Properties

Label 189.2.p.c.26.2
Level $189$
Weight $2$
Character 189.26
Analytic conductor $1.509$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-5})\)
Defining polynomial: \(x^{4} - 5 x^{2} + 25\)
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 26.2
Root \(1.93649 + 1.11803i\) of defining polynomial
Character \(\chi\) \(=\) 189.26
Dual form 189.2.p.c.80.2

$q$-expansion

\(f(q)\) \(=\) \(q+(1.93649 + 1.11803i) q^{2} +(1.50000 + 2.59808i) q^{4} +(-2.00000 + 1.73205i) q^{7} +2.23607i q^{8} +O(q^{10})\) \(q+(1.93649 + 1.11803i) q^{2} +(1.50000 + 2.59808i) q^{4} +(-2.00000 + 1.73205i) q^{7} +2.23607i q^{8} +(3.87298 - 2.23607i) q^{11} +1.73205i q^{13} +(-5.80948 + 1.11803i) q^{14} +(0.500000 - 0.866025i) q^{16} +(-3.87298 - 6.70820i) q^{17} +(-3.00000 - 1.73205i) q^{19} +10.0000 q^{22} +(-3.87298 - 2.23607i) q^{23} +(2.50000 + 4.33013i) q^{25} +(-1.93649 + 3.35410i) q^{26} +(-7.50000 - 2.59808i) q^{28} +4.47214i q^{29} +(-1.50000 + 0.866025i) q^{31} +(5.80948 - 3.35410i) q^{32} -17.3205i q^{34} +(-2.50000 + 4.33013i) q^{37} +(-3.87298 - 6.70820i) q^{38} +7.74597 q^{41} -7.00000 q^{43} +(11.6190 + 6.70820i) q^{44} +(-5.00000 - 8.66025i) q^{46} +(-3.87298 + 6.70820i) q^{47} +(1.00000 - 6.92820i) q^{49} +11.1803i q^{50} +(-4.50000 + 2.59808i) q^{52} +(3.87298 - 2.23607i) q^{53} +(-3.87298 - 4.47214i) q^{56} +(-5.00000 + 8.66025i) q^{58} +(3.87298 + 6.70820i) q^{59} +(7.50000 + 4.33013i) q^{61} -3.87298 q^{62} +13.0000 q^{64} +(0.500000 + 0.866025i) q^{67} +(11.6190 - 20.1246i) q^{68} -8.94427i q^{71} +(6.00000 - 3.46410i) q^{73} +(-9.68246 + 5.59017i) q^{74} -10.3923i q^{76} +(-3.87298 + 11.1803i) q^{77} +(-5.50000 + 9.52628i) q^{79} +(15.0000 + 8.66025i) q^{82} -7.74597 q^{83} +(-13.5554 - 7.82624i) q^{86} +(5.00000 + 8.66025i) q^{88} +(-7.74597 + 13.4164i) q^{89} +(-3.00000 - 3.46410i) q^{91} -13.4164i q^{92} +(-15.0000 + 8.66025i) q^{94} -1.73205i q^{97} +(9.68246 - 12.2984i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 6q^{4} - 8q^{7} + O(q^{10}) \) \( 4q + 6q^{4} - 8q^{7} + 2q^{16} - 12q^{19} + 40q^{22} + 10q^{25} - 30q^{28} - 6q^{31} - 10q^{37} - 28q^{43} - 20q^{46} + 4q^{49} - 18q^{52} - 20q^{58} + 30q^{61} + 52q^{64} + 2q^{67} + 24q^{73} - 22q^{79} + 60q^{82} + 20q^{88} - 12q^{91} - 60q^{94} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.93649 + 1.11803i 1.36931 + 0.790569i 0.990839 0.135045i \(-0.0431180\pi\)
0.378467 + 0.925615i \(0.376451\pi\)
\(3\) 0 0
\(4\) 1.50000 + 2.59808i 0.750000 + 1.29904i
\(5\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(6\) 0 0
\(7\) −2.00000 + 1.73205i −0.755929 + 0.654654i
\(8\) 2.23607i 0.790569i
\(9\) 0 0
\(10\) 0 0
\(11\) 3.87298 2.23607i 1.16775 0.674200i 0.214600 0.976702i \(-0.431155\pi\)
0.953149 + 0.302502i \(0.0978220\pi\)
\(12\) 0 0
\(13\) 1.73205i 0.480384i 0.970725 + 0.240192i \(0.0772105\pi\)
−0.970725 + 0.240192i \(0.922790\pi\)
\(14\) −5.80948 + 1.11803i −1.55265 + 0.298807i
\(15\) 0 0
\(16\) 0.500000 0.866025i 0.125000 0.216506i
\(17\) −3.87298 6.70820i −0.939336 1.62698i −0.766712 0.641991i \(-0.778109\pi\)
−0.172624 0.984988i \(-0.555225\pi\)
\(18\) 0 0
\(19\) −3.00000 1.73205i −0.688247 0.397360i 0.114708 0.993399i \(-0.463407\pi\)
−0.802955 + 0.596040i \(0.796740\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 10.0000 2.13201
\(23\) −3.87298 2.23607i −0.807573 0.466252i 0.0385394 0.999257i \(-0.487729\pi\)
−0.846112 + 0.533005i \(0.821063\pi\)
\(24\) 0 0
\(25\) 2.50000 + 4.33013i 0.500000 + 0.866025i
\(26\) −1.93649 + 3.35410i −0.379777 + 0.657794i
\(27\) 0 0
\(28\) −7.50000 2.59808i −1.41737 0.490990i
\(29\) 4.47214i 0.830455i 0.909718 + 0.415227i \(0.136298\pi\)
−0.909718 + 0.415227i \(0.863702\pi\)
\(30\) 0 0
\(31\) −1.50000 + 0.866025i −0.269408 + 0.155543i −0.628619 0.777714i \(-0.716379\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 5.80948 3.35410i 1.02698 0.592927i
\(33\) 0 0
\(34\) 17.3205i 2.97044i
\(35\) 0 0
\(36\) 0 0
\(37\) −2.50000 + 4.33013i −0.410997 + 0.711868i −0.994999 0.0998840i \(-0.968153\pi\)
0.584002 + 0.811752i \(0.301486\pi\)
\(38\) −3.87298 6.70820i −0.628281 1.08821i
\(39\) 0 0
\(40\) 0 0
\(41\) 7.74597 1.20972 0.604858 0.796333i \(-0.293230\pi\)
0.604858 + 0.796333i \(0.293230\pi\)
\(42\) 0 0
\(43\) −7.00000 −1.06749 −0.533745 0.845645i \(-0.679216\pi\)
−0.533745 + 0.845645i \(0.679216\pi\)
