Properties

Label 189.2.e.a.109.1
Level $189$
Weight $2$
Character 189.109
Analytic conductor $1.509$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(109,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 109.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 189.109
Dual form 189.2.e.a.163.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(0.500000 - 0.866025i) q^{4} +(2.00000 + 3.46410i) q^{5} +(2.00000 + 1.73205i) q^{7} -3.00000 q^{8} +(2.00000 - 3.46410i) q^{10} +(-1.00000 + 1.73205i) q^{11} +1.00000 q^{13} +(0.500000 - 2.59808i) q^{14} +(0.500000 + 0.866025i) q^{16} +(3.00000 - 5.19615i) q^{17} +(-2.00000 - 3.46410i) q^{19} +4.00000 q^{20} +2.00000 q^{22} +(-3.00000 - 5.19615i) q^{23} +(-5.50000 + 9.52628i) q^{25} +(-0.500000 - 0.866025i) q^{26} +(2.50000 - 0.866025i) q^{28} +2.00000 q^{29} +(-1.50000 + 2.59808i) q^{31} +(-2.50000 + 4.33013i) q^{32} -6.00000 q^{34} +(-2.00000 + 10.3923i) q^{35} +(-1.50000 - 2.59808i) q^{37} +(-2.00000 + 3.46410i) q^{38} +(-6.00000 - 10.3923i) q^{40} -2.00000 q^{41} -1.00000 q^{43} +(1.00000 + 1.73205i) q^{44} +(-3.00000 + 5.19615i) q^{46} +(-3.00000 - 5.19615i) q^{47} +(1.00000 + 6.92820i) q^{49} +11.0000 q^{50} +(0.500000 - 0.866025i) q^{52} +(3.00000 - 5.19615i) q^{53} -8.00000 q^{55} +(-6.00000 - 5.19615i) q^{56} +(-1.00000 - 1.73205i) q^{58} +(-3.00000 + 5.19615i) q^{59} +(2.50000 + 4.33013i) q^{61} +3.00000 q^{62} +7.00000 q^{64} +(2.00000 + 3.46410i) q^{65} +(-3.50000 + 6.06218i) q^{67} +(-3.00000 - 5.19615i) q^{68} +(10.0000 - 3.46410i) q^{70} +(3.00000 - 5.19615i) q^{73} +(-1.50000 + 2.59808i) q^{74} -4.00000 q^{76} +(-5.00000 + 1.73205i) q^{77} +(-5.50000 - 9.52628i) q^{79} +(-2.00000 + 3.46410i) q^{80} +(1.00000 + 1.73205i) q^{82} +6.00000 q^{83} +24.0000 q^{85} +(0.500000 + 0.866025i) q^{86} +(3.00000 - 5.19615i) q^{88} +(2.00000 + 3.46410i) q^{89} +(2.00000 + 1.73205i) q^{91} -6.00000 q^{92} +(-3.00000 + 5.19615i) q^{94} +(8.00000 - 13.8564i) q^{95} +9.00000 q^{97} +(5.50000 - 4.33013i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + q^{4} + 4 q^{5} + 4 q^{7} - 6 q^{8} + 4 q^{10} - 2 q^{11} + 2 q^{13} + q^{14} + q^{16} + 6 q^{17} - 4 q^{19} + 8 q^{20} + 4 q^{22} - 6 q^{23} - 11 q^{25} - q^{26} + 5 q^{28} + 4 q^{29}+ \cdots + 11 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i 0.633316 0.773893i \(-0.281693\pi\)
−0.986869 + 0.161521i \(0.948360\pi\)
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 2.00000 + 3.46410i 0.894427 + 1.54919i 0.834512 + 0.550990i \(0.185750\pi\)
0.0599153 + 0.998203i \(0.480917\pi\)
\(6\) 0 0
\(7\) 2.00000 + 1.73205i 0.755929 + 0.654654i
\(8\) −3.00000 −1.06066
\(9\) 0 0
\(10\) 2.00000 3.46410i 0.632456 1.09545i
\(11\) −1.00000 + 1.73205i −0.301511 + 0.522233i −0.976478 0.215615i \(-0.930824\pi\)
0.674967 + 0.737848i \(0.264158\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350 0.138675 0.990338i \(-0.455716\pi\)
0.138675 + 0.990338i \(0.455716\pi\)
\(14\) 0.500000 2.59808i 0.133631 0.694365i
\(15\) 0 0
\(16\) 0.500000 + 0.866025i 0.125000 + 0.216506i
\(17\) 3.00000 5.19615i 0.727607 1.26025i −0.230285 0.973123i \(-0.573966\pi\)
0.957892 0.287129i \(-0.0927008\pi\)
\(18\) 0 0
\(19\) −2.00000 3.46410i −0.458831 0.794719i 0.540068 0.841621i \(-0.318398\pi\)
−0.998899 + 0.0469020i \(0.985065\pi\)
\(20\) 4.00000 0.894427
\(21\) 0 0
\(22\) 2.00000 0.426401
\(23\) −3.00000 5.19615i −0.625543 1.08347i −0.988436 0.151642i \(-0.951544\pi\)
0.362892 0.931831i \(-0.381789\pi\)
\(24\) 0 0
\(25\) −5.50000 + 9.52628i −1.10000 + 1.90526i
\(26\) −0.500000 0.866025i −0.0980581 0.169842i
\(27\) 0 0
\(28\) 2.50000 0.866025i 0.472456 0.163663i
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) −1.50000 + 2.59808i −0.269408 + 0.466628i −0.968709 0.248199i \(-0.920161\pi\)
0.699301 + 0.714827i \(0.253495\pi\)
\(32\) −2.50000 + 4.33013i −0.441942 + 0.765466i
\(33\) 0 0
\(34\) −6.00000 −1.02899
\(35\) −2.00000 + 10.3923i −0.338062 + 1.75662i
\(36\) 0 0
\(37\) −1.50000 2.59808i −0.246598 0.427121i 0.715981 0.698119i \(-0.245980\pi\)
−0.962580 + 0.270998i \(0.912646\pi\)
\(38\) −2.00000 + 3.46410i −0.324443 + 0.561951i
\(39\) 0 0
\(40\) −6.00000 10.3923i −0.948683 1.64317i
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) −1.00000 −0.152499 −0.0762493 0.997089i \(-0.524294\pi\)
−0.0762493 + 0.997089i \(0.524294\pi\)
\(44\) 1.00000 + 1.73205i 0.150756 + 0.261116i
\(45\) 0 0
\(46\) −3.00000 + 5.19615i −0.442326 + 0.766131i
\(47\) −3.00000 5.19615i −0.437595 0.757937i 0.559908 0.828554i \(-0.310836\pi\)
−0.997503 + 0.0706177i \(0.977503\pi\)
\(48\) 0 0
\(49\) 1.00000 + 6.92820i 0.142857 + 0.989743i
\(50\) 11.0000 1.55563
\(51\) 0 0
\(52\) 0.500000 0.866025i 0.0693375 0.120096i
\(53\) 3.00000 5.19615i 0.412082 0.713746i −0.583036 0.812447i \(-0.698135\pi\)
0.995117 + 0.0987002i \(0.0314685\pi\)
\(54\) 0 0
\(55\) −8.00000 −1.07872
\(56\) −6.00000 5.19615i −0.801784 0.694365i
\(57\) 0 0
\(58\) −1.00000 1.73205i −0.131306 0.227429i
\(59\) −3.00000 + 5.19615i −0.390567 + 0.676481i −0.992524 0.122047i \(-0.961054\pi\)
0.601958 + 0.798528i \(0.294388\pi\)
\(60\) 0 0
\(61\) 2.50000 + 4.33013i 0.320092 + 0.554416i 0.980507 0.196485i \(-0.0629528\pi\)
−0.660415 + 0.750901i \(0.729619\pi\)
\(62\) 3.00000 0.381000
\(63\) 0 0
\(64\) 7.00000 0.875000
\(65\) 2.00000 + 3.46410i 0.248069 + 0.429669i
\(66\) 0 0
\(67\) −3.50000 + 6.06218i −0.427593 + 0.740613i −0.996659 0.0816792i \(-0.973972\pi\)
0.569066 + 0.822292i \(0.307305\pi\)
\(68\) −3.00000 5.19615i −0.363803 0.630126i
\(69\) 0 0
\(70\) 10.0000 3.46410i 1.19523 0.414039i
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 3.00000 5.19615i 0.351123 0.608164i −0.635323 0.772246i \(-0.719133\pi\)
0.986447 + 0.164083i \(0.0524664\pi\)
\(74\) −1.50000 + 2.59808i −0.174371 + 0.302020i
\(75\) 0 0
\(76\) −4.00000 −0.458831
