Properties

Label 189.2.o.a.125.5
Level $189$
Weight $2$
Character 189.125
Analytic conductor $1.509$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [189,2,Mod(62,189)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(189, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("189.62"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.o (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 7x^{10} + 37x^{8} - 78x^{6} + 123x^{4} - 36x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 125.5
Root \(-1.29589 - 0.748185i\) of defining polynomial
Character \(\chi\) \(=\) 189.125
Dual form 189.2.o.a.62.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.97141 - 1.13819i) q^{2} +(1.59097 - 2.75564i) q^{4} +(-0.717144 + 1.24213i) q^{5} +(2.16235 - 1.52455i) q^{7} -2.69056i q^{8} +3.26499i q^{10} +(-2.80150 + 1.61745i) q^{11} +(-4.43334 - 2.55959i) q^{13} +(2.52764 - 5.46668i) q^{14} +(0.119562 + 0.207087i) q^{16} +1.09132 q^{17} +4.48911i q^{19} +(2.28191 + 3.95238i) q^{20} +(-3.68194 + 6.37731i) q^{22} +(-3.47141 - 2.00422i) q^{23} +(1.47141 + 2.54856i) q^{25} -11.6532 q^{26} +(-0.760877 - 8.38418i) q^{28} +(-1.02859 + 0.593857i) q^{29} +(3.24275 + 1.87220i) q^{31} +(5.13160 + 2.96273i) q^{32} +(2.15143 - 1.24213i) q^{34} +(0.342971 + 3.77924i) q^{35} -0.239123 q^{37} +(5.10948 + 8.84988i) q^{38} +(3.34203 + 1.92952i) q^{40} +(3.71620 - 6.43664i) q^{41} +(-3.82326 - 6.62208i) q^{43} +10.2933i q^{44} -9.12476 q^{46} +(-2.11042 - 3.65536i) q^{47} +(2.35150 - 6.59321i) q^{49} +(5.80150 + 3.34950i) q^{50} +(-14.1066 + 8.14447i) q^{52} -7.01414i q^{53} -4.63977i q^{55} +(-4.10189 - 5.81793i) q^{56} +(-1.35185 + 2.34147i) q^{58} +(-4.73531 + 8.20179i) q^{59} +(2.82757 - 1.63250i) q^{61} +8.52371 q^{62} +13.0104 q^{64} +(6.35868 - 3.67119i) q^{65} +(-0.330095 + 0.571741i) q^{67} +(1.73625 - 3.00728i) q^{68} +(4.97764 + 7.06006i) q^{70} -3.82347i q^{71} +7.31073i q^{73} +(-0.471410 + 0.272169i) q^{74} +(12.3704 + 7.14205i) q^{76} +(-3.59195 + 7.76852i) q^{77} +(-1.83009 - 3.16982i) q^{79} -0.342971 q^{80} -16.9190i q^{82} +(-5.45245 - 9.44392i) q^{83} +(-0.782630 + 1.35556i) q^{85} +(-15.0744 - 8.70322i) q^{86} +(4.35185 + 7.53762i) q^{88} +13.6915 q^{89} +(-13.4887 + 1.22412i) q^{91} +(-11.0458 + 6.37731i) q^{92} +(-8.32102 - 4.80415i) q^{94} +(-5.57605 - 3.21934i) q^{95} +(-2.69709 + 1.55716i) q^{97} +(-2.86857 - 15.6744i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{2} + 2 q^{4} - 2 q^{7} + 12 q^{14} + 2 q^{16} - 10 q^{22} - 24 q^{23} - 8 q^{28} - 30 q^{29} + 12 q^{32} - 4 q^{37} - 10 q^{43} - 40 q^{46} + 6 q^{49} + 36 q^{50} - 42 q^{56} + 2 q^{58} + 16 q^{64}+ \cdots - 72 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.97141 1.13819i 1.39400 0.804825i 0.400242 0.916409i \(-0.368926\pi\)
0.993755 + 0.111585i \(0.0355926\pi\)
\(3\) 0 0
\(4\) 1.59097 2.75564i 0.795486 1.37782i
\(5\) −0.717144 + 1.24213i −0.320716 + 0.555497i −0.980636 0.195839i \(-0.937257\pi\)
0.659920 + 0.751336i \(0.270590\pi\)
\(6\) 0 0
\(7\) 2.16235 1.52455i 0.817291 0.576225i
\(8\) 2.69056i 0.951257i
\(9\) 0 0
\(10\) 3.26499i 1.03248i
\(11\) −2.80150 + 1.61745i −0.844686 + 0.487679i −0.858854 0.512220i \(-0.828823\pi\)
0.0141686 + 0.999900i \(0.495490\pi\)
\(12\) 0 0
\(13\) −4.43334 2.55959i −1.22959 0.709903i −0.262644 0.964893i \(-0.584594\pi\)
−0.966944 + 0.254990i \(0.917928\pi\)
\(14\) 2.52764 5.46668i 0.675541 1.46103i
\(15\) 0 0
\(16\) 0.119562 + 0.207087i 0.0298904 + 0.0517717i
\(17\) 1.09132 0.264683 0.132341 0.991204i \(-0.457750\pi\)
0.132341 + 0.991204i \(0.457750\pi\)
\(18\) 0 0
\(19\) 4.48911i 1.02987i 0.857228 + 0.514936i \(0.172184\pi\)
−0.857228 + 0.514936i \(0.827816\pi\)
\(20\) 2.28191 + 3.95238i 0.510251 + 0.883780i
\(21\) 0 0
\(22\) −3.68194 + 6.37731i −0.784993 + 1.35965i
\(23\) −3.47141 2.00422i −0.723839 0.417909i 0.0923250 0.995729i \(-0.470570\pi\)
−0.816164 + 0.577820i \(0.803903\pi\)
\(24\) 0 0
\(25\) 1.47141 + 2.54856i 0.294282 + 0.509711i
\(26\) −11.6532 −2.28539
\(27\) 0 0
\(28\) −0.760877 8.38418i −0.143792 1.58446i
\(29\) −1.02859 + 0.593857i −0.191004 + 0.110276i −0.592453 0.805605i \(-0.701840\pi\)
0.401448 + 0.915882i \(0.368507\pi\)
\(30\) 0 0
\(31\) 3.24275 + 1.87220i 0.582414 + 0.336257i 0.762092 0.647468i \(-0.224172\pi\)
−0.179678 + 0.983726i \(0.557506\pi\)
\(32\) 5.13160 + 2.96273i 0.907147 + 0.523742i
\(33\) 0 0
\(34\) 2.15143 1.24213i 0.368967 0.213023i
\(35\) 0.342971 + 3.77924i 0.0579728 + 0.638808i
\(36\) 0 0
\(37\) −0.239123 −0.0393116 −0.0196558 0.999807i \(-0.506257\pi\)
−0.0196558 + 0.999807i \(0.506257\pi\)
\(38\) 5.10948 + 8.84988i 0.828867 + 1.43564i
\(39\) 0 0
\(40\) 3.34203 + 1.92952i 0.528421 + 0.305084i
\(41\) 3.71620 6.43664i 0.580373 1.00523i −0.415062 0.909793i \(-0.636240\pi\)
0.995435 0.0954418i \(-0.0304264\pi\)
\(42\) 0 0
\(43\) −3.82326 6.62208i −0.583041 1.00986i −0.995116 0.0987075i \(-0.968529\pi\)
0.412075 0.911150i \(-0.364804\pi\)
\(44\) 10.2933i 1.55177i
\(45\) 0 0
\(46\) −9.12476 −1.34537
\(47\) −2.11042 3.65536i −0.307837 0.533189i 0.670052 0.742314i \(-0.266272\pi\)
−0.977889 + 0.209125i \(0.932939\pi\)
\(48\) 0 0
\(49\) 2.35150 6.59321i 0.335929 0.941887i
\(50\) 5.80150 + 3.34950i 0.820457 + 0.473691i
\(51\) 0 0
\(52\) −14.1066 + 8.14447i −1.95624 + 1.12944i
\(53\) 7.01414i 0.963466i −0.876318 0.481733i \(-0.840008\pi\)
0.876318 0.481733i \(-0.159992\pi\)
\(54\) 0 0
\(55\) 4.63977i 0.625627i
\(56\) −4.10189 5.81793i −0.548138 0.777454i
\(57\) 0 0
\(58\) −1.35185 + 2.34147i −0.177506 + 0.307450i
\(59\) −4.73531 + 8.20179i −0.616484 + 1.06778i 0.373638 + 0.927575i \(0.378110\pi\)
−0.990122 + 0.140208i \(0.955223\pi\)
\(60\) 0 0
\(61\) 2.82757 1.63250i 0.362033 0.209020i −0.307939 0.951406i \(-0.599639\pi\)
0.669972 + 0.742386i \(0.266306\pi\)
\(62\) 8.52371 1.08251
\(63\) 0 0
\(64\) 13.0104 1.62630
\(65\) 6.35868 3.67119i 0.788698 0.455355i
\(66\) 0 0
\(67\) −0.330095 + 0.571741i −0.0403275 + 0.0698493i −0.885485 0.464669i \(-0.846173\pi\)
0.845157 + 0.534518i \(0.179507\pi\)
\(68\) 1.73625 3.00728i 0.210552 0.364686i
\(69\) 0 0
\(70\) 4.97764 + 7.06006i 0.594942 + 0.843838i
\(71\) 3.82347i 0.453762i −0.973922 0.226881i \(-0.927147\pi\)
