Defining parameters
Level: | \( N \) | \(=\) | \( 189 = 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 189.e (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 7 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(48\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(189, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 60 | 22 | 38 |
Cusp forms | 36 | 22 | 14 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(189, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
189.2.e.a | $2$ | $1.509$ | \(\Q(\sqrt{-3}) \) | None | \(-1\) | \(0\) | \(4\) | \(4\) | \(q-\zeta_{6}q^{2}+(1-\zeta_{6})q^{4}+4\zeta_{6}q^{5}+(1+\cdots)q^{7}+\cdots\) |
189.2.e.b | $2$ | $1.509$ | \(\Q(\sqrt{-3}) \) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(-1\) | \(q+(2-2\zeta_{6})q^{4}+(1-3\zeta_{6})q^{7}+2q^{13}+\cdots\) |
189.2.e.c | $2$ | $1.509$ | \(\Q(\sqrt{-3}) \) | None | \(1\) | \(0\) | \(-4\) | \(4\) | \(q+\zeta_{6}q^{2}+(1-\zeta_{6})q^{4}-4\zeta_{6}q^{5}+(1+\cdots)q^{7}+\cdots\) |
189.2.e.d | $4$ | $1.509$ | \(\Q(\sqrt{-2}, \sqrt{-3})\) | None | \(0\) | \(0\) | \(0\) | \(-2\) | \(q-\beta _{2}q^{2}+(-4+4\beta _{1})q^{4}-\beta _{2}q^{5}+\cdots\) |
189.2.e.e | $6$ | $1.509$ | 6.0.309123.1 | None | \(-2\) | \(0\) | \(-1\) | \(2\) | \(q+(-\beta _{1}-\beta _{4}+\beta _{5})q^{2}+(-2+\beta _{2}+\cdots)q^{4}+\cdots\) |
189.2.e.f | $6$ | $1.509$ | 6.0.309123.1 | None | \(2\) | \(0\) | \(1\) | \(2\) | \(q+(1-\beta _{4}+\beta _{5})q^{2}+(-\beta _{1}-\beta _{2}-\beta _{3}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(189, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(189, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 2}\)