Properties

Label 189.2.u.a.142.10
Level $189$
Weight $2$
Character 189.142
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(4,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([2, 12]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.u (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 142.10
Character \(\chi\) \(=\) 189.142
Dual form 189.2.u.a.4.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.134854 + 0.764795i) q^{2} +(1.54799 - 0.776991i) q^{3} +(1.31266 + 0.477769i) q^{4} +(1.10529 + 0.402293i) q^{5} +(0.385486 + 1.28868i) q^{6} +(-0.975813 - 2.45923i) q^{7} +(-1.31901 + 2.28459i) q^{8} +(1.79257 - 2.40555i) q^{9} +O(q^{10})\) \(q+(-0.134854 + 0.764795i) q^{2} +(1.54799 - 0.776991i) q^{3} +(1.31266 + 0.477769i) q^{4} +(1.10529 + 0.402293i) q^{5} +(0.385486 + 1.28868i) q^{6} +(-0.975813 - 2.45923i) q^{7} +(-1.31901 + 2.28459i) q^{8} +(1.79257 - 2.40555i) q^{9} +(-0.456725 + 0.791071i) q^{10} +(-3.93613 + 1.43263i) q^{11} +(2.40321 - 0.280341i) q^{12} +(-3.70688 - 1.34919i) q^{13} +(2.01240 - 0.414661i) q^{14} +(2.02356 - 0.236054i) q^{15} +(0.570812 + 0.478968i) q^{16} +(0.400033 - 0.692877i) q^{17} +(1.59802 + 1.69535i) q^{18} +(1.30975 + 2.26855i) q^{19} +(1.25867 + 1.05615i) q^{20} +(-3.42135 - 3.04867i) q^{21} +(-0.564868 - 3.20353i) q^{22} +(1.28871 + 7.30863i) q^{23} +(-0.266712 + 4.56138i) q^{24} +(-2.77039 - 2.32463i) q^{25} +(1.53174 - 2.65306i) q^{26} +(0.905795 - 5.11659i) q^{27} +(-0.105969 - 3.69434i) q^{28} +(-2.12504 + 0.773451i) q^{29} +(-0.0923528 + 1.57944i) q^{30} +(7.31994 + 2.66424i) q^{31} +(-4.48496 + 3.76333i) q^{32} +(-4.97996 + 5.27604i) q^{33} +(0.475963 + 0.399380i) q^{34} +(-0.0892288 - 3.11073i) q^{35} +(3.50233 - 2.30124i) q^{36} -2.78894 q^{37} +(-1.91160 + 0.695767i) q^{38} +(-6.78654 + 0.791667i) q^{39} +(-2.37696 + 1.99451i) q^{40} +(-2.90818 - 1.05849i) q^{41} +(2.79299 - 2.20551i) q^{42} +(1.78745 - 10.1371i) q^{43} -5.85126 q^{44} +(2.94905 - 1.93770i) q^{45} -5.76340 q^{46} +(0.726756 - 0.264518i) q^{47} +(1.25577 + 0.297924i) q^{48} +(-5.09558 + 4.79949i) q^{49} +(2.15147 - 1.80530i) q^{50} +(0.0808892 - 1.38339i) q^{51} +(-4.22127 - 3.54206i) q^{52} +(-5.10773 - 8.84685i) q^{53} +(3.79100 + 1.38274i) q^{54} -4.92691 q^{55} +(6.90541 + 1.01440i) q^{56} +(3.79013 + 2.49404i) q^{57} +(-0.304961 - 1.72952i) q^{58} +(7.53571 - 6.32321i) q^{59} +(2.76903 + 0.656937i) q^{60} +(7.00038 - 2.54793i) q^{61} +(-3.02472 + 5.23897i) q^{62} +(-7.66501 - 2.06096i) q^{63} +(-1.52822 - 2.64695i) q^{64} +(-3.55441 - 2.98251i) q^{65} +(-3.36352 - 4.52014i) q^{66} +(1.80452 + 10.2339i) q^{67} +(0.856142 - 0.718388i) q^{68} +(7.67366 + 10.3124i) q^{69} +(2.39110 + 0.351252i) q^{70} +(-0.981254 - 1.69958i) q^{71} +(3.13128 + 7.26822i) q^{72} -5.19764 q^{73} +(0.376099 - 2.13296i) q^{74} +(-6.09477 - 1.44595i) q^{75} +(0.635411 + 3.60360i) q^{76} +(7.36409 + 8.28184i) q^{77} +(0.309729 - 5.29707i) q^{78} +(-1.05900 + 6.00590i) q^{79} +(0.438229 + 0.759034i) q^{80} +(-2.57338 - 8.62425i) q^{81} +(1.20171 - 2.08142i) q^{82} +(3.56605 - 1.29793i) q^{83} +(-3.03451 - 5.63648i) q^{84} +(0.720893 - 0.604901i) q^{85} +(7.51179 + 2.73407i) q^{86} +(-2.68858 + 2.84843i) q^{87} +(1.91880 - 10.8821i) q^{88} +(4.65935 + 8.07024i) q^{89} +(1.08425 + 2.51673i) q^{90} +(0.299252 + 10.4326i) q^{91} +(-1.80020 + 10.2095i) q^{92} +(13.4013 - 1.56330i) q^{93} +(0.104296 + 0.591491i) q^{94} +(0.535032 + 3.03432i) q^{95} +(-4.01862 + 9.31038i) q^{96} +(-0.984950 + 5.58593i) q^{97} +(-2.98347 - 4.54430i) q^{98} +(-3.60951 + 12.0367i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} - 15 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 3 q^{3} - 3 q^{4} - 3 q^{5} - 18 q^{6} - 6 q^{7} - 6 q^{8} - 15 q^{9} + 3 q^{10} - 15 q^{11} - 3 q^{12} - 12 q^{13} - 30 q^{14} + 9 q^{16} + 27 q^{17} - 3 q^{18} + 3 q^{19} - 18 q^{20} + 15 q^{21} - 12 q^{22} - 36 q^{23} - 72 q^{24} - 3 q^{25} + 30 q^{26} - 12 q^{27} - 12 q^{28} - 30 q^{29} - 3 q^{30} - 3 q^{31} - 75 q^{32} + 15 q^{33} - 18 q^{34} + 15 q^{35} - 60 q^{36} - 6 q^{37} + 69 q^{38} + 51 q^{39} + 51 q^{40} - 39 q^{42} - 12 q^{43} - 6 q^{44} - 21 q^{45} - 6 q^{46} - 21 q^{47} + 90 q^{48} - 42 q^{49} - 39 q^{50} + 33 q^{51} + 9 q^{52} + 9 q^{53} - 9 q^{54} - 24 q^{55} + 111 q^{56} - 18 q^{57} - 3 q^{58} + 27 q^{59} - 63 q^{60} - 21 q^{61} + 75 q^{62} + 63 q^{63} - 30 q^{64} - 90 q^{65} - 3 q^{66} - 3 q^{67} - 30 q^{68} - 6 q^{69} + 39 q^{70} - 18 q^{71} + 183 q^{72} - 42 q^{73} + 51 q^{74} - 45 q^{75} - 24 q^{76} + 15 q^{77} - 30 q^{78} + 15 q^{79} + 102 q^{80} - 87 q^{81} - 6 q^{82} - 42 q^{83} + 135 q^{84} - 63 q^{85} - 93 q^{86} + 75 q^{87} - 51 q^{88} + 75 q^{89} - 39 q^{90} - 21 q^{91} - 66 q^{92} + 81 q^{93} + 33 q^{94} + 15 q^{95} - 171 q^{96} - 12 q^{97} - 36 q^{98} + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.134854 + 0.764795i −0.0953562 + 0.540792i 0.899281 + 0.437370i \(0.144090\pi\)
−0.994638 + 0.103421i \(0.967021\pi\)
\(3\) 1.54799 0.776991i 0.893735 0.448596i
\(4\) 1.31266 + 0.477769i 0.656330 + 0.238884i
\(5\) 1.10529 + 0.402293i 0.494302 + 0.179911i 0.577129 0.816653i \(-0.304173\pi\)
−0.0828277 + 0.996564i \(0.526395\pi\)
\(6\) 0.385486 + 1.28868i 0.157374 + 0.526101i
\(7\) −0.975813 2.45923i −0.368823 0.929500i
\(8\) −1.31901 + 2.28459i −0.466339 + 0.807723i
\(9\) 1.79257 2.40555i 0.597524 0.801851i
\(10\) −0.456725 + 0.791071i −0.144429 + 0.250159i
\(11\) −3.93613 + 1.43263i −1.18679 + 0.431955i −0.858594 0.512656i \(-0.828662\pi\)
−0.328193 + 0.944611i \(0.606440\pi\)
\(12\) 2.40321 0.280341i 0.693747 0.0809274i
\(13\) −3.70688 1.34919i −1.02810 0.374199i −0.227745 0.973721i \(-0.573135\pi\)
−0.800358 + 0.599522i \(0.795357\pi\)
\(14\) 2.01240 0.414661i 0.537835 0.110823i
\(15\) 2.02356 0.236054i 0.522482 0.0609489i
\(16\) 0.570812 + 0.478968i 0.142703 + 0.119742i
\(17\) 0.400033 0.692877i 0.0970222 0.168047i −0.813429 0.581665i \(-0.802402\pi\)
0.910451 + 0.413617i \(0.135735\pi\)
\(18\) 1.59802 + 1.69535i 0.376657 + 0.399597i
\(19\) 1.30975 + 2.26855i 0.300477 + 0.520442i 0.976244 0.216674i \(-0.0695207\pi\)
−0.675767 + 0.737115i \(0.736187\pi\)
\(20\) 1.25867 + 1.05615i 0.281447 + 0.236162i
\(21\) −3.42135 3.04867i −0.746599 0.665274i
\(22\) −0.564868 3.20353i −0.120430 0.682994i