0.973922 0.226881i \(-0.0728529\pi\)
\(72\) 0 0
\(73\) 7.31073i 0.855656i 0.903860 + 0.427828i \(0.140721\pi\)
−0.903860 + 0.427828i \(0.859279\pi\)
\(74\) −0.471410 + 0.272169i −0.0548003 + 0.0316390i
\(75\) 0 0
\(76\) 12.3704 + 7.14205i 1.41898 + 0.819249i
\(77\) −3.59195 + 7.76852i −0.409341 + 0.885305i
\(78\) 0 0
\(79\) −1.83009 3.16982i −0.205902 0.356632i 0.744518 0.667602i \(-0.232679\pi\)
−0.950420 + 0.310970i \(0.899346\pi\)
\(80\) −0.342971 −0.0383454
\(81\) 0 0
\(82\) 16.9190i 1.86839i
\(83\) −5.45245 9.44392i −0.598484 1.03660i −0.993045 0.117735i \(-0.962437\pi\)
0.394561 0.918870i \(-0.370897\pi\)
\(84\) 0 0
\(85\) −0.782630 + 1.35556i −0.0848882 + 0.147031i
\(86\) −15.0744 8.70322i −1.62552 0.938492i
\(87\) 0 0
\(88\) 4.35185 + 7.53762i 0.463909 + 0.803513i
\(89\) 13.6915 1.45129 0.725646 0.688068i \(-0.241541\pi\)
0.725646 + 0.688068i \(0.241541\pi\)
\(90\) 0 0
\(91\) −13.4887 + 1.22412i −1.41399 + 0.128322i
\(92\) −11.0458 + 6.37731i −1.15161 + 0.664881i
\(93\) 0 0
\(94\) −8.32102 4.80415i −0.858248 0.495510i
\(95\) −5.57605 3.21934i −0.572091 0.330297i
\(96\) 0 0
\(97\) −2.69709 + 1.55716i −0.273848 + 0.158106i −0.630635 0.776080i \(-0.717205\pi\)
0.356787 + 0.934186i \(0.383872\pi\)
\(98\) −2.86857 15.6744i −0.289770 1.58335i
\(99\) 0 0
\(100\) 9.36389 0.936389
\(101\) 3.54471 + 6.13962i 0.352712 + 0.610915i 0.986724 0.162408i \(-0.0519262\pi\)
−0.634012 + 0.773324i \(0.718593\pi\)
\(102\) 0 0
\(103\) −1.47529 0.851761i −0.145365 0.0839265i 0.425553 0.904933i \(-0.360079\pi\)
−0.570918 + 0.821007i \(0.693413\pi\)
\(104\) −6.88674 + 11.9282i −0.675300 + 1.16965i
\(105\) 0 0
\(106\) −7.98345 13.8277i −0.775421 1.34307i
\(107\) 4.93582i 0.477164i 0.971122 + 0.238582i \(0.0766826\pi\)
−0.971122 + 0.238582i \(0.923317\pi\)
\(108\) 0 0
\(109\) 8.13844 0.779521 0.389760 0.920916i \(-0.372558\pi\)
0.389760 + 0.920916i \(0.372558\pi\)
\(110\) −5.28096 9.14690i −0.503520 0.872123i
\(111\) 0 0
\(112\) 0.574248 + 0.265516i 0.0542613 + 0.0250889i
\(113\) 3.39699 + 1.96125i 0.319562 + 0.184499i 0.651197 0.758908i \(-0.274267\pi\)
−0.331635 + 0.943408i \(0.607600\pi\)
\(114\) 0 0
\(115\) 4.97900 2.87463i 0.464294 0.268060i
\(116\) 3.77924i 0.350893i
\(117\) 0 0
\(118\) 21.5588i 1.98465i
\(119\) 2.35981 1.66376i 0.216323 0.152517i
\(120\) 0 0
\(121\) −0.267713 + 0.463693i −0.0243376 + 0.0421539i
\(122\) 3.71620 6.43664i 0.336449 0.582746i
\(123\) 0 0
\(124\) 10.3182 5.95724i 0.926605 0.534976i
\(125\) −11.3923 −1.01896
\(126\) 0 0
\(127\) 6.16827 0.547345 0.273673 0.961823i \(-0.411761\pi\)
0.273673 + 0.961823i \(0.411761\pi\)
\(128\) 15.3856 8.88290i 1.35991 0.785145i
\(129\) 0 0
\(130\) 8.35705 14.4748i 0.732962 1.26953i
\(131\) 4.13138 7.15575i 0.360960 0.625201i −0.627159 0.778891i \(-0.715782\pi\)
0.988119 + 0.153690i \(0.0491158\pi\)
\(132\) 0 0
\(133\) 6.84387 + 9.70702i 0.593438 + 0.841706i
\(134\) 1.50285i 0.129826i
\(135\) 0 0
\(136\) 2.93625i 0.251782i
\(137\) 8.96169 5.17404i 0.765649 0.442048i −0.0656711 0.997841i \(-0.520919\pi\)
0.831320 + 0.555794i \(0.187585\pi\)
\(138\) 0 0
\(139\) −15.4589 8.92521i −1.31121 0.757026i −0.328912 0.944361i \(-0.606682\pi\)
−0.982296 + 0.187334i \(0.940015\pi\)
\(140\) 10.9599 + 5.06755i 0.926280 + 0.428286i
\(141\) 0 0
\(142\) −4.35185 7.53762i −0.365199 0.632543i
\(143\) 16.5600 1.38482
\(144\) 0 0
\(145\) 1.70352i 0.141470i
\(146\) 8.32102 + 14.4124i 0.688653 + 1.19278i
\(147\) 0 0
\(148\) −0.380438 + 0.658939i −0.0312718 + 0.0541644i
\(149\) 15.1758 + 8.76175i 1.24325 + 0.717790i 0.969754 0.244083i \(-0.0784869\pi\)
0.273495 + 0.961873i \(0.411820\pi\)
\(150\) 0 0
\(151\) −0.550343 0.953223i −0.0447863 0.0775722i 0.842763 0.538284i \(-0.180927\pi\)
−0.887550 + 0.460712i \(0.847594\pi\)
\(152\) 12.0782 0.979674
\(153\) 0 0
\(154\) 1.76088 + 19.4033i 0.141895 + 1.56356i
\(155\) −4.65103 + 2.68527i −0.373580 + 0.215686i
\(156\) 0 0
\(157\) 8.45150 + 4.87948i 0.674503 + 0.389425i 0.797781 0.602947i \(-0.206007\pi\)
−0.123277 + 0.992372i \(0.539340\pi\)
\(158\) −7.21574 4.16601i −0.574053 0.331430i
\(159\) 0 0
\(160\) −7.36019 + 4.24941i −0.581874 + 0.335945i
\(161\) −10.5619 + 0.958511i −0.832397 + 0.0755413i
\(162\) 0 0
\(163\) −7.22545 −0.565941 −0.282970 0.959129i \(-0.591320\pi\)
−0.282970 + 0.959129i \(0.591320\pi\)
\(164\) −11.8247 20.4810i −0.923356 1.59930i
\(165\) 0 0
\(166\) −21.4980 12.4119i −1.66857 0.963350i
\(167\) −8.65419 + 14.9895i −0.669681 + 1.15992i 0.308312 + 0.951285i \(0.400236\pi\)
−0.977993 + 0.208637i \(0.933097\pi\)
\(168\) 0 0
\(169\) 6.60301 + 11.4367i 0.507924 + 0.879750i
\(170\) 3.56314i 0.273280i
\(171\) 0 0
\(172\) −24.3308 −1.85520
\(173\) 0.978103 + 1.69412i 0.0743638 + 0.128802i 0.900809 0.434215i \(-0.142974\pi\)
−0.826446 + 0.563017i \(0.809641\pi\)
\(174\) 0 0
\(175\) 7.06710 + 3.26763i 0.534223 + 0.247010i
\(176\) −0.669905 0.386770i −0.0504960 0.0291539i
\(177\) 0 0
\(178\) 26.9915 15.5835i 2.02310 1.16804i
\(179\) 23.2017i 1.73418i 0.498152 + 0.867090i \(0.334012\pi\)
−0.498152 + 0.867090i \(0.665988\pi\)
\(180\) 0 0
\(181\) 10.2744i 0.763689i −0.924226 0.381845i \(-0.875289\pi\)
0.924226 0.381845i \(-0.124711\pi\)
\(182\) −25.1984 + 17.7659i −1.86783 + 1.31690i
\(183\) 0 0
\(184\) −5.39248 + 9.34004i −0.397539 + 0.688557i
\(185\) 0.171486 0.297022i 0.0126079 0.0218375i
\(186\) 0 0
\(187\) −3.05733 + 1.76515i −0.223574 + 0.129080i
\(188\) −13.4305 −0.979520
\(189\) 0 0
\(190\) −14.6569 −1.06332
\(191\) −19.6758 + 11.3598i −1.42369 + 0.821968i −0.996612 0.0822464i \(-0.973791\pi\)
−0.427079 + 0.904215i \(0.640457\pi\)
\(192\) 0 0
\(193\) −8.43598 + 14.6116i −0.607235 + 1.05176i 0.384459 + 0.923142i \(0.374388\pi\)
−0.991694 + 0.128620i \(0.958945\pi\)
\(194\) −3.54471 + 6.13962i −0.254495 + 0.440799i
\(195\) 0 0
\(196\) −14.4274 16.9695i −1.03053 1.21211i
\(197\) 8.94426i 0.637252i −0.947880 0.318626i \(-0.896779\pi\)
0.947880 0.318626i \(-0.103221\pi\)
\(198\) 0 0
\(199\) 5.78528i 0.410108i −0.978751 0.205054i \(-0.934263\pi\)
0.978751 0.205054i \(-0.0657369\pi\)
\(200\) 6.85705 3.95892i 0.484867 0.279938i
\(201\) 0 0
\(202\) 13.9762 + 8.06914i 0.983359 + 0.567743i