\(44\) 11.6190 + 6.70820i 1.75162 + 1.01130i
\(45\) 0 0
\(46\) −5.00000 8.66025i −0.737210 1.27688i
\(47\) −3.87298 + 6.70820i −0.564933 + 0.978492i 0.432123 + 0.901815i \(0.357765\pi\)
−0.997056 + 0.0766776i \(0.975569\pi\)
\(48\) 0 0
\(49\) 1.00000 6.92820i 0.142857 0.989743i
\(50\) 11.1803i 1.58114i
\(51\) 0 0
\(52\) −4.50000 + 2.59808i −0.624038 + 0.360288i
\(53\) 3.87298 2.23607i 0.531995 0.307148i −0.209833 0.977737i \(-0.567292\pi\)
0.741829 + 0.670590i \(0.233959\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −3.87298 4.47214i −0.517549 0.597614i
\(57\) 0 0
\(58\) −5.00000 + 8.66025i −0.656532 + 1.13715i
\(59\) 3.87298 + 6.70820i 0.504219 + 0.873334i 0.999988 + 0.00487911i \(0.00155308\pi\)
−0.495769 + 0.868455i \(0.665114\pi\)
\(60\) 0 0
\(61\) 7.50000 + 4.33013i 0.960277 + 0.554416i 0.896258 0.443533i \(-0.146275\pi\)
0.0640184 + 0.997949i \(0.479608\pi\)
\(62\) −3.87298 −0.491869
\(63\) 0 0
\(64\) 13.0000 1.62500
\(65\) 0 0
\(66\) 0 0
\(67\) 0.500000 + 0.866025i 0.0610847 + 0.105802i 0.894951 0.446165i \(-0.147211\pi\)
−0.833866 + 0.551967i \(0.813877\pi\)
\(68\) 11.6190 20.1246i 1.40900 2.44047i
\(69\) 0 0
\(70\) 0 0
\(71\) 8.94427i 1.06149i −0.847532 0.530745i \(-0.821912\pi\)
0.847532 0.530745i \(-0.178088\pi\)
\(72\) 0 0
\(73\) 6.00000 3.46410i 0.702247 0.405442i −0.105937 0.994373i \(-0.533784\pi\)
0.808184 + 0.588930i \(0.200451\pi\)
\(74\) −9.68246 + 5.59017i −1.12556 + 0.649844i
\(75\) 0 0
\(76\) 10.3923i 1.19208i
\(77\) −3.87298 + 11.1803i −0.441367 + 1.27412i
\(78\) 0 0
\(79\) −5.50000 + 9.52628i −0.618798 + 1.07179i 0.370907 + 0.928670i \(0.379047\pi\)
−0.989705 + 0.143120i \(0.954286\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 15.0000 + 8.66025i 1.65647 + 0.956365i
\(83\) −7.74597 −0.850230 −0.425115 0.905139i \(-0.639766\pi\)
−0.425115 + 0.905139i \(0.639766\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −13.5554 7.82624i −1.46172 0.843925i
\(87\) 0 0
\(88\) 5.00000 + 8.66025i 0.533002 + 0.923186i
\(89\) −7.74597 + 13.4164i −0.821071 + 1.42214i 0.0838147 + 0.996481i \(0.473290\pi\)
−0.904886 + 0.425655i \(0.860044\pi\)
\(90\) 0 0
\(91\) −3.00000 3.46410i −0.314485 0.363137i
\(92\) 13.4164i 1.39876i
\(93\) 0 0
\(94\) −15.0000 + 8.66025i −1.54713 + 0.893237i
\(95\) 0 0
\(96\) 0 0
\(97\) 1.73205i 0.175863i −0.996127 0.0879316i \(-0.971974\pi\)
0.996127 0.0879316i \(-0.0280257\pi\)
\(98\) 9.68246 12.2984i 0.978076 1.24232i
\(99\) 0 0
\(100\) −7.50000 + 12.9904i −0.750000 + 1.29904i
\(101\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(102\) 0 0
\(103\) −4.50000 2.59808i −0.443398 0.255996i 0.261640 0.965166i \(-0.415737\pi\)
−0.705038 + 0.709170i \(0.749070\pi\)
\(104\) −3.87298 −0.379777
\(105\) 0 0
\(106\) 10.0000 0.971286
\(107\) −3.87298 2.23607i −0.374415 0.216169i 0.300970 0.953634i \(-0.402690\pi\)
−0.675386 + 0.737465i \(0.736023\pi\)
\(108\) 0 0
\(109\) 0.500000 + 0.866025i 0.0478913 + 0.0829502i 0.888977 0.457951i \(-0.151417\pi\)
−0.841086 + 0.540901i \(0.818083\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0.500000 + 2.59808i 0.0472456 + 0.245495i
\(113\) 8.94427i 0.841406i −0.907198 0.420703i \(-0.861783\pi\)
0.907198 0.420703i \(-0.138217\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −11.6190 + 6.70820i −1.07879 + 0.622841i
\(117\) 0 0
\(118\) 17.3205i 1.59448i
\(119\) 19.3649 + 6.70820i 1.77518 + 0.614940i
\(120\) 0 0
\(121\) 4.50000 7.79423i 0.409091 0.708566i
\(122\) 9.68246 + 16.7705i 0.876609 + 1.51833i
\(123\) 0 0
\(124\) −4.50000 2.59808i −0.404112 0.233314i
\(125\) 0 0
\(126\) 0 0
\(127\) −1.00000 −0.0887357 −0.0443678 0.999015i \(-0.514127\pi\)
−0.0443678 + 0.999015i \(0.514127\pi\)
\(128\) 13.5554 + 7.82624i 1.19814 + 0.691748i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(132\) 0 0
\(133\) 9.00000 1.73205i 0.780399 0.150188i
\(134\) 2.23607i 0.193167i
\(135\) 0 0
\(136\) 15.0000 8.66025i 1.28624 0.742611i
\(137\) 3.87298 2.23607i 0.330891 0.191040i −0.325345 0.945595i \(-0.605481\pi\)
0.656237 + 0.754555i \(0.272147\pi\)
\(138\) 0 0
\(139\) 8.66025i 0.734553i −0.930112 0.367277i \(-0.880290\pi\)
0.930112 0.367277i \(-0.119710\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 10.0000 17.3205i 0.839181 1.45350i
\(143\) 3.87298 + 6.70820i 0.323875 + 0.560968i
\(144\) 0 0
\(145\) 0 0
\(146\) 15.4919 1.28212
