# Properties

 Label 189.2.p.b Level $189$ Weight $2$ Character orbit 189.p Analytic conductor $1.509$ Analytic rank $0$ Dimension $4$ Inner twists $4$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [189,2,Mod(26,189)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(189, base_ring=CyclotomicField(6))

chi = DirichletCharacter(H, H._module([3, 5]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("189.26");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$189 = 3^{3} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 189.p (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$1.50917259820$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{6})$$ Coefficient field: $$\Q(\sqrt{-2}, \sqrt{-3})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{4} - 2x^{2} + 4$$ x^4 - 2*x^2 + 4 Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta_1 q^{2} + ( - 2 \beta_{3} + \beta_1) q^{5} + (\beta_{2} + 2) q^{7} - 2 \beta_{3} q^{8}+O(q^{10})$$ q + b1 * q^2 + (-2*b3 + b1) * q^5 + (b2 + 2) * q^7 - 2*b3 * q^8 $$q + \beta_1 q^{2} + ( - 2 \beta_{3} + \beta_1) q^{5} + (\beta_{2} + 2) q^{7} - 2 \beta_{3} q^{8} + ( - 2 \beta_{2} + 4) q^{10} + (4 \beta_{3} - 4 \beta_1) q^{11} + (4 \beta_{2} - 2) q^{13} + (\beta_{3} + 2 \beta_1) q^{14} + ( - 4 \beta_{2} + 4) q^{16} + (\beta_{3} + \beta_1) q^{17} + (\beta_{2} + 1) q^{19} - 8 q^{22} - 5 \beta_1 q^{23} - \beta_{2} q^{25} + (4 \beta_{3} - 2 \beta_1) q^{26} - \beta_{3} q^{29} + (3 \beta_{2} - 6) q^{31} + (4 \beta_{2} - 2) q^{34} + ( - 5 \beta_{3} + 4 \beta_1) q^{35} + ( - 4 \beta_{2} + 4) q^{37} + (\beta_{3} + \beta_1) q^{38} + ( - 4 \beta_{2} - 4) q^{40} + ( - \beta_{3} + 2 \beta_1) q^{41} - 7 q^{43} - 10 \beta_{2} q^{46} + ( - 6 \beta_{3} + 3 \beta_1) q^{47} + (5 \beta_{2} + 3) q^{49} - \beta_{3} q^{50} + (\beta_{3} - \beta_1) q^{53} + (16 \beta_{2} - 8) q^{55} + ( - 6 \beta_{3} + 2 \beta_1) q^{56} + ( - 2 \beta_{2} + 2) q^{58} + (6 \beta_{3} + 6 \beta_1) q^{59} + ( - 3 \beta_{2} - 3) q^{61} + (3 \beta_{3} - 6 \beta_1) q^{62} - 8 q^{64} + 6 \beta_1 q^{65} - 2 \beta_{2} q^{67} + ( - 2 \beta_{2} + 10) q^{70} + 2 \beta_{3} q^{71} + ( - 7 \beta_{2} + 14) q^{73} + ( - 4 \beta_{3} + 4 \beta_1) q^{74} + (8 \beta_{3} - 12 \beta_1) q^{77} + ( - 4 \beta_{2} + 4) q^{79} + ( - 4 \beta_{3} - 4 \beta_1) q^{80} + (2 \beta_{2} + 2) q^{82} + (4 \beta_{3} - 8 \beta_1) q^{83} + 6 q^{85} - 7 \beta_1 q^{86} + 16 \beta_{2} q^{88} + (2 \beta_{3} - \beta_1) q^{89} + (10 \beta_{2} - 8) q^{91} + ( - 6 \beta_{2} + 12) q^{94} + ( - 3 \beta_{3} + 3 \beta_1) q^{95} + ( - 10 \beta_{2} + 5) q^{97} + (5 \beta_{3} + 3 \beta_1) q^{98}+O(q^{100})$$ q + b1 * q^2 + (-2*b3 + b1) * q^5 + (b2 + 2) * q^7 - 2*b3 * q^8 + (-2*b2 + 4) * q^10 + (4*b3 - 4*b1) * q^11 + (4*b2 - 2) * q^13 + (b3 + 2*b1) * q^14 + (-4*b2 + 4) * q^16 + (b3 + b1) * q^17 + (b2 + 1) * q^19 - 8 * q^22 - 5*b1 * q^23 - b2 * q^25 + (4*b3 - 2*b1) * q^26 - b3 * q^29 + (3*b2 - 6) * q^31 + (4*b2 - 2) * q^34 + (-5*b3 + 4*b1) * q^35 + (-4*b2 + 4) * q^37 + (b3 + b1) * q^38 + (-4*b2 - 4) * q^40 + (-b3 + 2*b1) * q^41 - 7 * q^43 - 10*b2 * q^46 + (-6*b3 + 3*b1) * q^47 + (5*b2 + 3) * q^49 - b3 * q^50 + (b3 - b1) * q^53 + (16*b2 - 8) * q^55 + (-6*b3 + 2*b1) * q^56 + (-2*b2 + 2) * q^58 + (6*b3 + 6*b1) * q^59 + (-3*b2 - 3) * q^61 + (3*b3 - 6*b1) * q^62 - 8 * q^64 + 6*b1 * q^65 - 2*b2 * q^67 + (-2*b2 + 10) * q^70 + 2*b3 * q^71 + (-7*b2 + 14) * q^73 + (-4*b3 + 4*b1) * q^74 + (8*b3 - 12*b1) * q^77 + (-4*b2 + 4) * q^79 + (-4*b3 - 4*b1) * q^80 + (2*b2 + 2) * q^82 + (4*b3 - 8*b1) * q^83 + 6 * q^85 - 7*b1 * q^86 + 16*b2 * q^88 + (2*b3 - b1) * q^89 + (10*b2 - 8) * q^91 + (-6*b2 + 12) * q^94 + (-3*b3 + 3*b1) * q^95 + (-10*b2 + 5) * q^97 + (5*b3 + 3*b1) * q^98 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q + 10 q^{7}+O(q^{10})$$ 4 * q + 10 * q^7 $$4 q + 10 q^{7} + 12 q^{10} + 8 q^{16} + 6 q^{19} - 32 q^{22} - 2 q^{25} - 18 q^{31} + 8 q^{37} - 24 q^{40} - 28 q^{43} - 20 q^{46} + 22 q^{49} + 4 q^{58} - 18 q^{61} - 32 q^{64} - 4 q^{67} + 36 q^{70} + 42 q^{73} + 8 q^{79} + 12 q^{82} + 24 q^{85} + 32 q^{88} - 12 q^{91} + 36 q^{94}+O(q^{100})$$ 4 * q + 10 * q^7 + 12 * q^10 + 8 * q^16 + 6 * q^19 - 32 * q^22 - 2 * q^25 - 18 * q^31 + 8 * q^37 - 24 * q^40 - 28 * q^43 - 20 * q^46 + 22 * q^49 + 4 * q^58 - 18 * q^61 - 32 * q^64 - 4 * q^67 + 36 * q^70 + 42 * q^73 + 8 * q^79 + 12 * q^82 + 24 * q^85 + 32 * q^88 - 12 * q^91 + 36 * q^94