\(77\) −5.00000 + 1.73205i −0.569803 + 0.197386i
\(78\) 0 0
\(79\) −5.50000 9.52628i −0.618798 1.07179i −0.989705 0.143120i \(-0.954286\pi\)
0.370907 0.928670i \(-0.379047\pi\)
\(80\) −2.00000 + 3.46410i −0.223607 + 0.387298i
\(81\) 0 0
\(82\) 1.00000 + 1.73205i 0.110432 + 0.191273i
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) 0 0
\(85\) 24.0000 2.60317
\(86\) 0.500000 + 0.866025i 0.0539164 + 0.0933859i
\(87\) 0 0
\(88\) 3.00000 5.19615i 0.319801 0.553912i
\(89\) 2.00000 + 3.46410i 0.212000 + 0.367194i 0.952340 0.305038i \(-0.0986691\pi\)
−0.740341 + 0.672232i \(0.765336\pi\)
\(90\) 0 0
\(91\) 2.00000 + 1.73205i 0.209657 + 0.181568i
\(92\) −6.00000 −0.625543
\(93\) 0 0
\(94\) −3.00000 + 5.19615i −0.309426 + 0.535942i
\(95\) 8.00000 13.8564i 0.820783 1.42164i
\(96\) 0 0
\(97\) 9.00000 0.913812 0.456906 0.889515i \(-0.348958\pi\)
0.456906 + 0.889515i \(0.348958\pi\)
\(98\) 5.50000 4.33013i 0.555584 0.437409i
\(99\) 0 0
\(100\) 5.50000 + 9.52628i 0.550000 + 0.952628i
\(101\) 4.00000 6.92820i 0.398015 0.689382i −0.595466 0.803380i \(-0.703033\pi\)
0.993481 + 0.113998i \(0.0363659\pi\)
\(102\) 0 0
\(103\) −8.50000 14.7224i −0.837530 1.45064i −0.891954 0.452126i \(-0.850666\pi\)
0.0544240 0.998518i \(-0.482668\pi\)
\(104\) −3.00000 −0.294174
\(105\) 0 0
\(106\) −6.00000 −0.582772
\(107\) −1.00000 1.73205i −0.0966736 0.167444i 0.813632 0.581380i \(-0.197487\pi\)
−0.910306 + 0.413936i \(0.864154\pi\)
\(108\) 0 0
\(109\) −4.50000 + 7.79423i −0.431022 + 0.746552i −0.996962 0.0778949i \(-0.975180\pi\)
0.565940 + 0.824447i \(0.308513\pi\)
\(110\) 4.00000 + 6.92820i 0.381385 + 0.660578i
\(111\) 0 0
\(112\) −0.500000 + 2.59808i −0.0472456 + 0.245495i
\(113\) −16.0000 −1.50515 −0.752577 0.658505i \(-0.771189\pi\)
−0.752577 + 0.658505i \(0.771189\pi\)
\(114\) 0 0
\(115\) 12.0000 20.7846i 1.11901 1.93817i
\(116\) 1.00000 1.73205i 0.0928477 0.160817i
\(117\) 0 0
\(118\) 6.00000 0.552345
\(119\) 15.0000 5.19615i 1.37505 0.476331i
\(120\) 0 0
\(121\) 3.50000 + 6.06218i 0.318182 + 0.551107i
\(122\) 2.50000 4.33013i 0.226339 0.392031i
\(123\) 0 0
\(124\) 1.50000 + 2.59808i 0.134704 + 0.233314i
\(125\) −24.0000 −2.14663
\(126\) 0 0
\(127\) −9.00000 −0.798621 −0.399310 0.916816i \(-0.630750\pi\)
−0.399310 + 0.916816i \(0.630750\pi\)
\(128\) 1.50000 + 2.59808i 0.132583 + 0.229640i
\(129\) 0 0
\(130\) 2.00000 3.46410i 0.175412 0.303822i
\(131\) 2.00000 + 3.46410i 0.174741 + 0.302660i 0.940072 0.340977i \(-0.110758\pi\)
−0.765331 + 0.643637i \(0.777425\pi\)
\(132\) 0 0
\(133\) 2.00000 10.3923i 0.173422 0.901127i
\(134\) 7.00000 0.604708
\(135\) 0 0
\(136\) −9.00000 + 15.5885i −0.771744 + 1.33670i
\(137\) −9.00000 + 15.5885i −0.768922 + 1.33181i 0.169226 + 0.985577i \(0.445873\pi\)
−0.938148 + 0.346235i \(0.887460\pi\)
\(138\) 0 0
\(139\) 9.00000 0.763370 0.381685 0.924292i \(-0.375344\pi\)
0.381685 + 0.924292i \(0.375344\pi\)
\(140\) 8.00000 + 6.92820i 0.676123 + 0.585540i
\(141\) 0 0
\(142\) 0 0
\(143\) −1.00000 + 1.73205i −0.0836242 + 0.144841i
\(144\) 0 0
\(145\) 4.00000 + 6.92820i 0.332182 + 0.575356i
\(146\) −6.00000 −0.496564
\(147\) 0 0
\(148\) −3.00000 −0.246598
\(149\) 12.0000 + 20.7846i 0.983078 + 1.70274i 0.650183 + 0.759778i \(0.274692\pi\)
0.332896 + 0.942964i \(0.391974\pi\)
\(150\) 0 0
\(151\) −2.50000 + 4.33013i −0.203447 + 0.352381i −0.949637 0.313353i \(-0.898548\pi\)
0.746190 + 0.665733i \(0.231881\pi\)
\(152\) 6.00000 + 10.3923i 0.486664 + 0.842927i
\(153\) 0 0
\(154\) 4.00000 + 3.46410i 0.322329 + 0.279145i
\(155\) −12.0000 −0.963863
\(156\) 0 0
\(157\) −5.00000 + 8.66025i −0.399043 + 0.691164i −0.993608 0.112884i \(-0.963991\pi\)
0.594565 + 0.804048i \(0.297324\pi\)
\(158\) −5.50000 + 9.52628i −0.437557 + 0.757870i
\(159\) 0 0
\(160\) −20.0000 −1.58114
\(161\) 3.00000 15.5885i 0.236433 1.22854i
\(162\) 0 0
\(163\) −9.50000 16.4545i −0.744097 1.28881i −0.950615 0.310372i \(-0.899546\pi\)
0.206518 0.978443i \(-0.433787\pi\)
\(164\) −1.00000 + 1.73205i −0.0780869 + 0.135250i
\(165\) 0 0
\(166\) −3.00000 5.19615i −0.232845 0.403300i
\(167\) 14.0000 1.08335 0.541676 0.840587i \(-0.317790\pi\)
0.541676 + 0.840587i \(0.317790\pi\)
\(168\) 0 0
\(169\) −12.0000 −0.923077
\(170\) −12.0000 20.7846i −0.920358 1.59411i
\(171\) 0 0
\(172\) −0.500000 + 0.866025i −0.0381246 + 0.0660338i
\(173\) −8.00000 13.8564i −0.608229 1.05348i −0.991532 0.129861i \(-0.958547\pi\)
0.383304 0.923622i \(-0.374786\pi\)
\(174\) 0 0
\(175\) −27.5000 + 9.52628i −2.07880 + 0.720119i
\(176\) −2.00000 −0.150756
\(177\) 0 0
\(178\) 2.00000 3.46410i 0.149906 0.259645i
\(179\) −2.00000 + 3.46410i −0.149487 + 0.258919i −0.931038 0.364922i \(-0.881096\pi\)
0.781551 + 0.623841i \(0.214429\pi\)
\(180\) 0 0
\(181\) −2.00000 −0.148659 −0.0743294 0.997234i \(-0.523682\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) 0.500000 2.59808i 0.0370625 0.192582i
\(183\) 0 0
\(184\) 9.00000 + 15.5885i 0.663489 + 1.14920i
\(185\) 6.00000 10.3923i 0.441129 0.764057i
\(186\) 0 0
\(187\) 6.00000 + 10.3923i 0.438763 + 0.759961i
\(188\) −6.00000 −0.437595
\(189\) 0 0
\(190\) −16.0000 −1.16076
\(191\) 2.00000 + 3.46410i 0.144715 + 0.250654i 0.929267 0.369410i \(-0.120440\pi\)
−0.784552 + 0.620063i \(0.787107\pi\)
\(192\) 0 0
\(193\) 12.5000 21.6506i 0.899770 1.55845i 0.0719816 0.997406i \(-0.477068\pi\)
0.827788 0.561041i \(-0.189599\pi\)
\(194\) −4.50000 7.79423i −0.323081 0.559593i
\(195\) 0 0
\(196\) 6.50000 + 2.59808i 0.464286 + 0.185577i
\(197\) 20.0000 1.42494 0.712470 0.701702i \(-0.247576\pi\)
0.712470 + 0.701702i \(0.247576\pi\)
\(198\) 0 0
\(199\) 4.50000 7.79423i 0.318997 0.552518i −0.661282 0.750137i \(-0.729987\pi\)
0.980279 + 0.197619i \(0.0633208\pi\)
\(200\) 16.5000 28.5788i 1.16673 2.02083i
\(201\) 0 0
\(202\) −8.00000 −0.562878
\(203\) 4.00000 + 3.46410i 0.280745 + 0.243132i