\(147\) 0 0
\(148\) −15.0000 −1.23299
\(149\) −15.4919 8.94427i −1.26915 0.732743i −0.294322 0.955706i \(-0.595094\pi\)
−0.974827 + 0.222963i \(0.928427\pi\)
\(150\) 0 0
\(151\) 6.50000 + 11.2583i 0.528962 + 0.916190i 0.999430 + 0.0337724i \(0.0107521\pi\)
−0.470467 + 0.882418i \(0.655915\pi\)
\(152\) 3.87298 6.70820i 0.314140 0.544107i
\(153\) 0 0
\(154\) −20.0000 + 17.3205i −1.61165 + 1.39573i
\(155\) 0 0
\(156\) 0 0
\(157\) 12.0000 6.92820i 0.957704 0.552931i 0.0622385 0.998061i \(-0.480176\pi\)
0.895466 + 0.445130i \(0.146843\pi\)
\(158\) −21.3014 + 12.2984i −1.69465 + 0.978406i
\(159\) 0 0
\(160\) 0 0
\(161\) 11.6190 2.23607i 0.915702 0.176227i
\(162\) 0 0
\(163\) 6.50000 11.2583i 0.509119 0.881820i −0.490825 0.871258i \(-0.663305\pi\)
0.999944 0.0105623i \(-0.00336213\pi\)
\(164\) 11.6190 + 20.1246i 0.907288 + 1.57147i
\(165\) 0 0
\(166\) −15.0000 8.66025i −1.16423 0.672166i
\(167\) 7.74597 0.599401 0.299700 0.954033i \(-0.403113\pi\)
0.299700 + 0.954033i \(0.403113\pi\)
\(168\) 0 0
\(169\) 10.0000 0.769231
\(170\) 0 0
\(171\) 0 0
\(172\) −10.5000 18.1865i −0.800617 1.38671i
\(173\) 7.74597 13.4164i 0.588915 1.02003i −0.405460 0.914113i \(-0.632889\pi\)
0.994375 0.105918i \(-0.0337780\pi\)
\(174\) 0 0
\(175\) −12.5000 4.33013i −0.944911 0.327327i
\(176\) 4.47214i 0.337100i
\(177\) 0 0
\(178\) −30.0000 + 17.3205i −2.24860 + 1.29823i
\(179\) −7.74597 + 4.47214i −0.578961 + 0.334263i −0.760720 0.649080i \(-0.775154\pi\)
0.181760 + 0.983343i \(0.441821\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) −1.93649 10.0623i −0.143542 0.745868i
\(183\) 0 0
\(184\) 5.00000 8.66025i 0.368605 0.638442i
\(185\) 0 0
\(186\) 0 0
\(187\) −30.0000 17.3205i −2.19382 1.26660i
\(188\) −23.2379 −1.69480
\(189\) 0 0
\(190\) 0 0
\(191\) −15.4919 8.94427i −1.12096 0.647185i −0.179312 0.983792i \(-0.557387\pi\)
−0.941645 + 0.336607i \(0.890720\pi\)
\(192\) 0 0
\(193\) 3.50000 + 6.06218i 0.251936 + 0.436365i 0.964059 0.265689i \(-0.0855996\pi\)
−0.712123 + 0.702055i \(0.752266\pi\)
\(194\) 1.93649 3.35410i 0.139032 0.240810i
\(195\) 0 0
\(196\) 19.5000 7.79423i 1.39286 0.556731i
\(197\) 8.94427i 0.637253i −0.947880 0.318626i \(-0.896778\pi\)
0.947880 0.318626i \(-0.103222\pi\)
\(198\) 0 0
\(199\) 19.5000 11.2583i 1.38232 0.798082i 0.389885 0.920864i \(-0.372515\pi\)
0.992434 + 0.122782i \(0.0391815\pi\)
\(200\) −9.68246 + 5.59017i −0.684653 + 0.395285i
\(201\) 0 0
\(202\) 0 0
\(203\) −7.74597 8.94427i −0.543660 0.627765i
\(204\) 0 0
\(205\) 0 0
\(206\) −5.80948 10.0623i −0.404765 0.701074i
\(207\) 0 0
\(208\) 1.50000 + 0.866025i 0.104006 + 0.0600481i
\(209\) −15.4919 −1.07160
\(210\) 0 0
\(211\) −19.0000 −1.30801 −0.654007 0.756489i \(-0.726913\pi\)
−0.654007 + 0.756489i \(0.726913\pi\)
\(212\) 11.6190 + 6.70820i 0.797993 + 0.460721i
\(213\) 0 0
\(214\) −5.00000 8.66025i −0.341793 0.592003i
\(215\) 0 0
\(216\) 0 0
\(217\) 1.50000 4.33013i 0.101827 0.293948i
\(218\) 2.23607i 0.151446i
\(219\) 0 0
\(220\) 0 0
\(221\) 11.6190 6.70820i 0.781575 0.451243i
\(222\) 0 0
\(223\) 24.2487i 1.62381i 0.583787 + 0.811907i \(0.301570\pi\)
−0.583787 + 0.811907i \(0.698430\pi\)
\(224\) −5.80948 + 16.7705i −0.388162 + 1.12053i
\(225\) 0 0
\(226\) 10.0000 17.3205i 0.665190 1.15214i
\(227\) −11.6190 20.1246i −0.771177 1.33572i −0.936918 0.349548i \(-0.886335\pi\)
0.165742 0.986169i \(-0.446998\pi\)
\(228\) 0 0
\(229\) 22.5000 + 12.9904i 1.48684 + 0.858429i 0.999888 0.0149989i \(-0.00477447\pi\)
0.486954 + 0.873427i \(0.338108\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −10.0000 −0.656532
\(233\) 7.74597 + 4.47214i 0.507455 + 0.292979i 0.731787 0.681533i \(-0.238687\pi\)
−0.224332 + 0.974513i \(0.572020\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −11.6190 + 20.1246i −0.756329 + 1.31000i
\(237\) 0 0
\(238\) 30.0000 + 34.6410i 1.94461 + 2.24544i
\(239\) 8.94427i 0.578557i −0.957245 0.289278i \(-0.906585\pi\)
0.957245 0.289278i \(-0.0934153\pi\)
\(240\) 0 0
\(241\) 13.5000 7.79423i 0.869611 0.502070i 0.00239235 0.999997i \(-0.499238\pi\)
0.867219 + 0.497927i \(0.165905\pi\)
\(242\) 17.4284 10.0623i 1.12034 0.646830i
\(243\) 0 0
\(244\) 25.9808i 1.66325i
\(245\) 0 0
\(246\) 0 0
\(247\) 3.00000 5.19615i 0.190885 0.330623i
\(248\) −1.93649 3.35410i −0.122967 0.212986i
\(249\) 0 0
\(250\) 0 0