\(23\) 1.28871 + 7.30863i 0.268715 + 1.52396i 0.758245 + 0.651970i \(0.226057\pi\)
−0.489531 + 0.871986i \(0.662832\pi\)
\(24\) −0.266712 + 4.56138i −0.0544423 + 0.931088i
\(25\) −2.77039 2.32463i −0.554078 0.464927i
\(26\) 1.53174 2.65306i 0.300400 0.520308i
\(27\) 0.905795 5.11659i 0.174320 0.984689i
\(28\) −0.105969 3.69434i −0.0200263 0.698164i
\(29\) −2.12504 + 0.773451i −0.394610 + 0.143626i −0.531701 0.846932i \(-0.678447\pi\)
0.137091 + 0.990558i \(0.456225\pi\)
\(30\) −0.0923528 + 1.57944i −0.0168612 + 0.288366i
\(31\) 7.31994 + 2.66424i 1.31470 + 0.478511i 0.901756 0.432245i \(-0.142279\pi\)
0.412943 + 0.910757i \(0.364501\pi\)
\(32\) −4.48496 + 3.76333i −0.792836 + 0.665268i
\(33\) −4.97996 + 5.27604i −0.866900 + 0.918441i
\(34\) 0.475963 + 0.399380i 0.0816270 + 0.0684932i
\(35\) −0.0892288 3.11073i −0.0150824 0.525809i
\(36\) 3.50233 2.30124i 0.583722 0.383540i
\(37\) −2.78894 −0.458498 −0.229249 0.973368i \(-0.573627\pi\)
−0.229249 + 0.973368i \(0.573627\pi\)
\(38\) −1.91160 + 0.695767i −0.310103 + 0.112868i
\(39\) −6.78654 + 0.791667i −1.08672 + 0.126768i
\(40\) −2.37696 + 1.99451i −0.375830 + 0.315359i
\(41\) −2.90818 1.05849i −0.454181 0.165308i 0.104792 0.994494i \(-0.466582\pi\)
−0.558973 + 0.829186i \(0.688804\pi\)
\(42\) 2.79299 2.20551i 0.430968 0.340317i
\(43\) 1.78745 10.1371i 0.272584 1.54590i −0.473950 0.880552i \(-0.657172\pi\)
0.746534 0.665348i \(-0.231717\pi\)
\(44\) −5.85126 −0.882111
\(45\) 2.94905 1.93770i 0.439619 0.288855i
\(46\) −5.76340 −0.849766
\(47\) 0.726756 0.264518i 0.106008 0.0385839i −0.288471 0.957488i \(-0.593147\pi\)
0.394480 + 0.918905i \(0.370925\pi\)
\(48\) 1.25577 + 0.297924i 0.181255 + 0.0430017i
\(49\) −5.09558 + 4.79949i −0.727939 + 0.685641i
\(50\) 2.15147 1.80530i 0.304264 0.255307i
\(51\) 0.0808892 1.38339i 0.0113268 0.193714i
\(52\) −4.22127 3.54206i −0.585384 0.491196i
\(53\) −5.10773 8.84685i −0.701600 1.21521i −0.967904 0.251319i \(-0.919136\pi\)
0.266304 0.963889i \(-0.414198\pi\)
\(54\) 3.79100 + 1.38274i 0.515889 + 0.188167i
\(55\) −4.92691 −0.664344
\(56\) 6.90541 + 1.01440i 0.922775 + 0.135555i
\(57\) 3.79013 + 2.49404i 0.502015 + 0.330344i
\(58\) −0.304961 1.72952i −0.0400434 0.227097i
\(59\) 7.53571 6.32321i 0.981065 0.823212i −0.00318439 0.999995i \(-0.501014\pi\)
0.984250 + 0.176783i \(0.0565692\pi\)
\(60\) 2.76903 + 0.656937i 0.357480 + 0.0848102i
\(61\) 7.00038 2.54793i 0.896306 0.326229i 0.147535 0.989057i \(-0.452866\pi\)
0.748772 + 0.662828i \(0.230644\pi\)
\(62\) −3.02472 + 5.23897i −0.384140 + 0.665350i
\(63\) −7.66501 2.06096i −0.965701 0.259657i
\(64\) −1.52822 2.64695i −0.191027 0.330869i
\(65\) −3.55441 2.98251i −0.440871 0.369934i
\(66\) −3.36352 4.52014i −0.414021 0.556391i
\(67\) 1.80452 + 10.2339i 0.220457 + 1.25027i 0.871183 + 0.490959i \(0.163354\pi\)
−0.650726 + 0.759313i \(0.725535\pi\)
\(68\) 0.856142 0.718388i 0.103822 0.0871174i
\(69\) 7.67366 + 10.3124i 0.923800 + 1.24147i
\(70\) 2.39110 + 0.351252i 0.285791 + 0.0419826i
\(71\) −0.981254 1.69958i −0.116453 0.201703i 0.801906 0.597450i \(-0.203819\pi\)
−0.918360 + 0.395746i \(0.870486\pi\)
\(72\) 3.13128 + 7.26822i 0.369025 + 0.856568i
\(73\) −5.19764 −0.608338 −0.304169 0.952618i \(-0.598379\pi\)
−0.304169 + 0.952618i \(0.598379\pi\)
\(74\) 0.376099 2.13296i 0.0437207 0.247952i
\(75\) −6.09477 1.44595i −0.703763 0.166964i
\(76\) 0.635411 + 3.60360i 0.0728866 + 0.413361i
\(77\) 7.36409 + 8.28184i 0.839216 + 0.943803i
\(78\) 0.309729 5.29707i 0.0350699 0.599775i
\(79\) −1.05900 + 6.00590i −0.119147 + 0.675717i 0.865466 + 0.500968i \(0.167023\pi\)
−0.984613 + 0.174749i \(0.944089\pi\)
\(80\) 0.438229 + 0.759034i 0.0489954 + 0.0848626i
\(81\) −2.57338 8.62425i −0.285931 0.958250i
\(82\) 1.20171 2.08142i 0.132706 0.229854i
\(83\) 3.56605 1.29793i 0.391424 0.142467i −0.138808 0.990319i \(-0.544327\pi\)
0.530232 + 0.847852i \(0.322105\pi\)
\(84\) −3.03451 5.63648i −0.331092 0.614990i
\(85\) 0.720893 0.604901i 0.0781918 0.0656107i
\(86\) 7.51179 + 2.73407i 0.810017 + 0.294822i
\(87\) −2.68858 + 2.84843i −0.288246 + 0.305384i
\(88\) 1.91880 10.8821i 0.204545 1.16003i
\(89\) 4.65935 + 8.07024i 0.493891 + 0.855443i 0.999975 0.00704032i \(-0.00224102\pi\)
−0.506085 + 0.862484i \(0.668908\pi\)
\(90\) 1.08425 + 2.51673i 0.114290 + 0.265286i
\(91\) 0.299252 + 10.4326i 0.0313701 + 1.09364i
\(92\) −1.80020 + 10.2095i −0.187684 + 1.06441i
\(93\) 13.4013 1.56330i 1.38965 0.162106i
\(94\) 0.104296 + 0.591491i 0.0107573 + 0.0610076i
\(95\) 0.535032 + 3.03432i 0.0548931 + 0.311314i
\(96\) −4.01862 + 9.31038i −0.410148 + 0.950237i
\(97\) −0.984950 + 5.58593i −0.100007 + 0.567165i 0.893091 + 0.449876i \(0.148532\pi\)
−0.993098 + 0.117290i \(0.962579\pi\)
\(98\) −2.98347 4.54430i −0.301376 0.459044i
\(99\) −3.60951 + 12.0367i −0.362769 + 1.20973i
\(100\) −2.52594 4.37506i −0.252594 0.437506i
\(101\) −1.54866 + 8.78288i −0.154097 + 0.873929i 0.805509 + 0.592583i \(0.201892\pi\)
−0.959606 + 0.281346i \(0.909219\pi\)
\(102\) 1.04710 + 0.248420i 0.103679 + 0.0245972i
\(103\) 16.8978 + 6.15030i 1.66499 + 0.606007i 0.991135 0.132856i \(-0.0424148\pi\)
0.673856 + 0.738863i \(0.264637\pi\)
\(104\) 7.97175 6.68909i 0.781694 0.655919i
\(105\) −2.55513 4.74605i −0.249355 0.463167i
\(106\) 7.45482 2.71333i 0.724076 0.263542i
\(107\) 8.96116 15.5212i 0.866308 1.50049i 0.000565690 1.00000i \(-0.499820\pi\)
0.865742 0.500490i \(-0.166847\pi\)
\(108\) 3.63355 6.28358i 0.349638 0.604638i
\(109\) 3.85403 + 6.67538i 0.369149 + 0.639386i 0.989433 0.144992i \(-0.0463157\pi\)
−0.620283 + 0.784378i \(0.712982\pi\)
\(110\) 0.664414 3.76808i 0.0633493 0.359272i
\(111\) −4.31726 + 2.16698i −0.409776 + 0.205680i
\(112\) 0.620885 1.87114i 0.0586681 0.176806i
\(113\) −2.99844 17.0050i −0.282069 1.59969i −0.715570 0.698541i \(-0.753833\pi\)
0.433501 0.901153i \(-0.357278\pi\)
\(114\) −2.41855 + 2.56234i −0.226518 + 0.239985i
\(115\) −1.51582 + 8.59661i −0.141350 + 0.801638i
\(116\) −3.15898 −0.293304
\(117\) −9.89040 + 6.49857i −0.914368 + 0.600793i
\(118\) 3.81974 + 6.61598i 0.351635 + 0.609051i
\(119\) −2.09430 0.307652i −0.191984 0.0282024i
\(120\) −2.12981 + 4.93436i −0.194424 + 0.450443i
\(121\) 5.01417 4.20739i 0.455834 0.382490i
\(122\) 1.00461 + 5.69745i 0.0909535 + 0.515823i
\(123\) −5.32428 + 0.621091i −0.480074 + 0.0560019i
\(124\) 8.33569 + 6.99448i 0.748567 + 0.628122i
