Defining parameters
Level: | \( N \) | \(=\) | \( 189 = 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 189.f (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(48\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(189, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 60 | 12 | 48 |
Cusp forms | 36 | 12 | 24 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(189, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
189.2.f.a | $6$ | $1.509$ | 6.0.309123.1 | None | \(-1\) | \(0\) | \(-5\) | \(3\) | \(q+(\beta _{1}-\beta _{5})q^{2}+(-1+\beta _{2}+\beta _{4}+\beta _{5})q^{4}+\cdots\) |
189.2.f.b | $6$ | $1.509$ | \(\Q(\zeta_{18})\) | None | \(3\) | \(0\) | \(3\) | \(-3\) | \(q+(\beta_{5}-\beta_{4}-\beta_{3}+\beta_1)q^{2}+(2\beta_{5}-\beta_{3}+\beta_{2}+\cdots-1)q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(189, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(189, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 2}\)