Properties

Label 189.2.u.a.142.14
Level $189$
Weight $2$
Character 189.142
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(4,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([2, 12]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.u (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 142.14
Character \(\chi\) \(=\) 189.142
Dual form 189.2.u.a.4.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0954712 - 0.541444i) q^{2} +(-1.72856 + 0.109886i) q^{3} +(1.59534 + 0.580656i) q^{4} +(-0.969531 - 0.352880i) q^{5} +(-0.105531 + 0.946411i) q^{6} +(2.17686 + 1.50376i) q^{7} +(1.01650 - 1.76063i) q^{8} +(2.97585 - 0.379890i) q^{9} +O(q^{10})\) \(q+(0.0954712 - 0.541444i) q^{2} +(-1.72856 + 0.109886i) q^{3} +(1.59534 + 0.580656i) q^{4} +(-0.969531 - 0.352880i) q^{5} +(-0.105531 + 0.946411i) q^{6} +(2.17686 + 1.50376i) q^{7} +(1.01650 - 1.76063i) q^{8} +(2.97585 - 0.379890i) q^{9} +(-0.283627 + 0.491257i) q^{10} +(2.22731 - 0.810675i) q^{11} +(-2.82145 - 0.828393i) q^{12} +(1.20787 + 0.439628i) q^{13} +(1.02203 - 1.03508i) q^{14} +(1.71467 + 0.503438i) q^{15} +(1.74483 + 1.46408i) q^{16} +(0.815725 - 1.41288i) q^{17} +(0.0784187 - 1.64753i) q^{18} +(-0.799249 - 1.38434i) q^{19} +(-1.34183 - 1.12593i) q^{20} +(-3.92808 - 2.36013i) q^{21} +(-0.226291 - 1.28336i) q^{22} +(0.694985 + 3.94145i) q^{23} +(-1.56361 + 3.15505i) q^{24} +(-3.01476 - 2.52968i) q^{25} +(0.353351 - 0.612021i) q^{26} +(-5.10220 + 0.983669i) q^{27} +(2.59966 + 3.66301i) q^{28} +(-5.04129 + 1.83488i) q^{29} +(0.436285 - 0.880335i) q^{30} +(5.42606 + 1.97492i) q^{31} +(4.07403 - 3.41852i) q^{32} +(-3.76096 + 1.64605i) q^{33} +(-0.687116 - 0.576559i) q^{34} +(-1.57988 - 2.22611i) q^{35} +(4.96807 + 1.12189i) q^{36} -10.6756 q^{37} +(-0.825848 + 0.300584i) q^{38} +(-2.13618 - 0.627196i) q^{39} +(-1.60682 + 1.34828i) q^{40} +(0.546038 + 0.198741i) q^{41} +(-1.65290 + 1.90151i) q^{42} +(0.125561 - 0.712095i) q^{43} +4.02404 q^{44} +(-3.01924 - 0.681804i) q^{45} +2.20043 q^{46} +(-11.7008 + 4.25874i) q^{47} +(-3.17693 - 2.33903i) q^{48} +(2.47742 + 6.54694i) q^{49} +(-1.65750 + 1.39081i) q^{50} +(-1.25478 + 2.53188i) q^{51} +(1.67169 + 1.40271i) q^{52} +(-5.06183 - 8.76735i) q^{53} +(0.0454888 + 2.85647i) q^{54} -2.44552 q^{55} +(4.86033 - 2.30407i) q^{56} +(1.53367 + 2.30509i) q^{57} +(0.512187 + 2.90476i) q^{58} +(5.74015 - 4.81655i) q^{59} +(2.44316 + 1.79879i) q^{60} +(5.29332 - 1.92661i) q^{61} +(1.58734 - 2.74936i) q^{62} +(7.04927 + 3.64799i) q^{63} +(0.815727 + 1.41288i) q^{64} +(-1.01593 - 0.852466i) q^{65} +(0.532182 + 2.19350i) q^{66} +(-0.662895 - 3.75947i) q^{67} +(2.12175 - 1.78036i) q^{68} +(-1.63444 - 6.73668i) q^{69} +(-1.35615 + 0.642890i) q^{70} +(5.93296 + 10.2762i) q^{71} +(2.35610 - 5.62552i) q^{72} -9.66954 q^{73} +(-1.01921 + 5.78023i) q^{74} +(5.48917 + 4.04143i) q^{75} +(-0.471248 - 2.67258i) q^{76} +(6.06760 + 1.58461i) q^{77} +(-0.543536 + 1.09674i) q^{78} +(1.61565 - 9.16279i) q^{79} +(-1.17502 - 2.03519i) q^{80} +(8.71137 - 2.26099i) q^{81} +(0.159738 - 0.276675i) q^{82} +(0.769357 - 0.280023i) q^{83} +(-4.89619 - 6.04607i) q^{84} +(-1.28945 + 1.08198i) q^{85} +(-0.373572 - 0.135969i) q^{86} +(8.51255 - 3.72567i) q^{87} +(0.836763 - 4.74552i) q^{88} +(-8.32270 - 14.4153i) q^{89} +(-0.657409 + 1.56965i) q^{90} +(1.96826 + 2.77335i) q^{91} +(-1.17989 + 6.69150i) q^{92} +(-9.59629 - 2.81753i) q^{93} +(1.18878 + 6.74191i) q^{94} +(0.286390 + 1.62420i) q^{95} +(-6.66657 + 6.35680i) q^{96} +(1.46022 - 8.28134i) q^{97} +(3.78132 - 0.716342i) q^{98} +(6.32018 - 3.25858i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} - 15 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} - 15 q^{9} + 3 q^{10} - 15 q^{11} - 3 q^{12} - 12 q^{13} - 30 q^{14} + 9 q^{16} + 27 q^{17} - 3 q^{18} + 3 q^{19} - 18 q^{20} + 15 q^{21} - 12 q^{22} - 36 q^{23} - 72 q^{24} - 3 q^{25} + 30 q^{26} - 12 q^{27} - 12 q^{28} - 30 q^{29} - 3 q^{30} - 3 q^{31} - 75 q^{32} + 15 q^{33} - 18 q^{34} + 15 q^{35} - 60 q^{36} - 6 q^{37} + 69 q^{38} + 51 q^{39} + 51 q^{40} - 39 q^{42} - 12 q^{43} - 6 q^{44} - 21 q^{45} - 6 q^{46} - 21 q^{47} + 90 q^{48} - 42 q^{49} - 39 q^{50} + 33 q^{51} + 9 q^{52} + 9 q^{53} - 9 q^{54} - 24 q^{55} + 111 q^{56} - 18 q^{57} - 3 q^{58} + 27 q^{59} - 63 q^{60} - 21 q^{61} + 75 q^{62} + 63 q^{63} - 30 q^{64} - 90 q^{65} - 3 q^{66} - 3 q^{67} - 30 q^{68} - 6 q^{69} + 39 q^{70} - 18 q^{71} + 183 q^{72} - 42 q^{73} + 51 q^{74} - 45 q^{75} - 24 q^{76} + 15 q^{77} - 30 q^{78} + 15 q^{79} + 102 q^{80} - 87 q^{81} - 6 q^{82} - 42 q^{83} + 135 q^{84} - 63 q^{85} - 93 q^{86} + 75 q^{87} - 51 q^{88} + 75 q^{89} - 39 q^{90} - 21 q^{91} - 66 q^{92} + 81 q^{93} + 33 q^{94} + 15 q^{95} - 171 q^{96} - 12 q^{97} - 36 q^{98} + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0954712 0.541444i 0.0675084 0.382859i −0.932269 0.361765i \(-0.882174\pi\)
0.999778 0.0210935i \(-0.00671476\pi\)
\(3\) −1.72856 + 0.109886i −0.997985 + 0.0634428i
\(4\) 1.59534 + 0.580656i 0.797669 + 0.290328i
\(5\) −0.969531 0.352880i −0.433588 0.157813i 0.116000 0.993249i \(-0.462993\pi\)
−0.549587 + 0.835436i \(0.685215\pi\)
\(6\) −0.105531 + 0.946411i −0.0430827 + 0.386371i
\(7\) 2.17686 + 1.50376i 0.822775 + 0.568367i
\(8\) 1.01650 1.76063i 0.359386 0.622476i
\(9\) 2.97585 0.379890i 0.991950 0.126630i
\(10\) −0.283627 + 0.491257i −0.0896909 + 0.155349i
\(11\) 2.22731 0.810675i 0.671560 0.244428i 0.0163405 0.999866i \(-0.494798\pi\)
0.655219 + 0.755439i \(0.272576\pi\)
\(12\) −2.82145 0.828393i −0.814481 0.239137i
\(13\) 1.20787 + 0.439628i 0.335002 + 0.121931i 0.504044 0.863678i \(-0.331845\pi\)
−0.169042 + 0.985609i \(0.554067\pi\)
\(14\) 1.02203 1.03508i 0.273149 0.276637i
\(15\) 1.71467 + 0.503438i 0.442726 + 0.129987i
\(16\) 1.74483 + 1.46408i 0.436207 + 0.366021i
\(17\) 0.815725 1.41288i 0.197842 0.342673i −0.749986 0.661453i \(-0.769940\pi\)
0.947829 + 0.318780i \(0.103273\pi\)
\(18\) 0.0784187 1.64753i 0.0184835 0.388325i
\(19\) −0.799249 1.38434i −0.183360 0.317589i 0.759662 0.650318i \(-0.225364\pi\)
−0.943023 + 0.332728i \(0.892031\pi\)
\(20\) −1.34183 1.12593i −0.300042 0.251765i
\(21\) −3.92808 2.36013i −0.857176 0.515023i
\(22\) −0.226291 1.28336i −0.0482455 0.273614i
\(23\) 0.694985 + 3.94145i 0.144914 + 0.821850i 0.967436 + 0.253116i \(0.0814555\pi\)
