Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [189,2,Mod(20,189)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(189, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([7, 9]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("189.20");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 189 = 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 189.be (of order \(18\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.50917259820\) |
Analytic rank: | \(0\) |
Dimension: | \(132\) |
Relative dimension: | \(22\) over \(\Q(\zeta_{18})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20.1 | −0.878867 | − | 2.41467i | −1.25404 | − | 1.19473i | −3.52612 | + | 2.95877i | −0.588152 | − | 3.33557i | −1.78274 | + | 4.07810i | −0.566293 | − | 2.58444i | 5.79269 | + | 3.34441i | 0.145238 | + | 2.99648i | −7.53740 | + | 4.35172i |
20.2 | −0.878867 | − | 2.41467i | 1.25404 | + | 1.19473i | −3.52612 | + | 2.95877i | 0.588152 | + | 3.33557i | 1.78274 | − | 4.07810i | −2.64351 | − | 0.108907i | 5.79269 | + | 3.34441i | 0.145238 | + | 2.99648i | 7.53740 | − | 4.35172i |
20.3 | −0.752422 | − | 2.06726i | −1.63905 | − | 0.559928i | −2.17534 | + | 1.82533i | 0.562637 | + | 3.19087i | 0.0757386 | + | 3.80964i | 1.24057 | + | 2.33688i | 1.59981 | + | 0.923650i | 2.37296 | + | 1.83550i | 6.17302 | − | 3.56400i |
20.4 | −0.752422 | − | 2.06726i | 1.63905 | + | 0.559928i | −2.17534 | + | 1.82533i | −0.562637 | − | 3.19087i | −0.0757386 | − | 3.80964i | 2.51680 | + | 0.815925i | 1.59981 | + | 0.923650i | 2.37296 | + | 1.83550i | −6.17302 | + | 3.56400i |
20.5 | −0.681310 | − | 1.87188i | −0.917364 | + | 1.46916i | −1.50768 | + | 1.26509i | −0.291735 | − | 1.65451i | 3.37511 | + | 0.716242i | −2.47296 | + | 0.940471i | −0.0549773 | − | 0.0317412i | −1.31689 | − | 2.69552i | −2.89829 | + | 1.67333i |
20.6 | −0.681310 | − | 1.87188i | 0.917364 | − | 1.46916i | −1.50768 | + | 1.26509i | 0.291735 | + | 1.65451i | −3.37511 | − | 0.716242i | 0.496759 | − | 2.59870i | −0.0549773 | − | 0.0317412i | −1.31689 | − | 2.69552i | 2.89829 | − | 1.67333i |
20.7 | −0.422526 | − | 1.16088i | −1.51095 | + | 0.846773i | 0.362974 | − | 0.304571i | 0.253991 | + | 1.44045i | 1.62142 | + | 1.39625i | 1.07486 | − | 2.41758i | −2.64668 | − | 1.52806i | 1.56595 | − | 2.55887i | 1.56488 | − | 0.903482i |
20.8 | −0.422526 | − | 1.16088i | 1.51095 | − | 0.846773i | 0.362974 | − | 0.304571i | −0.253991 | − | 1.44045i | −1.62142 | − | 1.39625i | −2.19420 | + | 1.47834i | −2.64668 | − | 1.52806i | 1.56595 | − | 2.55887i | −1.56488 | + | 0.903482i |
20.9 | −0.234777 | − | 0.645045i | −0.440723 | − | 1.67504i | 1.17113 | − | 0.982692i | −0.231854 | − | 1.31491i | −0.977005 | + | 0.677547i | 2.46223 | + | 0.968204i | −2.09779 | − | 1.21116i | −2.61153 | + | 1.47646i | −0.793741 | + | 0.458267i |
20.10 | −0.234777 | − | 0.645045i | 0.440723 | + | 1.67504i | 1.17113 | − | 0.982692i | 0.231854 | + | 1.31491i | 0.977005 | − | 0.677547i | 1.38106 | + | 2.25670i | −2.09779 | − | 1.21116i | −2.61153 | + | 1.47646i | 0.793741 | − | 0.458267i |
20.11 | −0.0448460 | − | 0.123213i | −1.62941 | − | 0.587383i | 1.51892 | − | 1.27452i | −0.231324 | − | 1.31190i | 0.000699206 | 0.227107i | −2.62614 | − | 0.321557i | −0.452264 | − | 0.261115i | 2.30996 | + | 1.91418i | −0.151270 | + | 0.0873359i | |