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{4} - 2x^{2} + 4$$ :

 $$\beta_{1}$$ $$=$$ $$\nu$$ v $$\beta_{2}$$ $$=$$ $$( \nu^{2} ) / 2$$ (v^2) / 2 $$\beta_{3}$$ $$=$$ $$( \nu^{3} ) / 2$$ (v^3) / 2
 $$\nu$$ $$=$$ $$\beta_1$$ b1 $$\nu^{2}$$ $$=$$ $$2\beta_{2}$$ 2*b2 $$\nu^{3}$$ $$=$$ $$2\beta_{3}$$ 2*b3

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/189\mathbb{Z}\right)^\times$$.

 $$n$$ $$29$$ $$136$$ $$\chi(n)$$ $$-1$$ $$1 - \beta_{2}$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
26.1
 −1.22474 − 0.707107i 1.22474 + 0.707107i −1.22474 + 0.707107i 1.22474 − 0.707107i
−1.22474 0.707107i 0 0 −1.22474 + 2.12132i 0 2.50000 + 0.866025i 2.82843i 0 3.00000 1.73205i
26.2 1.22474 + 0.707107i 0 0 1.22474 2.12132i 0 2.50000 + 0.866025i 2.82843i 0 3.00000 1.73205i
80.1 −1.22474 + 0.707107i 0 0 −1.22474 2.12132i 0 2.50000 0.866025i 2.82843i 0 3.00000 + 1.73205i
80.2 1.22474 0.707107i 0 0 1.22474 + 2.12132i 0 2.50000 0.866025i 2.82843i 0 3.00000 + 1.73205i
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.d odd 6 1 inner
21.g even 6 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 189.2.p.b 4
3.b odd 2 1 inner 189.2.p.b 4
7.c even 3 1 1323.2.c.c 4
7.d odd 6 1 inner 189.2.p.b 4
7.d odd 6 1 1323.2.c.c 4
9.c even 3 1 567.2.i.e 4
9.c even 3 1 567.2.s.c 4
9.d odd 6 1 567.2.i.e 4
9.d odd 6 1 567.2.s.c 4
21.g even 6 1 inner 189.2.p.b 4
21.g even 6 1 1323.2.c.c 4
21.h odd 6 1 1323.2.c.c 4
63.i even 6 1 567.2.s.c 4
63.k odd 6 1 567.2.i.e 4
63.s even 6 1 567.2.i.e 4
63.t odd 6 1 567.2.s.c 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
189.2.p.b 4 1.a even 1 1 trivial
189.2.p.b 4 3.b odd 2 1 inner
189.2.p.b 4 7.d odd 6 1 inner
189.2.p.b 4 21.g even 6 1 inner
567.2.i.e 4 9.c even 3 1
567.2.i.e 4 9.d odd 6 1
567.2.i.e 4 63.k odd 6 1
567.2.i.e 4 63.s even 6 1
567.2.s.c 4 9.c even 3 1
567.2.s.c 4 9.d odd 6 1
567.2.s.c 4 63.i even 6 1
567.2.s.c 4 63.t odd 6 1
1323.2.c.c 4 7.c even 3 1
1323.2.c.c 4 7.d odd 6 1
1323.2.c.c 4 21.g even 6 1
1323.2.c.c 4 21.h odd 6 1

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{2}^{4} - 2T_{2}^{2} + 4$$ acting on $$S_{2}^{\mathrm{new}}(189, [\chi])$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{4} - 2T^{2} + 4$$
$3$ $$T^{4}$$
$5$ $$T^{4} + 6T^{2} + 36$$
$7$ $$(T^{2} - 5 T + 7)^{2}$$
$11$ $$T^{4} - 32T^{2} + 1024$$
$13$ $$(T^{2} + 12)^{2}$$
$17$ $$T^{4} + 6T^{2} + 36$$
$19$ $$(T^{2} - 3 T + 3)^{2}$$
$23$ $$T^{4} - 50T^{2} + 2500$$
$29$ $$(T^{2} + 2)^{2}$$
$31$ $$(T^{2} + 9 T + 27)^{2}$$
$37$ $$(T^{2} - 4 T + 16)^{2}$$
$41$ $$(T^{2} - 6)^{2}$$
$43$ $$(T + 7)^{4}$$
$47$ $$T^{4} + 54T^{2} + 2916$$
$53$ $$T^{4} - 2T^{2} + 4$$
$59$ $$T^{4} + 216 T^{2} + 46656$$
$61$ $$(T^{2} + 9 T + 27)^{2}$$
$67$ $$(T^{2} + 2 T + 4)^{2}$$
$71$ $$(T^{2} + 8)^{2}$$
$73$ $$(T^{2} - 21 T + 147)^{2}$$
$79$ $$(T^{2} - 4 T + 16)^{2}$$
$83$ $$(T^{2} - 96)^{2}$$
$89$ $$T^{4} + 6T^{2} + 36$$
$97$ $$(T^{2} + 75)^{2}$$