−0.822522 + 0.568734i \(0.807433\pi\)
\(24\) −1.56361 + 3.15505i −0.319171 + 0.644022i
\(25\) −3.01476 2.52968i −0.602951 0.505936i
\(26\) 0.353351 0.612021i 0.0692978 0.120027i
\(27\) −5.10220 + 0.983669i −0.981918 + 0.189307i
\(28\) 2.59966 + 3.66301i 0.491289 + 0.692243i
\(29\) −5.04129 + 1.83488i −0.936144 + 0.340729i −0.764642 0.644455i \(-0.777084\pi\)
−0.171502 + 0.985184i \(0.554862\pi\)
\(30\) 0.436285 0.880335i 0.0796544 0.160726i
\(31\) 5.42606 + 1.97492i 0.974549 + 0.354707i 0.779718 0.626130i \(-0.215362\pi\)
0.194830 + 0.980837i \(0.437584\pi\)
\(32\) 4.07403 3.41852i 0.720194 0.604315i
\(33\) −3.76096 + 1.64605i −0.654700 + 0.286541i
\(34\) −0.687116 0.576559i −0.117839 0.0988790i
\(35\) −1.57988 2.22611i −0.267049 0.376281i
\(36\) 4.96807 + 1.12189i 0.828012 + 0.186982i
\(37\) −10.6756 −1.75506 −0.877528 0.479526i \(-0.840809\pi\)
−0.877528 + 0.479526i \(0.840809\pi\)
\(38\) −0.825848 + 0.300584i −0.133970 + 0.0487612i
\(39\) −2.13618 0.627196i −0.342063 0.100432i
\(40\) −1.60682 + 1.34828i −0.254060 + 0.213182i
\(41\) 0.546038 + 0.198741i 0.0852767 + 0.0310382i 0.384306 0.923206i \(-0.374441\pi\)
−0.299030 + 0.954244i \(0.596663\pi\)
\(42\) −1.65290 + 1.90151i −0.255048 + 0.293409i
\(43\) 0.125561 0.712095i 0.0191479 0.108593i −0.973736 0.227681i \(-0.926886\pi\)
0.992884 + 0.119087i \(0.0379969\pi\)
\(44\) 4.02404 0.606647
\(45\) −3.01924 0.681804i −0.450081 0.101637i
\(46\) 2.20043 0.324436
\(47\) −11.7008 + 4.25874i −1.70674 + 0.621201i −0.996564 0.0828268i \(-0.973605\pi\)
−0.710172 + 0.704028i \(0.751383\pi\)
\(48\) −3.17693 2.33903i −0.458550 0.337610i
\(49\) 2.47742 + 6.54694i 0.353918 + 0.935277i
\(50\) −1.65750 + 1.39081i −0.234406 + 0.196690i
\(51\) −1.25478 + 2.53188i −0.175704 + 0.354534i
\(52\) 1.67169 + 1.40271i 0.231821 + 0.194521i
\(53\) −5.06183 8.76735i −0.695296 1.20429i −0.970081 0.242782i \(-0.921940\pi\)
0.274785 0.961506i \(-0.411393\pi\)
\(54\) 0.0454888 + 2.85647i 0.00619025 + 0.388716i
\(55\) −2.44552 −0.329754
\(56\) 4.86033 2.30407i 0.649489 0.307894i
\(57\) 1.53367 + 2.30509i 0.203140 + 0.305317i
\(58\) 0.512187 + 2.90476i 0.0672534 + 0.381413i
\(59\) 5.74015 4.81655i 0.747303 0.627062i −0.187485 0.982267i \(-0.560034\pi\)
0.934788 + 0.355206i \(0.115589\pi\)
\(60\) 2.44316 + 1.79879i 0.315410 + 0.232222i
\(61\) 5.29332 1.92661i 0.677740 0.246677i 0.0198634 0.999803i \(-0.493677\pi\)
0.657877 + 0.753125i \(0.271455\pi\)
\(62\) 1.58734 2.74936i 0.201593 0.349169i
\(63\) 7.04927 + 3.64799i 0.888124 + 0.459604i
\(64\) 0.815727 + 1.41288i 0.101966 + 0.176610i
\(65\) −1.01593 0.852466i −0.126011 0.105735i
\(66\) 0.532182 + 2.19350i 0.0655071 + 0.270002i
\(67\) −0.662895 3.75947i −0.0809855 0.459292i −0.998151 0.0607849i \(-0.980640\pi\)
0.917165 0.398507i \(-0.130471\pi\)
\(68\) 2.12175 1.78036i 0.257300 0.215901i
\(69\) −1.63444 6.73668i −0.196763 0.811001i
\(70\) −1.35615 + 0.642890i −0.162091 + 0.0768401i
\(71\) 5.93296 + 10.2762i 0.704112 + 1.21956i 0.967011 + 0.254735i \(0.0819882\pi\)
−0.262899 + 0.964823i \(0.584678\pi\)
\(72\) 2.35610 5.62552i 0.277669 0.662974i
\(73\) −9.66954 −1.13173 −0.565867 0.824496i \(-0.691458\pi\)
−0.565867 + 0.824496i \(0.691458\pi\)
\(74\) −1.01921 + 5.78023i −0.118481 + 0.671938i
\(75\) 5.48917 + 4.04143i 0.633835 + 0.466664i
\(76\) −0.471248 2.67258i −0.0540558 0.306566i
\(77\) 6.06760 + 1.58461i 0.691467 + 0.180583i
\(78\) −0.543536 + 1.09674i −0.0615433 + 0.124182i
\(79\) 1.61565 9.16279i 0.181775 1.03089i −0.748255 0.663411i \(-0.769108\pi\)
0.930030 0.367484i \(-0.119781\pi\)
\(80\) −1.17502 2.03519i −0.131371 0.227541i
\(81\) 8.71137 2.26099i 0.967930 0.251221i
\(82\) 0.159738 0.276675i 0.0176401 0.0305536i
\(83\) 0.769357 0.280023i 0.0844479 0.0307365i −0.299451 0.954112i \(-0.596803\pi\)
0.383899 + 0.923375i \(0.374581\pi\)
\(84\) −4.89619 6.04607i −0.534218 0.659680i
\(85\) −1.28945 + 1.08198i −0.139860 + 0.117357i
\(86\) −0.373572 0.135969i −0.0402833 0.0146619i
\(87\) 8.51255 3.72567i 0.912642 0.399434i
\(88\) 0.836763 4.74552i 0.0891992 0.505874i
\(89\) −8.32270 14.4153i −0.882205 1.52802i −0.848884 0.528579i \(-0.822725\pi\)
−0.0333208 0.999445i \(-0.510608\pi\)
\(90\) −0.657409 + 1.56965i −0.0692970 + 0.165456i
\(91\) 1.96826 + 2.77335i 0.206330 + 0.290726i
\(92\) −1.17989 + 6.69150i −0.123012 + 0.697637i
\(93\) −9.59629 2.81753i −0.995089 0.292164i
\(94\) 1.18878 + 6.74191i 0.122613 + 0.695375i
\(95\) 0.286390 + 1.62420i 0.0293830 + 0.166639i
\(96\) −6.66657 + 6.35680i −0.680404 + 0.648788i
\(97\) 1.46022 8.28134i 0.148263 0.840843i −0.816425 0.577451i \(-0.804048\pi\)
0.964689 0.263392i \(-0.0848414\pi\)
\(98\) 3.78132 0.716342i 0.381971 0.0723615i
\(99\) 6.32018 3.25858i 0.635202 0.327500i
\(100\) −3.34068 5.78623i −0.334068 0.578623i
\(101\) −2.35584 + 13.3606i −0.234415 + 1.32943i 0.609427 + 0.792842i \(0.291400\pi\)
−0.843842 + 0.536592i \(0.819711\pi\)
\(102\) 1.25108 + 0.921113i 0.123875 + 0.0912038i
\(103\) 5.66002 + 2.06008i 0.557698 + 0.202985i 0.605463 0.795873i \(-0.292988\pi\)
−0.0477655 + 0.998859i \(0.515210\pi\)
\(104\) 2.00182 1.67972i 0.196294 0.164710i
\(105\) 2.97555 + 3.67436i 0.290384 + 0.358581i
\(106\) −5.23029 + 1.90367i −0.508010 + 0.184901i
\(107\) −4.07199 + 7.05289i −0.393654 + 0.681828i −0.992928 0.118715i \(-0.962122\pi\)
0.599275 + 0.800544i \(0.295456\pi\)
\(108\) −8.71090 1.39333i −0.838207 0.134074i
\(109\) −6.58042 11.3976i −0.630290 1.09169i −0.987492 0.157668i \(-0.949603\pi\)
0.357202 0.934027i \(-0.383731\pi\)
\(110\) −0.233477 + 1.32411i −0.0222611 + 0.126249i
\(111\) 18.4534 1.17310i 1.75152 0.111346i
\(112\) 1.59661 + 5.81090i 0.150866 + 0.549079i
\(113\) 2.11820 + 12.0129i 0.199263 + 1.13008i 0.906216 + 0.422816i \(0.138958\pi\)
−0.706952 + 0.707261i \(0.749931\pi\)
\(114\) 1.39450 0.610328i 0.130607 0.0571624i
\(115\) 0.717053 4.06661i 0.0668655 0.379213i
\(116\) −9.10800 −0.845656
\(117\) 3.76144 + 0.849410i 0.347746 + 0.0785280i
\(118\) −2.05988 3.56781i −0.189627 0.328444i
\(119\) 3.90034 1.84898i 0.357544 0.169496i
\(120\) 2.62933 2.50715i 0.240024 0.228871i
\(121\) −4.12276 + 3.45941i −0.374797 + 0.314492i
\(122\) −0.537793 3.04997i −0.0486895 0.276132i
\(123\) −0.965698 0.283535i −0.0870741 0.0255655i
\(124\) 7.50965 + 6.30134i 0.674386 + 0.565877i
\(125\) 4.60961 + 7.98408i 0.412296 + 0.714118i
