Properties

Label 189.2.u
Level 189
Weight 2
Character orbit u
Rep. character \(\chi_{189}(4,\cdot)\)
Character field \(\Q(\zeta_{9})\)
Dimension 132
Newform subspaces 1
Sturm bound 48
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 189.u (of order \(9\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 189 \)
Character field: \(\Q(\zeta_{9})\)
Newform subspaces: \( 1 \)
Sturm bound: \(48\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(189, [\chi])\).

Total New Old
Modular forms 156 156 0
Cusp forms 132 132 0
Eisenstein series 24 24 0

Trace form

\( 132q - 3q^{2} - 3q^{3} - 3q^{4} - 3q^{5} - 18q^{6} - 6q^{7} - 6q^{8} - 15q^{9} + O(q^{10}) \) \( 132q - 3q^{2} - 3q^{3} - 3q^{4} - 3q^{5} - 18q^{6} - 6q^{7} - 6q^{8} - 15q^{9} + 3q^{10} - 15q^{11} - 3q^{12} - 12q^{13} - 30q^{14} + 9q^{16} + 27q^{17} - 3q^{18} + 3q^{19} - 18q^{20} + 15q^{21} - 12q^{22} - 36q^{23} - 72q^{24} - 3q^{25} + 30q^{26} - 12q^{27} - 12q^{28} - 30q^{29} - 3q^{30} - 3q^{31} - 75q^{32} + 15q^{33} - 18q^{34} + 15q^{35} - 60q^{36} - 6q^{37} + 69q^{38} + 51q^{39} + 51q^{40} - 39q^{42} - 12q^{43} - 6q^{44} - 21q^{45} - 6q^{46} - 21q^{47} + 90q^{48} - 42q^{49} - 39q^{50} + 33q^{51} + 9q^{52} + 9q^{53} - 9q^{54} - 24q^{55} + 111q^{56} - 18q^{57} - 3q^{58} + 27q^{59} - 63q^{60} - 21q^{61} + 75q^{62} + 63q^{63} - 30q^{64} - 90q^{65} - 3q^{66} - 3q^{67} - 30q^{68} - 6q^{69} + 39q^{70} - 18q^{71} + 183q^{72} - 42q^{73} + 51q^{74} - 45q^{75} - 24q^{76} + 15q^{77} - 30q^{78} + 15q^{79} + 102q^{80} - 87q^{81} - 6q^{82} - 42q^{83} + 135q^{84} - 63q^{85} - 93q^{86} + 75q^{87} - 51q^{88} + 75q^{89} - 39q^{90} - 21q^{91} - 66q^{92} + 81q^{93} + 33q^{94} + 15q^{95} - 171q^{96} - 12q^{97} - 36q^{98} + 24q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(189, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
189.2.u.a \(132\) \(1.509\) None \(-3\) \(-3\) \(-3\) \(-6\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database