\(125\) −5.06747 8.77712i −0.453249 0.785050i
\(126\) 2.60987 5.58424i 0.232506 0.497483i
\(127\) −0.549414 + 0.951613i −0.0487526 + 0.0844420i −0.889372 0.457184i \(-0.848858\pi\)
0.840619 + 0.541626i \(0.182191\pi\)
\(128\) −8.77277 + 3.19303i −0.775411 + 0.282226i
\(129\) −5.10950 17.0811i −0.449867 1.50390i
\(130\) 2.76033 2.31619i 0.242097 0.203144i
\(131\) −1.98550 11.2603i −0.173474 0.983819i −0.939891 0.341475i \(-0.889073\pi\)
0.766417 0.642343i \(-0.222038\pi\)
\(132\) −9.05772 + 4.54638i −0.788373 + 0.395711i
\(133\) 4.30081 5.43466i 0.372928 0.471244i
\(134\) −8.07020 −0.697159
\(135\) 3.05954 5.29093i 0.263323 0.455371i
\(136\) 1.05529 + 1.82782i 0.0904905 + 0.156734i
\(137\) 0.130872 + 0.109814i 0.0111811 + 0.00938207i 0.648361 0.761333i \(-0.275455\pi\)
−0.637180 + 0.770715i \(0.719899\pi\)
\(138\) −8.92170 + 4.47811i −0.759466 + 0.381202i
\(139\) 5.29186 4.44040i 0.448850 0.376630i −0.390159 0.920747i \(-0.627580\pi\)
0.839009 + 0.544118i \(0.183136\pi\)
\(140\) 1.36908 4.12595i 0.115708 0.348707i
\(141\) 0.919486 0.974154i 0.0774347 0.0820386i
\(142\) 1.43216 0.521263i 0.120184 0.0437434i
\(143\) 16.5237 1.38178
\(144\) 2.17541 0.514535i 0.181284 0.0428779i
\(145\) −2.65994 −0.220896
\(146\) 0.700923 3.97513i 0.0580088 0.328984i
\(147\) −4.15876 + 11.3888i −0.343009 + 0.939332i
\(148\) −3.66092 1.33247i −0.300926 0.109528i
\(149\) −2.79057 + 2.34157i −0.228612 + 0.191828i −0.749897 0.661554i \(-0.769897\pi\)
0.521285 + 0.853383i \(0.325453\pi\)
\(150\) 1.92776 4.46626i 0.157401 0.364668i
\(151\) −1.54140 + 0.561025i −0.125438 + 0.0456555i −0.403976 0.914769i \(-0.632372\pi\)
0.278539 + 0.960425i \(0.410150\pi\)
\(152\) −6.91027 −0.560497
\(153\) −0.949667 2.20433i −0.0767760 0.178210i
\(154\) −7.32699 + 4.51518i −0.590426 + 0.363844i
\(155\) 7.01886 + 5.88952i 0.563769 + 0.473058i
\(156\) −9.28665 2.20321i −0.743527 0.176398i
\(157\) −1.62276 + 1.36166i −0.129511 + 0.108672i −0.705242 0.708966i \(-0.749162\pi\)
0.575732 + 0.817639i \(0.304717\pi\)
\(158\) −4.45048 1.61984i −0.354061 0.128868i
\(159\) −14.7806 9.72621i −1.17218 0.771338i
\(160\) −6.47115 + 2.35531i −0.511589 + 0.186203i
\(161\) 16.7160 10.3011i 1.31741 0.811840i
\(162\) 6.94282 0.805094i 0.545479 0.0632542i
\(163\) −3.44273 + 5.96298i −0.269655 + 0.467057i −0.968773 0.247950i \(-0.920243\pi\)
0.699117 + 0.715007i \(0.253576\pi\)
\(164\) −3.31173 2.77887i −0.258603 0.216993i
\(165\) −7.62683 + 3.82816i −0.593748 + 0.298022i
\(166\) 0.511759 + 2.90233i 0.0397202 + 0.225264i
\(167\) 2.24598 + 12.7376i 0.173799 + 0.985665i 0.939521 + 0.342492i \(0.111271\pi\)
−0.765721 + 0.643173i \(0.777618\pi\)
\(168\) 11.4777 3.79515i 0.885525 0.292802i
\(169\) 1.96206 + 1.64636i 0.150928 + 0.126643i
\(170\) 0.365410 + 0.632909i 0.0280257 + 0.0485419i
\(171\) 7.80495 + 0.915868i 0.596859 + 0.0700382i
\(172\) 7.18953 12.4526i 0.548196 0.949504i
\(173\) −10.4460 8.76521i −0.794192 0.666406i 0.152587 0.988290i \(-0.451240\pi\)
−0.946779 + 0.321884i \(0.895684\pi\)
\(174\) −1.81590 2.44034i −0.137663 0.185002i
\(175\) −3.01341 + 9.08143i −0.227793 + 0.686491i
\(176\) −2.93298 1.06752i −0.221081 0.0804671i
\(177\) 6.75215 15.6435i 0.507523 1.17583i
\(178\) −6.80041 + 2.47515i −0.509712 + 0.185520i
\(179\) −2.14561 + 3.71631i −0.160371 + 0.277770i −0.935002 0.354643i \(-0.884602\pi\)
0.774631 + 0.632413i \(0.217936\pi\)
\(180\) 4.79687 1.13457i 0.357538 0.0845662i
\(181\) 8.65164 14.9851i 0.643071 1.11383i −0.341672 0.939819i \(-0.610993\pi\)
0.984743 0.174013i \(-0.0556735\pi\)
\(182\) −8.01917 1.17801i −0.594420 0.0873202i
\(183\) 8.85682 9.38341i 0.654715 0.693641i
\(184\) −18.3970 6.69597i −1.35625 0.493633i
\(185\) −3.08259 1.12197i −0.226636 0.0824889i
\(186\) −0.611618 + 10.4601i −0.0448460 + 0.766970i
\(187\) −0.581941 + 3.30035i −0.0425558 + 0.241346i
\(188\) 1.08036 0.0787934
\(189\) −13.4667 + 2.76529i −0.979561 + 0.201145i
\(190\) −2.39278 −0.173591
\(191\) −3.60038 + 20.4188i −0.260514 + 1.47745i 0.520997 + 0.853559i \(0.325560\pi\)
−0.781511 + 0.623891i \(0.785551\pi\)
\(192\) −4.42233 2.91005i −0.319154 0.210015i
\(193\) 14.0499 + 5.11373i 1.01133 + 0.368094i 0.793944 0.607991i \(-0.208024\pi\)
0.217387 + 0.976086i \(0.430247\pi\)
\(194\) −4.13927 1.50657i −0.297182 0.108165i
\(195\) −7.81959 1.85516i −0.559972 0.132850i
\(196\) −8.98180 + 3.86559i −0.641557 + 0.276113i
\(197\) −10.4928 + 18.1740i −0.747579 + 1.29485i 0.201401 + 0.979509i \(0.435451\pi\)
−0.948980 + 0.315336i \(0.897883\pi\)
\(198\) −8.71883 4.38373i −0.619620 0.311538i
\(199\) −9.04342 + 15.6637i −0.641071 + 1.11037i 0.344123 + 0.938925i \(0.388176\pi\)
−0.985194 + 0.171443i \(0.945157\pi\)
\(200\) 8.96499 3.26299i 0.633921 0.230728i
\(201\) 10.7450 + 14.4400i 0.757897 + 1.01852i
\(202\) −6.50826 2.36881i −0.457920 0.166669i
\(203\) 3.97573 + 4.47120i 0.279042 + 0.313817i
\(204\) 0.767121 1.77728i 0.0537092 0.124434i
\(205\) −2.78856 2.33988i −0.194762 0.163424i
\(206\) −6.98246 + 12.0940i −0.486491 + 0.842627i
\(207\) 19.8914 + 10.0012i 1.38255 + 0.695130i
\(208\) −1.46971 2.54562i −0.101906 0.176507i
\(209\) −8.40535 7.05292i −0.581410 0.487861i
\(210\) 3.97433 1.31413i 0.274255 0.0906834i
\(211\) 3.80425 + 21.5749i 0.261895 + 1.48528i 0.777733 + 0.628594i \(0.216369\pi\)
−0.515838 + 0.856686i \(0.672519\pi\)
\(212\) −2.47796 14.0532i −0.170187 0.965178i
\(213\) −2.83954 1.86852i −0.194562 0.128029i
\(214\) 10.6621 + 8.94655i 0.728845 + 0.611573i
\(215\) 6.05376 10.4854i 0.412863 0.715100i
\(216\) 10.4945 + 8.81819i 0.714064 + 0.600002i
\(217\) −0.590929 20.6012i −0.0401149 1.39850i
\(218\) −5.62503 + 2.04734i −0.380975 + 0.138664i
\(219\) −8.04592 + 4.03852i −0.543693 + 0.272898i
\(220\) −6.46735 2.35392i −0.436029 0.158702i
\(221\) −2.41770 + 2.02869i −0.162632 + 0.136465i
\(222\) −1.07509 3.59404i −0.0721556 0.241216i
\(223\) −15.2032 12.7570i −1.01808 0.854270i −0.0286946 0.999588i \(-0.509135\pi\)
−0.989385 + 0.145318i \(0.953579\pi\)
\(224\) 13.6314 + 7.35722i 0.910783 + 0.491575i
\(225\) −10.5582 + 2.49726i −0.703877 + 0.166484i
\(226\) 13.4097 0.891998
\(227\) 22.9329 8.34689i 1.52211 0.554003i 0.560436 0.828198i \(-0.310634\pi\)
0.961674 + 0.274195i \(0.0884114\pi\)
\(228\) 3.78357 + 5.08464i 0.250573 + 0.336738i