\(204\) 0 0
\(205\) −4.00000 6.92820i −0.279372 0.483887i
\(206\) −8.50000 + 14.7224i −0.592223 + 1.02576i
\(207\) 0 0
\(208\) 0.500000 + 0.866025i 0.0346688 + 0.0600481i
\(209\) 8.00000 0.553372
\(210\) 0 0
\(211\) −5.00000 −0.344214 −0.172107 0.985078i \(-0.555058\pi\)
−0.172107 + 0.985078i \(0.555058\pi\)
\(212\) −3.00000 5.19615i −0.206041 0.356873i
\(213\) 0 0
\(214\) −1.00000 + 1.73205i −0.0683586 + 0.118401i
\(215\) −2.00000 3.46410i −0.136399 0.236250i
\(216\) 0 0
\(217\) −7.50000 + 2.59808i −0.509133 + 0.176369i
\(218\) 9.00000 0.609557
\(219\) 0 0
\(220\) −4.00000 + 6.92820i −0.269680 + 0.467099i
\(221\) 3.00000 5.19615i 0.201802 0.349531i
\(222\) 0 0
\(223\) 16.0000 1.07144 0.535720 0.844396i \(-0.320040\pi\)
0.535720 + 0.844396i \(0.320040\pi\)
\(224\) −12.5000 + 4.33013i −0.835191 + 0.289319i
\(225\) 0 0
\(226\) 8.00000 + 13.8564i 0.532152 + 0.921714i
\(227\) −9.00000 + 15.5885i −0.597351 + 1.03464i 0.395860 + 0.918311i \(0.370447\pi\)
−0.993210 + 0.116331i \(0.962887\pi\)
\(228\) 0 0
\(229\) 3.50000 + 6.06218i 0.231287 + 0.400600i 0.958187 0.286143i \(-0.0923732\pi\)
−0.726900 + 0.686743i \(0.759040\pi\)
\(230\) −24.0000 −1.58251
\(231\) 0 0
\(232\) −6.00000 −0.393919
\(233\) 12.0000 + 20.7846i 0.786146 + 1.36165i 0.928312 + 0.371802i \(0.121260\pi\)
−0.142166 + 0.989843i \(0.545407\pi\)
\(234\) 0 0
\(235\) 12.0000 20.7846i 0.782794 1.35584i
\(236\) 3.00000 + 5.19615i 0.195283 + 0.338241i
\(237\) 0 0
\(238\) −12.0000 10.3923i −0.777844 0.673633i
\(239\) −12.0000 −0.776215 −0.388108 0.921614i \(-0.626871\pi\)
−0.388108 + 0.921614i \(0.626871\pi\)
\(240\) 0 0
\(241\) −8.50000 + 14.7224i −0.547533 + 0.948355i 0.450910 + 0.892570i \(0.351100\pi\)
−0.998443 + 0.0557856i \(0.982234\pi\)
\(242\) 3.50000 6.06218i 0.224989 0.389692i
\(243\) 0 0
\(244\) 5.00000 0.320092
\(245\) −22.0000 + 17.3205i −1.40553 + 1.10657i
\(246\) 0 0
\(247\) −2.00000 3.46410i −0.127257 0.220416i
\(248\) 4.50000 7.79423i 0.285750 0.494934i
\(249\) 0 0
\(250\) 12.0000 + 20.7846i 0.758947 + 1.31453i
\(251\) 26.0000 1.64111 0.820553 0.571571i \(-0.193666\pi\)
0.820553 + 0.571571i \(0.193666\pi\)
\(252\) 0 0
\(253\) 12.0000 0.754434
\(254\) 4.50000 + 7.79423i 0.282355 + 0.489053i
\(255\) 0 0
\(256\) 8.50000 14.7224i 0.531250 0.920152i
\(257\) −5.00000 8.66025i −0.311891 0.540212i 0.666880 0.745165i \(-0.267629\pi\)
−0.978772 + 0.204953i \(0.934296\pi\)
\(258\) 0 0
\(259\) 1.50000 7.79423i 0.0932055 0.484310i
\(260\) 4.00000 0.248069
\(261\) 0 0
\(262\) 2.00000 3.46410i 0.123560 0.214013i
\(263\) −1.00000 + 1.73205i −0.0616626 + 0.106803i −0.895209 0.445647i \(-0.852974\pi\)
0.833546 + 0.552450i \(0.186307\pi\)
\(264\) 0 0
\(265\) 24.0000 1.47431
\(266\) −10.0000 + 3.46410i −0.613139 + 0.212398i
\(267\) 0 0
\(268\) 3.50000 + 6.06218i 0.213797 + 0.370306i
\(269\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(270\) 0 0
\(271\) 5.50000 + 9.52628i 0.334101 + 0.578680i 0.983312 0.181928i \(-0.0582339\pi\)
−0.649211 + 0.760609i \(0.724901\pi\)
\(272\) 6.00000 0.363803
\(273\) 0 0
\(274\) 18.0000 1.08742
\(275\) −11.0000 19.0526i −0.663325 1.14891i
\(276\) 0 0
\(277\) −6.50000 + 11.2583i −0.390547 + 0.676448i −0.992522 0.122068i \(-0.961047\pi\)
0.601975 + 0.798515i \(0.294381\pi\)
\(278\) −4.50000 7.79423i −0.269892 0.467467i
\(279\) 0 0
\(280\) 6.00000 31.1769i 0.358569 1.86318i
\(281\) 16.0000 0.954480 0.477240 0.878773i \(-0.341637\pi\)
0.477240 + 0.878773i \(0.341637\pi\)
\(282\) 0 0
\(283\) 2.50000 4.33013i 0.148610 0.257399i −0.782104 0.623148i \(-0.785854\pi\)
0.930714 + 0.365748i \(0.119187\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 2.00000 0.118262
\(287\) −4.00000 3.46410i −0.236113 0.204479i
\(288\) 0 0
\(289\) −9.50000 16.4545i −0.558824 0.967911i
\(290\) 4.00000 6.92820i 0.234888 0.406838i
\(291\) 0 0
\(292\) −3.00000 5.19615i −0.175562 0.304082i
\(293\) 22.0000 1.28525 0.642627 0.766179i \(-0.277845\pi\)
0.642627 + 0.766179i \(0.277845\pi\)
\(294\) 0 0
\(295\) −24.0000 −1.39733
\(296\) 4.50000 + 7.79423i 0.261557 + 0.453030i
\(297\) 0 0
\(298\) 12.0000 20.7846i 0.695141 1.20402i
\(299\) −3.00000 5.19615i −0.173494 0.300501i
\(300\) 0 0
\(301\) −2.00000 1.73205i −0.115278 0.0998337i
\(302\) 5.00000 0.287718
\(303\) 0 0
\(304\) 2.00000 3.46410i 0.114708 0.198680i
\(305\) −10.0000 + 17.3205i −0.572598 + 0.991769i
\(306\) 0 0
\(307\) 25.0000 1.42683 0.713413 0.700744i \(-0.247149\pi\)
0.713413 + 0.700744i \(0.247149\pi\)
\(308\) −1.00000 + 5.19615i −0.0569803 + 0.296078i
\(309\) 0 0
\(310\) 6.00000 + 10.3923i 0.340777 + 0.590243i
\(311\) −12.0000 + 20.7846i −0.680458 + 1.17859i 0.294384 + 0.955687i \(0.404886\pi\)
−0.974841 + 0.222900i \(0.928448\pi\)
\(312\) 0 0
\(313\) 11.0000 + 19.0526i 0.621757 + 1.07691i 0.989158 + 0.146852i \(0.0469141\pi\)
−0.367402 + 0.930062i \(0.619753\pi\)
\(314\) 10.0000 0.564333
\(315\) 0 0
\(316\) −11.0000 −0.618798
\(317\) −15.0000 25.9808i −0.842484 1.45922i −0.887788 0.460252i \(-0.847759\pi\)
0.0453045 0.998973i \(-0.485574\pi\)
\(318\) 0 0
\(319\) −2.00000 + 3.46410i −0.111979 + 0.193952i
\(320\) 14.0000 + 24.2487i 0.782624 + 1.35554i
\(321\) 0 0
\(322\) −15.0000 + 5.19615i −0.835917 + 0.289570i
\(323\) −24.0000 −1.33540
\(324\) 0 0
\(325\) −5.50000 + 9.52628i −0.305085 + 0.528423i
\(326\) −9.50000 + 16.4545i −0.526156 + 0.911330i
\(327\) 0 0
\(328\) 6.00000 0.331295
\(329\) 3.00000 15.5885i 0.165395 0.859419i
\(330\) 0 0
\(331\) 14.0000 + 24.2487i 0.769510 + 1.33283i 0.937829 + 0.347097i \(0.112833\pi\)
−0.168320 + 0.985732i \(0.553834\pi\)
\(332\) 3.00000 5.19615i 0.164646 0.285176i
\(333\) 0 0
\(334\) −7.00000 12.1244i −0.383023 0.663415i
\(335\) −28.0000 −1.52980
\(336\) 0 0
\(337\) 10.0000 0.544735 0.272367 0.962193i \(-0.412193\pi\)
0.272367 + 0.962193i \(0.412193\pi\)
\(338\) 6.00000 + 10.3923i 0.326357 + 0.565267i