20.12 | −0.0448460 | − | 0.123213i | 1.62941 | + | 0.587383i | 1.51892 | − | 1.27452i | 0.231324 | + | 1.31190i | −0.000699206 | − | 0.227107i | −0.772696 | − | 2.53040i | −0.452264 | − | 0.261115i | 2.30996 | + | 1.91418i | 0.151270 | − | 0.0873359i |
20.13 | 0.157445 | + | 0.432576i | −0.888001 | + | 1.48710i | 1.36976 | − | 1.14936i | −0.725040 | − | 4.11191i | −0.783093 | − | 0.149993i | 2.17886 | − | 1.50085i | 1.51017 | + | 0.871900i | −1.42291 | − | 2.64109i | 1.66456 | − | 0.961033i |
20.14 | 0.157445 | + | 0.432576i | 0.888001 | − | 1.48710i | 1.36976 | − | 1.14936i | 0.725040 | + | 4.11191i | 0.783093 | + | 0.149993i | −1.09969 | + | 2.40638i | 1.51017 | + | 0.871900i | −1.42291 | − | 2.64109i | −1.66456 | + | 0.961033i |
20.15 | 0.471430 | + | 1.29524i | −1.37746 | − | 1.05005i | 0.0766803 | − | 0.0643424i | 0.459149 | + | 2.60396i | 0.710690 | − | 2.27917i | 1.90985 | − | 1.83097i | 2.50689 | + | 1.44736i | 0.794802 | + | 2.89280i | −3.15631 | + | 1.82230i |
20.16 | 0.471430 | + | 1.29524i | 1.37746 | + | 1.05005i | 0.0766803 | − | 0.0643424i | −0.459149 | − | 2.60396i | −0.710690 | + | 2.27917i | −1.47152 | + | 2.19878i | 2.50689 | + | 1.44736i | 0.794802 | + | 2.89280i | 3.15631 | − | 1.82230i |
20.17 | 0.492726 | + | 1.35375i | −0.333137 | + | 1.69971i | −0.0577819 | + | 0.0484848i | 0.440273 | + | 2.49691i | −2.46514 | + | 0.386507i | −1.60923 | − | 2.10009i | 2.40115 | + | 1.38630i | −2.77804 | − | 1.13247i | −3.16327 | + | 1.82631i |
20.18 | 0.492726 | + | 1.35375i | 0.333137 | − | 1.69971i | −0.0577819 | + | 0.0484848i | −0.440273 | − | 2.49691i | 2.46514 | − | 0.386507i | −2.34762 | − | 1.22011i | 2.40115 | + | 1.38630i | −2.77804 | − | 1.13247i | 3.16327 | − | 1.82631i |
20.19 | 0.735125 | + | 2.01974i | −1.28358 | + | 1.16294i | −2.00685 | + | 1.68395i | 0.0677816 | + | 0.384409i | −3.29242 | − | 1.73760i | 0.618456 | + | 2.57245i | −1.15362 | − | 0.666045i | 0.295160 | − | 2.98544i | −0.726578 | + | 0.419490i |
20.20 | 0.735125 | + | 2.01974i | 1.28358 | − | 1.16294i | −2.00685 | + | 1.68395i | −0.0677816 | − | 0.384409i | 3.29242 | + | 1.73760i | 2.64076 | + | 0.162359i | −1.15362 | − | 0.666045i | 0.295160 | − | 2.98544i | 0.726578 | − | 0.419490i |
See next 80 embeddings (of 132 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
27.f | odd | 18 | 1 | inner |
189.be | even | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 189.2.be.a | ✓ | 132 |
3.b | odd | 2 | 1 | 567.2.be.a | 132 | ||
7.b | odd | 2 | 1 | inner | 189.2.be.a | ✓ | 132 |
21.c | even | 2 | 1 | 567.2.be.a | 132 | ||
27.e | even | 9 | 1 | 567.2.be.a | 132 | ||
27.f | odd | 18 | 1 | inner | 189.2.be.a | ✓ | 132 |
189.y | odd | 18 | 1 | 567.2.be.a | 132 | ||
189.be | even | 18 | 1 | inner | 189.2.be.a | ✓ | 132 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
189.2.be.a | ✓ | 132 | 1.a | even | 1 | 1 | trivial |
189.2.be.a | ✓ | 132 | 7.b | odd | 2 | 1 | inner |
189.2.be.a | ✓ | 132 | 27.f | odd | 18 | 1 | inner |
189.2.be.a | ✓ | 132 | 189.be | even | 18 | 1 | inner |
567.2.be.a | 132 | 3.b | odd | 2 | 1 | ||
567.2.be.a | 132 | 21.c | even | 2 | 1 | ||
567.2.be.a | 132 | 27.e | even | 9 | 1 | ||
567.2.be.a | 132 | 189.y | odd | 18 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(189, [\chi])\).