\(229\) 12.1455 10.1913i 0.802597 0.673459i −0.146232 0.989250i \(-0.546715\pi\)
0.948829 + 0.315792i \(0.102270\pi\)
\(230\) −6.37024 2.31858i −0.420041 0.152882i
\(231\) 17.8345 + 7.09841i 1.17342 + 0.467041i
\(232\) 1.03592 5.87502i 0.0680118 0.385714i
\(233\) 2.88655 0.189104 0.0945520 0.995520i \(-0.469858\pi\)
0.0945520 + 0.995520i \(0.469858\pi\)
\(234\) −3.63632 8.44049i −0.237714 0.551772i
\(235\) 0.909691 0.0593417
\(236\) 12.9128 4.69989i 0.840555 0.305937i
\(237\) 3.02720 + 10.1199i 0.196638 + 0.657361i
\(238\) 0.517715 1.56022i 0.0335585 0.101134i
\(239\) −15.4217 + 12.9403i −0.997545 + 0.837040i −0.986642 0.162901i \(-0.947915\pi\)
−0.0109024 + 0.999941i \(0.503470\pi\)
\(240\) 1.26814 + 0.834481i 0.0818579 + 0.0538655i
\(241\) −16.2021 13.5952i −1.04367 0.875742i −0.0512547 0.998686i \(-0.516322\pi\)
−0.992414 + 0.122944i \(0.960766\pi\)
\(242\) 2.54161 + 4.40220i 0.163381 + 0.282984i
\(243\) −10.6845 11.3508i −0.685414 0.728154i
\(244\) 10.4064 0.666203
\(245\) −7.56290 + 3.25492i −0.483176 + 0.207949i
\(246\) 0.242993 4.15574i 0.0154927 0.264960i
\(247\) −1.79437 10.1764i −0.114173 0.647506i
\(248\) −15.7417 + 13.2089i −0.999600 + 0.838764i
\(249\) 4.51174 4.77998i 0.285920 0.302919i
\(250\) 7.39607 2.69195i 0.467769 0.170254i
\(251\) −2.99103 + 5.18061i −0.188792 + 0.326997i −0.944848 0.327510i \(-0.893791\pi\)
0.756056 + 0.654507i \(0.227124\pi\)
\(252\) −9.07689 6.36745i −0.571790 0.401111i
\(253\) −15.5431 26.9215i −0.977187 1.69254i
\(254\) −0.653698 0.548518i −0.0410167 0.0344171i
\(255\) 0.645936 1.49651i 0.0404501 0.0937151i
\(256\) −2.32046 13.1600i −0.145029 0.822498i
\(257\) 10.5663 8.86621i 0.659110 0.553059i −0.250710 0.968062i \(-0.580664\pi\)
0.909820 + 0.415003i \(0.136220\pi\)
\(258\) 13.7526 1.60427i 0.856197 0.0998776i
\(259\) 2.72148 + 6.85862i 0.169105 + 0.426174i
\(260\) −3.24078 5.61320i −0.200985 0.348116i
\(261\) −1.94870 + 6.49836i −0.120622 + 0.402238i
\(262\) 8.87959 0.548583
\(263\) 2.21517 12.5629i 0.136593 0.774660i −0.837143 0.546983i \(-0.815776\pi\)
0.973737 0.227676i \(-0.0731128\pi\)
\(264\) −5.48497 18.3363i −0.337577 1.12852i
\(265\) −2.08650 11.8332i −0.128173 0.726905i
\(266\) 3.57642 + 4.02213i 0.219284 + 0.246612i
\(267\) 13.4832 + 8.87240i 0.825155 + 0.542982i
\(268\) −2.52073 + 14.2958i −0.153978 + 0.873254i
\(269\) 9.60819 + 16.6419i 0.585822 + 1.01467i 0.994772 + 0.102117i \(0.0325615\pi\)
−0.408951 + 0.912556i \(0.634105\pi\)
\(270\) 3.63389 + 3.05343i 0.221152 + 0.185826i
\(271\) −9.45706 + 16.3801i −0.574475 + 0.995021i 0.421623 + 0.906771i \(0.361461\pi\)
−0.996098 + 0.0882493i \(0.971873\pi\)
\(272\) 0.560210 0.203900i 0.0339677 0.0123632i
\(273\) 8.56928 + 15.9171i 0.518637 + 0.963347i
\(274\) −0.101634 + 0.0852811i −0.00613994 + 0.00515202i
\(275\) 14.2350 + 5.18110i 0.858401 + 0.312432i
\(276\) 5.14595 + 17.2029i 0.309750 + 1.03549i
\(277\) −2.20277 + 12.4926i −0.132352 + 0.750605i 0.844315 + 0.535847i \(0.180007\pi\)
−0.976667 + 0.214758i \(0.931104\pi\)
\(278\) 2.68237 + 4.64600i 0.160878 + 0.278648i
\(279\) 19.5305 12.8327i 1.16926 0.768272i
\(280\) 7.22441 + 3.89921i 0.431741 + 0.233023i
\(281\) −1.10050 + 6.24125i −0.0656504 + 0.372322i 0.934227 + 0.356678i \(0.116091\pi\)
−0.999878 + 0.0156435i \(0.995020\pi\)
\(282\) 0.621032 + 0.834587i 0.0369819 + 0.0496989i
\(283\) −5.07947 28.8071i −0.301943 1.71240i −0.637556 0.770404i \(-0.720055\pi\)
0.335613 0.942000i \(-0.391057\pi\)
\(284\) −0.476045 2.69978i −0.0282481 0.160203i
\(285\) 3.18586 + 4.28139i 0.188714 + 0.253608i
\(286\) −2.22828 + 12.6372i −0.131761 + 0.747254i
\(287\) 0.234773 + 8.18475i 0.0138582 + 0.483130i
\(288\) 1.01328 + 17.5348i 0.0597082 + 1.03325i
\(289\) 8.17995 + 14.1681i 0.481173 + 0.833417i
\(290\) 0.358704 2.03431i 0.0210638 0.119459i
\(291\) 2.81552 + 9.41229i 0.165049 + 0.551758i
\(292\) −6.82273 2.48327i −0.399270 0.145323i
\(293\) −10.7472 + 9.01797i −0.627858 + 0.526836i −0.900263 0.435347i \(-0.856626\pi\)
0.272404 + 0.962183i \(0.412181\pi\)
\(294\) −8.14927 4.71643i −0.475275 0.275068i
\(295\) 10.8729 3.95743i 0.633047 0.230410i
\(296\) 3.67862 6.37156i 0.213816 0.370340i
\(297\) 3.76488 + 21.4372i 0.218460 + 1.24391i
\(298\) −1.41450 2.44998i −0.0819397 0.141924i
\(299\) 5.08367 28.8310i 0.293996 1.66734i
\(300\) −7.30952 4.80993i −0.422016 0.277702i
\(301\) −26.6737 + 5.49621i −1.53745 + 0.316796i
\(302\) −0.221205 1.25451i −0.0127289 0.0721891i
\(303\) 4.42690 + 14.7991i 0.254319 + 0.850188i
\(304\) −0.338944 + 1.92225i −0.0194398 + 0.110248i
\(305\) 8.76247 0.501738
\(306\) 1.81393 0.429037i 0.103695 0.0245264i
\(307\) −5.75646 9.97048i −0.328538 0.569045i 0.653684 0.756768i \(-0.273223\pi\)
−0.982222 + 0.187723i \(0.939889\pi\)
\(308\) 5.70974 + 14.3896i 0.325343 + 0.819922i
\(309\) 30.9364 3.60882i 1.75991 0.205298i
\(310\) −5.45080 + 4.57377i −0.309585 + 0.259772i
\(311\) −0.567993 3.22125i −0.0322079 0.182660i 0.964460 0.264230i \(-0.0851178\pi\)
−0.996668 + 0.0815698i \(0.974007\pi\)
\(312\) 7.14285 16.5486i 0.404385 0.936882i
\(313\) −4.61419 3.87177i −0.260809 0.218845i 0.503001 0.864286i \(-0.332229\pi\)
−0.763810 + 0.645441i \(0.776674\pi\)
\(314\) −0.822555 1.42471i −0.0464195 0.0804009i
\(315\) −7.64297 5.36155i −0.430632 0.302089i
\(316\) −4.25954 + 7.37775i −0.239618 + 0.415031i
\(317\) 1.91287 0.696230i 0.107438 0.0391041i −0.287742 0.957708i \(-0.592905\pi\)
0.395180 + 0.918604i \(0.370682\pi\)
\(318\) 9.43178 9.99255i 0.528908 0.560354i
\(319\) 7.25635 6.08880i 0.406278 0.340907i
\(320\) −0.624276 3.54044i −0.0348981 0.197917i
\(321\) 1.81200 30.9894i 0.101136 1.72966i
\(322\) 5.62400 + 14.1735i 0.313413 + 0.789858i
\(323\) 2.09577 0.116612
\(324\) 0.742427 12.5502i 0.0412459 0.697232i
\(325\) 7.13313 + 12.3549i 0.395675 + 0.685329i
\(326\) −4.09620 3.43712i −0.226867 0.190364i
\(327\) 11.1527 + 7.33890i 0.616747 + 0.405842i
\(328\) 6.25411 5.24782i 0.345326 0.289763i
\(329\) −1.35969 1.52914i −0.0749619 0.0843040i
\(330\) −1.89925 6.34920i −0.104550 0.349512i
\(331\) −6.36037 + 2.31499i −0.349598 + 0.127243i −0.510850 0.859670i \(-0.670669\pi\)
0.161252 + 0.986913i \(0.448447\pi\)
\(332\) 5.30112 0.290937
\(333\) −4.99937 + 6.70894i −0.273964 + 0.367647i
\(334\) −10.0445 −0.549612
\(335\) −2.12252 + 12.0374i −0.115966 + 0.657674i
\(336\) −0.492733 3.37894i −0.0268808 0.184336i