\(339\) 0 0
\(340\) 12.0000 20.7846i 0.650791 1.12720i
\(341\) −3.00000 5.19615i −0.162459 0.281387i
\(342\) 0 0
\(343\) −10.0000 + 15.5885i −0.539949 + 0.841698i
\(344\) 3.00000 0.161749
\(345\) 0 0
\(346\) −8.00000 + 13.8564i −0.430083 + 0.744925i
\(347\) −8.00000 + 13.8564i −0.429463 + 0.743851i −0.996826 0.0796169i \(-0.974630\pi\)
0.567363 + 0.823468i \(0.307964\pi\)
\(348\) 0 0
\(349\) −5.00000 −0.267644 −0.133822 0.991005i \(-0.542725\pi\)
−0.133822 + 0.991005i \(0.542725\pi\)
\(350\) 22.0000 + 19.0526i 1.17595 + 1.01840i
\(351\) 0 0
\(352\) −5.00000 8.66025i −0.266501 0.461593i
\(353\) 14.0000 24.2487i 0.745145 1.29063i −0.204982 0.978766i \(-0.565714\pi\)
0.950127 0.311863i \(-0.100953\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 4.00000 0.212000
\(357\) 0 0
\(358\) 4.00000 0.211407
\(359\) −11.0000 19.0526i −0.580558 1.00556i −0.995413 0.0956683i \(-0.969501\pi\)
0.414855 0.909887i \(-0.363832\pi\)
\(360\) 0 0
\(361\) 1.50000 2.59808i 0.0789474 0.136741i
\(362\) 1.00000 + 1.73205i 0.0525588 + 0.0910346i
\(363\) 0 0
\(364\) 2.50000 0.866025i 0.131036 0.0453921i
\(365\) 24.0000 1.25622
\(366\) 0 0
\(367\) −6.00000 + 10.3923i −0.313197 + 0.542474i −0.979053 0.203607i \(-0.934733\pi\)
0.665855 + 0.746081i \(0.268067\pi\)
\(368\) 3.00000 5.19615i 0.156386 0.270868i
\(369\) 0 0
\(370\) −12.0000 −0.623850
\(371\) 15.0000 5.19615i 0.778761 0.269771i
\(372\) 0 0
\(373\) −13.0000 22.5167i −0.673114 1.16587i −0.977016 0.213165i \(-0.931623\pi\)
0.303902 0.952703i \(-0.401711\pi\)
\(374\) 6.00000 10.3923i 0.310253 0.537373i
\(375\) 0 0
\(376\) 9.00000 + 15.5885i 0.464140 + 0.803913i
\(377\) 2.00000 0.103005
\(378\) 0 0
\(379\) −9.00000 −0.462299 −0.231149 0.972918i \(-0.574249\pi\)
−0.231149 + 0.972918i \(0.574249\pi\)
\(380\) −8.00000 13.8564i −0.410391 0.710819i
\(381\) 0 0
\(382\) 2.00000 3.46410i 0.102329 0.177239i
\(383\) 9.00000 + 15.5885i 0.459879 + 0.796533i 0.998954 0.0457244i \(-0.0145596\pi\)
−0.539076 + 0.842257i \(0.681226\pi\)
\(384\) 0 0
\(385\) −16.0000 13.8564i −0.815436 0.706188i
\(386\) −25.0000 −1.27247
\(387\) 0 0
\(388\) 4.50000 7.79423i 0.228453 0.395692i
\(389\) 6.00000 10.3923i 0.304212 0.526911i −0.672874 0.739758i \(-0.734940\pi\)
0.977086 + 0.212847i \(0.0682735\pi\)
\(390\) 0 0
\(391\) −36.0000 −1.82060
\(392\) −3.00000 20.7846i −0.151523 1.04978i
\(393\) 0 0
\(394\) −10.0000 17.3205i −0.503793 0.872595i
\(395\) 22.0000 38.1051i 1.10694 1.91728i
\(396\) 0 0
\(397\) 16.5000 + 28.5788i 0.828111 + 1.43433i 0.899518 + 0.436884i \(0.143918\pi\)
−0.0714068 + 0.997447i \(0.522749\pi\)
\(398\) −9.00000 −0.451129
\(399\) 0 0
\(400\) −11.0000 −0.550000
\(401\) −15.0000 25.9808i −0.749064 1.29742i −0.948272 0.317460i \(-0.897170\pi\)
0.199207 0.979957i \(-0.436163\pi\)
\(402\) 0 0
\(403\) −1.50000 + 2.59808i −0.0747203 + 0.129419i
\(404\) −4.00000 6.92820i −0.199007 0.344691i
\(405\) 0 0
\(406\) 1.00000 5.19615i 0.0496292 0.257881i
\(407\) 6.00000 0.297409
\(408\) 0 0
\(409\) −2.50000 + 4.33013i −0.123617 + 0.214111i −0.921192 0.389109i \(-0.872783\pi\)
0.797574 + 0.603220i \(0.206116\pi\)
\(410\) −4.00000 + 6.92820i −0.197546 + 0.342160i
\(411\) 0 0
\(412\) −17.0000 −0.837530
\(413\) −15.0000 + 5.19615i −0.738102 + 0.255686i
\(414\) 0 0
\(415\) 12.0000 + 20.7846i 0.589057 + 1.02028i
\(416\) −2.50000 + 4.33013i −0.122573 + 0.212302i
\(417\) 0 0
\(418\) −4.00000 6.92820i −0.195646 0.338869i
\(419\) −12.0000 −0.586238 −0.293119 0.956076i \(-0.594693\pi\)
−0.293119 + 0.956076i \(0.594693\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) 2.50000 + 4.33013i 0.121698 + 0.210787i
\(423\) 0 0
\(424\) −9.00000 + 15.5885i −0.437079 + 0.757042i
\(425\) 33.0000 + 57.1577i 1.60074 + 2.77255i
\(426\) 0 0
\(427\) −2.50000 + 12.9904i −0.120983 + 0.628649i
\(428\) −2.00000 −0.0966736
\(429\) 0 0
\(430\) −2.00000 + 3.46410i −0.0964486 + 0.167054i
\(431\) −9.00000 + 15.5885i −0.433515 + 0.750870i −0.997173 0.0751385i \(-0.976060\pi\)
0.563658 + 0.826008i \(0.309393\pi\)
\(432\) 0 0
\(433\) −17.0000 −0.816968 −0.408484 0.912766i \(-0.633942\pi\)
−0.408484 + 0.912766i \(0.633942\pi\)
\(434\) 6.00000 + 5.19615i 0.288009 + 0.249423i
\(435\) 0 0
\(436\) 4.50000 + 7.79423i 0.215511 + 0.373276i
\(437\) −12.0000 + 20.7846i −0.574038 + 0.994263i
\(438\) 0 0
\(439\) −12.0000 20.7846i −0.572729 0.991995i −0.996284 0.0861252i \(-0.972552\pi\)
0.423556 0.905870i \(-0.360782\pi\)
\(440\) 24.0000 1.14416
\(441\) 0 0
\(442\) −6.00000 −0.285391
\(443\) 12.0000 + 20.7846i 0.570137 + 0.987507i 0.996551 + 0.0829786i \(0.0264433\pi\)
−0.426414 + 0.904528i \(0.640223\pi\)
\(444\) 0 0
\(445\) −8.00000 + 13.8564i −0.379236 + 0.656857i
\(446\) −8.00000 13.8564i −0.378811 0.656120i
\(447\) 0 0
\(448\) 14.0000 + 12.1244i 0.661438 + 0.572822i
\(449\) −36.0000 −1.69895 −0.849473 0.527633i \(-0.823080\pi\)
−0.849473 + 0.527633i \(0.823080\pi\)
\(450\) 0 0
\(451\) 2.00000 3.46410i 0.0941763 0.163118i
\(452\) −8.00000 + 13.8564i −0.376288 + 0.651751i
\(453\) 0 0
\(454\) 18.0000 0.844782
\(455\) −2.00000 + 10.3923i −0.0937614 + 0.487199i
\(456\) 0 0
\(457\) −6.50000 11.2583i −0.304057 0.526642i 0.672994 0.739648i \(-0.265008\pi\)
−0.977051 + 0.213006i \(0.931675\pi\)
\(458\) 3.50000 6.06218i 0.163544 0.283267i
\(459\) 0 0
\(460\) −12.0000 20.7846i −0.559503 0.969087i
\(461\) −2.00000 −0.0931493 −0.0465746 0.998915i \(-0.514831\pi\)
−0.0465746 + 0.998915i \(0.514831\pi\)
\(462\) 0 0
\(463\) −32.0000 −1.48717 −0.743583 0.668644i \(-0.766875\pi\)
−0.743583 + 0.668644i \(0.766875\pi\)
\(464\) 1.00000 + 1.73205i 0.0464238 + 0.0804084i
\(465\) 0 0
\(466\) 12.0000 20.7846i 0.555889 0.962828i
\(467\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(468\) 0 0
\(469\) −17.5000 + 6.06218i −0.808075 + 0.279925i
\(470\) −24.0000 −1.10704
\(471\) 0 0