\(251\) 23.2379 1.46676 0.733382 0.679817i \(-0.237941\pi\)
0.733382 + 0.679817i \(0.237941\pi\)
\(252\) 0 0
\(253\) −20.0000 −1.25739
\(254\) −1.93649 1.11803i −0.121506 0.0701517i
\(255\) 0 0
\(256\) 4.50000 + 7.79423i 0.281250 + 0.487139i
\(257\) −11.6190 + 20.1246i −0.724770 + 1.25534i 0.234298 + 0.972165i \(0.424721\pi\)
−0.959069 + 0.283174i \(0.908613\pi\)
\(258\) 0 0
\(259\) −2.50000 12.9904i −0.155342 0.807183i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 3.87298 2.23607i 0.238818 0.137882i −0.375815 0.926695i \(-0.622637\pi\)
0.614634 + 0.788813i \(0.289304\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 19.3649 + 6.70820i 1.18734 + 0.411306i
\(267\) 0 0
\(268\) −1.50000 + 2.59808i −0.0916271 + 0.158703i
\(269\) 7.74597 + 13.4164i 0.472280 + 0.818013i 0.999497 0.0317179i \(-0.0100978\pi\)
−0.527217 + 0.849731i \(0.676764\pi\)
\(270\) 0 0
\(271\) 1.50000 + 0.866025i 0.0911185 + 0.0526073i 0.544867 0.838523i \(-0.316580\pi\)
−0.453748 + 0.891130i \(0.649914\pi\)
\(272\) −7.74597 −0.469668
\(273\) 0 0
\(274\) 10.0000 0.604122
\(275\) 19.3649 + 11.1803i 1.16775 + 0.674200i
\(276\) 0 0
\(277\) −2.50000 4.33013i −0.150210 0.260172i 0.781094 0.624413i \(-0.214662\pi\)
−0.931305 + 0.364241i \(0.881328\pi\)
\(278\) 9.68246 16.7705i 0.580715 1.00583i
\(279\) 0 0
\(280\) 0 0
\(281\) 17.8885i 1.06714i 0.845756 + 0.533571i \(0.179150\pi\)
−0.845756 + 0.533571i \(0.820850\pi\)
\(282\) 0 0
\(283\) −10.5000 + 6.06218i −0.624160 + 0.360359i −0.778487 0.627661i \(-0.784012\pi\)
0.154327 + 0.988020i \(0.450679\pi\)
\(284\) 23.2379 13.4164i 1.37892 0.796117i
\(285\) 0 0
\(286\) 17.3205i 1.02418i
\(287\) −15.4919 + 13.4164i −0.914460 + 0.791946i
\(288\) 0 0
\(289\) −21.5000 + 37.2391i −1.26471 + 2.19053i
\(290\) 0 0
\(291\) 0 0
\(292\) 18.0000 + 10.3923i 1.05337 + 0.608164i
\(293\) 7.74597 0.452524 0.226262 0.974066i \(-0.427349\pi\)
0.226262 + 0.974066i \(0.427349\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −9.68246 5.59017i −0.562781 0.324922i
\(297\) 0 0
\(298\) −20.0000 34.6410i −1.15857 2.00670i
\(299\) 3.87298 6.70820i 0.223980 0.387945i
\(300\) 0 0
\(301\) 14.0000 12.1244i 0.806947 0.698836i
\(302\) 29.0689i 1.67273i
\(303\) 0 0
\(304\) −3.00000 + 1.73205i −0.172062 + 0.0993399i
\(305\) 0 0
\(306\) 0 0
\(307\) 5.19615i 0.296560i −0.988945 0.148280i \(-0.952626\pi\)
0.988945 0.148280i \(-0.0473737\pi\)
\(308\) −34.8569 + 6.70820i −1.98615 + 0.382235i
\(309\) 0 0
\(310\) 0 0
\(311\) −7.74597 13.4164i −0.439233 0.760775i 0.558397 0.829574i \(-0.311417\pi\)
−0.997631 + 0.0687991i \(0.978083\pi\)
\(312\) 0 0
\(313\) 12.0000 + 6.92820i 0.678280 + 0.391605i 0.799207 0.601056i \(-0.205253\pi\)
−0.120927 + 0.992661i \(0.538587\pi\)
\(314\) 30.9839 1.74852
\(315\) 0 0
\(316\) −33.0000 −1.85640
\(317\) −3.87298 2.23607i −0.217528 0.125590i 0.387277 0.921963i \(-0.373416\pi\)
−0.604805 + 0.796373i \(0.706749\pi\)
\(318\) 0 0
\(319\) 10.0000 + 17.3205i 0.559893 + 0.969762i
\(320\) 0 0
\(321\) 0 0
\(322\) 25.0000 + 8.66025i 1.39320 + 0.482617i
\(323\) 26.8328i 1.49302i
\(324\) 0 0
\(325\) −7.50000 + 4.33013i −0.416025 + 0.240192i
\(326\) 25.1744 14.5344i 1.39428 0.804988i
\(327\) 0 0
\(328\) 17.3205i 0.956365i
\(329\) −3.87298 20.1246i −0.213524 1.10951i
\(330\) 0 0
\(331\) 2.00000 3.46410i 0.109930 0.190404i −0.805812 0.592172i \(-0.798271\pi\)
0.915742 + 0.401768i \(0.131604\pi\)
\(332\) −11.6190 20.1246i −0.637673 1.10448i
\(333\) 0 0
\(334\) 15.0000 + 8.66025i 0.820763 + 0.473868i
\(335\) 0 0
\(336\) 0 0
\(337\) −10.0000 −0.544735 −0.272367 0.962193i \(-0.587807\pi\)
−0.272367 + 0.962193i \(0.587807\pi\)
\(338\) 19.3649 + 11.1803i 1.05331 + 0.608130i
\(339\) 0 0
\(340\) 0 0
\(341\) −3.87298 + 6.70820i −0.209734 + 0.363270i
\(342\) 0 0
\(343\) 10.0000 + 15.5885i 0.539949 + 0.841698i
\(344\) 15.6525i 0.843925i
\(345\) 0 0
\(346\) 30.0000 17.3205i 1.61281 0.931156i
\(347\) −7.74597 + 4.47214i −0.415825 + 0.240077i −0.693290 0.720659i \(-0.743839\pi\)
0.277464 + 0.960736i \(0.410506\pi\)
\(348\) 0 0
\(349\) 22.5167i 1.20529i −0.798010 0.602645i \(-0.794114\pi\)
0.798010 0.602645i \(-0.205886\pi\)
\(350\) −19.3649 22.3607i −1.03510 1.19523i
\(351\) 0 0
\(352\) 15.0000 25.9808i 0.799503 1.38478i
\(353\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −46.4758 −2.46321
\(357\) 0 0
\(358\) −20.0000 −1.05703