\(337\) −2.22559 0.810048i −0.121235 0.0441261i 0.280690 0.959798i \(-0.409437\pi\)
−0.401926 + 0.915672i \(0.631659\pi\)
\(338\) −1.52372 + 1.27855i −0.0828795 + 0.0695442i
\(339\) −17.8543 23.9938i −0.969711 1.30317i
\(340\) 1.23529 0.449609i 0.0669930 0.0243835i
\(341\) −32.6291 −1.76696
\(342\) −1.75298 + 5.84568i −0.0947903 + 0.316098i
\(343\) 16.7754 + 7.84776i 0.905784 + 0.423739i
\(344\) 20.8015 + 17.4545i 1.12154 + 0.941086i
\(345\) 4.33302 + 14.4853i 0.233282 + 0.779861i
\(346\) 8.11227 6.80700i 0.436118 0.365947i
\(347\) −7.34810 2.67449i −0.394467 0.143574i 0.137168 0.990548i \(-0.456200\pi\)
−0.531635 + 0.846974i \(0.678422\pi\)
\(348\) −4.89009 + 2.45450i −0.262136 + 0.131575i
\(349\) 18.6277 6.77991i 0.997116 0.362921i 0.208644 0.977992i \(-0.433095\pi\)
0.788472 + 0.615071i \(0.210873\pi\)
\(350\) −6.53906 3.52931i −0.349527 0.188650i
\(351\) −10.2610 + 17.7445i −0.547689 + 0.947132i
\(352\) 12.2619 21.2382i 0.653562 1.13200i
\(353\) −20.6455 17.3236i −1.09885 0.922042i −0.101500 0.994836i \(-0.532364\pi\)
−0.997347 + 0.0727931i \(0.976809\pi\)
\(354\) 11.0535 + 7.27360i 0.587486 + 0.386587i
\(355\) −0.400842 2.27329i −0.0212745 0.120654i
\(356\) 2.26044 + 12.8196i 0.119803 + 0.679436i
\(357\) −3.48100 + 1.15101i −0.184234 + 0.0609178i
\(358\) −2.55287 2.14211i −0.134923 0.113214i
\(359\) 8.93724 + 15.4797i 0.471689 + 0.816990i 0.999475 0.0323875i \(-0.0103111\pi\)
−0.527786 + 0.849377i \(0.676978\pi\)
\(360\) 0.537024 + 9.29320i 0.0283036 + 0.489795i
\(361\) 6.06911 10.5120i 0.319427 0.553264i
\(362\) 10.2938 + 8.63753i 0.541031 + 0.453979i
\(363\) 4.49281 10.4090i 0.235811 0.546330i
\(364\) −4.59156 + 13.8374i −0.240663 + 0.725279i
\(365\) −5.74491 2.09098i −0.300703 0.109447i
\(366\) 5.98201 + 8.03905i 0.312684 + 0.420208i
\(367\) −5.08005 + 1.84899i −0.265176 + 0.0965163i −0.471187 0.882034i \(-0.656174\pi\)
0.206010 + 0.978550i \(0.433952\pi\)
\(368\) −2.76499 + 4.78911i −0.144135 + 0.249650i
\(369\) −7.75937 + 5.09836i −0.403936 + 0.265410i
\(370\) 1.27378 2.20625i 0.0662205 0.114697i
\(371\) −16.7722 + 21.1939i −0.870769 + 1.10033i
\(372\) 18.3382 + 4.35065i 0.950794 + 0.225571i
\(373\) −4.15661 1.51288i −0.215221 0.0783341i 0.232159 0.972678i \(-0.425421\pi\)
−0.447381 + 0.894344i \(0.647643\pi\)
\(374\) −2.44562 0.890132i −0.126460 0.0460276i
\(375\) −14.6642 9.64955i −0.757254 0.498301i
\(376\) −0.354283 + 2.00924i −0.0182707 + 0.103618i
\(377\) 8.92080 0.459444
\(378\) −0.298834 10.6722i −0.0153703 0.548919i
\(379\) −16.8581 −0.865944 −0.432972 0.901407i \(-0.642535\pi\)
−0.432972 + 0.901407i \(0.642535\pi\)
\(380\) −0.747388 + 4.23865i −0.0383402 + 0.217438i
\(381\) −0.111095 + 1.89998i −0.00569157 + 0.0973389i
\(382\) −15.1306 5.50711i −0.774151 0.281768i
\(383\) −29.7629 10.8328i −1.52081 0.553531i −0.559462 0.828856i \(-0.688992\pi\)
−0.961351 + 0.275325i \(0.911214\pi\)
\(384\) −11.0992 + 11.7591i −0.566406 + 0.600082i
\(385\) 4.80774 + 12.1164i 0.245025 + 0.617508i
\(386\) −5.80563 + 10.0557i −0.295499 + 0.511819i
\(387\) −21.1813 22.4714i −1.07671 1.14228i
\(388\) −3.96169 + 6.86185i −0.201124 + 0.348357i
\(389\) 15.9166 5.79315i 0.807002 0.293725i 0.0946169 0.995514i \(-0.469837\pi\)
0.712385 + 0.701789i \(0.247615\pi\)
\(390\) 2.47332 5.73021i 0.125241 0.290160i
\(391\) 5.57951 + 2.03078i 0.282168 + 0.102701i
\(392\) −4.24375 17.9718i −0.214342 0.907715i
\(393\) −11.8227 15.8882i −0.596377 0.801453i
\(394\) −12.4844 10.4757i −0.628955 0.527756i
\(395\) −3.58664 + 6.21225i −0.180464 + 0.312572i
\(396\) −10.4888 + 14.0755i −0.527082 + 0.707322i
\(397\) −1.93889 3.35826i −0.0973102 0.168546i 0.813260 0.581900i \(-0.197691\pi\)
−0.910570 + 0.413354i \(0.864357\pi\)
\(398\) −10.7600 9.02867i −0.539348 0.452566i
\(399\) 2.43495 11.7545i 0.121900 0.588461i
\(400\) −0.467947 2.65386i −0.0233974 0.132693i
\(401\) 3.08785 + 17.5121i 0.154200 + 0.874511i 0.959514 + 0.281662i \(0.0908857\pi\)
−0.805314 + 0.592849i \(0.798003\pi\)
\(402\) −12.4926 + 6.27047i −0.623075 + 0.312743i
\(403\) −23.5396 19.7520i −1.17259 0.983919i
\(404\) −6.22905 + 10.7890i −0.309907 + 0.536774i
\(405\) 0.625142 10.5676i 0.0310636 0.525107i
\(406\) −3.95570 + 2.43766i −0.196318 + 0.120979i
\(407\) 10.9776 3.99552i 0.544140 0.198051i
\(408\) 3.05378 + 2.00950i 0.151185 + 0.0994851i
\(409\) −14.8804 5.41601i −0.735786 0.267804i −0.0531743 0.998585i \(-0.516934\pi\)
−0.682612 + 0.730781i \(0.739156\pi\)
\(410\) 2.16558 1.81714i 0.106950 0.0897419i
\(411\) 0.287913 + 0.0683059i 0.0142017 + 0.00336928i
\(412\) 19.2426 + 16.1465i 0.948017 + 0.795481i
\(413\) −22.9036 12.3617i −1.12701 0.608281i
\(414\) −10.3313 + 13.8642i −0.507755 + 0.681386i
\(415\) 4.46367 0.219113
\(416\) 21.7027 7.89912i 1.06406 0.387286i
\(417\) 4.74162 10.9854i 0.232198 0.537959i
\(418\) 6.52754 5.47725i 0.319272 0.267901i
\(419\) 3.62696 + 1.32011i 0.177189 + 0.0644914i 0.429091 0.903261i \(-0.358834\pi\)
−0.251902 + 0.967753i \(0.581056\pi\)
\(420\) −1.08650 7.45071i −0.0530157 0.363558i
\(421\) 4.10604 23.2865i 0.200116 1.13491i −0.704827 0.709380i \(-0.748975\pi\)
0.904942 0.425534i \(-0.139914\pi\)
\(422\) −17.0134 −0.828201
\(423\) 0.666450 2.22242i 0.0324039 0.108058i
\(424\) 26.9485 1.30873
\(425\) −2.71893 + 0.989611i −0.131888 + 0.0480032i
\(426\) 1.81196 1.91969i 0.0877896 0.0930091i
\(427\) −13.0970 14.7292i −0.633808 0.712796i
\(428\) 19.1785 16.0927i 0.927027 0.777868i
\(429\) 25.5785 12.8387i 1.23494 0.619860i
\(430\) 7.20283 + 6.04389i 0.347351 + 0.291462i
\(431\) −0.690915 1.19670i −0.0332802 0.0576430i 0.848906 0.528545i \(-0.177262\pi\)
−0.882186 + 0.470902i \(0.843929\pi\)
\(432\) 2.96773 2.48677i 0.142785 0.119645i
\(433\) 6.45364 0.310142 0.155071 0.987903i \(-0.450439\pi\)
0.155071 + 0.987903i \(0.450439\pi\)
\(434\) 15.8354 + 2.32621i 0.760122 + 0.111662i
\(435\) −4.11757 + 2.06675i −0.197423 + 0.0990931i
\(436\) 1.86974 + 10.6038i 0.0895444 + 0.507832i
\(437\) −14.8921 + 12.4960i −0.712388 + 0.597764i
\(438\) −2.00362 6.69809i −0.0957365 0.320047i
\(439\) −20.1250 + 7.32489i −0.960512 + 0.349598i −0.774234 0.632899i \(-0.781865\pi\)
−0.186278 + 0.982497i \(0.559642\pi\)
\(440\) 6.49862 11.2559i 0.309810 0.536606i
\(441\) 2.41125 + 20.8611i 0.114822 + 0.993386i
\(442\) −1.22550 2.12262i −0.0582909 0.100963i