\(472\) 9.00000 15.5885i 0.414259 0.717517i
\(473\) 1.00000 1.73205i 0.0459800 0.0796398i
\(474\) 0 0
\(475\) 44.0000 2.01886
\(476\) 3.00000 15.5885i 0.137505 0.714496i
\(477\) 0 0
\(478\) 6.00000 + 10.3923i 0.274434 + 0.475333i
\(479\) −8.00000 + 13.8564i −0.365529 + 0.633115i −0.988861 0.148842i \(-0.952445\pi\)
0.623332 + 0.781958i \(0.285779\pi\)
\(480\) 0 0
\(481\) −1.50000 2.59808i −0.0683941 0.118462i
\(482\) 17.0000 0.774329
\(483\) 0 0
\(484\) 7.00000 0.318182
\(485\) 18.0000 + 31.1769i 0.817338 + 1.41567i
\(486\) 0 0
\(487\) −8.00000 + 13.8564i −0.362515 + 0.627894i −0.988374 0.152042i \(-0.951415\pi\)
0.625859 + 0.779936i \(0.284748\pi\)
\(488\) −7.50000 12.9904i −0.339509 0.588047i
\(489\) 0 0
\(490\) 26.0000 + 10.3923i 1.17456 + 0.469476i
\(491\) 34.0000 1.53440 0.767199 0.641409i \(-0.221650\pi\)
0.767199 + 0.641409i \(0.221650\pi\)
\(492\) 0 0
\(493\) 6.00000 10.3923i 0.270226 0.468046i
\(494\) −2.00000 + 3.46410i −0.0899843 + 0.155857i
\(495\) 0 0
\(496\) −3.00000 −0.134704
\(497\) 0 0
\(498\) 0 0
\(499\) 8.50000 + 14.7224i 0.380512 + 0.659067i 0.991136 0.132855i \(-0.0424144\pi\)
−0.610623 + 0.791921i \(0.709081\pi\)
\(500\) −12.0000 + 20.7846i −0.536656 + 0.929516i
\(501\) 0 0
\(502\) −13.0000 22.5167i −0.580218 1.00497i
\(503\) 6.00000 0.267527 0.133763 0.991013i \(-0.457294\pi\)
0.133763 + 0.991013i \(0.457294\pi\)
\(504\) 0 0
\(505\) 32.0000 1.42398
\(506\) −6.00000 10.3923i −0.266733 0.461994i
\(507\) 0 0
\(508\) −4.50000 + 7.79423i −0.199655 + 0.345813i
\(509\) −11.0000 19.0526i −0.487566 0.844490i 0.512331 0.858788i \(-0.328782\pi\)
−0.999898 + 0.0142980i \(0.995449\pi\)
\(510\) 0 0
\(511\) 15.0000 5.19615i 0.663561 0.229864i
\(512\) −11.0000 −0.486136
\(513\) 0 0
\(514\) −5.00000 + 8.66025i −0.220541 + 0.381987i
\(515\) 34.0000 58.8897i 1.49822 2.59499i
\(516\) 0 0
\(517\) 12.0000 0.527759
\(518\) −7.50000 + 2.59808i −0.329531 + 0.114153i
\(519\) 0 0
\(520\) −6.00000 10.3923i −0.263117 0.455733i
\(521\) −9.00000 + 15.5885i −0.394297 + 0.682943i −0.993011 0.118020i \(-0.962345\pi\)
0.598714 + 0.800963i \(0.295679\pi\)
\(522\) 0 0
\(523\) 8.50000 + 14.7224i 0.371679 + 0.643767i 0.989824 0.142297i \(-0.0454489\pi\)
−0.618145 + 0.786064i \(0.712116\pi\)
\(524\) 4.00000 0.174741
\(525\) 0 0
\(526\) 2.00000 0.0872041
\(527\) 9.00000 + 15.5885i 0.392046 + 0.679044i
\(528\) 0 0
\(529\) −6.50000 + 11.2583i −0.282609 + 0.489493i
\(530\) −12.0000 20.7846i −0.521247 0.902826i
\(531\) 0 0
\(532\) −8.00000 6.92820i −0.346844 0.300376i
\(533\) −2.00000 −0.0866296
\(534\) 0 0
\(535\) 4.00000 6.92820i 0.172935 0.299532i
\(536\) 10.5000 18.1865i 0.453531 0.785539i
\(537\) 0 0
\(538\) 0 0
\(539\) −13.0000 5.19615i −0.559950 0.223814i
\(540\) 0 0
\(541\) 5.00000 + 8.66025i 0.214967 + 0.372333i 0.953262 0.302144i \(-0.0977023\pi\)
−0.738296 + 0.674477i \(0.764369\pi\)
\(542\) 5.50000 9.52628i 0.236245 0.409189i
\(543\) 0 0
\(544\) 15.0000 + 25.9808i 0.643120 + 1.11392i
\(545\) −36.0000 −1.54207
\(546\) 0 0
\(547\) 43.0000 1.83855 0.919274 0.393619i \(-0.128777\pi\)
0.919274 + 0.393619i \(0.128777\pi\)
\(548\) 9.00000 + 15.5885i 0.384461 + 0.665906i
\(549\) 0 0
\(550\) −11.0000 + 19.0526i −0.469042 + 0.812404i
\(551\) −4.00000 6.92820i −0.170406 0.295151i
\(552\) 0 0
\(553\) 5.50000 28.5788i 0.233884 1.21530i
\(554\) 13.0000 0.552317
\(555\) 0 0
\(556\) 4.50000 7.79423i 0.190843 0.330549i
\(557\) 14.0000 24.2487i 0.593199 1.02745i −0.400599 0.916253i \(-0.631198\pi\)
0.993798 0.111198i \(-0.0354686\pi\)
\(558\) 0 0
\(559\) −1.00000 −0.0422955
\(560\) −10.0000 + 3.46410i −0.422577 + 0.146385i
\(561\) 0 0
\(562\) −8.00000 13.8564i −0.337460 0.584497i
\(563\) 5.00000 8.66025i 0.210725 0.364986i −0.741217 0.671266i \(-0.765751\pi\)
0.951942 + 0.306280i \(0.0990842\pi\)
\(564\) 0 0
\(565\) −32.0000 55.4256i −1.34625 2.33177i
\(566\) −5.00000 −0.210166
\(567\) 0 0
\(568\) 0 0
\(569\) −16.0000 27.7128i −0.670755 1.16178i −0.977690 0.210051i \(-0.932637\pi\)
0.306935 0.951730i \(-0.400696\pi\)
\(570\) 0 0
\(571\) 8.00000 13.8564i 0.334790 0.579873i −0.648655 0.761083i \(-0.724668\pi\)
0.983444 + 0.181210i \(0.0580014\pi\)
\(572\) 1.00000 + 1.73205i 0.0418121 + 0.0724207i
\(573\) 0 0
\(574\) −1.00000 + 5.19615i −0.0417392 + 0.216883i
\(575\) 66.0000 2.75239
\(576\) 0 0
\(577\) 8.50000 14.7224i 0.353860 0.612903i −0.633062 0.774101i \(-0.718202\pi\)
0.986922 + 0.161198i \(0.0515357\pi\)
\(578\) −9.50000 + 16.4545i −0.395148 + 0.684416i
\(579\) 0 0
\(580\) 8.00000 0.332182
\(581\) 12.0000 + 10.3923i 0.497844 + 0.431145i
\(582\) 0 0
\(583\) 6.00000 + 10.3923i 0.248495 + 0.430405i
\(584\) −9.00000 + 15.5885i −0.372423 + 0.645055i
\(585\) 0 0
\(586\) −11.0000 19.0526i −0.454406 0.787054i
\(587\) −28.0000 −1.15568 −0.577842 0.816149i \(-0.696105\pi\)
−0.577842 + 0.816149i \(0.696105\pi\)
\(588\) 0 0
\(589\) 12.0000 0.494451
\(590\) 12.0000 + 20.7846i 0.494032 + 0.855689i
\(591\) 0 0
\(592\) 1.50000 2.59808i 0.0616496 0.106780i
\(593\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(594\) 0 0
\(595\) 48.0000 + 41.5692i 1.96781 + 1.70417i
\(596\) 24.0000 0.983078
\(597\) 0 0
\(598\) −3.00000 + 5.19615i −0.122679 + 0.212486i
\(599\) −6.00000 + 10.3923i −0.245153 + 0.424618i −0.962175 0.272433i \(-0.912172\pi\)
0.717021 + 0.697051i \(0.245505\pi\)
\(600\) 0 0
\(601\) −33.0000 −1.34610 −0.673049 0.739598i \(-0.735016\pi\)
−0.673049 + 0.739598i \(0.735016\pi\)
\(602\) −0.500000 + 2.59808i −0.0203785 + 0.105890i
\(603\) 0 0
\(604\) 2.50000 + 4.33013i 0.101724 + 0.176190i
\(605\) −14.0000 + 24.2487i −0.569181 + 0.985850i
\(606\) 0 0
\(607\) 8.00000 + 13.8564i 0.324710 + 0.562414i 0.981454 0.191700i \(-0.0614000\pi\)
−0.656744 + 0.754114i \(0.728067\pi\)
\(608\) 20.0000 0.811107
\(609\) 0 0
\(610\) 20.0000 0.809776
\(611\) −3.00000 5.19615i −0.121367 0.210214i