\(126\) 2.64819 3.46851i 0.235919 0.308999i
\(127\) 2.30914 3.99955i 0.204903 0.354903i −0.745199 0.666843i \(-0.767645\pi\)
0.950102 + 0.311940i \(0.100979\pi\)
\(128\) 10.8380 3.94469i 0.957949 0.348665i
\(129\) −0.138791 + 1.24470i −0.0122199 + 0.109589i
\(130\) −0.558555 + 0.468683i −0.0489885 + 0.0411062i
\(131\) 0.438432 + 2.48647i 0.0383059 + 0.217244i 0.997952 0.0639668i \(-0.0203752\pi\)
−0.959646 + 0.281211i \(0.909264\pi\)
\(132\) −6.95580 + 0.442187i −0.605425 + 0.0384874i
\(133\) 0.341861 4.21539i 0.0296431 0.365521i
\(134\) −2.09883 −0.181311
\(135\) 5.29385 + 0.846768i 0.455622 + 0.0728782i
\(136\) −1.65837 2.87238i −0.142204 0.246304i
\(137\) 3.84984 + 3.23040i 0.328914 + 0.275991i 0.792257 0.610187i \(-0.208906\pi\)
−0.463343 + 0.886179i \(0.653350\pi\)
\(138\) −3.80358 + 0.241797i −0.323782 + 0.0205831i
\(139\) 2.79995 2.34944i 0.237489 0.199277i −0.516274 0.856424i \(-0.672681\pi\)
0.753763 + 0.657147i \(0.228237\pi\)
\(140\) −1.22785 4.46877i −0.103772 0.377680i
\(141\) 19.7576 8.64725i 1.66389 0.728230i
\(142\) 6.13041 2.23129i 0.514452 0.187245i
\(143\) 3.04669 0.254777
\(144\) 5.74854 + 3.69405i 0.479045 + 0.307838i
\(145\) 5.53518 0.459672
\(146\) −0.923163 + 5.23552i −0.0764015 + 0.433295i
\(147\) −5.00180 11.0445i −0.412541 0.910939i
\(148\) −17.0312 6.19884i −1.39995 0.509541i
\(149\) −8.54788 + 7.17253i −0.700270 + 0.587596i −0.921850 0.387546i \(-0.873323\pi\)
0.221580 + 0.975142i \(0.428878\pi\)
\(150\) 2.71227 2.58624i 0.221456 0.211165i
\(151\) 0.856894 0.311884i 0.0697330 0.0253807i −0.306918 0.951736i \(-0.599298\pi\)
0.376651 + 0.926355i \(0.377076\pi\)
\(152\) −3.24974 −0.263589
\(153\) 1.89074 4.51440i 0.152857 0.364967i
\(154\) 1.43726 3.13398i 0.115818 0.252544i
\(155\) −4.56382 3.82950i −0.366575 0.307593i
\(156\) −3.04375 2.24098i −0.243695 0.179422i
\(157\) −8.71020 + 7.30873i −0.695150 + 0.583300i −0.920389 0.391003i \(-0.872128\pi\)
0.225239 + 0.974303i \(0.427684\pi\)
\(158\) −4.80689 1.74957i −0.382416 0.139188i
\(159\) 9.71309 + 14.5987i 0.770298 + 1.15775i
\(160\) −5.15623 + 1.87671i −0.407636 + 0.148367i
\(161\) −4.41411 + 9.62508i −0.347881 + 0.758562i
\(162\) −0.392517 4.93258i −0.0308390 0.387540i
\(163\) −7.66798 + 13.2813i −0.600602 + 1.04027i 0.392128 + 0.919911i \(0.371739\pi\)
−0.992730 + 0.120363i \(0.961594\pi\)
\(164\) 0.755714 + 0.634120i 0.0590114 + 0.0495164i
\(165\) 4.22723 0.268729i 0.329090 0.0209205i
\(166\) −0.0781654 0.443298i −0.00606681 0.0344066i
\(167\) 3.99112 + 22.6347i 0.308842 + 1.75153i 0.604846 + 0.796343i \(0.293235\pi\)
−0.296004 + 0.955187i \(0.595654\pi\)
\(168\) −8.14819 + 4.51681i −0.628647 + 0.348479i
\(169\) −8.69291 7.29421i −0.668685 0.561093i
\(170\) 0.462724 + 0.801462i 0.0354893 + 0.0614693i
\(171\) −2.90434 3.81596i −0.222101 0.291814i
\(172\) 0.613795 1.06312i 0.0468014 0.0810624i
\(173\) −16.1933 13.5878i −1.23115 1.03306i −0.998163 0.0605809i \(-0.980705\pi\)
−0.232990 0.972479i \(-0.574851\pi\)
\(174\) −1.20454 4.96477i −0.0913159 0.376378i
\(175\) −2.75867 10.0402i −0.208536 0.758969i
\(176\) 5.07317 + 1.84648i 0.382405 + 0.139184i
\(177\) −9.39292 + 8.95647i −0.706015 + 0.673210i
\(178\) −8.59969 + 3.13003i −0.644574 + 0.234606i
\(179\) −4.13156 + 7.15608i −0.308808 + 0.534870i −0.978102 0.208127i \(-0.933263\pi\)
0.669294 + 0.742997i \(0.266597\pi\)
\(180\) −4.42081 2.84084i −0.329508 0.211744i
\(181\) −5.42374 + 9.39419i −0.403143 + 0.698265i −0.994103 0.108436i \(-0.965416\pi\)
0.590960 + 0.806701i \(0.298749\pi\)
\(182\) 1.68953 0.800930i 0.125236 0.0593689i
\(183\) −8.93812 + 3.91193i −0.660725 + 0.289178i
\(184\) 7.64588 + 2.78287i 0.563662 + 0.205156i
\(185\) 10.3503 + 3.76721i 0.760970 + 0.276970i
\(186\) −2.44170 + 4.92686i −0.179034 + 0.361255i
\(187\) 0.671490 3.80821i 0.0491042 0.278484i
\(188\) −21.1396 −1.54176
\(189\) −12.5860 5.53116i −0.915494 0.402333i
\(190\) 0.906756 0.0657830
\(191\) −0.0281762 + 0.159795i −0.00203876 + 0.0115624i −0.985810 0.167864i \(-0.946313\pi\)
0.983771 + 0.179426i \(0.0574242\pi\)
\(192\) −1.56529 2.35261i −0.112965 0.169785i
\(193\) 1.70952 + 0.622215i 0.123054 + 0.0447880i 0.402813 0.915282i \(-0.368032\pi\)
−0.279759 + 0.960070i \(0.590255\pi\)
\(194\) −4.34448 1.58126i −0.311915 0.113528i
\(195\) 1.84977 + 1.36190i 0.132465 + 0.0975279i
\(196\) 0.150812 + 11.8831i 0.0107723 + 0.848793i
\(197\) 13.6009 23.5575i 0.969027 1.67840i 0.270645 0.962679i \(-0.412763\pi\)
0.698382 0.715725i \(-0.253904\pi\)
\(198\) −1.16095 3.73313i −0.0825048 0.265302i
\(199\) −3.25868 + 5.64420i −0.231002 + 0.400107i −0.958103 0.286423i \(-0.907534\pi\)
0.727101 + 0.686530i \(0.240867\pi\)
\(200\) −7.51832 + 2.73644i −0.531625 + 0.193496i
\(201\) 1.55897 + 6.42562i 0.109961 + 0.453229i
\(202\) 7.00913 + 2.55112i 0.493161 + 0.179496i
\(203\) −13.7334 3.58661i −0.963895 0.251731i
\(204\) −3.47194 + 3.31062i −0.243085 + 0.231790i
\(205\) −0.459268 0.385372i −0.0320767 0.0269155i
\(206\) 1.65579 2.86791i 0.115364 0.199816i
\(207\) 3.56549 + 11.4652i 0.247819 + 0.796884i
\(208\) 1.46387 + 2.53550i 0.101501 + 0.175805i
\(209\) −2.90243 2.43543i −0.200765 0.168462i
\(210\) 2.27354 1.26030i 0.156889 0.0869688i
\(211\) −3.64060 20.6469i −0.250629 1.42139i −0.807047 0.590487i \(-0.798936\pi\)
0.556418 0.830902i \(-0.312175\pi\)
\(212\) −2.98452 16.9261i −0.204978 1.16249i
\(213\) −11.3847 17.1111i −0.780066 1.17243i
\(214\) 3.42999 + 2.87810i 0.234469 + 0.196743i
\(215\) −0.373020 + 0.646090i −0.0254398 + 0.0440629i
\(216\) −3.45450 + 9.98296i −0.235049 + 0.679254i
\(217\) 8.84195 + 12.4586i 0.600231 + 0.845745i
\(218\) −6.79942 + 2.47479i −0.460515 + 0.167614i
\(219\) 16.7144 1.06255i 1.12945 0.0718004i
\(220\) −3.90143 1.42000i −0.263034 0.0957367i
\(221\) 1.60643 1.34795i 0.108060 0.0906732i
\(222\) 1.12660 10.1035i 0.0756125 0.678102i
\(223\) −4.56143 3.82749i −0.305456 0.256308i 0.477155 0.878819i \(-0.341668\pi\)
−0.782611 + 0.622511i \(0.786113\pi\)
\(224\) 14.0092 1.31527i 0.936030 0.0878803i
\(225\) −9.93246 6.38267i −0.662164 0.425512i
\(226\) 6.70653 0.446112
\(227\) 16.0340 5.83591i 1.06422 0.387343i 0.250206 0.968193i \(-0.419502\pi\)
0.814011 + 0.580849i \(0.197280\pi\)
\(228\) 1.10826 + 4.56793i 0.0733963 + 0.302519i
\(229\) 18.3518 15.3990i 1.21272 1.01759i 0.213548 0.976933i \(-0.431498\pi\)
