# Properties

 Label 189.2.s Level 189 Weight 2 Character orbit s Rep. character $$\chi_{189}(17,\cdot)$$ Character field $$\Q(\zeta_{6})$$ Dimension 12 Newform subspaces 2 Sturm bound 48 Trace bound 1

# Related objects

## Defining parameters

 Level: $$N$$ = $$189 = 3^{3} \cdot 7$$ Weight: $$k$$ = $$2$$ Character orbit: $$[\chi]$$ = 189.s (of order $$6$$ and degree $$2$$) Character conductor: $$\operatorname{cond}(\chi)$$ = $$63$$ Character field: $$\Q(\zeta_{6})$$ Newform subspaces: $$2$$ Sturm bound: $$48$$ Trace bound: $$1$$ Distinguishing $$T_p$$: $$2$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(189, [\chi])$$.

Total New Old
Modular forms 60 20 40
Cusp forms 36 12 24
Eisenstein series 24 8 16

## Trace form

 $$12q + 3q^{2} + 5q^{4} + 6q^{5} - 2q^{7} + O(q^{10})$$ $$12q + 3q^{2} + 5q^{4} + 6q^{5} - 2q^{7} - 6q^{10} + 3q^{13} - 3q^{14} - q^{16} + 9q^{17} - 6q^{19} + 6q^{20} + 2q^{22} - 6q^{25} - 6q^{26} - 2q^{28} + 24q^{29} - 15q^{31} - 39q^{32} - 6q^{34} - q^{37} - 54q^{38} + 6q^{41} + 2q^{43} - 27q^{44} - 4q^{46} - 15q^{47} - 12q^{49} + 9q^{50} + 24q^{53} + 54q^{56} + 2q^{58} + 18q^{59} + 36q^{61} - 24q^{62} + 4q^{64} - 6q^{65} - 6q^{67} + 48q^{68} - 18q^{70} - 6q^{73} - 48q^{77} + 12q^{79} + 45q^{80} + 30q^{83} + 9q^{85} + 22q^{88} - 27q^{89} - 15q^{91} - 30q^{92} - 3q^{94} - 27q^{95} + 3q^{97} - 21q^{98} + O(q^{100})$$

## Decomposition of $$S_{2}^{\mathrm{new}}(189, [\chi])$$ into newform subspaces

Label Dim. $$A$$ Field CM Traces $q$-expansion
$$a_2$$ $$a_3$$ $$a_5$$ $$a_7$$
189.2.s.a $$2$$ $$1.509$$ $$\Q(\sqrt{-3})$$ None $$3$$ $$0$$ $$6$$ $$-5$$ $$q+(1+\zeta_{6})q^{2}+\zeta_{6}q^{4}+3q^{5}+(-3+\cdots)q^{7}+\cdots$$
189.2.s.b $$10$$ $$1.509$$ 10.0.$$\cdots$$.1 None $$0$$ $$0$$ $$0$$ $$3$$ $$q+(-\beta _{3}-\beta _{4}-\beta _{5}-\beta _{7}-\beta _{8})q^{2}+\cdots$$

## Decomposition of $$S_{2}^{\mathrm{old}}(189, [\chi])$$ into lower level spaces

$$S_{2}^{\mathrm{old}}(189, [\chi]) \cong$$ $$S_{2}^{\mathrm{new}}(63, [\chi])$$$$^{\oplus 2}$$

## Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ ($$1 - 3 T + 5 T^{2} - 6 T^{3} + 4 T^{4}$$)($$1 + 3 T^{2} + 4 T^{4} + 6 T^{5} - 2 T^{6} - 3 T^{7} - 14 T^{8} - 39 T^{9} + T^{10} - 78 T^{11} - 56 T^{12} - 24 T^{13} - 32 T^{14} + 192 T^{15} + 256 T^{16} + 768 T^{18} + 1024 T^{20}$$)
$3$ 1
$5$ ($$( 1 - 3 T + 5 T^{2} )^{2}$$)($$( 1 + 16 T^{2} + 6 T^{3} + 127 T^{4} + 51 T^{5} + 635 T^{6} + 150 T^{7} + 2000 T^{8} + 3125 T^{10} )^{2}$$)
$7$ ($$1 + 5 T + 7 T^{2}$$)($$1 - 3 T + 16 T^{2} - 62 T^{3} + 220 T^{4} - 473 T^{5} + 1540 T^{6} - 3038 T^{7} + 5488 T^{8} - 7203 T^{9} + 16807 T^{10}$$)
$11$ ($$1 - 19 T^{2} + 121 T^{4}$$)($$1 - 66 T^{2} + 2257 T^{4} - 51461 T^{6} + 855052 T^{8} - 10752323 T^{10} + 103461292 T^{12} - 753440501 T^{14} + 3998413177 T^{16} - 14147686146 T^{18} + 25937424601 T^{20}$$)
$13$ ($$( 1 - 2 T + 13 T^{2} )( 1 + 5 T + 13 T^{2} )$$)($$1 - 6 T + 68 T^{2} - 336 T^{3} + 2292 T^{4} - 9399 T^{5} + 51837 T^{6} - 187401 T^{7} + 909867 T^{8} - 3004662 T^{9} + 13054461 T^{10} - 39060606 T^{11} + 153767523 T^{12} - 411719997 T^{13} + 1480516557 T^{14} - 3489782907 T^{15} + 11063046228 T^{16} - 21083501712 T^{17} + 55469689028 T^{18} - 63626996238 T^{19} + 137858491849 T^{20}$$)
$17$ ($$1 + 3 T - 8 T^{2} + 51 T^{3} + 289 T^{4}$$)($$1 - 12 T + 26 T^{2} + 36 T^{3} + 1143 T^{4} - 5247 T^{5} - 21540 T^{6} + 73476 T^{7} + 337539 T^{8} + 599625 T^{9} - 13374333 T^{10} + 10193625 T^{11} + 97548771 T^{12} + 360987588 T^{13} - 1799042340 T^{14} - 7449989679 T^{15} + 27589241367 T^{16} + 14772192228 T^{17} + 181369693466 T^{18} - 1423054517964 T^{19} + 2015993900449 T^{20}$$)
$19$ ($$( 1 + T + 19 T^{2} )( 1 + 8 T + 19 T^{2} )$$)($$1 - 3 T + 71 T^{2} - 204 T^{3} + 2646 T^{4} - 8547 T^{5} + 74607 T^{6} - 258954 T^{7} + 1743726 T^{8} - 5989488 T^{9} + 35261703 T^{10} - 113800272 T^{11} + 629485086 T^{12} - 1776165486 T^{13} + 9722858847 T^{14} - 21163218153 T^{15} + 124483401126 T^{16} - 182349834756 T^{17} + 1205832975911 T^{18} - 968063093337 T^{19} + 6131066257801 T^{20}$$)
$23$ ($$1 - 19 T^{2} + 529 T^{4}$$)($$1 - 165 T^{2} + 13144 T^{4} - 668429 T^{6} + 24050461 T^{8} - 639494549 T^{10} + 12722693869 T^{12} - 187053839789 T^{14} + 1945783725016 T^{16} - 12921312571365 T^{18} + 41426511213649 T^{20}$$)
$29$ ($$1 - 9 T + 56 T^{2} - 261 T^{3} + 841 T^{4}$$)($$1 - 15 T + 150 T^{2} - 1125 T^{3} + 6691 T^{4} - 30108 T^{5} + 81631 T^{6} + 232971 T^{7} - 5137202 T^{8} + 44535417 T^{9} - 275752187 T^{10} + 1291527093 T^{11} - 4320386882 T^{12} + 5681929719 T^{13} + 57736055311 T^{14} - 617549674092 T^{15} + 3979962840811 T^{16} - 19406110847625 T^{17} + 75036961944150 T^{18} - 217607189638035 T^{19} + 420707233300201 T^{20}$$)
$31$ ($$1 + 6 T + 43 T^{2} + 186 T^{3} + 961 T^{4}$$)($$1 + 9 T + 149 T^{2} + 1098 T^{3} + 10878 T^{4} + 60723 T^{5} + 461409 T^{6} + 2027286 T^{7} + 13421802 T^{8} + 50078664 T^{9} + 374531595 T^{10} + 1552438584 T^{11} + 12898351722 T^{12} + 60394877226 T^{13} + 426120901089 T^{14} + 1738447936173 T^{15} + 9654265041918 T^{16} + 30208850293878 T^{17} + 127080764578709 T^{18} + 237956599446039 T^{19} + 819628286980801 T^{20}$$)