\(359\) −3.87298 2.23607i −0.204408 0.118015i 0.394302 0.918981i \(-0.370986\pi\)
−0.598710 + 0.800966i \(0.704320\pi\)
\(360\) 0 0
\(361\) −3.50000 6.06218i −0.184211 0.319062i
\(362\) 0 0
\(363\) 0 0
\(364\) 4.50000 12.9904i 0.235864 0.680881i
\(365\) 0 0
\(366\) 0 0
\(367\) −9.00000 + 5.19615i −0.469796 + 0.271237i −0.716154 0.697942i \(-0.754099\pi\)
0.246358 + 0.969179i \(0.420766\pi\)
\(368\) −3.87298 + 2.23607i −0.201893 + 0.116563i
\(369\) 0 0
\(370\) 0 0
\(371\) −3.87298 + 11.1803i −0.201075 + 0.580454i
\(372\) 0 0
\(373\) −1.00000 + 1.73205i −0.0517780 + 0.0896822i −0.890753 0.454488i \(-0.849822\pi\)
0.838975 + 0.544170i \(0.183156\pi\)
\(374\) −38.7298 67.0820i −2.00267 3.46873i
\(375\) 0 0
\(376\) −15.0000 8.66025i −0.773566 0.446619i
\(377\) −7.74597 −0.398938
\(378\) 0 0
\(379\) 17.0000 0.873231 0.436616 0.899648i \(-0.356177\pi\)
0.436616 + 0.899648i \(0.356177\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −20.0000 34.6410i −1.02329 1.77239i
\(383\) −11.6190 + 20.1246i −0.593701 + 1.02832i 0.400028 + 0.916503i \(0.369000\pi\)
−0.993729 + 0.111817i \(0.964333\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 15.6525i 0.796690i
\(387\) 0 0
\(388\) 4.50000 2.59808i 0.228453 0.131897i
\(389\) −7.74597 + 4.47214i −0.392736 + 0.226746i −0.683345 0.730096i \(-0.739475\pi\)
0.290609 + 0.956842i \(0.406142\pi\)
\(390\) 0 0
\(391\) 34.6410i 1.75187i
\(392\) 15.4919 + 2.23607i 0.782461 + 0.112938i
\(393\) 0 0
\(394\) 10.0000 17.3205i 0.503793 0.872595i
\(395\) 0 0
\(396\) 0 0
\(397\) −25.5000 14.7224i −1.27981 0.738898i −0.302995 0.952992i \(-0.597987\pi\)
−0.976813 + 0.214094i \(0.931320\pi\)
\(398\) 50.3488 2.52376
\(399\) 0 0
\(400\) 5.00000 0.250000
\(401\) 19.3649 + 11.1803i 0.967038 + 0.558320i 0.898332 0.439317i \(-0.144780\pi\)
0.0687059 + 0.997637i \(0.478113\pi\)
\(402\) 0 0
\(403\) −1.50000 2.59808i −0.0747203 0.129419i
\(404\) 0 0
\(405\) 0 0
\(406\) −5.00000 25.9808i −0.248146 1.28940i
\(407\) 22.3607i 1.10838i
\(408\) 0 0
\(409\) −19.5000 + 11.2583i −0.964213 + 0.556689i −0.897467 0.441081i \(-0.854595\pi\)
−0.0667458 + 0.997770i \(0.521262\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 15.5885i 0.767988i
\(413\) −19.3649 6.70820i −0.952885 0.330089i
\(414\) 0 0
\(415\) 0 0
\(416\) 5.80948 + 10.0623i 0.284833 + 0.493345i
\(417\) 0 0
\(418\) −30.0000 17.3205i −1.46735 0.847174i
\(419\) −15.4919 −0.756830 −0.378415 0.925636i \(-0.623531\pi\)
−0.378415 + 0.925636i \(0.623531\pi\)
\(420\) 0 0
\(421\) −34.0000 −1.65706 −0.828529 0.559946i \(-0.810822\pi\)
−0.828529 + 0.559946i \(0.810822\pi\)
\(422\) −36.7933 21.2426i −1.79107 1.03408i
\(423\) 0 0
\(424\) 5.00000 + 8.66025i 0.242821 + 0.420579i
\(425\) 19.3649 33.5410i 0.939336 1.62698i
\(426\) 0 0
\(427\) −22.5000 + 4.33013i −1.08885 + 0.209550i
\(428\) 13.4164i 0.648507i
\(429\) 0 0
\(430\) 0 0
\(431\) 27.1109 15.6525i 1.30589 0.753953i 0.324479 0.945893i \(-0.394811\pi\)
0.981407 + 0.191940i \(0.0614778\pi\)
\(432\) 0 0
\(433\) 15.5885i 0.749133i 0.927200 + 0.374567i \(0.122209\pi\)
−0.927200 + 0.374567i \(0.877791\pi\)
\(434\) 7.74597 6.70820i 0.371818 0.322004i
\(435\) 0 0
\(436\) −1.50000 + 2.59808i −0.0718370 + 0.124425i
\(437\) 7.74597 + 13.4164i 0.370540 + 0.641794i
\(438\) 0 0
\(439\) 3.00000 + 1.73205i 0.143182 + 0.0826663i 0.569880 0.821728i \(-0.306990\pi\)
−0.426698 + 0.904394i \(0.640323\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 30.0000 1.42695
\(443\) 30.9839 + 17.8885i 1.47209 + 0.849910i 0.999508 0.0313772i \(-0.00998932\pi\)
0.472580 + 0.881288i \(0.343323\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −27.1109 + 46.9574i −1.28374 + 2.22350i
\(447\) 0 0
\(448\) −26.0000 + 22.5167i −1.22838 + 1.06381i
\(449\) 8.94427i 0.422106i −0.977475 0.211053i \(-0.932311\pi\)
0.977475 0.211053i \(-0.0676893\pi\)
\(450\) 0 0
\(451\) 30.0000 17.3205i 1.41264 0.815591i
\(452\) 23.2379 13.4164i 1.09302 0.631055i
\(453\) 0 0
\(454\) 51.9615i 2.43868i
\(455\) 0 0
\(456\) 0 0
\(457\) −5.50000 + 9.52628i −0.257279 + 0.445621i −0.965512 0.260358i \(-0.916159\pi\)
0.708233 + 0.705979i \(0.249493\pi\)
\(458\) 29.0474 + 50.3115i 1.35729 + 2.35090i
\(459\) 0 0
\(460\) 0 0
\(461\) −7.74597 −0.360766 −0.180383 0.983596i \(-0.557734\pi\)
−0.180383 + 0.983596i \(0.557734\pi\)
\(462\) 0 0
\(463\) 8.00000 0.371792 0.185896 0.982569i \(-0.440481\pi\)