\(203\) −1.31881 + 2.85226i −0.0925621 + 0.200189i
\(204\) 0 0
\(205\) 5.33009 + 9.23200i 0.372270 + 0.644791i
\(206\) −3.87788 −0.270185
\(207\) 0 0
\(208\) 1.22412i 0.0848771i
\(209\) −7.26091 12.5763i −0.502248 0.869918i
\(210\) 0 0
\(211\) −12.9451 + 22.4216i −0.891180 + 1.54357i −0.0527186 + 0.998609i \(0.516789\pi\)
−0.838462 + 0.544960i \(0.816545\pi\)
\(212\) −19.3285 11.1593i −1.32748 0.766423i
\(213\) 0 0
\(214\) 5.61793 + 9.73053i 0.384034 + 0.665166i
\(215\) 10.9673 0.747964
\(216\) 0 0
\(217\) 9.86621 0.895374i 0.669762 0.0607819i
\(218\) 16.0442 9.26312i 1.08665 0.627378i
\(219\) 0 0
\(220\) −12.7856 7.38175i −0.862003 0.497678i
\(221\) −4.83818 2.79332i −0.325451 0.187899i
\(222\) 0 0
\(223\) −15.4827 + 8.93892i −1.03680 + 0.598594i −0.918924 0.394435i \(-0.870940\pi\)
−0.117871 + 0.993029i \(0.537607\pi\)
\(224\) 15.6131 1.41692i 1.04320 0.0946717i
\(225\) 0 0
\(226\) 8.92915 0.593958
\(227\) −5.48365 9.49796i −0.363963 0.630402i 0.624646 0.780908i \(-0.285243\pi\)
−0.988609 + 0.150506i \(0.951910\pi\)
\(228\) 0 0
\(229\) 16.8349 + 9.71965i 1.11248 + 0.642293i 0.939471 0.342627i \(-0.111317\pi\)
0.173012 + 0.984920i \(0.444650\pi\)
\(230\) 6.54377 11.3341i 0.431483 0.747351i
\(231\) 0 0
\(232\) 1.59781 + 2.76748i 0.104901 + 0.181694i
\(233\) 2.94031i 0.192626i 0.995351 + 0.0963131i \(0.0307050\pi\)
−0.995351 + 0.0963131i \(0.969295\pi\)
\(234\) 0 0
\(235\) 6.05391 0.394914
\(236\) 15.0675 + 26.0976i 0.980809 + 1.69881i
\(237\) 0 0
\(238\) 2.75846 5.96588i 0.178804 0.386710i
\(239\) 10.7255 + 6.19234i 0.693772 + 0.400549i 0.805023 0.593243i \(-0.202153\pi\)
−0.111252 + 0.993792i \(0.535486\pi\)
\(240\) 0 0
\(241\) −11.6943 + 6.75168i −0.753293 + 0.434914i −0.826882 0.562375i \(-0.809888\pi\)
0.0735896 + 0.997289i \(0.476555\pi\)
\(242\) 1.21884i 0.0783499i
\(243\) 0 0
\(244\) 10.3890i 0.665089i
\(245\) 6.50325 + 7.64915i 0.415478 + 0.488686i
\(246\) 0 0
\(247\) 11.4903 19.9018i 0.731109 1.26632i
\(248\) 5.03727 8.72481i 0.319867 0.554026i
\(249\) 0 0
\(250\) −22.4589 + 12.9666i −1.42042 + 0.820082i
\(251\) 7.51441 0.474305 0.237153 0.971472i \(-0.423786\pi\)
0.237153 + 0.971472i \(0.423786\pi\)
\(252\) 0 0
\(253\) 12.9669 0.815222
\(254\) 12.1602 7.02069i 0.762998 0.440517i
\(255\) 0 0
\(256\) 7.21053 12.4890i 0.450658 0.780563i
\(257\) 3.87788 6.71668i 0.241895 0.418975i −0.719359 0.694639i \(-0.755564\pi\)
0.961254 + 0.275664i \(0.0888976\pi\)
\(258\) 0 0
\(259\) −0.517068 + 0.364555i −0.0321290 + 0.0226523i
\(260\) 23.3630i 1.44891i
\(261\) 0 0
\(262\) 18.8092i 1.16204i
\(263\) 12.1127 6.99329i 0.746903 0.431224i −0.0776710 0.996979i \(-0.524748\pi\)
0.824574 + 0.565755i \(0.191415\pi\)
\(264\) 0 0
\(265\) 8.71246 + 5.03014i 0.535202 + 0.308999i
\(266\) 24.5405 + 11.3469i 1.50468 + 0.695721i
\(267\) 0 0
\(268\) 1.05034 + 1.81925i 0.0641599 + 0.111128i
\(269\) −25.8321 −1.57501 −0.787505 0.616308i \(-0.788628\pi\)
−0.787505 + 0.616308i \(0.788628\pi\)
\(270\) 0 0
\(271\) 16.6537i 1.01164i 0.862639 + 0.505821i \(0.168810\pi\)
−0.862639 + 0.505821i \(0.831190\pi\)
\(272\) 0.130480 + 0.225997i 0.00791148 + 0.0137031i
\(273\) 0 0
\(274\) 11.7781 20.4003i 0.711542 1.23243i
\(275\) −8.24433 4.75986i −0.497152 0.287031i
\(276\) 0 0
\(277\) −15.7044 27.2008i −0.943585 1.63434i −0.758560 0.651603i \(-0.774097\pi\)
−0.185025 0.982734i \(-0.559237\pi\)
\(278\) −40.6345 −2.43709
\(279\) 0 0
\(280\) 10.1683 0.922786i 0.607670 0.0551470i
\(281\) −8.10464 + 4.67922i −0.483483 + 0.279139i −0.721867 0.692032i \(-0.756716\pi\)
0.238384 + 0.971171i \(0.423382\pi\)
\(282\) 0 0
\(283\) 13.6603 + 7.88676i 0.812018 + 0.468819i 0.847656 0.530546i \(-0.178013\pi\)
−0.0356380 + 0.999365i \(0.511346\pi\)
\(284\) −10.5361 6.08303i −0.625203 0.360961i
\(285\) 0 0
\(286\) 32.6466 18.8485i 1.93044 1.11454i
\(287\) −1.77726 19.5838i −0.104908 1.15599i
\(288\) 0 0
\(289\) −15.8090 −0.929943
\(290\) −1.93894 3.35834i −0.113858 0.197209i
\(291\) 0 0
\(292\) 20.1458 + 11.6312i 1.17894 + 0.680662i
\(293\) 12.4287 21.5271i 0.726090 1.25762i −0.232434 0.972612i \(-0.574669\pi\)
0.958524 0.285013i \(-0.0919978\pi\)
\(294\) 0 0
\(295\) −6.79179 11.7637i −0.395433 0.684911i
\(296\) 0.643376i 0.0373955i
\(297\) 0 0
\(298\) 39.8903 2.31078
\(299\) 10.2600 + 17.7708i 0.593349 + 1.02771i
\(300\) 0 0
\(301\) −18.3629 8.49050i −1.05842 0.489384i
\(302\) −2.16991 1.25280i −0.124864 0.0720903i
\(303\) 0 0
\(304\) −0.929636 + 0.536725i −0.0533183 + 0.0307833i
\(305\) 4.68294i 0.268144i
\(306\) 0 0
\(307\) 18.8878i 1.07799i −0.842310 0.538993i \(-0.818805\pi\)
0.842310 0.538993i \(-0.181195\pi\)
\(308\) 15.6926 + 22.2576i 0.894168 + 1.26825i
\(309\) 0 0
\(310\) −6.11273 + 10.5876i −0.347179 + 0.601332i
\(311\) 3.97716 6.88864i 0.225524 0.390619i −0.730953 0.682428i \(-0.760924\pi\)
0.956476 + 0.291809i \(0.0942573\pi\)
\(312\) 0 0
\(313\) −9.64210 + 5.56687i −0.545004 + 0.314658i −0.747104 0.664707i \(-0.768556\pi\)
0.202101 + 0.979365i \(0.435223\pi\)
\(314\) 22.2152 1.25367
\(315\) 0 0
\(316\) −11.6465 −0.655168
\(317\) 20.1380 11.6267i 1.13107 0.653021i 0.186863 0.982386i \(-0.440168\pi\)
0.944203 + 0.329365i \(0.106835\pi\)
\(318\) 0 0
\(319\) 1.92107 3.32738i 0.107559 0.186298i
\(320\) −9.33033 + 16.1606i −0.521581 + 0.903405i
\(321\) 0 0
\(322\) −19.7309 + 13.9111i −1.09956 + 0.775238i
\(323\) 4.89904i 0.272590i
\(324\) 0 0
\(325\) 15.0648i 0.835646i
\(326\) −14.2443 + 8.22396i −0.788920 + 0.455483i
\(327\) 0 0
\(328\) −17.3182 9.99866i −0.956237 0.552084i
\(329\) −10.1363 4.68672i −0.558830 0.258387i
\(330\) 0 0
\(331\) 9.57962 + 16.5924i 0.526544 + 0.912000i 0.999522 + 0.0309261i \(0.00984566\pi\)
−0.472978 + 0.881074i \(0.656821\pi\)
\(332\) −34.6988 −1.90434
\(333\) 0 0
\(334\) 39.4006i 2.15590i
\(335\) −0.473451 0.820041i −0.0258674 0.0448036i
\(336\) 0 0
\(337\) 14.2781 24.7304i 0.777779 1.34715i −0.155441 0.987845i \(-0.549680\pi\)
0.933219 0.359307i \(-0.116987\pi\)
\(338\) 26.0345 + 15.0310i 1.41609 + 0.817579i
\(339\) 0 0
\(340\) 2.49028 + 4.31330i 0.135055 + 0.233922i
\(341\) −12.1128 −0.655943
\(342\) 0 0
\(343\) −4.96690 17.8418i −0.268187 0.963367i
\(344\) −17.8171 + 10.2867i −0.960634 + 0.554622i