0.999173 0.0406615i \(-0.0129465\pi\)
\(230\) −2.13338 0.776488i −0.140671 0.0512001i
\(231\) −10.6624 2.07236i −0.701531 0.136351i
\(232\) −1.89393 + 10.7410i −0.124342 + 0.705180i
\(233\) 23.5808 1.54483 0.772415 0.635118i \(-0.219048\pi\)
0.772415 + 0.635118i \(0.219048\pi\)
\(234\) 0.819018 1.95552i 0.0535409 0.127836i
\(235\) 12.8471 0.838053
\(236\) 11.9542 4.35099i 0.778154 0.283225i
\(237\) −1.78588 + 16.0160i −0.116005 + 1.04035i
\(238\) −0.628749 2.28834i −0.0407558 0.148331i
\(239\) −16.5755 + 13.9085i −1.07218 + 0.899668i −0.995248 0.0973687i \(-0.968957\pi\)
−0.0769337 + 0.997036i \(0.524513\pi\)
\(240\) 2.25473 + 3.38884i 0.145542 + 0.218748i
\(241\) 18.9303 + 15.8844i 1.21941 + 1.02320i 0.998856 + 0.0478268i \(0.0152295\pi\)
0.220550 + 0.975376i \(0.429215\pi\)
\(242\) 1.47947 + 2.56252i 0.0951041 + 0.164725i
\(243\) −14.8097 + 4.86552i −0.950042 + 0.312124i
\(244\) 9.56334 0.612230
\(245\) −0.0916526 7.22169i −0.00585547 0.461377i
\(246\) −0.245715 + 0.495802i −0.0156662 + 0.0316112i
\(247\) −0.356793 2.02347i −0.0227022 0.128750i
\(248\) 8.99268 7.54576i 0.571036 0.479156i
\(249\) −1.29911 + 0.568578i −0.0823277 + 0.0360322i
\(250\) 4.76302 1.73360i 0.301240 0.109642i
\(251\) 3.46762 6.00609i 0.218874 0.379101i −0.735590 0.677427i \(-0.763095\pi\)
0.954464 + 0.298326i \(0.0964283\pi\)
\(252\) 9.12774 + 9.91298i 0.574993 + 0.624459i
\(253\) 4.74319 + 8.21544i 0.298202 + 0.516500i
\(254\) −1.94508 1.63211i −0.122045 0.102408i
\(255\) 2.11000 2.01195i 0.132133 0.125993i
\(256\) −0.534521 3.03142i −0.0334076 0.189464i
\(257\) 16.9672 14.2372i 1.05839 0.888093i 0.0644372 0.997922i \(-0.479475\pi\)
0.993950 + 0.109829i \(0.0350303\pi\)
\(258\) 0.660683 + 0.193981i 0.0411323 + 0.0120767i
\(259\) −23.2392 16.0535i −1.44402 0.997516i
\(260\) −1.12576 1.94988i −0.0698168 0.120926i
\(261\) −14.3051 + 7.37547i −0.885462 + 0.456530i
\(262\) 1.38814 0.0857597
\(263\) 3.50980 19.9051i 0.216424 1.22740i −0.661995 0.749508i \(-0.730290\pi\)
0.878419 0.477892i \(-0.158599\pi\)
\(264\) −0.924929 + 8.29487i −0.0569254 + 0.510514i
\(265\) 1.81378 + 10.2864i 0.111419 + 0.631891i
\(266\) −2.24976 0.587547i −0.137942 0.0360248i
\(267\) 15.9704 + 24.0033i 0.977370 + 1.46898i
\(268\) 1.12541 6.38253i 0.0687455 0.389875i
\(269\) −0.0584552 0.101247i −0.00356408 0.00617316i 0.864238 0.503083i \(-0.167801\pi\)
−0.867802 + 0.496910i \(0.834468\pi\)
\(270\) 0.963888 2.78549i 0.0586604 0.169519i
\(271\) 9.14252 15.8353i 0.555368 0.961926i −0.442506 0.896765i \(-0.645911\pi\)
0.997875 0.0651609i \(-0.0207561\pi\)
\(272\) 3.49187 1.27094i 0.211726 0.0770619i
\(273\) −3.70702 4.57762i −0.224359 0.277050i
\(274\) 2.11663 1.77606i 0.127870 0.107296i
\(275\) −8.76555 3.19040i −0.528583 0.192388i
\(276\) 1.30421 11.6963i 0.0785043 0.704036i
\(277\) −3.79623 + 21.5295i −0.228093 + 1.29358i 0.628590 + 0.777737i \(0.283632\pi\)
−0.856683 + 0.515843i \(0.827479\pi\)
\(278\) −1.00478 1.74032i −0.0602624 0.104378i
\(279\) 16.8974 + 3.81577i 1.01162 + 0.228444i
\(280\) −5.52530 + 0.518749i −0.330200 + 0.0310012i
\(281\) 0.866344 4.91328i 0.0516817 0.293102i −0.948002 0.318266i \(-0.896900\pi\)
0.999683 + 0.0251639i \(0.00801075\pi\)
\(282\) −2.79573 11.5232i −0.166483 0.686196i
\(283\) 3.22512 + 18.2905i 0.191713 + 1.08726i 0.917022 + 0.398837i \(0.130586\pi\)
−0.725309 + 0.688424i \(0.758303\pi\)
\(284\) 3.49815 + 19.8390i 0.207577 + 1.17723i
\(285\) −0.673520 2.77606i −0.0398959 0.164440i
\(286\) 0.290872 1.64962i 0.0171996 0.0975438i
\(287\) 0.889787 + 1.25374i 0.0525225 + 0.0740060i
\(288\) 10.8250 11.7207i 0.637872 0.690648i
\(289\) 7.16918 + 12.4174i 0.421717 + 0.730435i
\(290\) 0.528451 2.99699i 0.0310317 0.175989i
\(291\) −1.61408 + 14.4753i −0.0946192 + 0.848556i
\(292\) −15.4262 5.61467i −0.902749 0.328574i
\(293\) 11.0741 9.29225i 0.646954 0.542859i −0.259191 0.965826i \(-0.583456\pi\)
0.906145 + 0.422967i \(0.139011\pi\)
\(294\) −6.45753 + 1.65376i −0.376611 + 0.0964491i
\(295\) −7.26492 + 2.64421i −0.422980 + 0.153952i
\(296\) −10.8517 + 18.7957i −0.630743 + 1.09248i
\(297\) −10.5667 + 6.32716i −0.613145 + 0.367139i
\(298\) 3.06745 + 5.31297i 0.177692 + 0.307772i
\(299\) −0.893324 + 5.06629i −0.0516622 + 0.292991i
\(300\) 6.41040 + 9.63476i 0.370105 + 0.556263i
\(301\) 1.34415 1.36131i 0.0774754 0.0784649i
\(302\) −0.0870590 0.493736i −0.00500968 0.0284113i
\(303\) 2.60407 23.3536i 0.149600 1.34163i
\(304\) 0.632239 3.58560i 0.0362614 0.205648i
\(305\) −5.81190 −0.332789
\(306\) −2.26378 1.45472i −0.129412 0.0831610i
\(307\) −4.05722 7.02731i −0.231558 0.401070i 0.726709 0.686945i \(-0.241049\pi\)
−0.958267 + 0.285876i \(0.907716\pi\)
\(308\) 8.75976 + 6.05118i 0.499134 + 0.344798i
\(309\) −10.0101 2.93901i −0.569452 0.167195i
\(310\) −2.50917 + 2.10545i −0.142512 + 0.119581i
\(311\) −2.05094 11.6315i −0.116298 0.659560i −0.986099 0.166157i \(-0.946864\pi\)
0.869801 0.493403i \(-0.164247\pi\)
\(312\) −3.27568 + 3.12348i −0.185449 + 0.176832i
\(313\) 10.8595 + 9.11222i 0.613816 + 0.515053i 0.895853 0.444351i \(-0.146566\pi\)
−0.282037 + 0.959404i \(0.591010\pi\)
\(314\) 3.12569 + 5.41386i 0.176393 + 0.305522i
\(315\) −5.54718 6.02439i −0.312548 0.339436i
\(316\) 7.89793 13.6796i 0.444293 0.769539i
\(317\) 24.7567 9.01069i 1.39047 0.506091i 0.465137 0.885239i \(-0.346005\pi\)
0.925336 + 0.379148i \(0.123783\pi\)
\(318\) 8.83169 3.86535i 0.495256 0.216758i
\(319\) −9.74104 + 8.17370i −0.545393 + 0.457639i
\(320\) −0.292295 1.65769i −0.0163398 0.0926674i
\(321\) 6.26366 12.6388i 0.349604 0.705429i
\(322\) 4.79002 + 3.30891i 0.266937 + 0.184398i
\(323\) −2.60787 −0.145106
\(324\) 15.2104 + 1.45126i 0.845024 + 0.0806253i
\(325\) −2.52931 4.38089i −0.140301 0.243008i
\(326\) 6.45903 + 5.41977i 0.357732 + 0.300173i
\(327\) 12.6271 + 18.9784i 0.698281 + 1.04951i
\(328\) 0.904956 0.759348i 0.0499678 0.0419280i
\(329\) −31.8751 8.32449i −1.75733 0.458944i
\(330\) 0.258077 2.31447i 0.0142067 0.127407i
\(331\) −25.6785 + 9.34622i −1.41142 + 0.513715i −0.931546 0.363623i \(-0.881540\pi\)
−0.479873 + 0.877338i \(0.659317\pi\)
\(332\) 1.38998 0.0762851
\(333\) −31.7689 + 4.05555i −1.74093 + 0.222243i
\(334\) 12.6365 0.691438
\(335\) −0.683944 + 3.87884i −0.0373679 + 0.211924i
\(336\) −3.39838 9.86906i −0.185397 0.538401i
\(337\) −2.84774 1.03649i −0.155126 0.0564613i 0.263290 0.964717i \(-0.415192\pi\)
