.1602 23.6293i −1.04802 0.879390i
\(723\) −39.4042 + 12.9414i −1.46546 + 0.481297i
\(724\) −11.5395 + 9.68277i −0.428861 + 0.359857i
\(725\) 12.1304 + 4.41511i 0.450513 + 0.163973i
\(726\) 90.8805 + 2.88522i 3.37289 + 0.107081i
\(727\) 35.4958 12.9194i 1.31647 0.479155i 0.414142 0.910212i \(-0.364082\pi\)
0.902324 + 0.431058i \(0.141859\pi\)
\(728\) −0.804004 0.856620i −0.0297984 0.0317484i
\(729\) 26.5120 + 5.11034i 0.981925 + 0.189272i
\(730\) −3.57266 + 6.18803i −0.132230 + 0.229029i
\(731\) −2.51650 2.11160i −0.0930763 0.0781003i
\(732\) −9.45693 + 15.2415i −0.349538 + 0.563344i
\(733\) −2.12578 12.0559i −0.0785175 0.445295i −0.998568 0.0534952i \(-0.982964\pi\)
0.920051 0.391799i \(-0.128147\pi\)
\(734\) 5.52848 + 31.3536i 0.204060 + 1.15728i
\(735\) 12.4992 12.3053i 0.461042 0.453889i
\(736\) −49.4518 41.4950i −1.82282 1.52953i
\(737\) 33.9087 + 58.7316i 1.24904 + 2.16340i
\(738\) 24.6543 + 1.56700i 0.907538 + 0.0576821i
\(739\) 0.258871 0.448377i 0.00952271 0.0164938i −0.861225 0.508224i \(-0.830302\pi\)
0.870747 + 0.491730i \(0.163635\pi\)
\(740\) −0.433373 0.363643i −0.0159311 0.0133678i
\(741\) −1.29628 0.518958i −0.0476201 0.0190644i
\(742\) −9.38756 21.9184i −0.344628 0.804651i
\(743\) 34.2634 + 12.4709i 1.25700 + 0.457512i 0.882762 0.469820i \(-0.155681\pi\)
0.374241 + 0.927332i \(0.377903\pi\)
\(744\) −0.362811 2.52346i −0.0133013 0.0925147i
\(745\) 17.7909 6.47536i 0.651809 0.237239i
\(746\) −9.49968 + 16.4539i −0.347808 + 0.602421i
\(747\) 5.31186 + 5.06492i 0.194351 + 0.185316i
\(748\) 35.0091 60.6375i 1.28006 2.21713i
\(749\) −7.21416 3.64647i −0.263600 0.133239i
\(750\) 7.96564 38.0684i 0.290864 1.39006i
\(751\) 31.9475 + 11.6279i 1.16578 + 0.424310i 0.851159 0.524908i \(-0.175900\pi\)
0.314622 + 0.949217i \(0.398122\pi\)
\(752\) −40.7012 14.8140i −1.48422 0.540212i
\(753\) 4.66310 + 8.70334i 0.169933 + 0.317167i
\(754\) −2.33456 + 13.2400i −0.0850198 + 0.482171i
\(755\) −7.05593 −0.256792
\(756\) −9.65586 + 23.5787i −0.351180 + 0.857548i
\(757\) −19.3280 −0.702488 −0.351244 0.936284i \(-0.614241\pi\)
−0.351244 + 0.936284i \(0.614241\pi\)
\(758\) −6.57325 + 37.2787i −0.238751 + 1.35402i
\(759\) −87.9127 2.79100i −3.19103 0.101307i
\(760\) 0.204560 + 0.0744536i 0.00742016 + 0.00270072i
\(761\) −3.16678 1.15261i −0.114796 0.0417823i 0.283984 0.958829i \(-0.408344\pi\)
−0.398779 + 0.917047i \(0.630566\pi\)
\(762\) 32.9886 10.8344i 1.19505 0.392488i
\(763\) −21.0073 + 13.7390i −0.760515 + 0.497387i
\(764\) 10.5376 18.2516i 0.381236 0.660320i
\(765\) 24.4498 + 10.7006i 0.883985 + 0.386879i
\(766\) 27.8089 48.1665i 1.00478 1.74033i
\(767\) 6.56549 2.38964i 0.237066 0.0862849i
\(768\)