\(345\) 0 0
\(346\) 3.85648 + 2.22654i 0.207326 + 0.119700i
\(347\) −2.56690 1.48200i −0.137798 0.0795578i 0.429516 0.903059i \(-0.358684\pi\)
−0.567314 + 0.823501i \(0.692017\pi\)
\(348\) 0 0
\(349\) 23.3885 13.5034i 1.25196 0.722818i 0.280460 0.959866i \(-0.409513\pi\)
0.971498 + 0.237048i \(0.0761797\pi\)
\(350\) 17.6514 1.60189i 0.943504 0.0856245i
\(351\) 0 0
\(352\) −19.1683 −1.02167
\(353\) 14.8238 + 25.6755i 0.788990 + 1.36657i 0.926586 + 0.376083i \(0.122729\pi\)
−0.137596 + 0.990488i \(0.543937\pi\)
\(354\) 0 0
\(355\) 4.74924 + 2.74198i 0.252064 + 0.145529i
\(356\) 21.7827 37.7288i 1.15448 1.99962i
\(357\) 0 0
\(358\) 26.4081 + 45.7401i 1.39571 + 2.41744i
\(359\) 24.6261i 1.29972i −0.760056 0.649858i \(-0.774828\pi\)
0.760056 0.649858i \(-0.225172\pi\)
\(360\) 0 0
\(361\) −1.15211 −0.0606373
\(362\) −11.6943 20.2550i −0.614636 1.06458i
\(363\) 0 0
\(364\) −18.0868 + 39.1174i −0.948008 + 2.05031i
\(365\) −9.08087 5.24284i −0.475314 0.274423i
\(366\) 0 0
\(367\) 4.85598 2.80360i 0.253480 0.146347i −0.367877 0.929875i \(-0.619915\pi\)
0.621357 + 0.783528i \(0.286582\pi\)
\(368\) 0.958511i 0.0499658i
\(369\) 0 0
\(370\) 0.780736i 0.0405885i
\(371\) −10.6934 15.1670i −0.555173 0.787432i
\(372\) 0 0
\(373\) 1.86677 3.23333i 0.0966574 0.167416i −0.813642 0.581367i \(-0.802518\pi\)
0.910299 + 0.413951i \(0.135852\pi\)
\(374\) −4.01816 + 6.95966i −0.207774 + 0.359876i
\(375\) 0 0
\(376\) −9.83498 + 5.67823i −0.507200 + 0.292832i
\(377\) 6.08012 0.313142
\(378\) 0 0
\(379\) −30.4419 −1.56369 −0.781847 0.623470i \(-0.785722\pi\)
−0.781847 + 0.623470i \(0.785722\pi\)
\(380\) −17.7427 + 10.2437i −0.910181 + 0.525493i
\(381\) 0 0
\(382\) −25.8594 + 44.7897i −1.32308 + 2.29164i
\(383\) −8.49251 + 14.7095i −0.433947 + 0.751618i −0.997209 0.0746601i \(-0.976213\pi\)
0.563262 + 0.826278i \(0.309546\pi\)
\(384\) 0 0
\(385\) −7.07356 10.0328i −0.360502 0.511319i
\(386\) 38.4071i 1.95487i
\(387\) 0 0
\(388\) 9.90962i 0.503085i
\(389\) −9.43310 + 5.44621i −0.478277 + 0.276134i −0.719698 0.694287i \(-0.755720\pi\)
0.241421 + 0.970420i \(0.422387\pi\)
\(390\) 0 0
\(391\) −3.78840 2.18724i −0.191588 0.110613i
\(392\) −17.7394 6.32687i −0.895977 0.319555i
\(393\) 0 0
\(394\) −10.1803 17.6328i −0.512877 0.888328i
\(395\) 5.24976 0.264144
\(396\) 0 0
\(397\) 22.3035i 1.11938i 0.828702 + 0.559690i \(0.189080\pi\)
−0.828702 + 0.559690i \(0.810920\pi\)
\(398\) −6.58477 11.4052i −0.330065 0.571689i
\(399\) 0 0
\(400\) −0.351848 + 0.609419i −0.0175924 + 0.0304710i
\(401\) −20.8554 12.0409i −1.04147 0.601293i −0.121221 0.992626i \(-0.538681\pi\)
−0.920249 + 0.391333i \(0.872014\pi\)
\(402\) 0 0
\(403\) −9.58414 16.6002i −0.477420 0.826915i
\(404\) 22.5581 1.12231
\(405\) 0 0
\(406\) 0.646517 + 7.12403i 0.0320861 + 0.353560i
\(407\) 0.669905 0.386770i 0.0332060 0.0191715i
\(408\) 0 0
\(409\) −22.8191 13.1746i −1.12833 0.651443i −0.184817 0.982773i \(-0.559169\pi\)
−0.943515 + 0.331330i \(0.892503\pi\)
\(410\) 21.0156 + 12.1334i 1.03789 + 0.599224i
\(411\) 0 0
\(412\) −4.69430 + 2.71026i −0.231272 + 0.133525i
\(413\) 2.26464 + 24.9543i 0.111436 + 1.22792i
\(414\) 0 0
\(415\) 15.6408 0.767775
\(416\) −15.1668 26.2696i −0.743611 1.28797i
\(417\) 0 0
\(418\) −28.6285 16.5286i −1.40026 0.808443i
\(419\) −16.1761 + 28.0178i −0.790252 + 1.36876i 0.135558 + 0.990769i \(0.456717\pi\)
−0.925811 + 0.377988i \(0.876616\pi\)
\(420\) 0 0
\(421\) −5.54746 9.60849i −0.270367 0.468289i 0.698589 0.715523i \(-0.253812\pi\)
−0.968956 + 0.247234i \(0.920478\pi\)
\(422\) 58.9363i 2.86898i
\(423\) 0 0
\(424\) −18.8720 −0.916504
\(425\) 1.60577 + 2.78128i 0.0778914 + 0.134912i
\(426\) 0 0
\(427\) 3.62537 7.84079i 0.175444 0.379443i
\(428\) 13.6014 + 7.85276i 0.657447 + 0.379577i
\(429\) 0 0
\(430\) 21.6210 12.4829i 1.04266 0.601980i
\(431\) 16.3047i 0.785368i −0.919673 0.392684i \(-0.871547\pi\)
0.919673 0.392684i \(-0.128453\pi\)
\(432\) 0 0
\(433\) 12.5359i 0.602438i 0.953555 + 0.301219i \(0.0973936\pi\)
−0.953555 + 0.301219i \(0.902606\pi\)
\(434\) 18.4312 12.9948i 0.884728 0.623771i
\(435\) 0 0
\(436\) 12.9480 22.4266i 0.620098 1.07404i
\(437\) 8.99716 15.5835i 0.430393 0.745462i
\(438\) 0 0
\(439\) 16.1276 9.31127i 0.769728 0.444403i −0.0630496 0.998010i \(-0.520083\pi\)
0.832778 + 0.553608i \(0.186749\pi\)
\(440\) −12.4836 −0.595132
\(441\) 0 0
\(442\) −12.7174 −0.604904
\(443\) −4.11436 + 2.37543i −0.195479 + 0.112860i −0.594545 0.804062i \(-0.702668\pi\)
0.399066 + 0.916922i \(0.369334\pi\)
\(444\) 0 0
\(445\) −9.81875 + 17.0066i −0.465453 + 0.806189i
\(446\) −20.3484 + 35.2445i −0.963527 + 1.66888i
\(447\) 0 0
\(448\) 28.1330 19.8350i 1.32916 0.937115i
\(449\) 16.2393i 0.766379i −0.923670 0.383189i \(-0.874826\pi\)
0.923670 0.383189i \(-0.125174\pi\)
\(450\) 0 0
\(451\) 24.0431i 1.13214i
\(452\) 10.8090 6.24060i 0.508414 0.293533i
\(453\) 0 0
\(454\) −21.6210 12.4829i −1.01473 0.585852i
\(455\) 8.15279 17.6325i 0.382209 0.826625i
\(456\) 0 0
\(457\) 2.87360 + 4.97722i 0.134421 + 0.232825i 0.925376 0.379050i \(-0.123749\pi\)
−0.790955 + 0.611874i \(0.790416\pi\)
\(458\) 44.2514 2.06773
\(459\) 0 0
\(460\) 18.2938i 0.852953i
\(461\) 18.1346 + 31.4101i 0.844613 + 1.46291i 0.885957 + 0.463768i \(0.153503\pi\)
−0.0413440 + 0.999145i \(0.513164\pi\)
\(462\) 0 0
\(463\) 14.6202 25.3230i 0.679461 1.17686i −0.295683 0.955286i \(-0.595547\pi\)
0.975144 0.221574i \(-0.0711195\pi\)
\(464\) −0.245960 0.142005i −0.0114184 0.00659241i
\(465\) 0 0
\(466\) 3.34665 + 5.79656i 0.155030 + 0.268521i
\(467\) 2.64215 0.122264 0.0611320 0.998130i \(-0.480529\pi\)
0.0611320 + 0.998130i \(0.480529\pi\)
\(468\) 0 0
\(469\) 0.157867 + 1.73955i 0.00728961 + 0.0803249i
\(470\) 11.9347 6.89053i 0.550508 0.317836i
\(471\) 0 0
\(472\) 22.0674 + 12.7406i 1.01574 + 0.586435i
\(473\) 21.4218 + 12.3679i 0.984973 + 0.568675i
\(474\) 0 0
\(475\) −11.4408 + 6.60532i −0.524938 + 0.303073i
\(476\) −0.830357 9.14978i −0.0380593 0.419380i
\(477\) 0 0
\(478\) 28.1923 1.28949
\(479\) −15.5409 26.9177i −0.710083 1.22990i −0.964826 0.262891i \(-0.915324\pi\)
0.254742 0.967009i \(-0.418009\pi\)
\(480\) 0 0
\(481\) 1.06012 + 0.612058i 0.0483371 + 0.0279074i