−0.418416 + 0.908255i \(0.637415\pi\)
\(338\) −4.77933 + 4.01034i −0.259961 + 0.218134i
\(339\) −4.98148 20.5322i −0.270557 1.11516i
\(340\) −2.68536 + 0.977391i −0.145634 + 0.0530065i
\(341\) 13.6865 0.741168
\(342\) −2.34341 + 1.20822i −0.126717 + 0.0653333i
\(343\) −4.45201 + 17.9772i −0.240386 + 0.970677i
\(344\) −1.12610 0.944910i −0.0607152 0.0509461i
\(345\) −0.792606 + 7.10818i −0.0426725 + 0.382691i
\(346\) −8.90302 + 7.47052i −0.478629 + 0.401618i
\(347\) −8.53079 3.10495i −0.457957 0.166683i 0.102732 0.994709i \(-0.467242\pi\)
−0.560689 + 0.828026i \(0.689464\pi\)
\(348\) 15.7437 1.00084i 0.843953 0.0536508i
\(349\) 5.92825 2.15771i 0.317332 0.115499i −0.178443 0.983950i \(-0.557106\pi\)
0.495775 + 0.868451i \(0.334884\pi\)
\(350\) −5.69959 + 0.535113i −0.304656 + 0.0286030i
\(351\) −6.59523 1.05493i −0.352027 0.0563078i
\(352\) 6.30283 10.9168i 0.335942 0.581869i
\(353\) −3.48477 2.92407i −0.185476 0.155633i 0.545322 0.838227i \(-0.316407\pi\)
−0.730798 + 0.682594i \(0.760852\pi\)
\(354\) 3.95268 + 5.94083i 0.210082 + 0.315752i
\(355\) −2.12592 12.0567i −0.112832 0.639903i
\(356\) −4.90718 27.8300i −0.260080 1.47499i
\(357\) −6.53881 + 3.62467i −0.346070 + 0.191838i
\(358\) 3.48017 + 2.92021i 0.183933 + 0.154338i
\(359\) 6.42156 + 11.1225i 0.338917 + 0.587022i 0.984229 0.176897i \(-0.0566060\pi\)
−0.645312 + 0.763919i \(0.723273\pi\)
\(360\) −4.26945 + 4.62269i −0.225020 + 0.243637i
\(361\) 8.22240 14.2416i 0.432758 0.749559i
\(362\) 4.56862 + 3.83353i 0.240121 + 0.201486i
\(363\) 6.74631 6.43284i 0.354089 0.337636i
\(364\) 1.52968 + 5.56731i 0.0801773 + 0.291806i
\(365\) 9.37492 + 3.41219i 0.490706 + 0.178602i
\(366\) 1.26476 + 5.21297i 0.0661100 + 0.272486i
\(367\) 33.0701 12.0365i 1.72624 0.628301i 0.727891 0.685693i \(-0.240501\pi\)
0.998352 + 0.0573919i \(0.0182784\pi\)
\(368\) −4.55799 + 7.89468i −0.237602 + 0.411538i
\(369\) 1.70043 + 0.383990i 0.0885206 + 0.0199897i
\(370\) 3.02789 5.24446i 0.157412 0.272646i
\(371\) 2.16508 26.6970i 0.112405 1.38604i
\(372\) −13.6733 10.0670i −0.708928 0.521952i
\(373\) 17.5773 + 6.39761i 0.910118 + 0.331256i 0.754300 0.656530i \(-0.227977\pi\)
0.155818 + 0.987786i \(0.450199\pi\)
\(374\) −1.99782 0.727149i −0.103305 0.0376000i
\(375\) −8.84533 13.2944i −0.456771 0.686522i
\(376\) −4.39578 + 24.9297i −0.226695 + 1.28565i
\(377\) −6.89588 −0.355156
\(378\) −4.19641 + 6.28653i −0.215840 + 0.323344i
\(379\) 6.10620 0.313654 0.156827 0.987626i \(-0.449873\pi\)
0.156827 + 0.987626i \(0.449873\pi\)
\(380\) −0.486211 + 2.75744i −0.0249421 + 0.141454i
\(381\) −3.55200 + 7.16721i −0.181974 + 0.367188i
\(382\) 0.0838301 + 0.0305116i 0.00428912 + 0.00156111i
\(383\) −3.29475 1.19919i −0.168354 0.0612758i 0.256468 0.966553i \(-0.417441\pi\)
−0.424822 + 0.905277i \(0.639663\pi\)
\(384\) −18.3006 + 8.00959i −0.933899 + 0.408738i
\(385\) −5.32355 3.67747i −0.271313 0.187421i
\(386\) 0.500105 0.866208i 0.0254547 0.0440888i
\(387\) 0.103134 2.16679i 0.00524262 0.110144i
\(388\) 7.13816 12.3637i 0.362385 0.627670i
\(389\) −5.44246 + 1.98089i −0.275944 + 0.100435i −0.476285 0.879291i \(-0.658017\pi\)
0.200342 + 0.979726i \(0.435795\pi\)
\(390\) 0.913995 0.871525i 0.0462819 0.0441314i
\(391\) 6.13571 + 2.23322i 0.310296 + 0.112939i
\(392\) 14.0450 + 2.29313i 0.709380 + 0.115821i
\(393\) −1.03108 4.24984i −0.0520113 0.214376i
\(394\) −11.4566 9.61322i −0.577175 0.484307i
\(395\) −4.79979 + 8.31348i −0.241504 + 0.418297i
\(396\) 11.9749 1.52869i 0.601763 0.0768197i
\(397\) 6.74021 + 11.6744i 0.338281 + 0.585920i 0.984110 0.177562i \(-0.0568211\pi\)
−0.645828 + 0.763483i \(0.723488\pi\)
\(398\) 2.74491 + 2.30325i 0.137590 + 0.115452i
\(399\) −0.127714 + 7.32412i −0.00639370 + 0.366665i
\(400\) −1.55656 8.82772i −0.0778282 0.441386i
\(401\) −2.11628 12.0020i −0.105682 0.599353i −0.990946 0.134263i \(-0.957133\pi\)
0.885264 0.465090i \(-0.153978\pi\)
\(402\) 3.62795 0.230632i 0.180946 0.0115029i
\(403\) 5.68573 + 4.77089i 0.283226 + 0.237655i
\(404\) −11.5163 + 19.9468i −0.572957 + 0.992391i
\(405\) −9.24380 0.881969i −0.459328 0.0438254i
\(406\) −3.25309 + 7.09345i −0.161448 + 0.352042i
\(407\) −23.7779 + 8.65443i −1.17862 + 0.428984i
\(408\) 3.18222 + 4.78285i 0.157544 + 0.236786i
\(409\) −32.9333 11.9867i −1.62845 0.592706i −0.643482 0.765461i \(-0.722511\pi\)
−0.984965 + 0.172755i \(0.944733\pi\)
\(410\) −0.252504 + 0.211876i −0.0124703 + 0.0104638i
\(411\) −7.00966 5.16089i −0.345761 0.254568i
\(412\) 7.83344 + 6.57304i 0.385926 + 0.323830i
\(413\) 19.7384 1.85316i 0.971264 0.0911883i
\(414\) 6.54815 0.835921i 0.321824 0.0410833i
\(415\) −0.844730 −0.0414662
\(416\) 6.42377 2.33806i 0.314951 0.114633i
\(417\) −4.58172 + 4.36883i −0.224368 + 0.213942i
\(418\) −1.59575 + 1.33899i −0.0780505 + 0.0654921i
\(419\) −24.4448 8.89718i −1.19421 0.434656i −0.333008 0.942924i \(-0.608064\pi\)
−0.861199 + 0.508268i \(0.830286\pi\)
\(420\) 2.61346 + 7.58962i 0.127524 + 0.370335i
\(421\) −2.98469 + 16.9270i −0.145465 + 0.824971i 0.821528 + 0.570168i \(0.193122\pi\)
−0.966993 + 0.254803i \(0.917989\pi\)
\(422\) −11.5267 −0.561111
\(423\) −33.2020 + 17.1184i −1.61433 + 0.832325i
\(424\) −20.5814 −0.999519
\(425\) −6.03334 + 2.19596i −0.292660 + 0.106520i
\(426\) −10.3516 + 4.53056i −0.501537 + 0.219506i
\(427\) 14.4200 + 3.76592i 0.697831 + 0.182245i
\(428\) −10.5915 + 8.88732i −0.511959 + 0.429585i
\(429\) −5.26640 + 0.334790i −0.254264 + 0.0161638i
\(430\) 0.314209 + 0.263653i 0.0151525 + 0.0127145i
\(431\) 5.64058 + 9.76977i 0.271697 + 0.470593i 0.969297 0.245895i \(-0.0790818\pi\)
−0.697599 + 0.716488i \(0.745748\pi\)
\(432\) −10.3426 5.75371i −0.497610 0.276826i
\(433\) −33.9521 −1.63163 −0.815817 0.578310i \(-0.803712\pi\)
−0.815817 + 0.578310i \(0.803712\pi\)
\(434\) 7.58979 3.59798i 0.364322 0.172709i
\(435\) −9.56790 + 0.608240i −0.458746 + 0.0291629i
\(436\) −3.87990 22.0040i −0.185814 1.05380i
\(437\) 4.90085 4.11230i 0.234439 0.196718i
\(438\) 1.02043 9.15136i 0.0487582 0.437269i
\(439\) −0.888381 + 0.323344i −0.0424001 + 0.0154324i −0.363133 0.931737i \(-0.618293\pi\)
0.320733 + 0.947170i \(0.396071\pi\)
\(440\) −2.48587 + 4.30565i −0.118509 + 0.205264i
\(441\) 9.85956 + 18.5416i 0.469503 + 0.882931i
\(442\) −0.576474 0.998482i −0.0274201 0.0474930i