0.185896 + 0.982569i \(0.440481\pi\)
\(464\) 3.87298 + 2.23607i 0.179799 + 0.103807i
\(465\) 0 0
\(466\) 10.0000 + 17.3205i 0.463241 + 0.802357i
\(467\) 15.4919 26.8328i 0.716881 1.24167i −0.245348 0.969435i \(-0.578902\pi\)
0.962229 0.272240i \(-0.0877643\pi\)
\(468\) 0 0
\(469\) −2.50000 0.866025i −0.115439 0.0399893i
\(470\) 0 0
\(471\) 0 0
\(472\) −15.0000 + 8.66025i −0.690431 + 0.398621i
\(473\) −27.1109 + 15.6525i −1.24656 + 0.719702i
\(474\) 0 0
\(475\) 17.3205i 0.794719i
\(476\) 11.6190 + 60.3738i 0.532554 + 2.76723i
\(477\) 0 0
\(478\) 10.0000 17.3205i 0.457389 0.792222i
\(479\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(480\) 0 0
\(481\) −7.50000 4.33013i −0.341971 0.197437i
\(482\) 34.8569 1.58769
\(483\) 0 0
\(484\) 27.0000 1.22727
\(485\) 0 0
\(486\) 0 0
\(487\) 20.0000 + 34.6410i 0.906287 + 1.56973i 0.819181 + 0.573535i \(0.194428\pi\)
0.0871056 + 0.996199i \(0.472238\pi\)
\(488\) −9.68246 + 16.7705i −0.438304 + 0.759165i
\(489\) 0 0
\(490\) 0 0
\(491\) 22.3607i 1.00912i −0.863376 0.504562i \(-0.831654\pi\)
0.863376 0.504562i \(-0.168346\pi\)
\(492\) 0 0
\(493\) 30.0000 17.3205i 1.35113 0.780076i
\(494\) 11.6190 6.70820i 0.522761 0.301816i
\(495\) 0 0
\(496\) 1.73205i 0.0777714i
\(497\) 15.4919 + 17.8885i 0.694908 + 0.802411i
\(498\) 0 0
\(499\) 15.5000 26.8468i 0.693875 1.20183i −0.276683 0.960961i \(-0.589235\pi\)
0.970558 0.240866i \(-0.0774314\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 45.0000 + 25.9808i 2.00845 + 1.15958i
\(503\) −23.2379 −1.03613 −0.518063 0.855342i \(-0.673347\pi\)
−0.518063 + 0.855342i \(0.673347\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −38.7298 22.3607i −1.72175 0.994053i
\(507\) 0 0
\(508\) −1.50000 2.59808i −0.0665517 0.115271i
\(509\) 11.6190 20.1246i 0.515001 0.892008i −0.484848 0.874599i \(-0.661125\pi\)
0.999848 0.0174091i \(-0.00554175\pi\)
\(510\) 0 0
\(511\) −6.00000 + 17.3205i −0.265424 + 0.766214i
\(512\) 11.1803i 0.494106i
\(513\) 0 0
\(514\) −45.0000 + 25.9808i −1.98486 + 1.14596i
\(515\) 0 0
\(516\) 0 0
\(517\) 34.6410i 1.52351i
\(518\) 9.68246 27.9508i 0.425423 1.22809i
\(519\) 0 0
\(520\) 0 0
\(521\) −3.87298 6.70820i −0.169678 0.293892i 0.768628 0.639696i \(-0.220940\pi\)
−0.938307 + 0.345804i \(0.887606\pi\)
\(522\) 0 0
\(523\) −16.5000 9.52628i −0.721495 0.416555i 0.0938079 0.995590i \(-0.470096\pi\)
−0.815303 + 0.579035i \(0.803429\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 10.0000 0.436021
\(527\) 11.6190 + 6.70820i 0.506129 + 0.292214i
\(528\) 0 0
\(529\) −1.50000 2.59808i −0.0652174 0.112960i
\(530\) 0 0
\(531\) 0 0
\(532\) 18.0000 + 20.7846i 0.780399 + 0.901127i
\(533\) 13.4164i 0.581129i
\(534\) 0 0
\(535\) 0 0
\(536\) −1.93649 + 1.11803i −0.0836437 + 0.0482917i
\(537\) 0 0
\(538\) 34.6410i 1.49348i
\(539\) −11.6190 29.0689i −0.500464 1.25209i
\(540\) 0 0
\(541\) −7.00000 + 12.1244i −0.300954 + 0.521267i −0.976352 0.216186i \(-0.930638\pi\)
0.675399 + 0.737453i \(0.263972\pi\)
\(542\) 1.93649 + 3.35410i 0.0831794 + 0.144071i
\(543\) 0 0
\(544\) −45.0000 25.9808i −1.92936 1.11392i
\(545\) 0 0
\(546\) 0 0
\(547\) 11.0000 0.470326 0.235163 0.971956i \(-0.424438\pi\)
0.235163 + 0.971956i \(0.424438\pi\)
\(548\) 11.6190 + 6.70820i 0.496337 + 0.286560i
\(549\) 0 0
\(550\) 25.0000 + 43.3013i 1.06600 + 1.84637i
\(551\) 7.74597 13.4164i 0.329989 0.571558i
\(552\) 0 0
\(553\) −5.50000 28.5788i −0.233884 1.21530i
\(554\) 11.1803i 0.475007i
\(555\) 0 0
\(556\) 22.5000 12.9904i 0.954213 0.550915i
\(557\) −30.9839 + 17.8885i −1.31283 + 0.757962i −0.982564 0.185926i \(-0.940471\pi\)
−0.330265 + 0.943888i \(0.607138\pi\)
\(558\) 0 0
\(559\) 12.1244i 0.512806i
\(560\) 0 0
\(561\) 0 0
\(562\) −20.0000 + 34.6410i −0.843649 + 1.46124i
\(563\) 3.87298 + 6.70820i 0.163227 + 0.282717i 0.936024 0.351936i \(-0.114476\pi\)
−0.772797 + 0.634653i \(0.781143\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −27.1109 −1.13956
\(567\) 0 0
\(568\) 20.0000 0.839181
\(569\) −15.4919 8.94427i −0.649456 0.374963i 0.138792 0.990322i \(-0.455678\pi\)
−0.788248 + 0.615358i \(0.789011\pi\)
\(570\) 0 0
\(571\) 8.00000 + 13.8564i 0.334790 + 0.579873i 0.983444 0.181210i \(-0.0580014\pi\)
−0.648655 + 0.761083i \(0.724668\pi\)
\(572\) −11.6190 + 20.1246i −0.485813 + 0.841452i
\(573\) 0 0
\(574\) −45.0000 + 8.66025i −1.87826 + 0.361472i
