Properties

Label 189.2.f.a
Level $189$
Weight $2$
Character orbit 189.f
Analytic conductor $1.509$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
Defining polynomial: \(x^{6} - 3 x^{5} + 10 x^{4} - 15 x^{3} + 19 x^{2} - 12 x + 3\)
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( \beta_{1} - \beta_{5} ) q^{2} + ( -1 + \beta_{2} + \beta_{4} + \beta_{5} ) q^{4} + ( -2 + \beta_{2} + 2 \beta_{4} ) q^{5} + \beta_{4} q^{7} + ( 2 - \beta_{1} + \beta_{3} ) q^{8} +O(q^{10})\) \( q + ( \beta_{1} - \beta_{5} ) q^{2} + ( -1 + \beta_{2} + \beta_{4} + \beta_{5} ) q^{4} + ( -2 + \beta_{2} + 2 \beta_{4} ) q^{5} + \beta_{4} q^{7} + ( 2 - \beta_{1} + \beta_{3} ) q^{8} + ( -1 - 3 \beta_{1} ) q^{10} + ( -2 \beta_{1} + \beta_{2} + \beta_{3} - \beta_{4} + 2 \beta_{5} ) q^{11} + ( -1 + \beta_{4} ) q^{13} -\beta_{5} q^{14} + ( 2 \beta_{1} + \beta_{2} + \beta_{3} - 2 \beta_{5} ) q^{16} + ( 4 + \beta_{1} - \beta_{3} ) q^{17} + ( -1 + \beta_{1} - \beta_{3} ) q^{19} + ( 2 \beta_{1} - \beta_{2} - \beta_{3} - 5 \beta_{4} - 2 \beta_{5} ) q^{20} + ( 5 - 2 \beta_{2} - 5 \beta_{4} - 2 \beta_{5} ) q^{22} + ( 1 - 2 \beta_{2} - \beta_{4} + \beta_{5} ) q^{23} + ( -\beta_{1} - 2 \beta_{2} - 2 \beta_{3} - 3 \beta_{4} + \beta_{5} ) q^{25} -\beta_{1} q^{26} + ( -1 + \beta_{1} - \beta_{3} ) q^{28} + ( -\beta_{1} + \beta_{5} ) q^{29} + ( 2 - \beta_{2} - 2 \beta_{4} + 2 \beta_{5} ) q^{31} + ( -3 + 3 \beta_{4} - \beta_{5} ) q^{32} + ( 2 \beta_{1} + \beta_{2} + \beta_{3} + 2 \beta_{4} - 2 \beta_{5} ) q^{34} + ( -2 - \beta_{3} ) q^{35} + 3 \beta_{3} q^{37} + ( -3 \beta_{1} + \beta_{2} + \beta_{3} + 2 \beta_{4} + 3 \beta_{5} ) q^{38} + ( -7 + 2 \beta_{2} + 7 \beta_{4} + 2 \beta_{5} ) q^{40} + ( -7 - \beta_{2} + 7 \beta_{4} ) q^{41} + ( -4 \beta_{1} + \beta_{2} + \beta_{3} + 4 \beta_{5} ) q^{43} + ( -6 + 5 \beta_{1} ) q^{44} + ( 5 + 2 \beta_{1} + \beta_{3} ) q^{46} + ( 3 \beta_{1} - 3 \beta_{2} - 3 \beta_{3} - 3 \beta_{4} - 3 \beta_{5} ) q^{47} + ( -1 + \beta_{4} ) q^{49} + ( 5 - \beta_{2} - 5 \beta_{4} + 4 \beta_{5} ) q^{50} + ( \beta_{1} - \beta_{2} - \beta_{3} - \beta_{4} - \beta_{5} ) q^{52} + ( 5 - \beta_{1} - 2 \beta_{3} ) q^{53} + ( 5 \beta_{1} + \beta_{3} ) q^{55} + ( -\beta_{1} + \beta_{2} + \beta_{3} + 2 \beta_{4} + \beta_{5} ) q^{56} + ( 3 - \beta_{2} - 3 \beta_{4} - \beta_{5} ) q^{58} + ( -4 + 2 \beta_{2} + 4 \beta_{4} - \beta_{5} ) q^{59} + ( -\beta_{1} - 2 \beta_{2} - 2 \beta_{3} + \beta_{4} + \beta_{5} ) q^{61} + ( 7 + \beta_{1} + 2 \beta_{3} ) q^{62} + ( -3 + 2 \beta_{1} + \beta_{3} ) q^{64} + ( -\beta_{2} - \beta_{3} - 