\(443\) −27.0022 22.6576i −1.28291 1.07649i −0.992835 0.119491i \(-0.961874\pi\)
−0.290079 0.957003i \(-0.593682\pi\)
\(444\) −6.70240 + 0.781852i −0.318082 + 0.0371051i
\(445\) 1.90334 + 10.7944i 0.0902271 + 0.511703i
\(446\) 11.8067 9.90698i 0.559063 0.469109i
\(447\) −2.50041 + 5.79297i −0.118265 + 0.273998i
\(448\) −5.01819 + 6.34116i −0.237087 + 0.299592i
\(449\) −10.7147 18.5584i −0.505658 0.875825i −0.999979 0.00654545i \(-0.997917\pi\)
0.494321 0.869280i \(-0.335417\pi\)
\(450\) −0.486079 8.41159i −0.0229140 0.396526i
\(451\) 12.9634 0.610422
\(452\) 4.18852 23.7543i 0.197012 1.11731i
\(453\) −1.95017 + 2.06612i −0.0916270 + 0.0970747i
\(454\) 3.29107 + 18.6646i 0.154458 + 0.875972i
\(455\) −3.86621 + 11.6515i −0.181251 + 0.546229i
\(456\) −10.6971 + 5.36922i −0.500936 + 0.251437i
\(457\) −0.549899 + 3.11863i −0.0257232 + 0.145883i −0.994964 0.100229i \(-0.968042\pi\)
0.969241 + 0.246113i \(0.0791534\pi\)
\(458\) 6.15637 + 10.6631i 0.287668 + 0.498256i
\(459\) −3.18282 2.67441i −0.148561 0.124831i
\(460\) −6.09694 + 10.5602i −0.284271 + 0.492373i
\(461\) 11.0098 4.00726i 0.512780 0.186636i −0.0726535 0.997357i \(-0.523147\pi\)
0.585433 + 0.810721i \(0.300925\pi\)
\(462\) −7.83388 + 12.6825i −0.364465 + 0.590042i
\(463\) −18.8553 + 15.8215i −0.876282 + 0.735288i −0.965411 0.260732i \(-0.916036\pi\)
0.0891290 + 0.996020i \(0.471592\pi\)
\(464\) −1.58346 0.576331i −0.0735101 0.0267555i
\(465\) 15.4413 + 3.66336i 0.716071 + 0.169884i
\(466\) −0.389262 + 2.20762i −0.0180322 + 0.102266i
\(467\) 6.62096 + 11.4678i 0.306381 + 0.530668i 0.977568 0.210620i \(-0.0675484\pi\)
−0.671186 + 0.741289i \(0.734215\pi\)
\(468\) −16.0875 + 3.80509i −0.743647 + 0.175890i
\(469\) 23.4066 14.4241i 1.08082 0.666043i
\(470\) −0.122676 + 0.695727i −0.00565860 + 0.0320915i
\(471\) −1.45403 + 3.36871i −0.0669982 + 0.155222i
\(472\) 4.50627 + 25.5563i 0.207418 + 1.17632i
\(473\) 7.48717 + 42.4618i 0.344260 + 1.95240i
\(474\) −8.14791 + 0.950475i −0.374246 + 0.0436568i
\(475\) 1.64504 9.32947i 0.0754795 0.428066i
\(476\) −2.60211 1.40443i −0.119268 0.0643721i
\(477\) −30.4375 3.57168i −1.39364 0.163536i
\(478\) −7.81702 13.5395i −0.357542 0.619281i
\(479\) 5.79407 32.8598i 0.264738 1.50140i −0.505042 0.863095i \(-0.668523\pi\)
0.769780 0.638309i \(-0.220366\pi\)
\(480\) −8.18725 + 8.67402i −0.373695 + 0.395913i
\(481\) 10.3383 + 3.76282i 0.471384 + 0.171570i
\(482\) 12.5824 10.5579i 0.573114 0.480900i
\(483\) 17.8725 28.9342i 0.813226 1.31655i
\(484\) 8.59206 3.12725i 0.390548 0.142148i
\(485\) −3.33584 + 5.77785i −0.151473 + 0.262358i
\(486\) 10.1219 6.64079i 0.459138 0.301232i
\(487\) 1.15530 + 2.00104i 0.0523516 + 0.0906757i 0.891014 0.453977i \(-0.149995\pi\)
−0.838662 + 0.544652i \(0.816662\pi\)
\(488\) −3.41258 + 19.3537i −0.154480 + 0.876100i
\(489\) −0.696142 + 11.9056i −0.0314806 + 0.538391i
\(490\) −1.46946 6.22301i −0.0663834 0.281127i
\(491\) −2.96527 16.8169i −0.133821 0.758936i −0.975674 0.219229i \(-0.929646\pi\)
0.841853 0.539708i \(-0.181465\pi\)
\(492\) −7.28570 1.72849i −0.328465 0.0779265i
\(493\) −0.314179 + 1.78180i −0.0141499 + 0.0802481i
\(494\) 8.02481 0.361053
\(495\) −8.83183 + 11.8519i −0.396961 + 0.532705i
\(496\) 2.90222 + 5.02680i 0.130314 + 0.225710i
\(497\) −3.22213 + 4.07160i −0.144532 + 0.182636i
\(498\) 3.04728 + 4.09515i 0.136552 + 0.183508i
\(499\) 1.93332 1.62225i 0.0865475 0.0726220i −0.598487 0.801132i \(-0.704231\pi\)
0.685035 + 0.728510i \(0.259787\pi\)
\(500\) −2.45843 13.9425i −0.109944 0.623525i
\(501\) 13.3738 + 17.9726i 0.597496 + 0.802957i
\(502\) −3.55876 2.98615i −0.158835 0.133278i
\(503\) 16.5818 + 28.7204i 0.739344 + 1.28058i 0.952791 + 0.303627i \(0.0981975\pi\)
−0.213447 + 0.976955i \(0.568469\pi\)
\(504\) 14.8186 14.7930i 0.660075 0.658931i
\(505\) −5.24502 + 9.08463i −0.233400 + 0.404261i
\(506\) 22.6855 8.25683i 1.00849 0.367061i
\(507\) 4.31646 + 1.02406i 0.191701 + 0.0454800i
\(508\) −1.17584 + 0.986650i −0.0521696 + 0.0437755i
\(509\) 1.49047 + 8.45288i 0.0660639 + 0.374667i 0.999858 + 0.0168561i \(0.00536571\pi\)
−0.933794 + 0.357811i \(0.883523\pi\)
\(510\) 1.05742 + 0.695819i 0.0468232 + 0.0308114i
\(511\) 5.07193 + 12.7822i 0.224369 + 0.565450i
\(512\) −8.29398 −0.366545
\(513\) 12.7936 4.64661i 0.564853 0.205153i
\(514\) 5.35592 + 9.27673i 0.236240 + 0.409179i
\(515\) 16.2028 + 13.5958i 0.713980 + 0.599101i
\(516\) 1.45377 24.8628i 0.0639986 1.09452i
\(517\) −2.48165 + 2.08235i −0.109143 + 0.0915816i
\(518\) −5.61244 + 1.15646i −0.246597 + 0.0508121i
\(519\) −22.9808 5.45207i −1.00874 0.239319i
\(520\) 11.5021 4.18642i 0.504400 0.183586i
\(521\) 12.6761 0.555350 0.277675 0.960675i \(-0.410436\pi\)
0.277675 + 0.960675i \(0.410436\pi\)
\(522\) −4.70712 2.36669i −0.206025 0.103587i
\(523\) 44.2582 1.93528 0.967638 0.252344i \(-0.0812013\pi\)
0.967638 + 0.252344i \(0.0812013\pi\)
\(524\) 2.77355 15.7296i 0.121163 0.687150i
\(525\) 2.39144 + 16.3994i 0.104371 + 0.715728i
\(526\) 9.30930 + 3.38831i 0.405905 + 0.147737i
\(527\) 4.77421 4.00603i 0.207968 0.174506i
\(528\) −5.36968 + 0.626387i −0.233685 + 0.0272600i
\(529\) −30.1424 + 10.9710i −1.31054 + 0.476998i
\(530\) 9.33131 0.405326
\(531\) −1.70253 29.4623i −0.0738837 1.27856i
\(532\) 8.24201 5.07906i 0.357336 0.220205i
\(533\) 9.35215 + 7.84739i 0.405087 + 0.339908i
\(534\) −8.60383 + 9.11537i −0.372324 + 0.394461i
\(535\) 16.1488 13.5504i 0.698172 0.585836i
\(536\) −25.7604 9.37603i −1.11268 0.404983i
\(537\) −0.433857 + 7.41994i −0.0187223 + 0.320194i
\(538\) −14.0233 + 5.10407i −0.604589 + 0.220052i
\(539\) 13.1809 26.1915i 0.567743 1.12815i
\(540\) 6.54398 5.48344i 0.281608 0.235970i
\(541\) 14.1100 24.4392i 0.606635 1.05072i −0.385155 0.922852i \(-0.625852\pi\)
0.991791 0.127871i \(-0.0408145\pi\)
\(542\) −11.2521 9.44164i −0.483319 0.405553i
\(543\) 1.74942 29.9191i 0.0750747 1.28395i
\(544\) 0.813393 + 4.61298i 0.0348739 + 0.197780i
\(545\) 1.57437 + 8.92870i 0.0674386 + 0.382463i
\(546\) −13.3289 + 4.40726i −0.570426 + 0.188613i
\(547\) 25.1973 + 21.1430i 1.07736 + 0.904010i 0.995699 0.0926507i \(-0.0295340\pi\)
0.0816582 + 0.996660i \(0.473978\pi\)
\(548\) 0.119324 + 0.206675i 0.00509727 + 0.00882872i
\(549\) 6.41949 21.4071i 0.273977 0.913634i
\(550\) −5.88213 + 10.1881i −0.250815 + 0.434424i
\(551\) −4.53788 3.80774i −0.193320 0.162215i