\(612\) 0 0
\(613\) −3.50000 + 6.06218i −0.141364 + 0.244849i −0.928010 0.372554i \(-0.878482\pi\)
0.786647 + 0.617403i \(0.211815\pi\)
\(614\) −12.5000 21.6506i −0.504459 0.873749i
\(615\) 0 0
\(616\) 15.0000 5.19615i 0.604367 0.209359i
\(617\) −18.0000 −0.724653 −0.362326 0.932051i \(-0.618017\pi\)
−0.362326 + 0.932051i \(0.618017\pi\)
\(618\) 0 0
\(619\) 20.5000 35.5070i 0.823965 1.42715i −0.0787435 0.996895i \(-0.525091\pi\)
0.902708 0.430254i \(-0.141576\pi\)
\(620\) −6.00000 + 10.3923i −0.240966 + 0.417365i
\(621\) 0 0
\(622\) 24.0000 0.962312
\(623\) −2.00000 + 10.3923i −0.0801283 + 0.416359i
\(624\) 0 0
\(625\) −20.5000 35.5070i −0.820000 1.42028i
\(626\) 11.0000 19.0526i 0.439648 0.761493i
\(627\) 0 0
\(628\) 5.00000 + 8.66025i 0.199522 + 0.345582i
\(629\) −18.0000 −0.717707
\(630\) 0 0
\(631\) 5.00000 0.199047 0.0995234 0.995035i \(-0.468268\pi\)
0.0995234 + 0.995035i \(0.468268\pi\)
\(632\) 16.5000 + 28.5788i 0.656335 + 1.13681i
\(633\) 0 0
\(634\) −15.0000 + 25.9808i −0.595726 + 1.03183i
\(635\) −18.0000 31.1769i −0.714308 1.23722i
\(636\) 0 0
\(637\) 1.00000 + 6.92820i 0.0396214 + 0.274505i
\(638\) 4.00000 0.158362
\(639\) 0 0
\(640\) −6.00000 + 10.3923i −0.237171 + 0.410792i
\(641\) −3.00000 + 5.19615i −0.118493 + 0.205236i −0.919171 0.393860i \(-0.871140\pi\)
0.800678 + 0.599095i \(0.204473\pi\)
\(642\) 0 0
\(643\) −25.0000 −0.985904 −0.492952 0.870057i \(-0.664082\pi\)
−0.492952 + 0.870057i \(0.664082\pi\)
\(644\) −12.0000 10.3923i −0.472866 0.409514i
\(645\) 0 0
\(646\) 12.0000 + 20.7846i 0.472134 + 0.817760i
\(647\) −14.0000 + 24.2487i −0.550397 + 0.953315i 0.447849 + 0.894109i \(0.352190\pi\)
−0.998246 + 0.0592060i \(0.981143\pi\)
\(648\) 0 0
\(649\) −6.00000 10.3923i −0.235521 0.407934i
\(650\) 11.0000 0.431455
\(651\) 0 0
\(652\) −19.0000 −0.744097
\(653\) −3.00000 5.19615i −0.117399 0.203341i 0.801337 0.598213i \(-0.204122\pi\)
−0.918736 + 0.394872i \(0.870789\pi\)
\(654\) 0 0
\(655\) −8.00000 + 13.8564i −0.312586 + 0.541415i
\(656\) −1.00000 1.73205i −0.0390434 0.0676252i
\(657\) 0 0
\(658\) −15.0000 + 5.19615i −0.584761 + 0.202567i
\(659\) 12.0000 0.467454 0.233727 0.972302i \(-0.424908\pi\)
0.233727 + 0.972302i \(0.424908\pi\)
\(660\) 0 0
\(661\) 7.00000 12.1244i 0.272268 0.471583i −0.697174 0.716902i \(-0.745559\pi\)
0.969442 + 0.245319i \(0.0788928\pi\)
\(662\) 14.0000 24.2487i 0.544125 0.942453i
\(663\) 0 0
\(664\) −18.0000 −0.698535
\(665\) 40.0000 13.8564i 1.55113 0.537328i
\(666\) 0 0
\(667\) −6.00000 10.3923i −0.232321 0.402392i
\(668\) 7.00000 12.1244i 0.270838 0.469105i
\(669\) 0 0
\(670\) 14.0000 + 24.2487i 0.540867 + 0.936809i
\(671\) −10.0000 −0.386046
\(672\) 0 0
\(673\) 22.0000 0.848038 0.424019 0.905653i \(-0.360619\pi\)
0.424019 + 0.905653i \(0.360619\pi\)
\(674\) −5.00000 8.66025i −0.192593 0.333581i
\(675\) 0 0
\(676\) −6.00000 + 10.3923i −0.230769 + 0.399704i
\(677\) −6.00000 10.3923i −0.230599 0.399409i 0.727386 0.686229i \(-0.240735\pi\)
−0.957984 + 0.286820i \(0.907402\pi\)
\(678\) 0 0
\(679\) 18.0000 + 15.5885i 0.690777 + 0.598230i
\(680\) −72.0000 −2.76107
\(681\) 0 0
\(682\) −3.00000 + 5.19615i −0.114876 + 0.198971i
\(683\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(684\) 0 0
\(685\) −72.0000 −2.75098
\(686\) 18.5000 + 0.866025i 0.706333 + 0.0330650i
\(687\) 0 0
\(688\) −0.500000 0.866025i −0.0190623 0.0330169i
\(689\) 3.00000 5.19615i 0.114291 0.197958i
\(690\) 0 0
\(691\) −20.5000 35.5070i −0.779857 1.35075i −0.932024 0.362397i \(-0.881959\pi\)
0.152167 0.988355i \(-0.451375\pi\)
\(692\) −16.0000 −0.608229
\(693\) 0 0
\(694\) 16.0000 0.607352
\(695\) 18.0000 + 31.1769i 0.682779 + 1.18261i
\(696\) 0 0
\(697\) −6.00000 + 10.3923i −0.227266 + 0.393637i
\(698\) 2.50000 + 4.33013i 0.0946264 + 0.163898i
\(699\) 0 0
\(700\) −5.50000 + 28.5788i −0.207880 + 1.08018i
\(701\) 24.0000 0.906467 0.453234 0.891392i \(-0.350270\pi\)
0.453234 + 0.891392i \(0.350270\pi\)
\(702\) 0 0
\(703\) −6.00000 + 10.3923i −0.226294 + 0.391953i
\(704\) −7.00000 + 12.1244i −0.263822 + 0.456954i
\(705\) 0 0
\(706\) −28.0000 −1.05379
\(707\) 20.0000 6.92820i 0.752177 0.260562i
\(708\) 0 0
\(709\) −10.5000 18.1865i −0.394336 0.683010i 0.598680 0.800988i \(-0.295692\pi\)
−0.993016 + 0.117978i \(0.962359\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −6.00000 10.3923i −0.224860 0.389468i
\(713\) 18.0000 0.674105
\(714\) 0 0
\(715\) −8.00000 −0.299183
\(716\) 2.00000 + 3.46410i 0.0747435 + 0.129460i
\(717\) 0 0
\(718\) −11.0000 + 19.0526i −0.410516 + 0.711035i
\(719\) 24.0000 + 41.5692i 0.895049 + 1.55027i 0.833744 + 0.552151i \(0.186193\pi\)
0.0613050 + 0.998119i \(0.480474\pi\)
\(720\) 0 0
\(721\) 8.50000 44.1673i 0.316557 1.64488i
\(722\) −3.00000 −0.111648
\(723\) 0 0
\(724\) −1.00000 + 1.73205i −0.0371647 + 0.0643712i
\(725\) −11.0000 + 19.0526i −0.408530 + 0.707594i
\(726\) 0 0
\(727\) 41.0000 1.52061 0.760303 0.649569i \(-0.225051\pi\)
0.760303 + 0.649569i \(0.225051\pi\)
\(728\) −6.00000 5.19615i −0.222375 0.192582i
\(729\) 0 0
\(730\) −12.0000 20.7846i −0.444140 0.769273i
\(731\) −3.00000 + 5.19615i −0.110959 + 0.192187i
\(732\) 0 0
\(733\) −10.5000 18.1865i −0.387826 0.671735i 0.604331 0.796734i \(-0.293441\pi\)
−0.992157 + 0.124999i \(0.960107\pi\)
\(734\) 12.0000 0.442928
\(735\) 0 0
\(736\) 30.0000 1.10581
\(737\) −7.00000 12.1244i −0.257848 0.446606i
\(738\) 0 0
\(739\) 4.50000 7.79423i 0.165535 0.286715i −0.771310 0.636460i \(-0.780398\pi\)
0.936845 + 0.349744i \(0.113732\pi\)
\(740\) −6.00000 10.3923i −0.220564 0.382029i
\(741\) 0 0
\(742\) −12.0000 10.3923i −0.440534 0.381514i
\(743\) −42.0000 −1.54083 −0.770415 0.637542i \(-0.779951\pi\)
−0.770415 + 0.637542i \(0.779951\pi\)
\(744\) 0 0
\(745\) −48.0000 + 83.1384i −1.75858 + 3.04596i
\(746\) −13.0000 + 22.5167i −0.475964 + 0.824394i