2 \beta_{4} ) q^{65} + ( -2 - \beta_{2} + 2 \beta_{4} - 7 \beta_{5} ) q^{67} + ( 1 + 4 \beta_{2} - \beta_{4} + \beta_{5} ) q^{68} + ( -3 \beta_{1} - \beta_{4} + 3 \beta_{5} ) q^{70} + ( -2 + \beta_{1} + 2 \beta_{3} ) q^{71} + ( -1 - \beta_{1} - 5 \beta_{3} ) q^{73} + ( 3 \beta_{1} + 3 \beta_{4} - 3 \beta_{5} ) q^{74} + ( 6 - \beta_{2} - 6 \beta_{4} - 4 \beta_{5} ) q^{76} + ( 1 + \beta_{2} - \beta_{4} + 2 \beta_{5} ) q^{77} + ( 5 \beta_{1} + \beta_{2} + \beta_{3} - 3 \beta_{4} - 5 \beta_{5} ) q^{79} + ( -6 - 7 \beta_{1} ) q^{80} + ( 1 - 6 \beta_{1} ) q^{82} + ( -\beta_{1} + \beta_{2} + \beta_{3} - 4 \beta_{4} + \beta_{5} ) q^{83} + ( -5 + 4 \beta_{2} + 5 \beta_{4} - 2 \beta_{5} ) q^{85} + ( 11 - 4 \beta_{2} - 11 \beta_{4} - 5 \beta_{5} ) q^{86} + ( -7 \beta_{1} + \beta_{2} + \beta_{3} + 5 \beta_{4} + 7 \beta_{5} ) q^{88} + ( -1 - 6 \beta_{1} + \beta_{3} ) q^{89} - q^{91} + ( 2 \beta_{1} - 2 \beta_{2} - 2 \beta_{3} + 5 \beta_{4} - 2 \beta_{5} ) q^{92} + ( -6 + 3 \beta_{2} + 6 \beta_{4} + 9 \beta_{5} ) q^{94} + ( 5 - \beta_{2} - 5 \beta_{4} - 2 \beta_{5} ) q^{95} + ( -5 \beta_{1} + 2 \beta_{2} + 2 \beta_{3} - 2 \beta_{4} + 5 \beta_{5} ) q^{97} -\beta_{1} q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6q - q^{2} - 3q^{4} - 5q^{5} + 3q^{7} + 12q^{8} + O(q^{10}) \) \( 6q - q^{2} - 3q^{4} - 5q^{5} + 3q^{7} + 12q^{8} - 2q^{11} - 3q^{13} + q^{14} - 3q^{16} + 24q^{17} - 6q^{19} - 16q^{20} + 15q^{22} - 6q^{25} + 2q^{26} - 6q^{28} + q^{29} + 3q^{31} - 8q^{32} + 3q^{34} - 10q^{35} - 6q^{37} + 8q^{38} - 21q^{40} - 22q^{41} + 3q^{43} - 46q^{44} + 24q^{46} - 9q^{47} - 3q^{49} + 10q^{50} - 3q^{52} + 36q^{53} - 12q^{55} + 6q^{56} + 9q^{58} - 9q^{59} + 6q^{61} + 36q^{62} - 24q^{64} - 5q^{65} + 6q^{68} - 18q^{71} + 6q^{73} + 6q^{74} + 21q^{76} + 2q^{77} - 15q^{79} - 22q^{80} + 18q^{82} - 12q^{83} - 9q^{85} + 34q^{86} + 21q^{88} + 4q^{89} - 6q^{91} + 15q^{92} - 24q^{94} + 16q^{95} - 3q^{97} + 2q^{98} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{6} - 3 x^{5} + 10 x^{4} - 15 x^{3} + 19 x^{2} - 12 x + 3\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu^{2} - \nu + 2 \)
\(\beta_{2}\)\(=\)\((\)\( -\nu^{5} + \nu^{4} - 8 \nu^{3} + 5 \nu^{2} - 18 \nu + 6 \)\()/3\)
\(\beta_{3}\)\(=\)\( \nu^{4} - 2 \nu^{3} + 6 \nu^{2} - 5 \nu + 3 \)
\(\beta_{4}\)\(=\)\((\)\( -2 \nu^{5} + 5 \nu^{4} - 16 \nu^{3} + 19 \nu^{2} - 21 \nu + 9 \)\()/3\)
\(\beta_{5}\)\(=\)\((\)\( 2 \nu^{5} - 5 \nu^{4} + 19 \nu^{3} - 22 \nu^{2} + 30 \nu - 9 \)\()/3\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(-2 \beta_{5} - \beta_{4} - \beta_{3} - 2 \beta_{2} + \beta_{1} + 2\)\()/3\)