\(552\) −33.6812 + 3.92900i −1.43357 + 0.167229i
\(553\) 15.8033 3.25632i 0.672023 0.138473i
\(554\) −9.25719 3.36934i −0.393300 0.143150i
\(555\) −5.64359 + 0.658339i −0.239557 + 0.0279449i
\(556\) 9.06789 3.30044i 0.384564 0.139970i
\(557\) 4.22812 7.32332i 0.179151 0.310299i −0.762439 0.647060i \(-0.775998\pi\)
0.941590 + 0.336761i \(0.109332\pi\)
\(558\) 7.18060 + 16.6674i 0.303979 + 0.705585i
\(559\) −20.3028 + 35.1655i −0.858719 + 1.48734i
\(560\) 1.43901 1.81838i 0.0608091 0.0768405i
\(561\) 1.66350 + 5.56109i 0.0702331 + 0.234789i
\(562\) −4.62487 1.68332i −0.195088 0.0710064i
\(563\) −35.0053 12.7409i −1.47530 0.536965i −0.525765 0.850630i \(-0.676221\pi\)
−0.949534 + 0.313665i \(0.898443\pi\)
\(564\) 1.67239 0.839431i 0.0704204 0.0353464i
\(565\) 3.52684 20.0017i 0.148375 0.841479i
\(566\) 22.7165 0.954846
\(567\) −18.6978 + 14.7442i −0.785235 + 0.619197i
\(568\) 5.17712 0.217227
\(569\) −1.76688 + 10.0204i −0.0740713 + 0.420079i 0.925113 + 0.379692i \(0.123970\pi\)
−0.999184 + 0.0403868i \(0.987141\pi\)
\(570\) −3.70401 + 1.85917i −0.155144 + 0.0778721i
\(571\) −11.6130 4.22679i −0.485989 0.176886i 0.0873926 0.996174i \(-0.472147\pi\)
−0.573382 + 0.819288i \(0.694369\pi\)
\(572\) 21.6899 + 7.89449i 0.906901 + 0.330085i
\(573\) 10.2918 + 34.4056i 0.429947 + 1.43731i
\(574\) −6.29132 0.924193i −0.262594 0.0385751i
\(575\) 13.4197 23.2436i 0.559639 0.969323i
\(576\) −9.10682 1.06864i −0.379451 0.0445265i
\(577\) −14.3195 + 24.8021i −0.596129 + 1.03253i 0.397257 + 0.917707i \(0.369962\pi\)
−0.993386 + 0.114819i \(0.963371\pi\)
\(578\) −11.9388 + 4.34536i −0.496588 + 0.180743i
\(579\) 25.7224 3.00059i 1.06899 0.124700i
\(580\) −3.49160 1.27084i −0.144981 0.0527687i
\(581\) −6.67171 7.50317i −0.276789 0.311284i
\(582\) −7.57816 + 0.884011i −0.314125 + 0.0366435i
\(583\) 32.7790 + 27.5048i 1.35757 + 1.13913i
\(584\) 6.85572 11.8745i 0.283692 0.491369i
\(585\) −13.5461 + 3.20398i −0.560063 + 0.132468i
\(586\) −5.44760 9.43552i −0.225038 0.389778i
\(587\) −23.3555 19.5976i −0.963983 0.808878i 0.0176135 0.999845i \(-0.494393\pi\)
−0.981596 + 0.190967i \(0.938838\pi\)
\(588\) −10.9002 + 12.9627i −0.449519 + 0.534572i
\(589\) 3.54332 + 20.0952i 0.146000 + 0.828006i
\(590\) 1.56036 + 8.84925i 0.0642390 + 0.364318i
\(591\) −2.12171 + 36.2861i −0.0872754 + 1.49261i
\(592\) −1.59196 1.33581i −0.0654291 0.0549016i
\(593\) −13.4231 + 23.2494i −0.551219 + 0.954739i 0.446968 + 0.894550i \(0.352504\pi\)
−0.998187 + 0.0601889i \(0.980830\pi\)
\(594\) −16.9028 0.0115381i −0.693531 0.000473412i
\(595\) −2.19105 1.18257i −0.0898241 0.0484805i
\(596\) −4.78179 + 1.74043i −0.195870 + 0.0712908i
\(597\) −1.82864 + 31.2739i −0.0748412 + 1.27996i
\(598\) 21.3642 + 7.77594i 0.873648 + 0.317982i
\(599\) 28.5034 23.9172i 1.16462 0.977229i 0.164658 0.986351i \(-0.447348\pi\)
0.999958 + 0.00912179i \(0.00290360\pi\)
\(600\) 11.3424 12.0168i 0.463053 0.490584i
\(601\) 4.04013 + 3.39007i 0.164801 + 0.138284i 0.721458 0.692458i \(-0.243472\pi\)
−0.556658 + 0.830742i \(0.687917\pi\)
\(602\) −0.606418 21.1411i −0.0247157 0.861648i
\(603\) 27.8530 + 14.0042i 1.13426 + 0.570293i
\(604\) −2.29138 −0.0932348
\(605\) 7.23473 2.63323i 0.294134 0.107056i
\(606\) −11.9153 + 1.38995i −0.484026 + 0.0564629i
\(607\) 0.496810 0.416873i 0.0201649 0.0169204i −0.632649 0.774438i \(-0.718033\pi\)
0.652814 + 0.757518i \(0.273588\pi\)
\(608\) −14.4115 5.24535i −0.584463 0.212727i
\(609\) 9.62849 + 3.83229i 0.390166 + 0.155292i
\(610\) −1.18165 + 6.70150i −0.0478438 + 0.271336i
\(611\) −3.05088 −0.123426
\(612\) −0.193427 3.34726i −0.00781883 0.135305i
\(613\) −16.4059 −0.662630 −0.331315 0.943520i \(-0.607492\pi\)
−0.331315 + 0.943520i \(0.607492\pi\)
\(614\) 8.40166 3.05795i 0.339063 0.123409i
\(615\) −6.13474 1.45543i −0.247377 0.0586888i
\(616\) −28.6339 + 5.90010i −1.15369 + 0.237722i
\(617\) 31.7556 26.6461i 1.27843 1.07273i 0.284972 0.958536i \(-0.408016\pi\)
0.993458 0.114195i \(-0.0364288\pi\)
\(618\) −1.41190 + 24.1467i −0.0567949 + 0.971323i
\(619\) −5.62640 4.72111i −0.226144 0.189757i 0.522675 0.852532i \(-0.324934\pi\)
−0.748819 + 0.662775i \(0.769379\pi\)
\(620\) 6.39954 + 11.0843i 0.257012 + 0.445157i
\(621\) 38.5626 + 0.0263233i 1.54746 + 0.00105632i
\(622\) 2.54019 0.101852
\(623\) 15.2999 19.3334i 0.612976 0.774578i
\(624\) −4.25302 2.79864i −0.170257 0.112035i
\(625\) 1.06992 + 6.06784i 0.0427970 + 0.242714i
\(626\) 3.58335 3.00679i 0.143219 0.120175i
\(627\) −18.4915 4.38701i −0.738479 0.175200i
\(628\) −2.78069 + 1.01209i −0.110962 + 0.0403868i
\(629\) −1.11567 + 1.93239i −0.0444845 + 0.0770494i
\(630\) 5.13117 5.12228i 0.204431 0.204076i
\(631\) 2.24120 + 3.88187i 0.0892206 + 0.154535i 0.907182 0.420739i \(-0.138229\pi\)
−0.817961 + 0.575273i \(0.804896\pi\)
\(632\) −12.3242 10.3412i −0.490229 0.411351i
\(633\) 22.6525 + 30.4420i 0.900355 + 1.20996i
\(634\) 0.274514 + 1.55685i 0.0109023 + 0.0618303i
\(635\) −0.990090 + 0.830784i −0.0392905 + 0.0329687i
\(636\) −14.7551 19.8289i −0.585077 0.786268i
\(637\) 25.3641 10.9162i 1.00496 0.432516i
\(638\) 3.67814 + 6.37072i 0.145619 + 0.252219i
\(639\) −5.84740 0.686161i −0.231320 0.0271441i
\(640\) −10.9810 −0.434062
\(641\) −4.97247 + 28.2003i −0.196401 + 1.11384i 0.714009 + 0.700136i \(0.246877\pi\)
−0.910410 + 0.413707i \(0.864234\pi\)
\(642\) 23.4562 + 5.56486i 0.925743 + 0.219628i
\(643\) −5.87650 33.3273i −0.231747 1.31430i −0.849358 0.527817i \(-0.823011\pi\)
0.617611 0.786483i \(-0.288100\pi\)
\(644\) 26.8640 5.53542i 1.05859 0.218126i
\(645\) 1.22411 20.9351i 0.0481993 0.824318i
\(646\) −0.282623 + 1.60284i −0.0111197 + 0.0630628i
\(647\) −1.69981 2.94416i −0.0668266 0.115747i 0.830676 0.556756i \(-0.187954\pi\)
−0.897503 + 0.441009i \(0.854621\pi\)
\(648\) 23.0971 + 5.49633i 0.907342 + 0.215916i
\(649\) −20.6027 + 35.6849i −0.808725 + 1.40075i
\(650\) −10.4109 + 3.78927i −0.408350 + 0.148627i
\(651\) −16.9217 31.4313i −0.663213 1.23189i
\(652\) −7.36806 + 6.18254i −0.288556 + 0.242127i
\(653\) 10.6574 + 3.87899i 0.417058 + 0.151797i 0.542021 0.840365i \(-0.317659\pi\)
−0.124964 + 0.992161i \(0.539881\pi\)
\(654\) −7.11675 + 7.53987i −0.278287 + 0.294832i
\(655\) 2.33540 13.2447i 0.0912515 0.517513i
\(656\) −1.15304 1.99712i −0.0450186 0.0779746i
\(657\) −9.31714 + 12.5032i −0.363496 + 0.487797i