$37$ ($$1 + 7 T + 12 T^{2} + 259 T^{3} + 1369 T^{4}$$)($$1 - 6 T - 97 T^{2} + 194 T^{3} + 7179 T^{4} + 3556 T^{5} - 323794 T^{6} - 533292 T^{7} + 10739317 T^{8} + 10946526 T^{9} - 345629139 T^{10} + 405021462 T^{11} + 14702124973 T^{12} - 27012839676 T^{13} - 606842086834 T^{14} + 246587111092 T^{15} + 18419349890211 T^{16} + 18416784163802 T^{17} - 340710507030337 T^{18} - 779770438770462 T^{19} + 4808584372417849 T^{20}$$)
$41$ ($$1 + 3 T - 32 T^{2} + 123 T^{3} + 1681 T^{4}$$)($$1 - 9 T - 34 T^{2} + 747 T^{3} - 2085 T^{4} - 20394 T^{5} + 110775 T^{6} + 623979 T^{7} - 5992218 T^{8} - 18494757 T^{9} + 381591615 T^{10} - 758285037 T^{11} - 10072918458 T^{12} + 43005256659 T^{13} + 313023674775 T^{14} - 2362771363194 T^{15} - 9903967342485 T^{16} + 145481442589107 T^{17} - 271487457790114 T^{18} - 2946437409545649 T^{19} + 13422659310152401 T^{20}$$)
$43$ ($$1 + T - 42 T^{2} + 43 T^{3} + 1849 T^{4}$$)($$1 - 3 T - 79 T^{2} + 1100 T^{3} + 1674 T^{4} - 79931 T^{5} + 324899 T^{6} + 3229902 T^{7} - 28512986 T^{8} - 52724394 T^{9} + 1438527201 T^{10} - 2267148942 T^{11} - 52720511114 T^{12} + 256799818314 T^{13} + 1110765026099 T^{14} - 11750531857433 T^{15} + 10581961744026 T^{16} + 299000472217700 T^{17} - 923367821930479 T^{18} - 1507777835810529 T^{19} + 21611482313284249 T^{20}$$)
$47$ ($$1 - 47 T^{2} + 2209 T^{4}$$)($$1 + 15 T - 49 T^{2} - 1068 T^{3} + 9486 T^{4} + 83265 T^{5} - 760914 T^{6} - 2887821 T^{7} + 57371082 T^{8} + 59131839 T^{9} - 3026317959 T^{10} + 2779196433 T^{11} + 126732720138 T^{12} - 299822239683 T^{13} - 3713017588434 T^{14} + 19096412007855 T^{15} + 102251636610894 T^{16} - 541073492654484 T^{17} - 1166753046426289 T^{18} + 16786957096541505 T^{19} + 52599132235830049 T^{20}$$)
$53$ ($$1 - 15 T + 128 T^{2} - 795 T^{3} + 2809 T^{4}$$)($$1 - 9 T + 237 T^{2} - 1890 T^{3} + 28720 T^{4} - 208689 T^{5} + 2523571 T^{6} - 16852668 T^{7} + 178203742 T^{8} - 1088604978 T^{9} + 10361882797 T^{10} - 57696063834 T^{11} + 500574311278 T^{12} - 2508974653836 T^{13} + 19912189027651 T^{14} - 87272799238677 T^{15} + 636560451624880 T^{16} - 2220204054291930 T^{17} + 14755546627492557 T^{18} - 29697872326219197 T^{19} + 174887470365513049 T^{20}$$)
$59$ ($$1 - 59 T^{2} + 3481 T^{4}$$)($$1 - 18 T - 55 T^{2} + 1536 T^{3} + 19971 T^{4} - 205494 T^{5} - 1764945 T^{6} + 8798931 T^{7} + 181121100 T^{8} - 308804295 T^{9} - 11121159681 T^{10} - 18219453405 T^{11} + 630482549100 T^{12} + 1807115649849 T^{13} - 21386475710145 T^{14} - 146912653898706 T^{15} + 842387437344411 T^{16} + 3822568680681984 T^{17} - 8075674068237655 T^{18} - 155933924735788902 T^{19} + 511116753300641401 T^{20}$$)
$61$ ($$1 - 24 T + 253 T^{2} - 1464 T^{3} + 3721 T^{4}$$)($$1 - 12 T + 251 T^{2} - 2436 T^{3} + 34779 T^{4} - 347730 T^{5} + 3716049 T^{6} - 34819755 T^{7} + 301038894 T^{8} - 2709237273 T^{9} + 20488848807 T^{10} - 165263473653 T^{11} + 1120165724574 T^{12} - 7903422809655 T^{13} + 51451823602209 T^{14} - 293691471746730 T^{15} + 1791827099901219 T^{16} - 7655721548547156 T^{17} + 48118535562317531 T^{18} - 140329753114009692 T^{19} + 713342911662882601 T^{20}$$)