\(482\) −15.3694 + 26.6207i −0.700059 + 1.21254i
\(483\) 0 0
\(484\) 0.851848 + 1.47544i 0.0387204 + 0.0670657i
\(485\) 4.46684i 0.202829i
\(486\) 0 0
\(487\) 34.8720 1.58020 0.790100 0.612978i \(-0.210029\pi\)
0.790100 + 0.612978i \(0.210029\pi\)
\(488\) −4.39234 7.60775i −0.198832 0.344387i
\(489\) 0 0
\(490\) 21.5268 + 7.67765i 0.972482 + 0.346841i
\(491\) 22.6758 + 13.0919i 1.02334 + 0.590828i 0.915071 0.403293i \(-0.132134\pi\)
0.108273 + 0.994121i \(0.465468\pi\)
\(492\) 0 0
\(493\) −1.12252 + 0.648085i −0.0505556 + 0.0291883i
\(494\) 52.3127i 2.35366i
\(495\) 0 0
\(496\) 0.895374i 0.0402035i
\(497\) −5.82906 8.26767i −0.261469 0.370856i
\(498\) 0 0
\(499\) −6.23912 + 10.8065i −0.279302 + 0.483764i −0.971211 0.238220i \(-0.923436\pi\)
0.691910 + 0.721984i \(0.256770\pi\)
\(500\) −18.1248 + 31.3931i −0.810566 + 1.40394i
\(501\) 0 0
\(502\) 14.8140 8.55285i 0.661180 0.381733i
\(503\) −37.8479 −1.68756 −0.843778 0.536693i \(-0.819673\pi\)
−0.843778 + 0.536693i \(0.819673\pi\)
\(504\) 0 0
\(505\) −10.1683 −0.452482
\(506\) 25.5631 14.7588i 1.13642 0.656111i
\(507\) 0 0
\(508\) 9.81354 16.9976i 0.435406 0.754145i
\(509\) 17.6924 30.6441i 0.784200 1.35827i −0.145276 0.989391i \(-0.546407\pi\)
0.929476 0.368883i \(-0.120260\pi\)
\(510\) 0 0
\(511\) 11.1456 + 15.8083i 0.493050 + 0.699320i
\(512\) 2.70367i 0.119486i
\(513\) 0 0
\(514\) 17.6551i 0.778734i
\(515\) 2.11599 1.22167i 0.0932419 0.0538332i
\(516\) 0 0
\(517\) 11.8247 + 6.82701i 0.520051 + 0.300252i
\(518\) −0.604419 + 1.30721i −0.0265566 + 0.0574356i
\(519\) 0 0
\(520\) −9.87756 17.1084i −0.433160 0.750255i
\(521\) −2.31879 −0.101588 −0.0507940 0.998709i \(-0.516175\pi\)
−0.0507940 + 0.998709i \(0.516175\pi\)
\(522\) 0 0
\(523\) 20.1840i 0.882585i −0.897363 0.441293i \(-0.854520\pi\)
0.897363 0.441293i \(-0.145480\pi\)
\(524\) −13.1458 22.7692i −0.574277 0.994677i
\(525\) 0 0
\(526\) 15.9194 27.5733i 0.694120 1.20225i
\(527\) 3.53886 + 2.04316i 0.154155 + 0.0890015i
\(528\) 0 0
\(529\) −3.46621 6.00365i −0.150705 0.261028i
\(530\) 22.9011 0.994761
\(531\) 0 0
\(532\) 37.6375 3.41566i 1.63179 0.148088i
\(533\) −32.9503 + 19.0239i −1.42724 + 0.824016i
\(534\) 0 0
\(535\) −6.13093 3.53970i −0.265063 0.153034i
\(536\) 1.53831 + 0.888141i 0.0664447 + 0.0383618i
\(537\) 0 0
\(538\) −50.9256 + 29.4019i −2.19556 + 1.26761i
\(539\) 4.07644 + 22.2744i 0.175585 + 0.959424i
\(540\) 0 0
\(541\) −22.7713 −0.979014 −0.489507 0.871999i \(-0.662823\pi\)
−0.489507 + 0.871999i \(0.662823\pi\)
\(542\) 18.9552 + 32.8313i 0.814194 + 1.41023i
\(543\) 0 0
\(544\) 5.60020 + 3.23327i 0.240106 + 0.138626i
\(545\) −5.83643 + 10.1090i −0.250005 + 0.433022i
\(546\) 0 0
\(547\) 14.7918 + 25.6201i 0.632451 + 1.09544i 0.987049 + 0.160419i \(0.0512845\pi\)
−0.354598 + 0.935019i \(0.615382\pi\)
\(548\) 32.9270i 1.40657i
\(549\) 0 0
\(550\) −21.6706 −0.924037
\(551\) −2.66589 4.61745i −0.113571 0.196710i
\(552\) 0 0
\(553\) −8.78984 4.06418i −0.373782 0.172827i
\(554\) −61.9196 35.7493i −2.63071 1.51884i
\(555\) 0 0
\(556\) −49.1894 + 28.3995i −2.08609 + 1.20441i
\(557\) 4.71407i 0.199741i 0.995000 + 0.0998707i \(0.0318429\pi\)
−0.995000 + 0.0998707i \(0.968157\pi\)
\(558\) 0 0
\(559\) 39.1439i 1.65561i
\(560\) −0.741624 + 0.522877i −0.0313393 + 0.0220956i
\(561\) 0 0
\(562\) −10.6517 + 18.4493i −0.449316 + 0.778238i
\(563\) 13.6742 23.6844i 0.576299 0.998179i −0.419601 0.907709i \(-0.637830\pi\)
0.995899 0.0904697i \(-0.0288368\pi\)
\(564\) 0 0
\(565\) −4.87226 + 2.81300i −0.204977 + 0.118344i
\(566\) 35.9066 1.50927
\(567\) 0 0
\(568\) −10.2873 −0.431645
\(569\) −20.4018 + 11.7790i −0.855288 + 0.493801i −0.862432 0.506174i \(-0.831059\pi\)
0.00714355 + 0.999974i \(0.497726\pi\)
\(570\) 0 0
\(571\) −9.59385 + 16.6170i −0.401490 + 0.695401i −0.993906 0.110231i \(-0.964841\pi\)
0.592416 + 0.805632i \(0.298174\pi\)
\(572\) 26.3465 45.6336i 1.10160 1.90804i
\(573\) 0 0
\(574\) −25.7939 36.5848i −1.07661 1.52702i
\(575\) 11.7961i 0.491932i
\(576\) 0 0
\(577\) 2.23413i 0.0930079i −0.998918 0.0465039i \(-0.985192\pi\)
0.998918 0.0465039i \(-0.0148080\pi\)
\(578\) −31.1661 + 17.9937i −1.29634 + 0.748441i
\(579\) 0 0
\(580\) −4.69430 2.71026i −0.194920 0.112537i
\(581\) −26.1878 12.1085i −1.08645 0.502346i
\(582\) 0 0
\(583\) 11.3450 + 19.6501i 0.469862 + 0.813826i
\(584\) 19.6700 0.813949
\(585\) 0 0
\(586\) 56.5849i 2.33750i
\(587\) 12.9883 + 22.4963i 0.536083 + 0.928522i 0.999110 + 0.0421784i \(0.0134298\pi\)
−0.463028 + 0.886344i \(0.653237\pi\)
\(588\) 0 0
\(589\) −8.40451 + 14.5570i −0.346302 + 0.599813i
\(590\) −26.7788 15.4608i −1.10247 0.636509i
\(591\) 0 0
\(592\) −0.0285900 0.0495193i −0.00117504 0.00203523i
\(593\) −5.71754 −0.234791 −0.117396 0.993085i \(-0.537455\pi\)
−0.117396 + 0.993085i \(0.537455\pi\)
\(594\) 0 0
\(595\) 0.374290 + 4.12434i 0.0153444 + 0.169081i
\(596\) 48.2885 27.8794i 1.97797 1.14198i
\(597\) 0 0
\(598\) 40.4532 + 23.3557i 1.65425 + 0.955084i
\(599\) −21.8662 12.6245i −0.893429 0.515822i −0.0183665 0.999831i \(-0.505847\pi\)
−0.875063 + 0.484010i \(0.839180\pi\)
\(600\) 0 0
\(601\) 40.2546 23.2410i 1.64202 0.948021i 0.661907 0.749586i \(-0.269748\pi\)
0.980114 0.198435i \(-0.0635858\pi\)
\(602\) −45.8646 + 4.16229i −1.86930 + 0.169642i
\(603\) 0 0
\(604\) −3.50232 −0.142508
\(605\) −0.383978 0.665069i −0.0156109 0.0270389i
\(606\) 0 0
\(607\) −6.09405 3.51840i −0.247350 0.142808i 0.371200 0.928553i \(-0.378946\pi\)
−0.618550 + 0.785745i \(0.712280\pi\)
\(608\) −13.3000 + 23.0363i −0.539387 + 0.934246i
\(609\) 0 0
\(610\) 5.33009 + 9.23200i 0.215809 + 0.373793i
\(611\) 21.6073i 0.874138i
\(612\) 0 0
\(613\) 6.54256 0.264252 0.132126 0.991233i \(-0.457820\pi\)
0.132126 + 0.991233i \(0.457820\pi\)
\(614\) −21.4980 37.2357i −0.867590 1.50271i
\(615\) 0 0
\(616\) 20.9017 + 9.66437i 0.842153 + 0.389388i
\(617\) 30.0043 + 17.3230i 1.20793 + 0.697396i 0.962306 0.271970i \(-0.0876751\pi\)
0.245620 + 0.969366i \(0.421008\pi\)
\(618\) 0 0
\(619\) 14.7072 8.49123i 0.591134 0.341291i −0.174412 0.984673i \(-0.555802\pi\)
0.765546 + 0.643381i \(0.222469\pi\)
\(620\) 17.0888i 0.686302i
\(621\) 0 0
\(622\) 18.1071i 0.726029i