\(\nu^{2}\)\(=\)\((\)\(-2 \beta_{5} - \beta_{4} - \beta_{3} - 2 \beta_{2} + 4 \beta_{1} - 4\)\()/3\)
\(\nu^{3}\)\(=\)\((\)\(7 \beta_{5} + 5 \beta_{4} + 2 \beta_{3} + 4 \beta_{2} + \beta_{1} - 10\)\()/3\)
\(\nu^{4}\)\(=\)\((\)\(16 \beta_{5} + 11 \beta_{4} + 8 \beta_{3} + 10 \beta_{2} - 17 \beta_{1} + 5\)\()/3\)
\(\nu^{5}\)\(=\)\((\)\(-14 \beta_{5} - 16 \beta_{4} + 5 \beta_{3} - 5 \beta_{2} - 23 \beta_{1} + 47\)\()/3\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(-1 + \beta_{4}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
64.1
0.500000 2.05195i
0.500000 + 1.41036i
0.500000 0.224437i
0.500000 + 2.05195i
0.500000 1.41036i
0.500000 + 0.224437i
−1.23025 2.13086i 0 −2.02704 + 3.51094i −1.29679 + 2.24611i 0 0.500000 + 0.866025i 5.05408 0 6.38151
64.2 −0.119562 0.207087i 0 0.971410 1.68253i 0.590972 1.02359i 0 0.500000 + 0.866025i −0.942820 0 −0.282630
64.3 0.849814 + 1.47192i 0 −0.444368 + 0.769668i −1.79418 + 3.10761i 0 0.500000 + 0.866025i 1.88874 0 −6.09888
127.1 −1.23025 + 2.13086i 0 −2.02704 3.51094i −1.29679 2.24611i 0 0.500000 0.866025i 5.05408 0 6.38151
127.2 −0.119562 + 0.207087i 0 0.971410 + 1.68253i 0.590972 + 1.02359i 0 0.500000 0.866025i −0.942820 0 −0.282630
127.3 0.849814 1.47192i 0 −0.444368 0.769668i −1.79418 3.10761i 0 0.500000 0.866025i 1.88874 0 −6.09888
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 127.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 189.2.f.a 6
3.b odd 2 1 63.2.f.b 6
4.b odd 2 1 3024.2.r.g 6
7.b odd 2 1 1323.2.f.c 6
7.c even 3 1 1323.2.g.c 6
7.c even 3 1 1323.2.h.d 6
7.d odd 6 1 1323.2.g.b 6
7.d odd 6 1 1323.2.h.e 6
9.c even 3 1 inner 189.2.f.a 6
9.c even 3 1 567.2.a.g 3
9.d odd 6 1 63.2.f.b 6
9.d odd 6 1 567.2.a.d 3
12.b even 2 1 1008.2.r.k 6
21.c even 2 1 441.2.f.d 6
21.g even 6 1 441.2.g.d 6
21.g even 6 1 441.2.h.b 6
21.h odd 6 1 441.2.g.e 6
21.h odd 6 1 441.2.h.c 6
36.f odd 6 1 3024.2.r.g 6
36.f odd 6 1 9072.2.a.cd 3
36.h even 6 1 1008.2.r.k 6
36.h even 6 1 9072.2.a.bq 3
63.g even 3 1 1323.2.h.d 6
63.h even 3 1 1323.2.g.c 6
63.i even 6 1 441.2.g.d 6
63.j odd 6 1 441.2.g.e 6
63.k odd 6 1 1323.2.h.e 6
63.l odd 6 1 1323.2.f.c 6
63.l odd 6 1 3969.2.a.p 3
63.n odd 6 1 441.2.h.c 6
63.o even 6 1 441.2.f.d 6
63.o even 6 1 3969.2.a.m 3
63.s even 6 1 441.2.h.b 6
63.t odd 6 1 1323.2.g.b 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
63.2.f.b 6 3.b odd 2 1
63.2.f.b 6 9.d odd 6 1
189.2.f.a 6 1.a even 1 1 trivial
189.2.f.a 6 9.c even 3 1 inner
441.2.f.d 6 21.c even 2 1