$67$ ($$1 - 4 T - 51 T^{2} - 268 T^{3} + 4489 T^{4}$$)($$1 + 10 T - 182 T^{2} - 2448 T^{3} + 18867 T^{4} + 319605 T^{5} - 772530 T^{6} - 23213154 T^{7} - 12219093 T^{8} + 697872289 T^{9} + 3674653819 T^{10} + 46757443363 T^{11} - 54851508477 T^{12} - 6981657836502 T^{13} - 15567345506130 T^{14} + 431506734822735 T^{15} + 1706678296382523 T^{16} - 14836622009830704 T^{17} - 73904317315308662 T^{18} + 272065343962949470 T^{19} + 1822837804551761449 T^{20}$$)
$71$ ($$1 - 130 T^{2} + 5041 T^{4}$$)($$1 - 351 T^{2} + 63037 T^{4} - 7800935 T^{6} + 747809113 T^{8} - 58386380555 T^{10} + 3769705738633 T^{12} - 198234871721735 T^{14} + 8075057597528077 T^{16} - 226659489467262111 T^{18} + 3255243551009881201 T^{20}$$)
$73$ ($$1 + 9 T + 100 T^{2} + 657 T^{3} + 5329 T^{4}$$)($$1 - 3 T + 260 T^{2} - 771 T^{3} + 36639 T^{4} - 155724 T^{5} + 3663555 T^{6} - 21043473 T^{7} + 293486934 T^{8} - 2074196103 T^{9} + 21799556757 T^{10} - 151416315519 T^{11} + 1563991871286 T^{12} - 8186268736041 T^{13} + 104038517806755 T^{14} - 322827000748332 T^{15} + 5544734717002671 T^{16} - 8517544258223787 T^{17} + 209679623892461060 T^{18} - 176614760124803739 T^{19} + 4297625829703557649 T^{20}$$)
$79$ ($$1 + 8 T - 15 T^{2} + 632 T^{3} + 6241 T^{4}$$)($$1 - 20 T + 46 T^{2} - 144 T^{3} + 21153 T^{4} - 101181 T^{5} - 106944 T^{6} - 9264000 T^{7} + 7962453 T^{8} + 230795113 T^{9} + 4723714795 T^{10} + 18232813927 T^{11} + 49693669173 T^{12} - 4567513296000 T^{13} - 4165477462464 T^{14} - 311339643507219 T^{15} + 5142028946635713 T^{16} - 2765362894006896 T^{17} + 69787005255701806 T^{18} - 2397031919652366380 T^{19} + 9468276082626847201 T^{20}$$)
$83$ ($$1 - 15 T + 142 T^{2} - 1245 T^{3} + 6889 T^{4}$$)($$1 - 15 T - 136 T^{2} + 1773 T^{3} + 22674 T^{4} - 93717 T^{5} - 3687774 T^{6} + 10067337 T^{7} + 346135869 T^{8} - 496605294 T^{9} - 27460905396 T^{10} - 41218239402 T^{11} + 2384530001541 T^{12} + 5756372421219 T^{13} - 175015562267454 T^{14} - 369155071940031 T^{15} + 7413046025768706 T^{16} + 48112218404608671 T^{17} - 306311743570909576 T^{18} - 2804103829013106045 T^{19} + 15516041187205853449 T^{20}$$)
$89$ ($$1 + 3 T - 80 T^{2} + 267 T^{3} + 7921 T^{4}$$)($$1 + 24 T + 44 T^{2} - 2592 T^{3} - 1287 T^{4} + 278721 T^{5} - 235110 T^{6} - 13705920 T^{7} + 186157425 T^{8} + 904992183 T^{9} - 14602879521 T^{10} + 80544304287 T^{11} + 1474552963425 T^{12} - 9662248716480 T^{13} - 14751328281510 T^{14} + 1556394633684729 T^{15} - 639614921466807 T^{16} - 114647620049211168 T^{17} + 173209907450891564 T^{18} + 8408553688979645016 T^{19} + 31181719929966183601 T^{20}$$)
$97$ ($$1 + 3 T + 100 T^{2} + 291 T^{3} + 9409 T^{4}$$)($$1 - 6 T + 311 T^{2} - 1794 T^{3} + 51903 T^{4} - 385032 T^{5} + 6010353 T^{6} - 63309837 T^{7} + 574248354 T^{8} - 8264282925 T^{9} + 54719955099 T^{10} - 801635443725 T^{11} + 5403102762786 T^{12} - 57781178864301 T^{13} + 532092229646193 T^{14} - 3306400793833224 T^{15} + 43233745971829887 T^{16} - 144952122353734722 T^{17} + 2437441847851234871 T^{18} - 4561386351927391302 T^{19} + 73742412689492826049 T^{20}$$)