\(623\) 29.6057 20.8733i 1.18613 0.836271i
\(624\) 0 0
\(625\) 0.812855 1.40791i 0.0325142 0.0563162i
\(626\) −12.6724 + 21.9492i −0.506489 + 0.877265i
\(627\) 0 0
\(628\) 26.8922 15.5262i 1.07312 0.619564i
\(629\) −0.260959 −0.0104051
\(630\) 0 0
\(631\) 26.2438 1.04475 0.522374 0.852716i \(-0.325047\pi\)
0.522374 + 0.852716i \(0.325047\pi\)
\(632\) −8.52859 + 4.92398i −0.339249 + 0.195866i
\(633\) 0 0
\(634\) 26.4669 45.8420i 1.05113 1.82062i
\(635\) −4.42354 + 7.66179i −0.175543 + 0.304049i
\(636\) 0 0
\(637\) −27.3009 + 23.2111i −1.08170 + 0.919656i
\(638\) 8.74619i 0.346265i
\(639\) 0 0
\(640\) 25.4813i 1.00724i
\(641\) −16.5092 + 9.53157i −0.652073 + 0.376474i −0.789250 0.614072i \(-0.789530\pi\)
0.137177 + 0.990547i \(0.456197\pi\)
\(642\) 0 0
\(643\) 15.3447 + 8.85928i 0.605136 + 0.349376i 0.771060 0.636763i \(-0.219727\pi\)
−0.165923 + 0.986139i \(0.553060\pi\)
\(644\) −14.1624 + 30.6299i −0.558077 + 1.20699i
\(645\) 0 0
\(646\) 5.57605 + 9.65801i 0.219387 + 0.379989i
\(647\) 21.7902 0.856661 0.428330 0.903622i \(-0.359102\pi\)
0.428330 + 0.903622i \(0.359102\pi\)
\(648\) 0 0
\(649\) 30.6365i 1.20259i
\(650\) −17.1467 29.6990i −0.672549 1.16489i
\(651\) 0 0
\(652\) −11.4955 + 19.9108i −0.450198 + 0.779766i
\(653\) 13.0852 + 7.55475i 0.512064 + 0.295640i 0.733682 0.679493i \(-0.237800\pi\)
−0.221618 + 0.975134i \(0.571134\pi\)
\(654\) 0 0
\(655\) 5.92558 + 10.2634i 0.231532 + 0.401024i
\(656\) 1.77726 0.0693903
\(657\) 0 0
\(658\) −25.3171 + 2.29757i −0.986964 + 0.0895685i
\(659\) 27.1850 15.6952i 1.05898 0.611400i 0.133827 0.991005i \(-0.457273\pi\)
0.925149 + 0.379605i \(0.123940\pi\)
\(660\) 0 0
\(661\) −37.8554 21.8558i −1.47240 0.850093i −0.472885 0.881124i \(-0.656787\pi\)
−0.999518 + 0.0310314i \(0.990121\pi\)
\(662\) 37.7707 + 21.8069i 1.46800 + 0.847551i
\(663\) 0 0
\(664\) −25.4095 + 14.6702i −0.986078 + 0.569312i
\(665\) −16.9654 + 1.53964i −0.657890 + 0.0597046i
\(666\) 0 0
\(667\) 4.76088 0.184342
\(668\) 27.5371 + 47.6957i 1.06544 + 1.84540i
\(669\) 0 0
\(670\) −1.86673 1.07776i −0.0721181 0.0416374i
\(671\) −5.28096 + 9.14690i −0.203869 + 0.353112i
\(672\) 0 0
\(673\) −4.60589 7.97763i −0.177544 0.307515i 0.763495 0.645814i \(-0.223482\pi\)
−0.941039 + 0.338299i \(0.890149\pi\)
\(674\) 65.0051i 2.50390i
\(675\) 0 0
\(676\) 42.0208 1.61618
\(677\) 11.4194 + 19.7789i 0.438882 + 0.760165i 0.997604 0.0691899i \(-0.0220414\pi\)
−0.558722 + 0.829355i \(0.688708\pi\)
\(678\) 0 0
\(679\) −3.45807 + 7.47898i −0.132709 + 0.287017i
\(680\) 3.64721 + 2.10571i 0.139864 + 0.0807505i
\(681\) 0 0
\(682\) −23.8792 + 13.7867i −0.914383 + 0.527919i
\(683\) 34.1826i 1.30796i 0.756511 + 0.653981i \(0.226902\pi\)
−0.756511 + 0.653981i \(0.773098\pi\)
\(684\) 0 0
\(685\) 14.8421i 0.567088i
\(686\) −30.0992 29.5202i −1.14919 1.12709i
\(687\) 0 0
\(688\) 0.914230 1.58349i 0.0348547 0.0603701i
\(689\) −17.9533 + 31.0961i −0.683967 + 1.18467i
\(690\) 0 0
\(691\) −0.224082 + 0.129374i −0.00852446 + 0.00492160i −0.504256 0.863554i \(-0.668233\pi\)
0.495732 + 0.868476i \(0.334900\pi\)
\(692\) 6.22453 0.236621
\(693\) 0 0
\(694\) −6.74720 −0.256120
\(695\) 22.1725 12.8013i 0.841052 0.485582i
\(696\) 0 0
\(697\) 4.05555 7.02441i 0.153615 0.266069i
\(698\) 30.7389 53.2413i 1.16348 2.01521i
\(699\) 0 0
\(700\) 20.2480 14.2757i 0.765302 0.539571i
\(701\) 5.16189i 0.194962i 0.995237 + 0.0974810i \(0.0310785\pi\)
−0.995237 + 0.0974810i \(0.968921\pi\)
\(702\) 0 0
\(703\) 1.07345i 0.0404860i
\(704\) −36.4487 + 21.0437i −1.37371 + 0.793113i
\(705\) 0 0
\(706\) 58.4475 + 33.7447i 2.19970 + 1.27000i
\(707\) 17.0251 + 7.87192i 0.640293 + 0.296054i
\(708\) 0 0
\(709\) −11.7472 20.3468i −0.441175 0.764138i 0.556602 0.830780i \(-0.312105\pi\)
−0.997777 + 0.0666412i \(0.978772\pi\)
\(710\) 12.4836 0.468501
\(711\) 0 0
\(712\) 36.8377i 1.38055i
\(713\) −7.50460 12.9984i −0.281050 0.486792i
\(714\) 0 0
\(715\) −11.8759 + 20.5697i −0.444134 + 0.769263i
\(716\) 63.9357 + 36.9133i 2.38939 + 1.37952i
\(717\) 0 0
\(718\) −28.0293 48.5481i −1.04604 1.81180i
\(719\) 10.1566 0.378776 0.189388 0.981902i \(-0.439350\pi\)
0.189388 + 0.981902i \(0.439350\pi\)
\(720\) 0 0
\(721\) −4.48865 + 0.407352i −0.167166 + 0.0151706i
\(722\) −2.27128 + 1.31132i −0.0845283 + 0.0488024i
\(723\) 0 0
\(724\) −28.3126 16.3463i −1.05223 0.607504i
\(725\) −3.02696 1.74761i −0.112418 0.0649047i
\(726\) 0 0
\(727\) −5.74874 + 3.31904i −0.213209 + 0.123096i −0.602802 0.797891i \(-0.705949\pi\)
0.389593 + 0.920987i \(0.372616\pi\)
\(728\) 3.29356 + 36.2920i 0.122067 + 1.34507i
\(729\) 0 0
\(730\) −23.8695 −0.883449
\(731\) −4.17238 7.22678i −0.154321 0.267292i
\(732\) 0 0
\(733\) 5.20130 + 3.00297i 0.192114 + 0.110917i 0.592972 0.805223i \(-0.297954\pi\)
−0.400858 + 0.916140i \(0.631288\pi\)
\(734\) 6.38209 11.0541i 0.235567 0.408014i
\(735\) 0 0
\(736\) −11.8759 20.5697i −0.437752 0.758209i
\(737\) 2.13565i 0.0786676i
\(738\) 0 0
\(739\) −15.6386 −0.575275 −0.287638 0.957739i \(-0.592870\pi\)
−0.287638 + 0.957739i \(0.592870\pi\)
\(740\) −0.545658 0.945107i −0.0200588 0.0347428i
\(741\) 0 0
\(742\) −38.3441 17.7292i −1.40765 0.650861i
\(743\) −27.3807 15.8083i −1.00450 0.579949i −0.0949246 0.995484i \(-0.530261\pi\)
−0.909577 + 0.415535i \(0.863594\pi\)
\(744\) 0 0
\(745\) −21.7664 + 12.5669i −0.797461 + 0.460414i
\(746\) 8.49897i 0.311169i
\(747\) 0 0
\(748\) 11.2332i 0.410727i
\(749\) 7.52490 + 10.6730i 0.274954 + 0.389982i
\(750\) 0 0
\(751\) 7.13680 12.3613i 0.260426 0.451070i −0.705929 0.708282i \(-0.749470\pi\)
0.966355 + 0.257212i \(0.0828038\pi\)
\(752\) 0.504652 0.874082i 0.0184028 0.0318745i
\(753\) 0 0
\(754\) 11.9864 6.92036i 0.436519 0.252025i
\(755\) 1.57870 0.0574548
\(756\) 0 0
\(757\) −10.8227 −0.393358 −0.196679 0.980468i \(-0.563016\pi\)
−0.196679 + 0.980468i \(0.563016\pi\)
\(758\) −60.0134 + 34.6488i −2.17979 + 1.25850i
\(759\) 0 0
\(760\) −8.66182 + 15.0027i −0.314197 + 0.544206i
\(761\) −2.93098 + 5.07660i −0.106248 + 0.184027i −0.914247 0.405157i \(-0.867217\pi\)
0.808000 + 0.589183i \(0.200550\pi\)
\(762\) 0 0
\(763\) 17.5981 12.4074i 0.637095 0.449180i
\(764\) 72.2926i 2.61546i
\(765\) 0 0
