Properties

Label 189.2.s
Level $189$
Weight $2$
Character orbit 189.s
Rep. character $\chi_{189}(17,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $12$
Newform subspaces $2$
Sturm bound $48$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.s (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 63 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(48\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(189, [\chi])\).

Total New Old
Modular forms 60 20 40
Cusp forms 36 12 24
Eisenstein series 24 8 16

Trace form

\( 12 q + 3 q^{2} + 5 q^{4} + 6 q^{5} - 2 q^{7} - 6 q^{10} + 3 q^{13} - 3 q^{14} - q^{16} + 9 q^{17} - 6 q^{19} + 6 q^{20} + 2 q^{22} - 6 q^{25} - 6 q^{26} - 2 q^{28} + 24 q^{29} - 15 q^{31} - 39 q^{32} - 6 q^{34}+ \cdots - 21 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(189, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
189.2.s.a 189.s 63.s $2$ $1.509$ \(\Q(\sqrt{-3}) \) None 63.2.i.a \(3\) \(0\) \(6\) \(-5\) $\mathrm{SU}(2)[C_{6}]$ \(q+(1+\zeta_{6})q^{2}+\zeta_{6}q^{4}+3q^{5}+(-3+\cdots)q^{7}+\cdots\)
189.2.s.b 189.s 63.s $10$ $1.509$ 10.0.\(\cdots\).1 None 63.2.i.b \(0\) \(0\) \(0\) \(3\) $\mathrm{SU}(2)[C_{6}]$ \(q+(-\beta _{3}-\beta _{4}-\beta _{5}-\beta _{7}-\beta _{8})q^{2}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(189, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(189, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 2}\)