\(575\) 22.3607i 0.932505i
\(576\) 0 0
\(577\) −34.5000 + 19.9186i −1.43625 + 0.829222i −0.997587 0.0694283i \(-0.977883\pi\)
−0.438667 + 0.898650i \(0.644549\pi\)
\(578\) −83.2691 + 48.0755i −3.46354 + 1.99968i
\(579\) 0 0
\(580\) 0 0
\(581\) 15.4919 13.4164i 0.642714 0.556606i
\(582\) 0 0
\(583\) 10.0000 17.3205i 0.414158 0.717342i
\(584\) 7.74597 + 13.4164i 0.320530 + 0.555175i
\(585\) 0 0
\(586\) 15.0000 + 8.66025i 0.619644 + 0.357752i
\(587\) −30.9839 −1.27884 −0.639421 0.768857i \(-0.720826\pi\)
−0.639421 + 0.768857i \(0.720826\pi\)
\(588\) 0 0
\(589\) 6.00000 0.247226
\(590\) 0 0
\(591\) 0 0
\(592\) 2.50000 + 4.33013i 0.102749 + 0.177967i
\(593\) 15.4919 26.8328i 0.636177 1.10189i −0.350087 0.936717i \(-0.613848\pi\)
0.986264 0.165174i \(-0.0528187\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 53.6656i 2.19823i
\(597\) 0 0
\(598\) 15.0000 8.66025i 0.613396 0.354144i
\(599\) −7.74597 + 4.47214i −0.316492 + 0.182727i −0.649828 0.760082i \(-0.725159\pi\)
0.333336 + 0.942808i \(0.391826\pi\)
\(600\) 0 0
\(601\) 43.3013i 1.76630i −0.469095 0.883148i \(-0.655420\pi\)
0.469095 0.883148i \(-0.344580\pi\)
\(602\) 40.6663 7.82624i 1.65744 0.318974i
\(603\) 0 0
\(604\) −19.5000 + 33.7750i −0.793444 + 1.37428i
\(605\) 0 0
\(606\) 0 0
\(607\) 27.0000 + 15.5885i 1.09590 + 0.632716i 0.935140 0.354278i \(-0.115273\pi\)
0.160756 + 0.986994i \(0.448607\pi\)
\(608\) −23.2379 −0.942421
\(609\) 0 0
\(610\) 0 0
\(611\) −11.6190 6.70820i −0.470052 0.271385i
\(612\) 0 0
\(613\) −11.5000 19.9186i −0.464481 0.804504i 0.534697 0.845044i \(-0.320426\pi\)
−0.999178 + 0.0405396i \(0.987092\pi\)
\(614\) 5.80948 10.0623i 0.234451 0.406082i
\(615\) 0 0
\(616\) −25.0000 8.66025i −1.00728 0.348932i
\(617\) 22.3607i 0.900207i −0.892976 0.450104i \(-0.851387\pi\)
0.892976 0.450104i \(-0.148613\pi\)
\(618\) 0 0
\(619\) 4.50000 2.59808i 0.180870 0.104425i −0.406831 0.913503i \(-0.633366\pi\)
0.587701 + 0.809078i \(0.300033\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 34.6410i 1.38898i
\(623\) −7.74597 40.2492i −0.310336 1.61255i
\(624\) 0 0
\(625\) −12.5000 + 21.6506i −0.500000 + 0.866025i
\(626\) 15.4919 + 26.8328i 0.619182 + 1.07246i
\(627\) 0 0
\(628\) 36.0000 + 20.7846i 1.43656 + 0.829396i
\(629\) 38.7298 1.54426
\(630\) 0 0
\(631\) 29.0000 1.15447 0.577236 0.816577i \(-0.304131\pi\)
0.577236 + 0.816577i \(0.304131\pi\)
\(632\) −21.3014 12.2984i −0.847325 0.489203i
\(633\) 0 0
\(634\) −5.00000 8.66025i −0.198575 0.343943i
\(635\) 0 0
\(636\) 0 0
\(637\) 12.0000 + 1.73205i 0.475457 + 0.0686264i
\(638\) 44.7214i 1.77054i
\(639\) 0 0
\(640\) 0 0
\(641\) 3.87298 2.23607i 0.152974 0.0883194i −0.421559 0.906801i \(-0.638517\pi\)
0.574533 + 0.818481i \(0.305184\pi\)
\(642\) 0 0
\(643\) 19.0526i 0.751360i −0.926750 0.375680i \(-0.877409\pi\)
0.926750 0.375680i \(-0.122591\pi\)
\(644\) 23.2379 + 26.8328i 0.915702 + 1.05736i
\(645\) 0 0
\(646\) −30.0000 + 51.9615i −1.18033 + 2.04440i
\(647\) 7.74597 + 13.4164i 0.304525 + 0.527453i 0.977156 0.212525i \(-0.0681688\pi\)
−0.672630 + 0.739979i \(0.734835\pi\)
\(648\) 0 0
\(649\) 30.0000 + 17.3205i 1.17760 + 0.679889i
\(650\) −19.3649 −0.759555
\(651\) 0 0
\(652\) 39.0000 1.52736
\(653\) 19.3649 + 11.1803i 0.757808 + 0.437521i 0.828508 0.559977i \(-0.189190\pi\)
−0.0707003 + 0.997498i \(0.522523\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 3.87298 6.70820i 0.151215 0.261911i
\(657\) 0 0
\(658\) 15.0000 43.3013i 0.584761 1.68806i
\(659\) 17.8885i 0.696839i 0.937339 + 0.348419i \(0.113281\pi\)
−0.937339 + 0.348419i \(0.886719\pi\)
\(660\) 0 0
\(661\) −24.0000 + 13.8564i −0.933492 + 0.538952i −0.887914 0.460009i \(-0.847846\pi\)
−0.0455776 + 0.998961i \(0.514513\pi\)
\(662\) 7.74597 4.47214i 0.301056 0.173814i
\(663\) 0 0
\(664\) 17.3205i 0.672166i
\(665\) 0 0
\(666\) 0 0
\(667\) 10.0000 17.3205i 0.387202 0.670653i
\(668\) 11.6190 + 20.1246i 0.449551 + 0.778645i
\(669\) 0 0
\(670\) 0 0
\(671\) 38.7298 1.49515
\(672\) 0 0
\(673\) 2.00000 0.0770943 0.0385472 0.999257i \(-0.487727\pi\)
0.0385472 + 0.999257i \(0.487727\pi\)
\(674\) −19.3649 11.1803i −0.745909 0.430651i
\(675\) 0 0
\(676\) 15.0000 + 25.9808i 0.576923 + 0.999260i
\(677\) −15.4919 + 26.8328i −0.595403 + 1.03127i 0.398086 + 0.917348i \(0.369674\pi\)
−0.993490 + 0.113921i \(0.963659\pi\)
\(678\) 0 0