\(747\) 0 0
\(748\) 12.0000 0.438763
\(749\) 1.00000 5.19615i 0.0365392 0.189863i
\(750\) 0 0
\(751\) 4.00000 + 6.92820i 0.145962 + 0.252814i 0.929731 0.368238i \(-0.120039\pi\)
−0.783769 + 0.621052i \(0.786706\pi\)
\(752\) 3.00000 5.19615i 0.109399 0.189484i
\(753\) 0 0
\(754\) −1.00000 1.73205i −0.0364179 0.0630776i
\(755\) −20.0000 −0.727875
\(756\) 0 0
\(757\) 17.0000 0.617876 0.308938 0.951082i \(-0.400027\pi\)
0.308938 + 0.951082i \(0.400027\pi\)
\(758\) 4.50000 + 7.79423i 0.163447 + 0.283099i
\(759\) 0 0
\(760\) −24.0000 + 41.5692i −0.870572 + 1.50787i
\(761\) 24.0000 + 41.5692i 0.869999 + 1.50688i 0.861996 + 0.506915i \(0.169214\pi\)
0.00800331 + 0.999968i \(0.497452\pi\)
\(762\) 0 0
\(763\) −22.5000 + 7.79423i −0.814555 + 0.282170i
\(764\) 4.00000 0.144715
\(765\) 0 0
\(766\) 9.00000 15.5885i 0.325183 0.563234i
\(767\) −3.00000 + 5.19615i −0.108324 + 0.187622i
\(768\) 0 0
\(769\) −10.0000 −0.360609 −0.180305 0.983611i \(-0.557708\pi\)
−0.180305 + 0.983611i \(0.557708\pi\)
\(770\) −4.00000 + 20.7846i −0.144150 + 0.749025i
\(771\) 0 0
\(772\) −12.5000 21.6506i −0.449885 0.779223i
\(773\) −8.00000 + 13.8564i −0.287740 + 0.498380i −0.973270 0.229664i \(-0.926237\pi\)
0.685530 + 0.728044i \(0.259571\pi\)
\(774\) 0 0
\(775\) −16.5000 28.5788i −0.592697 1.02658i
\(776\) −27.0000 −0.969244
\(777\) 0 0
\(778\) −12.0000 −0.430221
\(779\) 4.00000 + 6.92820i 0.143315 + 0.248229i
\(780\) 0 0
\(781\) 0 0
\(782\) 18.0000 + 31.1769i 0.643679 + 1.11488i
\(783\) 0 0
\(784\) −5.50000 + 4.33013i −0.196429 + 0.154647i
\(785\) −40.0000 −1.42766
\(786\) 0 0
\(787\) 23.5000 40.7032i 0.837685 1.45091i −0.0541413 0.998533i \(-0.517242\pi\)
0.891826 0.452379i \(-0.149425\pi\)
\(788\) 10.0000 17.3205i 0.356235 0.617018i
\(789\) 0 0
\(790\) −44.0000 −1.56545
\(791\) −32.0000 27.7128i −1.13779 0.985354i
\(792\) 0 0
\(793\) 2.50000 + 4.33013i 0.0887776 + 0.153767i
\(794\) 16.5000 28.5788i 0.585563 1.01423i
\(795\) 0 0
\(796\) −4.50000 7.79423i −0.159498 0.276259i
\(797\) 14.0000 0.495905 0.247953 0.968772i \(-0.420242\pi\)
0.247953 + 0.968772i \(0.420242\pi\)
\(798\) 0 0
\(799\) −36.0000 −1.27359
\(800\) −27.5000 47.6314i −0.972272 1.68402i
\(801\) 0 0
\(802\) −15.0000 + 25.9808i −0.529668 + 0.917413i
\(803\) 6.00000 + 10.3923i 0.211735 + 0.366736i
\(804\) 0 0
\(805\) 60.0000 20.7846i 2.11472 0.732561i
\(806\) 3.00000 0.105670
\(807\) 0 0
\(808\) −12.0000 + 20.7846i −0.422159 + 0.731200i
\(809\) 15.0000 25.9808i 0.527372 0.913435i −0.472119 0.881535i \(-0.656511\pi\)
0.999491 0.0319002i \(-0.0101559\pi\)
\(810\) 0 0
\(811\) 32.0000 1.12367 0.561836 0.827249i \(-0.310095\pi\)
0.561836 + 0.827249i \(0.310095\pi\)
\(812\) 5.00000 1.73205i 0.175466 0.0607831i
\(813\) 0 0
\(814\) −3.00000 5.19615i −0.105150 0.182125i
\(815\) 38.0000 65.8179i 1.33108 2.30550i
\(816\) 0 0
\(817\) 2.00000 + 3.46410i 0.0699711 + 0.121194i
\(818\) 5.00000 0.174821
\(819\) 0 0
\(820\) −8.00000 −0.279372
\(821\) −11.0000 19.0526i −0.383903 0.664939i 0.607714 0.794156i \(-0.292087\pi\)
−0.991616 + 0.129217i \(0.958754\pi\)
\(822\) 0 0
\(823\) −22.5000 + 38.9711i −0.784301 + 1.35845i 0.145115 + 0.989415i \(0.453645\pi\)
−0.929416 + 0.369034i \(0.879689\pi\)
\(824\) 25.5000 + 44.1673i 0.888335 + 1.53864i
\(825\) 0 0
\(826\) 12.0000 + 10.3923i 0.417533 + 0.361595i
\(827\) −12.0000 −0.417281 −0.208640 0.977992i \(-0.566904\pi\)
−0.208640 + 0.977992i \(0.566904\pi\)
\(828\) 0 0
\(829\) 5.00000 8.66025i 0.173657 0.300783i −0.766039 0.642795i \(-0.777775\pi\)
0.939696 + 0.342012i \(0.111108\pi\)
\(830\) 12.0000 20.7846i 0.416526 0.721444i
\(831\) 0 0
\(832\) 7.00000 0.242681
\(833\) 39.0000 + 15.5885i 1.35127 + 0.540108i
\(834\) 0 0
\(835\) 28.0000 + 48.4974i 0.968980 + 1.67832i
\(836\) 4.00000 6.92820i 0.138343 0.239617i
\(837\) 0 0
\(838\) 6.00000 + 10.3923i 0.207267 + 0.358996i
\(839\) 26.0000 0.897620 0.448810 0.893627i \(-0.351848\pi\)
0.448810 + 0.893627i \(0.351848\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 5.00000 + 8.66025i 0.172311 + 0.298452i
\(843\) 0 0
\(844\) −2.50000 + 4.33013i −0.0860535 + 0.149049i
\(845\) −24.0000 41.5692i −0.825625 1.43002i
\(846\) 0 0
\(847\) −3.50000 + 18.1865i −0.120261 + 0.624897i
\(848\) 6.00000 0.206041
\(849\) 0 0
\(850\) 33.0000 57.1577i 1.13189 1.96049i
\(851\) −9.00000 + 15.5885i −0.308516 + 0.534365i
\(852\) 0 0
\(853\) 26.0000 0.890223 0.445112 0.895475i \(-0.353164\pi\)
0.445112 + 0.895475i \(0.353164\pi\)
\(854\) 12.5000 4.33013i 0.427741 0.148174i
\(855\) 0 0
\(856\) 3.00000 + 5.19615i 0.102538 + 0.177601i
\(857\) 8.00000 13.8564i 0.273275 0.473326i −0.696424 0.717631i \(-0.745227\pi\)
0.969698 + 0.244305i \(0.0785598\pi\)
\(858\) 0 0
\(859\) 12.5000 + 21.6506i 0.426494 + 0.738710i 0.996559 0.0828900i \(-0.0264150\pi\)
−0.570064 + 0.821600i \(0.693082\pi\)
\(860\) −4.00000 −0.136399
\(861\) 0 0
\(862\) 18.0000 0.613082
\(863\) −18.0000 31.1769i −0.612727 1.06127i −0.990779 0.135490i \(-0.956739\pi\)
0.378052 0.925785i \(-0.376594\pi\)
\(864\) 0 0
\(865\) 32.0000 55.4256i 1.08803 1.88453i
\(866\) 8.50000 + 14.7224i 0.288842 + 0.500289i
\(867\) 0 0
\(868\) −1.50000 + 7.79423i −0.0509133 + 0.264553i
\(869\) 22.0000 0.746299
\(870\) 0 0
\(871\) −3.50000 + 6.06218i −0.118593 + 0.205409i
\(872\) 13.5000 23.3827i 0.457168 0.791838i
\(873\) 0 0
\(874\) 24.0000 0.811812
\(875\) −48.0000 41.5692i −1.62270 1.40530i
\(876\) 0 0
\(877\) −3.50000 6.06218i −0.118187 0.204705i 0.800862 0.598848i \(-0.204375\pi\)
−0.919049 + 0.394143i \(0.871041\pi\)
\(878\) −12.0000 + 20.7846i −0.404980 + 0.701447i
\(879\) 0 0
\(880\) −4.00000 6.92820i −0.134840 0.233550i
\(881\) 6.00000 0.202145 0.101073 0.994879i \(-0.467773\pi\)
0.101073 + 0.994879i \(0.467773\pi\)
\(882\) 0 0
\(883\) 8.00000 0.269221 0.134611 0.990899i \(-0.457022\pi\)
0.134611 + 0.990899i \(0.457022\pi\)