\(766\) 38.6645i 1.39701i
\(767\) 41.9865 24.2409i 1.51604 0.875288i
\(768\) 0 0
\(769\) 27.5683 + 15.9166i 0.994140 + 0.573967i 0.906509 0.422186i \(-0.138737\pi\)
0.0876307 + 0.996153i \(0.472070\pi\)
\(770\) −25.3642 11.7277i −0.914061 0.422637i
\(771\) 0 0
\(772\) 26.8428 + 46.4931i 0.966094 + 1.67332i
\(773\) −19.0382 −0.684755 −0.342378 0.939562i \(-0.611232\pi\)
−0.342378 + 0.939562i \(0.611232\pi\)
\(774\) 0 0
\(775\) 11.0191i 0.395818i
\(776\) 4.18965 + 7.25668i 0.150400 + 0.260500i
\(777\) 0 0
\(778\) −12.3977 + 21.4734i −0.444478 + 0.769859i
\(779\) 28.8948 + 16.6824i 1.03526 + 0.597710i
\(780\) 0 0
\(781\) 6.18427 + 10.7115i 0.221290 + 0.383286i
\(782\) −9.95800 −0.356097
\(783\) 0 0
\(784\) 1.64652 0.301330i 0.0588042 0.0107618i
\(785\) −12.1219 + 6.99857i −0.432649 + 0.249790i
\(786\) 0 0
\(787\) −16.4123 9.47564i −0.585035 0.337770i 0.178097 0.984013i \(-0.443006\pi\)
−0.763132 + 0.646243i \(0.776339\pi\)
\(788\) −24.6472 14.2301i −0.878020 0.506925i
\(789\) 0 0
\(790\) 10.3494 5.97525i 0.368216 0.212590i
\(791\) 10.3355 0.937963i 0.367488 0.0333501i
\(792\) 0 0
\(793\) −16.7141 −0.593535
\(794\) 25.3857 + 43.9693i 0.900905 + 1.56041i
\(795\) 0 0
\(796\) −15.9422 9.20422i −0.565055 0.326235i
\(797\) 26.7207 46.2816i 0.946497 1.63938i 0.193770 0.981047i \(-0.437929\pi\)
0.752727 0.658333i \(-0.228738\pi\)
\(798\) 0 0
\(799\) −2.30314 3.98916i −0.0814792 0.141126i
\(800\) 17.4376i 0.616511i
\(801\) 0 0
\(802\) −54.8194 −1.93574
\(803\) −11.8247 20.4810i −0.417286 0.722760i
\(804\) 0 0
\(805\) 6.38383 13.8067i 0.225000 0.486621i
\(806\) −37.7885 21.8172i −1.33104 0.768479i
\(807\) 0 0
\(808\) 16.5190 9.53727i 0.581137 0.335520i
\(809\) 2.58095i 0.0907413i −0.998970 0.0453706i \(-0.985553\pi\)
0.998970 0.0453706i \(-0.0144469\pi\)
\(810\) 0 0
\(811\) 6.06938i 0.213125i −0.994306 0.106562i \(-0.966016\pi\)
0.994306 0.106562i \(-0.0339844\pi\)
\(812\) 5.76163 + 8.17203i 0.202194 + 0.286782i
\(813\) 0 0
\(814\) 0.880438 1.52496i 0.0308593 0.0534500i
\(815\) 5.18169 8.97494i 0.181507 0.314379i
\(816\) 0 0
\(817\) 29.7272 17.1630i 1.04002 0.600458i
\(818\) −59.9811 −2.09719
\(819\) 0 0
\(820\) 33.9201 1.18454
\(821\) −8.03938 + 4.64154i −0.280576 + 0.161991i −0.633684 0.773592i \(-0.718458\pi\)
0.353108 + 0.935583i \(0.385125\pi\)
\(822\) 0 0
\(823\) −9.03448 + 15.6482i −0.314922 + 0.545461i −0.979421 0.201828i \(-0.935312\pi\)
0.664499 + 0.747289i \(0.268645\pi\)
\(824\) −2.29172 + 3.96937i −0.0798357 + 0.138280i
\(825\) 0 0
\(826\) 32.8674 + 46.6176i 1.14360 + 1.62203i
\(827\) 48.5440i 1.68804i −0.536310 0.844021i \(-0.680182\pi\)
0.536310 0.844021i \(-0.319818\pi\)
\(828\) 0 0
\(829\) 5.44792i 0.189214i 0.995515 + 0.0946071i \(0.0301595\pi\)
−0.995515 + 0.0946071i \(0.969841\pi\)
\(830\) 30.8344 17.8022i 1.07028 0.617924i
\(831\) 0 0
\(832\) −57.6796 33.3013i −1.99968 1.15452i
\(833\) 2.56623 7.19527i 0.0889147 0.249302i
\(834\) 0 0
\(835\) −12.4126 21.4992i −0.429556 0.744012i
\(836\) −46.2076 −1.59812
\(837\) 0 0
\(838\) 73.6460i 2.54406i
\(839\) 24.2673 + 42.0322i 0.837801 + 1.45111i 0.891729 + 0.452569i \(0.149492\pi\)
−0.0539281 + 0.998545i \(0.517174\pi\)
\(840\) 0 0
\(841\) −13.7947 + 23.8931i −0.475678 + 0.823899i
\(842\) −21.8727 12.6282i −0.753781 0.435196i
\(843\) 0 0
\(844\) 41.1907 + 71.3444i 1.41784 + 2.45578i
\(845\) −18.9412 −0.651598
\(846\) 0 0
\(847\) 0.128033 + 1.41081i 0.00439926 + 0.0484759i
\(848\) 1.45254 0.838622i 0.0498803 0.0287984i
\(849\) 0 0
\(850\) 6.33127 + 3.65536i 0.217161 + 0.125378i
\(851\) 0.830095 + 0.479256i 0.0284553 + 0.0164287i
\(852\) 0 0
\(853\) −10.7703 + 6.21823i −0.368768 + 0.212908i −0.672920 0.739715i \(-0.734960\pi\)
0.304152 + 0.952623i \(0.401627\pi\)
\(854\) −1.77726 19.5838i −0.0608165 0.670144i
\(855\) 0 0
\(856\) 13.2801 0.453906
\(857\) −5.29077 9.16388i −0.180729 0.313032i 0.761400 0.648283i \(-0.224512\pi\)
−0.942129 + 0.335250i \(0.891179\pi\)
\(858\) 0 0
\(859\) −28.1452 16.2496i −0.960302 0.554431i −0.0640360 0.997948i \(-0.520397\pi\)
−0.896266 + 0.443517i \(0.853731\pi\)
\(860\) 17.4487 30.2220i 0.594995 1.03056i
\(861\) 0 0
\(862\) −18.5579 32.1432i −0.632084 1.09480i
\(863\) 25.2203i 0.858510i −0.903183 0.429255i \(-0.858776\pi\)
0.903183 0.429255i \(-0.141224\pi\)
\(864\) 0 0
\(865\) −2.80576 −0.0953987
\(866\) 14.2683 + 24.7135i 0.484857 + 0.839797i
\(867\) 0 0
\(868\) 13.2295 28.6123i 0.449040 0.971164i
\(869\) 10.2540 + 5.92017i 0.347844 + 0.200828i
\(870\) 0 0
\(871\) 2.92685 1.68982i 0.0991724 0.0572572i
\(872\) 21.8970i 0.741525i
\(873\) 0 0
\(874\) 40.9621i 1.38556i
\(875\) −24.6341 + 17.3681i −0.832784 + 0.587149i
\(876\) 0 0
\(877\) 7.47893 12.9539i 0.252546 0.437422i −0.711680 0.702503i \(-0.752066\pi\)
0.964226 + 0.265082i \(0.0853989\pi\)
\(878\) 21.1961 36.7127i 0.715333 1.23899i
\(879\) 0 0
\(880\) 0.960836 0.554739i 0.0323898 0.0187003i
\(881\) 36.4482 1.22797 0.613985 0.789318i \(-0.289566\pi\)
0.613985 + 0.789318i \(0.289566\pi\)
\(882\) 0 0
\(883\) 15.9831 0.537873 0.268936 0.963158i \(-0.413328\pi\)
0.268936 + 0.963158i \(0.413328\pi\)
\(884\) −15.3948 + 8.88819i −0.517783 + 0.298942i
\(885\) 0 0
\(886\) −5.40739 + 9.36588i −0.181665 + 0.314653i
\(887\) −24.5208 + 42.4713i −0.823329 + 1.42605i 0.0798613 + 0.996806i \(0.474552\pi\)
−0.903190 + 0.429241i \(0.858781\pi\)
\(888\) 0 0
\(889\) 13.3380 9.40383i 0.447341 0.315394i
\(890\) 44.7026i 1.49843i
\(891\) 0 0
\(892\) 56.8862i 1.90469i
\(893\) 16.4093 9.47393i 0.549117 0.317033i
\(894\) 0 0
\(895\) −28.8196 16.6390i −0.963332 0.556180i
\(896\) 19.7267 42.6641i 0.659023 1.42531i
\(897\) 0 0
\(898\) −18.4834 32.0143i −0.616801 1.06833i
\(899\) −4.44728 −0.148325
\(900\) 0 0
\(901\) 7.65464i 0.255013i
\(902\) 27.3657 + 47.3987i 0.911177 + 1.57820i
\(903\) 0 0
\(904\) 5.27687 9.13981i 0.175506 0.303986i
\(905\) 12.7621 + 7.36821i 0.424227 + 0.244928i
\(906\) 0 0
\(907\) 2.42915 + 4.20741i 0.0806585 + 0.139705i 0.903533 0.428519i \(-0.140964\pi\)
−0.822874 + 0.568223i \(0.807631\pi\)
\(908\) −34.8973 −1.15811
\(909\) 0 0
\(910\) −3.99673 44.0404i −0.132490 1.45992i
\(911\) −14.4945 + 8.36843i −0.480226 + 0.277258i −0.720510 0.693444i \(-0.756092\pi\)