\(443\) −5.64484 4.73658i −0.268194 0.225042i 0.498765 0.866737i \(-0.333787\pi\)
−0.766960 + 0.641695i \(0.778231\pi\)
\(444\) 30.1206 + 8.84358i 1.42946 + 0.419698i
\(445\) 2.98223 + 16.9130i 0.141371 + 0.801755i
\(446\) −2.50786 + 2.10434i −0.118751 + 0.0996436i
\(447\) 13.9874 13.3374i 0.661581 0.630840i
\(448\) −0.348909 + 4.30229i −0.0164844 + 0.203264i
\(449\) −1.91338 3.31406i −0.0902978 0.156400i 0.817339 0.576158i \(-0.195449\pi\)
−0.907636 + 0.419757i \(0.862115\pi\)
\(450\) −4.40413 + 4.76851i −0.207613 + 0.224790i
\(451\) 1.37731 0.0648550
\(452\) −3.59611 + 20.3946i −0.169147 + 0.959279i
\(453\) −1.44692 + 0.633271i −0.0679823 + 0.0297537i
\(454\) −1.62903 9.23870i −0.0764543 0.433594i
\(455\) −0.929632 3.38341i −0.0435818 0.158617i
\(456\) 5.61738 0.357102i 0.263058 0.0167228i
\(457\) −1.91710 + 10.8724i −0.0896783 + 0.508591i 0.906570 + 0.422055i \(0.138691\pi\)
−0.996249 + 0.0865364i \(0.972420\pi\)
\(458\) −6.58563 11.4066i −0.307726 0.532997i
\(459\) −2.77219 + 8.01118i −0.129395 + 0.373930i
\(460\) 3.50524 6.07126i 0.163433 0.283074i
\(461\) 25.8609 9.41259i 1.20446 0.438388i 0.339682 0.940540i \(-0.389680\pi\)
0.864779 + 0.502152i \(0.167458\pi\)
\(462\) −2.14001 + 5.57522i −0.0995624 + 0.259383i
\(463\) 9.38014 7.87087i 0.435932 0.365790i −0.398253 0.917276i \(-0.630383\pi\)
0.834185 + 0.551485i \(0.185939\pi\)
\(464\) −11.4826 4.17933i −0.533067 0.194020i
\(465\) 8.30965 + 6.11802i 0.385351 + 0.283717i
\(466\) 2.25129 12.7677i 0.104289 0.591452i
\(467\) −1.24821 2.16197i −0.0577605 0.100044i 0.835699 0.549187i \(-0.185063\pi\)
−0.893460 + 0.449143i \(0.851729\pi\)
\(468\) 5.50756 + 3.53920i 0.254587 + 0.163600i
\(469\) 4.21030 9.18066i 0.194413 0.423923i
\(470\) 1.22653 6.95599i 0.0565756 0.320856i
\(471\) 14.2530 13.5907i 0.656743 0.626227i
\(472\) −2.64531 15.0023i −0.121760 0.690536i
\(473\) −0.297613 1.68785i −0.0136843 0.0776073i
\(474\) 8.50126 + 2.49602i 0.390476 + 0.114646i
\(475\) −1.09240 + 6.19529i −0.0501226 + 0.284259i
\(476\) 7.29599 0.684992i 0.334411 0.0313966i
\(477\) −18.3939 24.1674i −0.842198 1.10655i
\(478\) 5.94820 + 10.3026i 0.272064 + 0.471230i
\(479\) −5.95144 + 33.7523i −0.271928 + 1.54218i 0.476626 + 0.879106i \(0.341860\pi\)
−0.748554 + 0.663074i \(0.769251\pi\)
\(480\) 8.70664 3.81062i 0.397402 0.173930i
\(481\) −12.8947 4.69329i −0.587948 0.213995i
\(482\) 10.4078 8.73318i 0.474062 0.397785i
\(483\) 6.57240 17.1226i 0.299054 0.779105i
\(484\) −8.58593 + 3.12502i −0.390269 + 0.142046i
\(485\) −4.33806 + 7.51374i −0.196981 + 0.341181i
\(486\) 1.22051 + 8.48313i 0.0553635 + 0.384803i
\(487\) −3.18613 5.51853i −0.144377 0.250069i 0.784763 0.619796i \(-0.212785\pi\)
−0.929140 + 0.369727i \(0.879451\pi\)
\(488\) 1.98861 11.2780i 0.0900201 0.510529i
\(489\) 11.7951 23.8002i 0.533394 1.07628i
\(490\) −3.91889 0.639839i −0.177038 0.0289050i
\(491\) 4.17767 + 23.6927i 0.188535 + 1.06924i 0.921328 + 0.388786i \(0.127105\pi\)
−0.732793 + 0.680452i \(0.761784\pi\)
\(492\) −1.37598 1.01307i −0.0620340 0.0456728i
\(493\) −1.51985 + 8.61948i −0.0684505 + 0.388202i
\(494\) −1.12966 −0.0508258
\(495\) −7.27750 + 0.929029i −0.327099 + 0.0417568i
\(496\) 6.57608 + 11.3901i 0.295275 + 0.511431i
\(497\) −2.53769 + 31.2915i −0.113831 + 1.40362i
\(498\) 0.183826 + 0.757678i 0.00823744 + 0.0339524i
\(499\) 23.8482 20.0110i 1.06759 0.895816i 0.0727600 0.997349i \(-0.476819\pi\)
0.994832 + 0.101533i \(0.0323748\pi\)
\(500\) 2.71789 + 15.4139i 0.121548 + 0.689330i
\(501\) −9.38614 38.6870i −0.419342 1.72841i
\(502\) −2.92090 2.45093i −0.130366 0.109390i
\(503\) 10.2647 + 17.7789i 0.457679 + 0.792724i 0.998838 0.0481965i \(-0.0153474\pi\)
−0.541158 + 0.840921i \(0.682014\pi\)
\(504\) 13.5883 8.70295i 0.605272 0.387660i
\(505\) 6.99878 12.1222i 0.311441 0.539432i
\(506\) 4.90104 1.78383i 0.217878 0.0793011i
\(507\) 15.8278 + 11.6533i 0.702935 + 0.517540i
\(508\) 6.00622 5.03982i 0.266483 0.223606i
\(509\) 2.09580 + 11.8859i 0.0928947 + 0.526832i 0.995372 + 0.0960951i \(0.0306353\pi\)
−0.902477 + 0.430737i \(0.858254\pi\)
\(510\) −0.887917 1.33453i −0.0393176 0.0590939i
\(511\) −21.0492 14.5407i −0.931163 0.643241i
\(512\) 21.3746 0.944635
\(513\) 5.43966 + 6.27698i 0.240167 + 0.277135i
\(514\) −6.08877 10.5461i −0.268564 0.465167i
\(515\) −4.76060 3.99462i −0.209777 0.176024i
\(516\) −0.944159 + 1.90512i −0.0415643 + 0.0838683i
\(517\) −22.6089 + 18.9711i −0.994337 + 0.834348i
\(518\) −10.9108 + 11.0501i −0.479391 + 0.485514i
\(519\) 29.4842 + 21.7079i 1.29421 + 0.952871i
\(520\) −2.53357 + 0.922142i −0.111104 + 0.0404386i
\(521\) −35.3441 −1.54845 −0.774227 0.632908i \(-0.781861\pi\)
−0.774227 + 0.632908i \(0.781861\pi\)
\(522\) 2.62768 + 8.44954i 0.115010 + 0.369827i
\(523\) −26.0259 −1.13803 −0.569017 0.822326i \(-0.692676\pi\)
−0.569017 + 0.822326i \(0.692676\pi\)
\(524\) −0.744335 + 4.22134i −0.0325164 + 0.184410i
\(525\) 5.87181 + 17.0520i 0.256267 + 0.744210i
\(526\) −10.4424 3.80072i −0.455310 0.165719i
\(527\) 7.21650 6.05536i 0.314356 0.263776i
\(528\) −8.97220 2.63429i −0.390465 0.114643i
\(529\) 6.56087 2.38796i 0.285255 0.103824i
\(530\) 5.74269 0.249447
\(531\) 15.2521 16.5140i 0.661883 0.716645i
\(532\) 2.99307 6.52647i 0.129766 0.282958i
\(533\) 0.572169 + 0.480107i 0.0247834 + 0.0207957i
\(534\) 14.5211 6.35544i 0.628391 0.275027i
\(535\) 6.43674 5.40107i 0.278285 0.233509i
\(536\) −7.29285 2.65438i −0.315003 0.114652i
\(537\) 6.35531 12.8237i 0.274252 0.553385i
\(538\) −0.0604006 + 0.0219840i −0.00260405 + 0.000947798i
\(539\) 10.8254 + 12.5737i 0.466284 + 0.541587i
\(540\) 7.95381 + 4.42479i 0.342277 + 0.190413i
\(541\) −19.3656 + 33.5421i −0.832591 + 1.44209i 0.0633866 + 0.997989i \(0.479810\pi\)
−0.895977 + 0.444100i \(0.853523\pi\)
\(542\) −7.70109 6.46198i −0.330790 0.277566i
\(543\) 8.34298 16.8344i 0.358031 0.722435i
\(544\) −1.50666 8.54468i −0.0645974 0.366350i
\(545\) 2.35793 + 13.3725i 0.101002 + 0.572813i
\(546\) −2.83244 + 1.57011i −0.121217 + 0.0671946i
\(547\) −1.89965 1.59400i −0.0812232 0.0681544i 0.601272 0.799044i \(-0.294661\pi\)
−0.682495 + 0.730890i \(0.739105\pi\)
\(548\) 4.26604 + 7.38900i 0.182236 + 0.315643i
\(549\) 15.0202 7.74419i 0.641048 0.330514i
\(550\) −2.56428 + 4.44147i −0.109341 + 0.189385i
\(551\) 6.56934 + 5.51233i 0.279863 + 0.234833i
\(552\) −13.5222 3.97019i −0.575542 0.168983i