\(884\) −3.00000 5.19615i −0.100901 0.174766i
\(885\) 0 0
\(886\) 12.0000 20.7846i 0.403148 0.698273i
\(887\) −11.0000 19.0526i −0.369344 0.639722i 0.620119 0.784508i \(-0.287084\pi\)
−0.989463 + 0.144785i \(0.953751\pi\)
\(888\) 0 0
\(889\) −18.0000 15.5885i −0.603701 0.522820i
\(890\) 16.0000 0.536321
\(891\) 0 0
\(892\) 8.00000 13.8564i 0.267860 0.463947i
\(893\) −12.0000 + 20.7846i −0.401565 + 0.695530i
\(894\) 0 0
\(895\) −16.0000 −0.534821
\(896\) −1.50000 + 7.79423i −0.0501115 + 0.260387i
\(897\) 0 0
\(898\) 18.0000 + 31.1769i 0.600668 + 1.04039i
\(899\) −3.00000 + 5.19615i −0.100056 + 0.173301i
\(900\) 0 0
\(901\) −18.0000 31.1769i −0.599667 1.03865i
\(902\) −4.00000 −0.133185
\(903\) 0 0
\(904\) 48.0000 1.59646
\(905\) −4.00000 6.92820i −0.132964 0.230301i
\(906\) 0 0
\(907\) 6.50000 11.2583i 0.215829 0.373827i −0.737700 0.675129i \(-0.764088\pi\)
0.953529 + 0.301302i \(0.0974213\pi\)
\(908\) 9.00000 + 15.5885i 0.298675 + 0.517321i
\(909\) 0 0
\(910\) 10.0000 3.46410i 0.331497 0.114834i
\(911\) −18.0000 −0.596367 −0.298183 0.954509i \(-0.596381\pi\)
−0.298183 + 0.954509i \(0.596381\pi\)
\(912\) 0 0
\(913\) −6.00000 + 10.3923i −0.198571 + 0.343935i
\(914\) −6.50000 + 11.2583i −0.215001 + 0.372392i
\(915\) 0 0
\(916\) 7.00000 0.231287
\(917\) −2.00000 + 10.3923i −0.0660458 + 0.343184i
\(918\) 0 0
\(919\) −14.5000 25.1147i −0.478311 0.828459i 0.521380 0.853325i \(-0.325417\pi\)
−0.999691 + 0.0248659i \(0.992084\pi\)
\(920\) −36.0000 + 62.3538i −1.18688 + 2.05574i
\(921\) 0 0
\(922\) 1.00000 + 1.73205i 0.0329332 + 0.0570421i
\(923\) 0 0
\(924\) 0 0
\(925\) 33.0000 1.08503
\(926\) 16.0000 + 27.7128i 0.525793 + 0.910700i
\(927\) 0 0
\(928\) −5.00000 + 8.66025i −0.164133 + 0.284287i
\(929\) −2.00000 3.46410i −0.0656179 0.113653i 0.831350 0.555749i \(-0.187569\pi\)
−0.896968 + 0.442096i \(0.854235\pi\)
\(930\) 0 0
\(931\) 22.0000 17.3205i 0.721021 0.567657i
\(932\) 24.0000 0.786146
\(933\) 0 0
\(934\) 0 0
\(935\) −24.0000 + 41.5692i −0.784884 + 1.35946i
\(936\) 0 0
\(937\) −21.0000 −0.686040 −0.343020 0.939328i \(-0.611450\pi\)
−0.343020 + 0.939328i \(0.611450\pi\)
\(938\) 14.0000 + 12.1244i 0.457116 + 0.395874i
\(939\) 0 0
\(940\) −12.0000 20.7846i −0.391397 0.677919i
\(941\) −23.0000 + 39.8372i −0.749779 + 1.29865i 0.198150 + 0.980172i \(0.436507\pi\)
−0.947929 + 0.318483i \(0.896827\pi\)
\(942\) 0 0
\(943\) 6.00000 + 10.3923i 0.195387 + 0.338420i
\(944\) −6.00000 −0.195283
\(945\) 0 0
\(946\) −2.00000 −0.0650256
\(947\) 13.0000 + 22.5167i 0.422443 + 0.731693i 0.996178 0.0873481i \(-0.0278392\pi\)
−0.573735 + 0.819041i \(0.694506\pi\)
\(948\) 0 0
\(949\) 3.00000 5.19615i 0.0973841 0.168674i
\(950\) −22.0000 38.1051i −0.713774 1.23629i
\(951\) 0 0
\(952\) −45.0000 + 15.5885i −1.45846 + 0.505225i
\(953\) −14.0000 −0.453504 −0.226752 0.973952i \(-0.572811\pi\)
−0.226752 + 0.973952i \(0.572811\pi\)
\(954\) 0 0
\(955\) −8.00000 + 13.8564i −0.258874 + 0.448383i
\(956\) −6.00000 + 10.3923i −0.194054 + 0.336111i
\(957\) 0 0
\(958\) 16.0000 0.516937
\(959\) −45.0000 + 15.5885i −1.45313 + 0.503378i
\(960\) 0 0
\(961\) 11.0000 + 19.0526i 0.354839 + 0.614599i
\(962\) −1.50000 + 2.59808i −0.0483619 + 0.0837653i
\(963\) 0 0
\(964\) 8.50000 + 14.7224i 0.273767 + 0.474178i
\(965\) 100.000 3.21911
\(966\) 0 0
\(967\) −17.0000 −0.546683 −0.273342 0.961917i \(-0.588129\pi\)
−0.273342 + 0.961917i \(0.588129\pi\)
\(968\) −10.5000 18.1865i −0.337483 0.584537i
\(969\) 0 0
\(970\) 18.0000 31.1769i 0.577945 1.00103i
\(971\) 6.00000 + 10.3923i 0.192549 + 0.333505i 0.946094 0.323891i \(-0.104991\pi\)
−0.753545 + 0.657396i \(0.771658\pi\)
\(972\) 0 0
\(973\) 18.0000 + 15.5885i 0.577054 + 0.499743i
\(974\) 16.0000 0.512673
\(975\) 0 0
\(976\) −2.50000 + 4.33013i −0.0800230 + 0.138604i
\(977\) −3.00000 + 5.19615i −0.0959785 + 0.166240i −0.910017 0.414572i \(-0.863931\pi\)
0.814038 + 0.580812i \(0.197265\pi\)
\(978\) 0 0
\(979\) −8.00000 −0.255681
\(980\) 4.00000 + 27.7128i 0.127775 + 0.885253i
\(981\) 0 0
\(982\) −17.0000 29.4449i −0.542492 0.939623i
\(983\) 18.0000 31.1769i 0.574111 0.994389i −0.422027 0.906583i \(-0.638681\pi\)
0.996138 0.0878058i \(-0.0279855\pi\)
\(984\) 0 0
\(985\) 40.0000 + 69.2820i 1.27451 + 2.20751i
\(986\) −12.0000 −0.382158
\(987\) 0 0
\(988\) −4.00000 −0.127257
\(989\) 3.00000 + 5.19615i 0.0953945 + 0.165228i
\(990\) 0 0
\(991\) 27.5000 47.6314i 0.873566 1.51306i 0.0152841 0.999883i \(-0.495135\pi\)
0.858282 0.513178i \(-0.171532\pi\)
\(992\) −7.50000 12.9904i −0.238125 0.412445i
\(993\) 0 0
\(994\) 0 0
\(995\) 36.0000 1.14128
\(996\) 0 0
\(997\) 14.5000 25.1147i 0.459220 0.795392i −0.539700 0.841857i \(-0.681462\pi\)
0.998920 + 0.0464655i \(0.0147958\pi\)
\(998\) 8.50000 14.7224i 0.269063 0.466030i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 189.2.e.a.109.1 2
3.2 odd 2 189.2.e.c.109.1 yes 2
7.2 even 3 inner 189.2.e.a.163.1 yes 2
7.3 odd 6 1323.2.a.p.1.1 1
7.4 even 3 1323.2.a.m.1.1 1
9.2 odd 6 567.2.g.e.109.1 2
9.4 even 3 567.2.h.e.298.1 2
9.5 odd 6 567.2.h.b.298.1 2
9.7 even 3 567.2.g.b.109.1 2
21.2 odd 6 189.2.e.c.163.1 yes 2
21.11 odd 6 1323.2.a.g.1.1 1
21.17 even 6 1323.2.a.d.1.1 1
63.2 odd 6 567.2.h.b.352.1 2
63.16 even 3 567.2.h.e.352.1 2
63.23 odd 6 567.2.g.e.541.1 2
63.58 even 3 567.2.g.b.541.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.2.e.a.109.1 2 1.1 even 1 trivial
189.2.e.a.163.1 yes 2 7.2 even 3 inner
189.2.e.c.109.1 yes 2 3.2 odd 2
189.2.e.c.163.1 yes 2 21.2 odd 6
567.2.g.b.109.1 2 9.7 even 3
567.2.g.b.541.1 2 63.58 even 3
567.2.g.e.109.1 2 9.2 odd 6
567.2.g.e.541.1 2 63.23 odd 6
567.2.h.b.298.1 2 9.5 odd 6
567.2.h.b.352.1 2 63.2 odd 6
567.2.h.e.298.1 2 9.4 even 3
567.2.h.e.352.1 2 63.16 even 3
1323.2.a.d.1.1 1 21.17 even 6
1323.2.a.g.1.1 1 21.11 odd 6
1323.2.a.m.1.1 1 7.4 even 3
1323.2.a.p.1.1 1 7.3 odd 6