0.240285 + 0.970702i \(0.422759\pi\)
\(912\) 0 0
\(913\) 30.5501 + 17.6381i 1.01106 + 0.583737i
\(914\) 11.3301 + 6.54143i 0.374766 + 0.216371i
\(915\) 0 0
\(916\) 53.5678 30.9274i 1.76993 1.02187i
\(917\) −1.97582 21.7717i −0.0652472 0.718965i
\(918\) 0 0
\(919\) 30.6400 1.01072 0.505360 0.862909i \(-0.331360\pi\)
0.505360 + 0.862909i \(0.331360\pi\)
\(920\) −7.73436 13.3963i −0.254994 0.441663i
\(921\) 0 0
\(922\) 71.5015 + 41.2814i 2.35478 + 1.35953i
\(923\) −9.78651 + 16.9507i −0.322127 + 0.557940i
\(924\) 0 0
\(925\) −0.351848 0.609419i −0.0115687 0.0200376i
\(926\) 66.5627i 2.18739i
\(927\) 0 0
\(928\) −7.03775 −0.231025
\(929\) −14.8723 25.7595i −0.487943 0.845142i 0.511961 0.859009i \(-0.328919\pi\)
−0.999904 + 0.0138670i \(0.995586\pi\)
\(930\) 0 0
\(931\) 29.5976 + 10.5562i 0.970024 + 0.345964i
\(932\) 8.10245 + 4.67795i 0.265405 + 0.153231i
\(933\) 0 0
\(934\) 5.20876 3.00728i 0.170436 0.0984011i
\(935\) 5.06346i 0.165593i
\(936\) 0 0
\(937\) 4.03712i 0.131887i −0.997823 0.0659434i \(-0.978994\pi\)
0.997823 0.0659434i \(-0.0210057\pi\)
\(938\) 2.29117 + 3.24968i 0.0748092 + 0.106106i
\(939\) 0 0
\(940\) 9.63160 16.6824i 0.314148 0.544121i
\(941\) −7.20264 + 12.4753i −0.234799 + 0.406684i −0.959214 0.282680i \(-0.908777\pi\)
0.724415 + 0.689364i \(0.242110\pi\)
\(942\) 0 0
\(943\) −25.8009 + 14.8962i −0.840193 + 0.485085i
\(944\) −2.26464 −0.0737079
\(945\) 0 0
\(946\) 56.3081 1.83073
\(947\) −27.0334 + 15.6077i −0.878467 + 0.507183i −0.870153 0.492782i \(-0.835980\pi\)
−0.00831468 + 0.999965i \(0.502647\pi\)
\(948\) 0 0
\(949\) 18.7125 32.4109i 0.607432 1.05210i
\(950\) −15.0363 + 26.0436i −0.487841 + 0.844966i
\(951\) 0 0
\(952\) −4.47646 6.34920i −0.145083 0.205779i
\(953\) 8.55869i 0.277243i 0.990345 + 0.138622i \(0.0442672\pi\)
−0.990345 + 0.138622i \(0.955733\pi\)
\(954\) 0 0
\(955\) 32.5865i 1.05447i
\(956\) 34.1278 19.7037i 1.10377 0.637263i
\(957\) 0 0
\(958\) −61.2751 35.3772i −1.97971 1.14298i
\(959\) 11.4902 24.8506i 0.371039 0.802468i
\(960\) 0 0
\(961\) −8.48973 14.7046i −0.273862 0.474343i
\(962\) 2.78656 0.0898424
\(963\) 0 0
\(964\) 42.9669i 1.38387i
\(965\) −12.0996 20.9572i −0.389501 0.674635i
\(966\) 0 0
\(967\) 16.0280 27.7614i 0.515427 0.892745i −0.484413 0.874840i \(-0.660967\pi\)
0.999840 0.0179059i \(-0.00569994\pi\)
\(968\) 1.24759 + 0.720299i 0.0400992 + 0.0231513i
\(969\) 0 0
\(970\) −5.08414 8.80598i −0.163242 0.282743i
\(971\) −33.2366 −1.06661 −0.533307 0.845922i \(-0.679051\pi\)
−0.533307 + 0.845922i \(0.679051\pi\)
\(972\) 0 0
\(973\) −47.0345 + 4.26845i −1.50786 + 0.136840i
\(974\) 68.7469 39.6911i 2.20279 1.27178i
\(975\) 0 0
\(976\) 0.676137 + 0.390368i 0.0216426 + 0.0124954i
\(977\) −45.1558 26.0707i −1.44466 0.834076i −0.446507 0.894780i \(-0.647332\pi\)
−0.998156 + 0.0607042i \(0.980665\pi\)
\(978\) 0 0
\(979\) −38.3567 + 22.1453i −1.22589 + 0.707765i
\(980\) 31.4248 5.75107i 1.00383 0.183711i
\(981\) 0 0
\(982\) 59.6044 1.90205
\(983\) 12.1192 + 20.9911i 0.386544 + 0.669513i 0.991982 0.126379i \(-0.0403356\pi\)
−0.605438 + 0.795892i \(0.707002\pi\)
\(984\) 0 0
\(985\) 11.1099 + 6.41432i 0.353992 + 0.204377i
\(986\) −1.47529 + 2.55528i −0.0469829 + 0.0813768i
\(987\) 0 0
\(988\) −36.5614 63.3263i −1.16317 2.01468i
\(989\) 30.6506i 0.974632i
\(990\) 0 0
\(991\) −24.1981 −0.768678 −0.384339 0.923192i \(-0.625571\pi\)
−0.384339 + 0.923192i \(0.625571\pi\)
\(992\) 11.0937 + 19.2148i 0.352224 + 0.610070i
\(993\) 0 0
\(994\) −20.9017 9.66437i −0.662961 0.306535i
\(995\) 7.18607 + 4.14888i 0.227814 + 0.131528i
\(996\) 0 0
\(997\) 8.81920 5.09177i 0.279307 0.161258i −0.353803 0.935320i \(-0.615112\pi\)
0.633110 + 0.774062i \(0.281778\pi\)
\(998\) 28.4053i 0.899155i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 189.2.o.a.125.5 12
3.2 odd 2 63.2.o.a.41.1 yes 12
4.3 odd 2 3024.2.cc.a.881.3 12
7.2 even 3 1323.2.s.c.962.2 12
7.3 odd 6 1323.2.i.c.1097.6 12
7.4 even 3 1323.2.i.c.1097.5 12
7.5 odd 6 1323.2.s.c.962.1 12
7.6 odd 2 inner 189.2.o.a.125.6 12
9.2 odd 6 inner 189.2.o.a.62.6 12
9.4 even 3 567.2.c.c.566.12 12
9.5 odd 6 567.2.c.c.566.1 12
9.7 even 3 63.2.o.a.20.2 yes 12
12.11 even 2 1008.2.cc.a.545.5 12
21.2 odd 6 441.2.s.c.374.6 12
21.5 even 6 441.2.s.c.374.5 12
21.11 odd 6 441.2.i.c.68.1 12
21.17 even 6 441.2.i.c.68.2 12
21.20 even 2 63.2.o.a.41.2 yes 12
28.27 even 2 3024.2.cc.a.881.4 12
36.7 odd 6 1008.2.cc.a.209.2 12
36.11 even 6 3024.2.cc.a.2897.4 12
63.2 odd 6 1323.2.i.c.521.2 12
63.11 odd 6 1323.2.s.c.656.1 12
63.13 odd 6 567.2.c.c.566.11 12
63.16 even 3 441.2.i.c.227.6 12
63.20 even 6 inner 189.2.o.a.62.5 12
63.25 even 3 441.2.s.c.362.5 12
63.34 odd 6 63.2.o.a.20.1 12
63.38 even 6 1323.2.s.c.656.2 12
63.41 even 6 567.2.c.c.566.2 12
63.47 even 6 1323.2.i.c.521.1 12
63.52 odd 6 441.2.s.c.362.6 12
63.61 odd 6 441.2.i.c.227.5 12
84.83 odd 2 1008.2.cc.a.545.2 12
252.83 odd 6 3024.2.cc.a.2897.3 12
252.223 even 6 1008.2.cc.a.209.5 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.2.o.a.20.1 12 63.34 odd 6
63.2.o.a.20.2 yes 12 9.7 even 3
63.2.o.a.41.1 yes 12 3.2 odd 2
63.2.o.a.41.2 yes 12 21.20 even 2
189.2.o.a.62.5 12 63.20 even 6 inner
189.2.o.a.62.6 12 9.2 odd 6 inner
189.2.o.a.125.5 12 1.1 even 1 trivial
189.2.o.a.125.6 12 7.6 odd 2 inner
441.2.i.c.68.1 12 21.11 odd 6
441.2.i.c.68.2 12 21.17 even 6
441.2.i.c.227.5 12 63.61 odd 6
441.2.i.c.227.6 12 63.16 even 3
441.2.s.c.362.5 12 63.25 even 3
441.2.s.c.362.6 12 63.52 odd 6
441.2.s.c.374.5 12 21.5 even 6
441.2.s.c.374.6 12 21.2 odd 6
567.2.c.c.566.1 12 9.5 odd 6
567.2.c.c.566.2 12 63.41 even 6
567.2.c.c.566.11 12 63.13 odd 6
567.2.c.c.566.12 12 9.4 even 3
1008.2.cc.a.209.2 12 36.7 odd 6
1008.2.cc.a.209.5 12 252.223 even 6
1008.2.cc.a.545.2 12 84.83 odd 2
1008.2.cc.a.545.5 12 12.11 even 2
1323.2.i.c.521.1 12 63.47 even 6
1323.2.i.c.521.2 12 63.2 odd 6
1323.2.i.c.1097.5 12 7.4 even 3
1323.2.i.c.1097.6 12 7.3 odd 6
1323.2.s.c.656.1 12 63.11 odd 6
1323.2.s.c.656.2 12 63.38 even 6
1323.2.s.c.962.1 12 7.5 odd 6
1323.2.s.c.962.2 12 7.2 even 3
3024.2.cc.a.881.3 12 4.3 odd 2
3024.2.cc.a.881.4 12 28.27 even 2
3024.2.cc.a.2897.3 12 252.83 odd 6
3024.2.cc.a.2897.4 12 36.11 even 6