\(553\) 17.2957 17.5166i 0.735486 0.744880i
\(554\) 11.2946 + 4.11089i 0.479860 + 0.174655i
\(555\) −18.3051 5.37449i −0.777009 0.228134i
\(556\) 5.83108 2.12234i 0.247293 0.0900073i
\(557\) 10.5261 18.2317i 0.446004 0.772502i −0.552118 0.833766i \(-0.686180\pi\)
0.998122 + 0.0612647i \(0.0195134\pi\)
\(558\) 3.67924 8.78470i 0.155755 0.371886i
\(559\) 0.464718 0.804916i 0.0196555 0.0340443i
\(560\) 0.502588 6.19727i 0.0212382 0.261882i
\(561\) −0.742242 + 6.65651i −0.0313375 + 0.281038i
\(562\) −2.57756 0.938154i −0.108728 0.0395736i
\(563\) 1.33088 + 0.484399i 0.0560897 + 0.0204150i 0.369913 0.929067i \(-0.379388\pi\)
−0.313823 + 0.949482i \(0.601610\pi\)
\(564\) 36.5411 2.32295i 1.53866 0.0978138i
\(565\) 2.18546 12.3943i 0.0919428 0.521434i
\(566\) 10.2112 0.429210
\(567\) 22.3634 + 8.17793i 0.939174 + 0.343441i
\(568\) 24.1234 1.01219
\(569\) −1.63135 + 9.25185i −0.0683898 + 0.387858i 0.931330 + 0.364177i \(0.118650\pi\)
−0.999720 + 0.0236808i \(0.992461\pi\)
\(570\) −1.56738 + 0.0996400i −0.0656505 + 0.00417346i
\(571\) 11.6737 + 4.24888i 0.488529 + 0.177810i 0.574528 0.818485i \(-0.305186\pi\)
−0.0859986 + 0.996295i \(0.527408\pi\)
\(572\) 4.86051 + 1.76908i 0.203228 + 0.0739690i
\(573\) 0.0311450 0.279312i 0.00130110 0.0116684i
\(574\) 0.763780 0.362074i 0.0318795 0.0151127i
\(575\) 7.87541 13.6406i 0.328427 0.568853i
\(576\) 2.96422 + 3.89463i 0.123509 + 0.162276i
\(577\) 18.0957 31.3427i 0.753334 1.30481i −0.192865 0.981225i \(-0.561778\pi\)
0.946198 0.323587i \(-0.104889\pi\)
\(578\) 7.40778 2.69621i 0.308123 0.112148i
\(579\) −3.02339 0.887685i −0.125648 0.0368909i
\(580\) 8.83049 + 3.21403i 0.366666 + 0.133456i
\(581\) 2.09587 + 0.547356i 0.0869512 + 0.0227082i
\(582\) 7.68345 + 2.25591i 0.318489 + 0.0935104i
\(583\) −18.3817 15.4241i −0.761294 0.638802i
\(584\) −9.82907 + 17.0245i −0.406730 + 0.704477i
\(585\) −3.34710 2.15087i −0.138385 0.0889275i
\(586\) −3.97398 6.88314i −0.164164 0.284340i
\(587\) −1.87391 1.57240i −0.0773445 0.0648997i 0.603296 0.797518i \(-0.293854\pi\)
−0.680640 + 0.732618i \(0.738298\pi\)
\(588\) −1.56648 20.5241i −0.0646004 0.846400i
\(589\) −1.60281 9.08996i −0.0660425 0.374545i
\(590\) 0.738104 + 4.18599i 0.0303873 + 0.172335i
\(591\) −20.9214 + 42.2152i −0.860592 + 1.73650i
\(592\) −18.6271 15.6300i −0.765567 0.642387i
\(593\) 8.91340 15.4385i 0.366029 0.633981i −0.622911 0.782292i \(-0.714050\pi\)
0.988941 + 0.148311i \(0.0473836\pi\)
\(594\) 2.41698 + 6.32537i 0.0991701 + 0.259533i
\(595\) −4.43397 + 0.416289i −0.181775 + 0.0170662i
\(596\) −17.8015 + 6.47923i −0.729179 + 0.265400i
\(597\) 5.01261 10.1144i 0.205153 0.413956i
\(598\) 2.65783 + 0.967370i 0.108687 + 0.0395587i
\(599\) −5.72240 + 4.80167i −0.233811 + 0.196191i −0.752164 0.658976i \(-0.770990\pi\)
0.518353 + 0.855167i \(0.326545\pi\)
\(600\) 12.6952 5.55627i 0.518279 0.226834i
\(601\) 11.8770 + 9.96601i 0.484474 + 0.406522i 0.852041 0.523475i \(-0.175365\pi\)
−0.367567 + 0.929997i \(0.619809\pi\)
\(602\) −0.608749 0.857747i −0.0248107 0.0349592i
\(603\) −3.40086 10.9358i −0.138494 0.445339i
\(604\) 1.54813 0.0629926
\(605\) 5.21791 1.89916i 0.212138 0.0772119i
\(606\) −12.3960 3.63955i −0.503555 0.147847i
\(607\) −35.7175 + 29.9705i −1.44973 + 1.21647i −0.516951 + 0.856015i \(0.672933\pi\)
−0.932778 + 0.360451i \(0.882623\pi\)
\(608\) −7.98856 2.90760i −0.323979 0.117919i
\(609\) 24.1331 + 4.69056i 0.977924 + 0.190071i
\(610\) −0.554870 + 3.14682i −0.0224660 + 0.127411i
\(611\) −16.0053 −0.647504
\(612\) 5.63768 6.10412i 0.227890 0.246745i
\(613\) 12.9939 0.524819 0.262409 0.964957i \(-0.415483\pi\)
0.262409 + 0.964957i \(0.415483\pi\)
\(614\) −4.19224 + 1.52585i −0.169185 + 0.0615784i
\(615\) 0.836221 + 0.615672i 0.0337197 + 0.0248263i
\(616\) 8.95762 9.07203i 0.360913 0.365522i
\(617\) 13.8356 11.6094i 0.556999 0.467378i −0.320304 0.947315i \(-0.603785\pi\)
0.877303 + 0.479937i \(0.159341\pi\)
\(618\) −2.54698 + 5.13930i −0.102455 + 0.206733i
\(619\) −6.18828 5.19258i −0.248728 0.208707i 0.509896 0.860236i \(-0.329684\pi\)
−0.758624 + 0.651528i \(0.774128\pi\)
\(620\) −5.05722 8.75935i −0.203103 0.351784i
\(621\) −7.42303 19.4264i −0.297876 0.779556i
\(622\) −6.49360 −0.260370
\(623\) 3.55985 43.8955i 0.142622 1.75864i
\(624\) −2.80900 4.22190i −0.112450 0.169011i
\(625\) 1.76521 + 10.0110i 0.0706086 + 0.400441i
\(626\) 5.97053 5.00987i 0.238630 0.200235i
\(627\) 5.28464 + 3.89085i 0.211048 + 0.155385i
\(628\) −18.1396 + 6.60226i −0.723848 + 0.263459i
\(629\) −8.70834 + 15.0833i −0.347224 + 0.601410i
\(630\) −3.79147 + 2.42833i −0.151056 + 0.0967471i
\(631\) 23.6861 + 41.0255i 0.942927 + 1.63320i 0.759849 + 0.650100i \(0.225273\pi\)
0.183078 + 0.983098i \(0.441394\pi\)
\(632\) −14.4900 12.1585i −0.576379 0.483640i
\(633\) 8.56181 + 35.2893i 0.340301 + 1.40262i
\(634\) −2.51524 14.2646i −0.0998928 0.566520i
\(635\) −3.65015 + 3.06284i −0.144852 + 0.121545i
\(636\) 7.01887 + 28.9298i 0.278316 + 1.14714i
\(637\) 0.114183 + 8.99698i 0.00452410 + 0.356473i
\(638\) 3.49561 + 6.05458i 0.138393 + 0.239703i
\(639\) 21.5594 + 28.3265i 0.852877 + 1.12058i
\(640\) −11.8997 −0.470379
\(641\) 5.84186 33.1308i 0.230740 1.30859i −0.620663 0.784077i \(-0.713137\pi\)
0.851403 0.524512i \(-0.175752\pi\)
\(642\) −6.24521 4.59807i −0.246479 0.181471i
\(643\) −0.447675 2.53889i −0.0176546 0.100124i 0.974707 0.223486i \(-0.0717436\pi\)
−0.992362 + 0.123362i \(0.960632\pi\)
\(644\) −12.6309 + 12.7922i −0.497725 + 0.504082i
\(645\) 0.573792 1.15780i 0.0225930 0.0455882i
\(646\) −0.248977 + 1.41202i −0.00979585 + 0.0555550i
\(647\) −13.2070 22.8753i −0.519223 0.899320i −0.999750 0.0223405i \(-0.992888\pi\)
0.480528 0.876980i \(-0.340445\pi\)
\(648\) 4.87433 17.6358i 0.191482 0.692798i
\(649\) 8.88044 15.3814i 0.348588 0.603771i
\(650\) −2.61348 + 0.951231i −0.102509 + 0.0373103i
\(651\) −16.6529 20.5639i −0.652678 0.805961i
\(652\) −19.9449 + 16.7358i −0.781102 + 0.655423i
\(653\) 21.6306 + 7.87289i 0.846470 + 0.308090i 0.728600 0.684939i \(-0.240171\pi\)
0.117870 + 0.993029i \(0.462393\pi\)
\(654\) 11.4813 5.02499i 0.448953 0.196492i
\(655\) 0.452353 2.56542i 0.0176749 0.100239i
\(656\) 0.661767 + 1.14621i 0.0258377 + 0.0447522i
\(657\) −28.7751 + 3.67336i −1.12262 + 0.143312i
\(658\) −7.55040 + 16.4638i −0.294345 + 0.641827i