\(679\) 3.00000 + 3.46410i 0.115129 + 0.132940i
\(680\) 0 0
\(681\) 0 0
\(682\) −15.0000 + 8.66025i −0.574380 + 0.331618i
\(683\) −30.9839 + 17.8885i −1.18556 + 0.684486i −0.957295 0.289112i \(-0.906640\pi\)
−0.228269 + 0.973598i \(0.573307\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 1.93649 + 41.3673i 0.0739356 + 1.57941i
\(687\) 0 0
\(688\) −3.50000 + 6.06218i −0.133436 + 0.231118i
\(689\) 3.87298 + 6.70820i 0.147549 + 0.255562i
\(690\) 0 0
\(691\) −28.5000 16.4545i −1.08419 0.625958i −0.152167 0.988355i \(-0.548625\pi\)
−0.932024 + 0.362397i \(0.881959\pi\)
\(692\) 46.4758 1.76674
\(693\) 0 0
\(694\) −20.0000 −0.759190
\(695\) 0 0
\(696\) 0 0
\(697\) −30.0000 51.9615i −1.13633 1.96818i
\(698\) 25.1744 43.6033i 0.952865 1.65041i
\(699\) 0 0
\(700\) −7.50000 38.9711i −0.283473 1.47297i
\(701\) 8.94427i 0.337820i −0.985631 0.168910i \(-0.945975\pi\)
0.985631 0.168910i \(-0.0540248\pi\)
\(702\) 0 0
\(703\) 15.0000 8.66025i 0.565736 0.326628i
\(704\) 50.3488 29.0689i 1.89759 1.09557i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −5.50000 + 9.52628i −0.206557 + 0.357767i −0.950628 0.310334i \(-0.899559\pi\)
0.744071 + 0.668101i \(0.232892\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −30.0000 17.3205i −1.12430 0.649113i
\(713\) 7.74597 0.290089
\(714\) 0 0
\(715\) 0 0
\(716\) −23.2379 13.4164i −0.868441 0.501395i
\(717\) 0 0
\(718\) −5.00000 8.66025i −0.186598 0.323198i
\(719\) −7.74597 + 13.4164i −0.288876 + 0.500348i −0.973542 0.228509i \(-0.926615\pi\)
0.684666 + 0.728857i \(0.259948\pi\)
\(720\) 0 0
\(721\) 13.5000 2.59808i 0.502766 0.0967574i
\(722\) 15.6525i 0.582525i
\(723\) 0 0
\(724\) 0 0
\(725\) −19.3649 + 11.1803i −0.719195 + 0.415227i
\(726\) 0 0
\(727\) 19.0526i 0.706620i 0.935506 + 0.353310i \(0.114944\pi\)
−0.935506 + 0.353310i \(0.885056\pi\)
\(728\) 7.74597 6.70820i 0.287085 0.248623i
\(729\) 0 0
\(730\) 0 0
\(731\) 27.1109 + 46.9574i 1.00273 + 1.73678i
\(732\) 0 0
\(733\) 31.5000 + 18.1865i 1.16348 + 0.671735i 0.952135 0.305677i \(-0.0988827\pi\)
0.211344 + 0.977412i \(0.432216\pi\)
\(734\) −23.2379 −0.857727
\(735\) 0 0
\(736\) −30.0000 −1.10581
\(737\) 3.87298 + 2.23607i 0.142663 + 0.0823666i
\(738\) 0 0
\(739\) −11.5000 19.9186i −0.423034 0.732717i 0.573200 0.819415i \(-0.305702\pi\)
−0.996235 + 0.0866983i \(0.972368\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −20.0000 + 17.3205i −0.734223 + 0.635856i
\(743\) 31.3050i 1.14847i 0.818691 + 0.574234i \(0.194700\pi\)
−0.818691 + 0.574234i \(0.805300\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −3.87298 + 2.23607i −0.141800 + 0.0818683i
\(747\) 0 0
\(748\) 103.923i 3.79980i
\(749\) 11.6190 2.23607i 0.424547 0.0817041i
\(750\) 0 0
\(751\) 8.00000 13.8564i 0.291924 0.505627i −0.682341 0.731034i \(-0.739038\pi\)
0.974265 + 0.225407i \(0.0723712\pi\)
\(752\) 3.87298 + 6.70820i 0.141233 + 0.244623i
\(753\) 0 0
\(754\) −15.0000 8.66025i −0.546268 0.315388i
\(755\) 0 0
\(756\) 0 0
\(757\) −25.0000 −0.908640 −0.454320 0.890838i \(-0.650118\pi\)
−0.454320 + 0.890838i \(0.650118\pi\)
\(758\) 32.9204 + 19.0066i 1.19572 + 0.690350i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(762\) 0 0
\(763\) −2.50000 0.866025i −0.0905061 0.0313522i
\(764\) 53.6656i 1.94155i
\(765\) 0 0
\(766\) −45.0000 + 25.9808i −1.62592 + 0.938723i
\(767\) −11.6190 + 6.70820i −0.419536 + 0.242219i
\(768\) 0 0
\(769\) 34.6410i 1.24919i −0.780950 0.624593i \(-0.785265\pi\)
0.780950 0.624593i \(-0.214735\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −10.5000 + 18.1865i −0.377903 + 0.654548i
\(773\) −15.4919 26.8328i −0.557206 0.965109i −0.997728 0.0673675i \(-0.978540\pi\)
0.440522 0.897742i \(-0.354793\pi\)
\(774\) 0 0
\(775\) −7.50000 4.33013i −0.269408 0.155543i
\(776\) 3.87298 0.139032
\(777\) 0 0
\(778\) −20.0000 −0.717035
\(779\) −23.2379 13.4164i −0.832584 0.480693i
\(780\) 0 0
\(781\) −20.0000 34.6410i −0.715656 1.23955i
\(782\) −38.7298 + 67.0820i −1.38498 + 2.39885i
\(783\) 0 0
\(784\) −5.50000 4.33013i −0.196429 0.154647i
\(785\) 0 0
\(786\) 0 0
\(787\) 16.5000 9.52628i 0.588161 0.339575i −0.176209 0.984353i \(-0.556383\pi\)
0.764370 + 0.644778i \(0.223050\pi\)
\(788\) 23.2379 13.4164i 0.827816 0.477940i
\(789\) 0 0
\(790\) 0 0
\(791\) 15.4919 + 17.8885i 0.550830 + 0.636043i
\(792\) 0 0
\(793\) −7.50000 + 12.9904i −0.266333