441.2.f.d 6 63.o even 6 1
441.2.g.d 6 21.g even 6 1
441.2.g.d 6 63.i even 6 1
441.2.g.e 6 21.h odd 6 1
441.2.g.e 6 63.j odd 6 1
441.2.h.b 6 21.g even 6 1
441.2.h.b 6 63.s even 6 1
441.2.h.c 6 21.h odd 6 1
441.2.h.c 6 63.n odd 6 1
567.2.a.d 3 9.d odd 6 1
567.2.a.g 3 9.c even 3 1
1008.2.r.k 6 12.b even 2 1
1008.2.r.k 6 36.h even 6 1
1323.2.f.c 6 7.b odd 2 1
1323.2.f.c 6 63.l odd 6 1
1323.2.g.b 6 7.d odd 6 1
1323.2.g.b 6 63.t odd 6 1
1323.2.g.c 6 7.c even 3 1
1323.2.g.c 6 63.h even 3 1
1323.2.h.d 6 7.c even 3 1
1323.2.h.d 6 63.g even 3 1
1323.2.h.e 6 7.d odd 6 1
1323.2.h.e 6 63.k odd 6 1
3024.2.r.g 6 4.b odd 2 1
3024.2.r.g 6 36.f odd 6 1
3969.2.a.m 3 63.o even 6 1
3969.2.a.p 3 63.l odd 6 1
9072.2.a.bq 3 36.h even 6 1
9072.2.a.cd 3 36.f odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} + T_{2}^{5} + 5 T_{2}^{4} - 2 T_{2}^{3} + 17 T_{2}^{2} + 4 T_{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(189, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + 4 T + 17 T^{2} - 2 T^{3} + 5 T^{4} + T^{5} + T^{6} \)
$3$ \( T^{6} \)
$5$ \( 121 - 22 T + 59 T^{2} + 32 T^{3} + 23 T^{4} + 5 T^{5} + T^{6} \)
$7$ \( ( 1 - T + T^{2} )^{3} \)
$11$ \( 2209 + 893 T + 455 T^{2} + 56 T^{3} + 23 T^{4} + 2 T^{5} + T^{6} \)
$13$ \( ( 1 + T + T^{2} )^{3} \)
$17$ \( ( -27 + 39 T - 12 T^{2} + T^{3} )^{2} \)
$19$ \( ( -7 - 6 T + 3 T^{2} + T^{3} )^{2} \)
$23$ \( 81 + 297 T + 1089 T^{2} + 18 T^{3} + 33 T^{4} + T^{6} \)
$29$ \( 1 - 4 T + 17 T^{2} + 2 T^{3} + 5 T^{4} - T^{5} + T^{6} \)
$31$ \( 729 + 648 T + 495 T^{2} + 126 T^{3} + 33 T^{4} - 3 T^{5} + T^{6} \)
$37$ \( ( 81 - 54 T + 3 T^{2} + T^{3} )^{2} \)
$41$ \( 124609 + 54715 T + 16259 T^{2} + 2704 T^{3} + 329 T^{4} + 22 T^{5} + T^{6} \)
$43$ \( 14641 + 7986 T + 3993 T^{2} + 440 T^{3} + 75 T^{4} - 3 T^{5} + T^{6} \)
$47$ \( 35721 + 10206 T + 4617 T^{2} - 108 T^{3} + 135 T^{4} + 9 T^{5} + T^{6} \)
$53$ \( ( -9 + 75 T - 18 T^{2} + T^{3} )^{2} \)
$59$ \( 3969 + 378 T + 603 T^{2} + 72 T^{3} + 87 T^{4} + 9 T^{5} + T^{6} \)
$61$ \( 4489 - 1407 T + 843 T^{2} - 8 T^{3} + 57 T^{4} - 6 T^{5} + T^{6} \)
$67$ \( 466489 + 141381 T + 42849 T^{2} + 1366 T^{3} + 207 T^{4} + T^{6} \)
$71$ \( ( -81 - 6 T + 9 T^{2} + T^{3} )^{2} \)
$73$ \( ( -243 - 168 T - 3 T^{2} + T^{3} )^{2} \)
$79$ \( 591361 + 36912 T + 13839 T^{2} + 818 T^{3} + 273 T^{4} + 15 T^{5} + T^{6} \)
$83$ \( 729 + 1053 T + 1197 T^{2} + 414 T^{3} + 105 T^{4} + 12 T^{5} + T^{6} \)
$89$ \( ( -379 - 151 T - 2 T^{2} + T^{3} )^{2} \)
$97$ \( 363609 + 68742 T + 14805 T^{2} + 864 T^{3} + 123 T^{4} + 3 T^{5} + T^{6} \)
show more
show less