\(659\) 4.87327 27.6377i 0.189836 1.07661i −0.729748 0.683716i \(-0.760363\pi\)
0.919583 0.392895i \(-0.128526\pi\)
\(660\) 6.89990 + 2.02585i 0.268578 + 0.0788562i
\(661\) 3.60262 + 20.4315i 0.140126 + 0.794693i 0.971152 + 0.238460i \(0.0766426\pi\)
−0.831027 + 0.556233i \(0.812246\pi\)
\(662\) 2.60890 + 14.7958i 0.101398 + 0.575055i
\(663\) −2.62869 + 2.50655i −0.102090 + 0.0973462i
\(664\) 0.289034 1.63919i 0.0112167 0.0636130i
\(665\) −1.81897 + 3.96631i −0.0705367 + 0.153807i
\(666\) −0.837165 + 17.5883i −0.0324395 + 0.681533i
\(667\) −10.7357 18.5948i −0.415689 0.719994i
\(668\) −6.77581 + 38.4275i −0.262164 + 1.48681i
\(669\) 8.30530 + 6.11482i 0.321102 + 0.236413i
\(670\) 2.03488 + 0.740635i 0.0786142 + 0.0286132i
\(671\) 10.2280 8.58233i 0.394848 0.331317i
\(672\) −24.0713 + 3.81295i −0.928569 + 0.147088i
\(673\) −5.18042 + 1.88552i −0.199691 + 0.0726815i −0.439929 0.898032i \(-0.644997\pi\)
0.240239 + 0.970714i \(0.422774\pi\)
\(674\) −0.833079 + 1.44294i −0.0320890 + 0.0555798i
\(675\) 17.8702 + 9.94140i 0.687826 + 0.382645i
\(676\) −9.63270 16.6843i −0.370488 0.641705i
\(677\) −5.50287 + 31.2083i −0.211492 + 1.19943i 0.675398 + 0.737453i \(0.263972\pi\)
−0.886890 + 0.461980i \(0.847139\pi\)
\(678\) −11.5927 + 0.736956i −0.445213 + 0.0283026i
\(679\) 15.6318 15.8315i 0.599895 0.607557i
\(680\) 0.594233 + 3.37006i 0.0227878 + 0.129236i
\(681\) −27.0745 + 11.8497i −1.03750 + 0.454080i
\(682\) 1.30667 7.41050i 0.0500350 0.283763i
\(683\) 36.9692 1.41459 0.707294 0.706919i \(-0.249916\pi\)
0.707294 + 0.706919i \(0.249916\pi\)
\(684\) −2.41765 7.77417i −0.0924411 0.297253i
\(685\) −2.59259 4.49050i −0.0990579 0.171573i
\(686\) 9.30861 + 4.12682i 0.355404 + 0.157563i
\(687\) −30.0301 + 28.6347i −1.14572 + 1.09248i
\(688\) 1.26165 1.05865i 0.0481000 0.0403607i
\(689\) −2.25965 12.8151i −0.0860858 0.488217i
\(690\) 3.77301 + 1.10778i 0.143636 + 0.0421724i
\(691\) −1.37251 1.15167i −0.0522127 0.0438117i 0.616308 0.787505i \(-0.288628\pi\)
−0.668521 + 0.743694i \(0.733072\pi\)
\(692\) −17.9440 31.0798i −0.682127 1.18148i
\(693\) 18.6583 + 2.41055i 0.708768 + 0.0915692i
\(694\) −2.49561 + 4.32251i −0.0947319 + 0.164080i
\(695\) −3.54371 + 1.28981i −0.134421 + 0.0489251i
\(696\) 2.09348 18.7746i 0.0793532 0.711648i
\(697\) 0.726214 0.609366i 0.0275073 0.0230814i
\(698\) −0.602301 3.41582i −0.0227974 0.129291i
\(699\) −40.7609 + 2.59121i −1.54172 + 0.0980085i
\(700\) 1.42890 17.6194i 0.0540074 0.665950i
\(701\) 28.5094 1.07678 0.538392 0.842694i \(-0.319032\pi\)
0.538392 + 0.842694i \(0.319032\pi\)
\(702\) −1.20084 + 3.47023i −0.0453227 + 0.130975i
\(703\) 8.53245 + 14.7786i 0.321807 + 0.557387i
\(704\) 2.96226 + 2.48564i 0.111645 + 0.0936809i
\(705\) −22.2070 + 1.41172i −0.836365 + 0.0531685i
\(706\) −1.91592 + 1.60764i −0.0721065 + 0.0605045i
\(707\) −25.2195 + 25.5416i −0.948478 + 0.960591i
\(708\) −20.1855 + 8.83455i −0.758618 + 0.332023i
\(709\) 14.3534 5.22422i 0.539055 0.196200i −0.0581222 0.998309i \(-0.518511\pi\)
0.597177 + 0.802110i \(0.296289\pi\)
\(710\) −6.73100 −0.252610
\(711\) 1.32707 27.8809i 0.0497690 1.04561i
\(712\) −33.8401 −1.26821
\(713\) −4.01304 + 22.7591i −0.150290 + 0.852335i
\(714\) 1.33829 + 3.88645i 0.0500842 + 0.145447i
\(715\) −2.95387 1.07512i −0.110468 0.0402072i
\(716\) −10.7465 + 9.01735i −0.401614 + 0.336994i
\(717\) 27.1235 25.8632i 1.01294 0.965877i
\(718\) 6.63527 2.41504i 0.247626 0.0901286i
\(719\) −18.2989 −0.682432 −0.341216 0.939985i \(-0.610839\pi\)
−0.341216 + 0.939985i \(0.610839\pi\)
\(720\) −4.26983 5.61005i −0.159127 0.209074i
\(721\) 9.22319 + 12.9958i 0.343490 + 0.483989i
\(722\) −6.92604 5.81164i −0.257760 0.216287i
\(723\) −34.4676 25.3769i −1.28186 0.943779i
\(724\) −14.1075 + 11.8376i −0.524301 + 0.439941i
\(725\) 19.8399 + 7.22114i 0.736836 + 0.268186i
\(726\) −2.83894 4.26690i −0.105363 0.158360i
\(727\) 6.03585 2.19687i 0.223857 0.0814773i −0.227657 0.973741i \(-0.573106\pi\)
0.451514 + 0.892264i \(0.350884\pi\)
\(728\) 6.88357 0.646272i 0.255122 0.0239524i
\(729\) 25.0648 10.0377i 0.928326 0.371768i
\(730\) 2.74255 4.75023i 0.101506 0.175814i
\(731\) −0.903679 0.758276i −0.0334238 0.0280459i
\(732\) −16.5308 + 1.05088i −0.610996 + 0.0388416i
\(733\) 6.80878 + 38.6145i 0.251488 + 1.42626i 0.804929 + 0.593372i \(0.202203\pi\)
−0.553441 + 0.832889i \(0.686685\pi\)
\(734\) −3.35986 19.0547i −0.124015 0.703323i
\(735\) 0.951992 + 12.4731i 0.0351147 + 0.460076i
\(736\) 16.3053 + 13.6818i 0.601022 + 0.504318i
\(737\) −4.52418 7.83611i −0.166650 0.288647i
\(738\) 0.370251 0.884026i 0.0136291 0.0325414i
\(739\) −5.03547 + 8.72169i −0.185233 + 0.320833i −0.943655 0.330931i \(-0.892637\pi\)
0.758422 + 0.651764i \(0.225971\pi\)
\(740\) 14.3248 + 12.0199i 0.526590 + 0.441861i
\(741\) 0.839090 + 3.45849i 0.0308247 + 0.127051i
\(742\) −14.2483 3.72107i −0.523070 0.136605i
\(743\) −12.3507 4.49527i −0.453101 0.164915i 0.105381 0.994432i \(-0.466394\pi\)
−0.558482 + 0.829516i \(0.688616\pi\)
\(744\) −14.7152 + 14.0315i −0.539487 + 0.514419i
\(745\) 10.8185 3.93761i 0.396359 0.144263i
\(746\) 5.14207 8.90633i 0.188265 0.326084i
\(747\) 2.18311 1.12558i 0.0798759 0.0411827i
\(748\) 3.28251 5.68547i 0.120020 0.207882i
\(749\) −19.4700 + 9.22985i −0.711417 + 0.337252i
\(750\) −8.04267 + 3.52002i −0.293677 + 0.128533i
\(751\) 15.7364 + 5.72757i 0.574229 + 0.209002i 0.612779 0.790255i \(-0.290052\pi\)
−0.0385500 + 0.999257i \(0.512274\pi\)
\(752\) −26.6510 9.70018i −0.971863 0.353729i
\(753\) −5.33400 + 10.7629i −0.194382 + 0.392223i
\(754\) −0.658358 + 3.73373i −0.0239760 + 0.135975i
\(755\) −0.940843 −0.0342408
\(756\) −16.8672 16.1322i −0.613452 0.586722i
\(757\) 32.8223 1.19295 0.596473 0.802633i \(-0.296568\pi\)
0.596473 + 0.802633i \(0.296568\pi\)
\(758\) 0.582966 3.30616i 0.0211743 0.120085i
\(759\) −9.10166 13.6797i −0.330369 0.496541i
\(760\) 3.15073 + 1.14677i 0.114289 + 0.0415977i
\(761\) 33.1805 + 12.0767i 1.20279 + 0.437780i 0.864197 0.503153i \(-0.167827\pi\)
0.338593 + 0.940933i \(0.390049\pi\)
\(762\) 3.54153 + 2.60747i 0.128296 + 0.0944587i
\(763\) 2.81463 34.7064i 0.101896 1.25646i
\(764\) −0.137736 + 0.238566i −0.00498313 + 0.00863103i
\(765\) −3.42617 + 3.70964i −0.123873 + 0.134122i
\(766\) −0.963850 + 1.66944i −0.0348253 + 0.0603192i
\(767\) 9.05083 3.29423i 0.326807 0.118948i