\(658\) 1.35284 0.833671i 0.0527390 0.0324999i
\(659\) 4.10806 23.2980i 0.160027 0.907560i −0.794017 0.607895i \(-0.792014\pi\)
0.954045 0.299665i \(-0.0968748\pi\)
\(660\) −11.8404 + 1.38121i −0.460887 + 0.0537637i
\(661\) −4.74889 26.9323i −0.184710 1.04754i −0.926327 0.376721i \(-0.877052\pi\)
0.741616 0.670824i \(-0.234059\pi\)
\(662\) −0.912769 5.17657i −0.0354758 0.201193i
\(663\) −2.16631 + 5.01893i −0.0841325 + 0.194919i
\(664\) −1.73839 + 9.85892i −0.0674628 + 0.382600i
\(665\) 6.93998 4.27669i 0.269121 0.165843i
\(666\) −4.45678 4.72822i −0.172697 0.183215i
\(667\) −8.39143 14.5344i −0.324917 0.562773i
\(668\) −3.13742 + 17.7932i −0.121390 + 0.688439i
\(669\) −33.4465 7.93500i −1.29312 0.306785i
\(670\) −8.91992 3.24659i −0.344607 0.125427i
\(671\) −23.9041 + 20.0579i −0.922809 + 0.774328i
\(672\) 26.8177 + 0.797494i 1.03452 + 0.0307640i
\(673\) 26.4493 9.62674i 1.01954 0.371084i 0.222453 0.974943i \(-0.428593\pi\)
0.797091 + 0.603860i \(0.206371\pi\)
\(674\) 0.919650 1.59288i 0.0354236 0.0613555i
\(675\) −14.4036 + 12.0693i −0.554396 + 0.464549i
\(676\) 1.78893 + 3.09852i 0.0688051 + 0.119174i
\(677\) −6.01340 + 34.1037i −0.231114 + 1.31071i 0.619532 + 0.784972i \(0.287322\pi\)
−0.850646 + 0.525740i \(0.823789\pi\)
\(678\) 20.7581 10.4192i 0.797210 0.400147i
\(679\) 14.6982 3.02861i 0.564065 0.116227i
\(680\) 0.431086 + 2.44481i 0.0165314 + 0.0937542i
\(681\) 29.0145 30.7396i 1.11184 1.17794i
\(682\) 4.40016 24.9546i 0.168491 0.955560i
\(683\) −10.9649 −0.419560 −0.209780 0.977749i \(-0.567275\pi\)
−0.209780 + 0.977749i \(0.567275\pi\)
\(684\) 9.80766 + 4.93118i 0.375005 + 0.188549i
\(685\) 0.100474 + 0.174026i 0.00383890 + 0.00664918i
\(686\) −8.26415 + 11.7714i −0.315527 + 0.449435i
\(687\) 10.8826 25.2130i 0.415198 0.961935i
\(688\) 5.87567 4.93027i 0.224008 0.187965i
\(689\) 6.99763 + 39.6855i 0.266588 + 1.51190i
\(690\) −11.6626 + 1.36047i −0.443988 + 0.0517923i
\(691\) −18.2055 15.2762i −0.692571 0.581136i 0.227079 0.973876i \(-0.427083\pi\)
−0.919649 + 0.392741i \(0.871527\pi\)
\(692\) −9.52425 16.4965i −0.362058 0.627102i
\(693\) 33.1231 2.86894i 1.25824 0.108982i
\(694\) 3.03636 5.25913i 0.115259 0.199634i
\(695\) 7.63539 2.77906i 0.289627 0.105416i
\(696\) −2.96123 9.89940i −0.112245 0.375236i
\(697\) −1.89677 + 1.59158i −0.0718453 + 0.0602853i
\(698\) 2.67323 + 15.1606i 0.101183 + 0.573839i
\(699\) 4.46836 2.24282i 0.169009 0.0848312i
\(700\) −8.29441 + 10.4811i −0.313499 + 0.396148i
\(701\) −23.7177 −0.895806 −0.447903 0.894082i \(-0.647829\pi\)
−0.447903 + 0.894082i \(0.647829\pi\)
\(702\) −12.1872 10.2404i −0.459976 0.386501i
\(703\) −3.65281 6.32685i −0.137768 0.238622i
\(704\) 9.80736 + 8.22936i 0.369629 + 0.310156i
\(705\) 1.40820 0.706822i 0.0530357 0.0266204i
\(706\) 16.0331 13.4534i 0.603415 0.506325i
\(707\) 23.1103 4.76195i 0.869152 0.179092i
\(708\) 16.3372 17.3086i 0.613991 0.650496i
\(709\) −19.0248 + 6.92446i −0.714491 + 0.260054i −0.673585 0.739109i \(-0.735247\pi\)
−0.0409060 + 0.999163i \(0.513024\pi\)
\(710\) 1.79265 0.0672771
\(711\) 12.5492 + 13.3135i 0.470631 + 0.499295i
\(712\) −24.5829 −0.921282
\(713\) −10.0387 + 56.9322i −0.375951 + 2.13213i
\(714\) −0.410857 2.81747i −0.0153760 0.105441i
\(715\) 18.2635 + 6.64736i 0.683015 + 0.248597i
\(716\) −4.59199 + 3.85314i −0.171611 + 0.143999i
\(717\) −13.8181 + 32.0140i −0.516048 + 1.19559i
\(718\) −13.0441 + 4.74765i −0.486800 + 0.177181i
\(719\) 39.7852 1.48374 0.741868 0.670546i \(-0.233940\pi\)
0.741868 + 0.670546i \(0.233940\pi\)
\(720\) 2.61145 + 0.306440i 0.0973231 + 0.0114203i
\(721\) −1.36414 47.5571i −0.0508032 1.77112i
\(722\) 7.22109 + 6.05921i 0.268741 + 0.225501i
\(723\) −35.6441 8.45636i −1.32562 0.314496i
\(724\) 18.5161 15.5368i 0.688144 0.577421i
\(725\) 7.68518 + 2.79718i 0.285420 + 0.103885i
\(726\) 7.35487 + 4.83977i 0.272965 + 0.179621i
\(727\) −47.5872 + 17.3203i −1.76491 + 0.642375i −0.999998 0.00176083i \(-0.999440\pi\)
−0.764911 + 0.644135i \(0.777217\pi\)
\(728\) −24.2289 13.0770i −0.897983 0.484666i
\(729\) −25.3591 9.26917i −0.939225 0.343303i
\(730\) 2.37389 4.11171i 0.0878618 0.152181i
\(731\) −6.30876 5.29367i −0.233338 0.195794i
\(732\) 16.1091 8.08570i 0.595409 0.298856i
\(733\) −0.335943 1.90523i −0.0124083 0.0703712i 0.977975 0.208723i \(-0.0669307\pi\)
−0.990383 + 0.138352i \(0.955820\pi\)
\(734\) −0.729031 4.13454i −0.0269090 0.152609i
\(735\) −9.17828 + 10.9149i −0.338546 + 0.402602i
\(736\) −33.2846 27.9291i −1.22689 1.02948i
\(737\) −21.7643 37.6968i −0.801697 1.38858i
\(738\) −2.85282 6.62186i −0.105014 0.243754i
\(739\) −16.8742 + 29.2271i −0.620729 + 1.07513i 0.368621 + 0.929580i \(0.379830\pi\)
−0.989350 + 0.145555i \(0.953503\pi\)
\(740\) −3.51035 2.94553i −0.129043 0.108280i
\(741\) −10.6846 14.3587i −0.392509 0.527482i
\(742\) −13.9472 15.6854i −0.512018 0.575828i
\(743\) 21.6301 + 7.87272i 0.793532 + 0.288822i 0.706804 0.707410i \(-0.250136\pi\)
0.0867288 + 0.996232i \(0.472359\pi\)
\(744\) −14.1049 + 32.6784i −0.517111 + 1.19805i
\(745\) −4.02639 + 1.46549i −0.147515 + 0.0536912i
\(746\) 1.71758 2.97494i 0.0628851 0.108920i
\(747\) 3.27014 10.9050i 0.119648 0.398992i
\(748\) −2.34070 + 4.05421i −0.0855844 + 0.148236i
\(749\) −46.9145 6.89173i −1.71422 0.251818i
\(750\) 9.35745 9.91380i 0.341686 0.362001i
\(751\) −15.6562 5.69839i −0.571303 0.207937i 0.0401834 0.999192i \(-0.487206\pi\)
−0.611486 + 0.791255i \(0.709428\pi\)
\(752\) 0.541537 + 0.197103i 0.0197478 + 0.00718762i
\(753\) −0.604805 + 10.3436i −0.0220403 + 0.376940i
\(754\) −1.20301 + 6.82258i −0.0438109 + 0.248464i
\(755\) −1.92940 −0.0702179
\(756\) −18.9984 2.80411i −0.690966 0.101985i
\(757\) 3.53194 0.128370 0.0641852 0.997938i \(-0.479555\pi\)
0.0641852 + 0.997938i \(0.479555\pi\)
\(758\) 2.27339 12.8930i 0.0825731 0.468295i
\(759\) −44.9784 29.5974i −1.63261 1.07432i
\(760\) −7.63787 2.77996i −0.277055 0.100840i
\(761\) −23.0492 8.38921i −0.835532 0.304109i −0.111405 0.993775i \(-0.535535\pi\)
−0.724127 + 0.689666i \(0.757757\pi\)
\(762\) −1.43811 0.341185i −0.0520974 0.0123598i
\(763\) 12.6554 15.9919i 0.458158 0.578944i
\(764\) −14.4815 + 25.0827i −0.523923 + 0.907461i
\(765\) −0.162871 2.81848i −0.00588860 0.101902i
\(766\) 12.2985 21.3017i 0.444364 0.769661i
\(767\) −36.4652 + 13.2722i −1.31668 +