# Properties

 Label 189.2.bd.a.47.4 Level $189$ Weight $2$ Character 189.47 Analytic conductor $1.509$ Analytic rank $0$ Dimension $132$ Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [189,2,Mod(47,189)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(189, base_ring=CyclotomicField(18))

chi = DirichletCharacter(H, H._module([7, 15]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("189.47");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$189 = 3^{3} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 189.bd (of order $$18$$, degree $$6$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$1.50917259820$$ Analytic rank: $$0$$ Dimension: $$132$$ Relative dimension: $$22$$ over $$\Q(\zeta_{18})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

## Embedding invariants

 Embedding label 47.4 Character $$\chi$$ $$=$$ 189.47 Dual form 189.2.bd.a.185.4

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(-2.06025 - 0.363278i) q^{2} +(-1.46652 - 0.921586i) q^{3} +(2.23328 + 0.812849i) q^{4} +(0.338534 + 0.123216i) q^{5} +(2.68661 + 2.43145i) q^{6} +(1.84499 + 1.89632i) q^{7} +(-0.682329 - 0.393943i) q^{8} +(1.30136 + 2.70305i) q^{9} +O(q^{10})$$ $$q+(-2.06025 - 0.363278i) q^{2} +(-1.46652 - 0.921586i) q^{3} +(2.23328 + 0.812849i) q^{4} +(0.338534 + 0.123216i) q^{5} +(2.68661 + 2.43145i) q^{6} +(1.84499 + 1.89632i) q^{7} +(-0.682329 - 0.393943i) q^{8} +(1.30136 + 2.70305i) q^{9} +(-0.652704 - 0.376839i) q^{10} +(-2.14028 - 5.88038i) q^{11} +(-2.52605 - 3.25022i) q^{12} +(0.429890 - 1.18111i) q^{13} +(-3.11225 - 4.57714i) q^{14} +(-0.382913 - 0.492688i) q^{15} +(-2.37852 - 1.99582i) q^{16} +(-0.468609 + 0.811655i) q^{17} +(-1.69917 - 6.04172i) q^{18} +(6.61941 - 3.82172i) q^{19} +(0.655887 + 0.550354i) q^{20} +(-0.958091 - 4.48130i) q^{21} +(2.27331 + 12.8926i) q^{22} +(1.68421 - 0.296971i) q^{23} +(0.637596 + 1.20655i) q^{24} +(-3.73080 - 3.13051i) q^{25} +(-1.31476 + 2.27722i) q^{26} +(0.582620 - 5.16339i) q^{27} +(2.57896 + 5.73471i) q^{28} +(-0.731568 - 2.00997i) q^{29} +(0.609914 + 1.15416i) q^{30} +(1.98478 - 5.45314i) q^{31} +(5.18821 + 6.18306i) q^{32} +(-2.28051 + 10.5962i) q^{33} +(1.26031 - 1.50198i) q^{34} +(0.390934 + 0.869301i) q^{35} +(0.709137 + 7.09448i) q^{36} -3.33513 q^{37} +(-15.0260 + 5.46902i) q^{38} +(-1.71894 + 1.33595i) q^{39} +(-0.182451 - 0.217437i) q^{40} +(8.66669 + 3.15442i) q^{41} +(0.345950 + 9.58067i) q^{42} +(-0.688669 + 3.90564i) q^{43} -14.8723i q^{44} +(0.107495 + 1.07542i) q^{45} -3.57777 q^{46} +(4.74048 - 1.72539i) q^{47} +(1.64883 + 5.11892i) q^{48} +(-0.192044 + 6.99737i) q^{49} +(6.54914 + 7.80496i) q^{50} +(1.43524 - 0.758445i) q^{51} +(1.92013 - 2.28833i) q^{52} +(3.01037 - 1.73804i) q^{53} +(-3.07609 + 10.4262i) q^{54} -2.25443i q^{55} +(-0.511847 - 2.02073i) q^{56} +(-13.2295 - 0.495729i) q^{57} +(0.777037 + 4.40680i) q^{58} +(4.89583 - 4.10809i) q^{59} +(-0.454672 - 1.41156i) q^{60} +(-3.57768 - 9.82960i) q^{61} +(-6.07015 + 10.5138i) q^{62} +(-2.72484 + 7.45488i) q^{63} +(-5.33790 - 9.24552i) q^{64} +(0.291065 - 0.346878i) q^{65} +(8.54777 - 21.0023i) q^{66} +(-0.0504771 - 0.286270i) q^{67} +(-1.70629 + 1.43175i) q^{68} +(-2.74361 - 1.11663i) q^{69} +(-0.489624 - 1.93300i) q^{70} +(-4.18316 + 2.41515i) q^{71} +(0.176891 - 2.35703i) q^{72} +3.69086i q^{73} +(6.87121 + 1.21158i) q^{74} +(2.58625 + 8.02921i) q^{75} +(17.8895 - 3.15440i) q^{76} +(7.20228 - 14.9079i) q^{77} +(4.02677 - 2.12793i) q^{78} +(1.79265 - 10.1666i) q^{79} +(-0.559294 - 0.968725i) q^{80} +(-5.61293 + 7.03527i) q^{81} +(-16.7096 - 9.64732i) q^{82} +(-6.06917 + 2.20900i) q^{83} +(1.50293 - 10.7868i) q^{84} +(-0.258650 + 0.217033i) q^{85} +(2.83766 - 7.79642i) q^{86} +(-0.779497 + 3.62186i) q^{87} +(-0.856156 + 4.85550i) q^{88} +(2.56195 + 4.43743i) q^{89} +(0.169211 - 2.25469i) q^{90} +(3.03291 - 1.36393i) q^{91} +(4.00271 + 0.705785i) q^{92} +(-7.93625 + 6.16799i) q^{93} +(-10.3934 + 1.83263i) q^{94} +(2.71179 - 0.478163i) q^{95} +(-1.91038 - 13.8490i) q^{96} +(7.91567 + 1.39575i) q^{97} +(2.93765 - 14.3466i) q^{98} +(13.1097 - 13.4378i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} + 18 q^{6} - 6 q^{7} - 18 q^{8} - 15 q^{9}+O(q^{10})$$ 132 * q - 3 * q^2 - 9 * q^3 - 3 * q^4 - 9 * q^5 + 18 * q^6 - 6 * q^7 - 18 * q^8 - 15 * q^9 $$132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} + 18 q^{6} - 6 q^{7} - 18 q^{8} - 15 q^{9} - 9 q^{10} + 9 q^{11} - 9 q^{12} - 42 q^{14} - 24 q^{15} - 15 q^{16} - 9 q^{17} - 3 q^{18} - 9 q^{19} - 18 q^{20} + 15 q^{21} - 12 q^{22} + 30 q^{23} - 36 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} - 3 q^{30} - 9 q^{31} - 51 q^{32} - 9 q^{33} + 18 q^{34} - 9 q^{35} - 6 q^{37} - 9 q^{38} - 9 q^{39} - 9 q^{40} + 27 q^{42} - 12 q^{43} - 63 q^{45} - 6 q^{46} + 45 q^{47} + 30 q^{49} - 9 q^{50} + 33 q^{51} - 9 q^{52} + 45 q^{53} + 117 q^{54} - 51 q^{56} - 3 q^{58} - 9 q^{59} - 15 q^{60} - 63 q^{61} + 99 q^{62} - 33 q^{63} + 18 q^{64} - 102 q^{65} + 63 q^{66} - 3 q^{67} + 144 q^{68} - 108 q^{69} - 15 q^{70} + 18 q^{71} + 15 q^{72} - 33 q^{74} - 9 q^{75} - 36 q^{76} - 57 q^{77} + 66 q^{78} - 21 q^{79} - 72 q^{80} + 57 q^{81} - 18 q^{82} + 90 q^{83} + 51 q^{84} + 9 q^{85} - 33 q^{86} - 9 q^{87} + 45 q^{88} - 9 q^{89} - 81 q^{90} - 21 q^{91} + 150 q^{92} - 87 q^{93} - 9 q^{94} + 27 q^{95} - 9 q^{96} - 180 q^{98} + 96 q^{99}+O(q^{100})$$ 132 * q - 3 * q^2 - 9 * q^3 - 3 * q^4 - 9 * q^5 + 18 * q^6 - 6 * q^7 - 18 * q^8 - 15 * q^9 - 9 * q^10 + 9 * q^11 - 9 * q^12 - 42 * q^14 - 24 * q^15 - 15 * q^16 - 9 * q^17 - 3 * q^18 - 9 * q^19 - 18 * q^20 + 15 * q^21 - 12 * q^22 + 30 * q^23 - 36 * q^24 - 3 * q^25 - 12 * q^28 + 6 * q^29 - 3 * q^30 - 9 * q^31 - 51 * q^32 - 9 * q^33 + 18 * q^34 - 9 * q^35 - 6 * q^37 - 9 * q^38 - 9 * q^39 - 9 * q^40 + 27 * q^42 - 12 * q^43 - 63 * q^45 - 6 * q^46 + 45 * q^47 + 30 * q^49 - 9 * q^50 + 33 * q^51 - 9 * q^52 + 45 * q^53 + 117 * q^54 - 51 * q^56 - 3 * q^58 - 9 * q^59 - 15 * q^60 - 63 * q^61 + 99 * q^62 - 33 * q^63 + 18 * q^64 - 102 * q^65 + 63 * q^66 - 3 * q^67 + 144 * q^68 - 108 * q^69 - 15 * q^70 + 18 * q^71 + 15 * q^72 - 33 * q^74 - 9 * q^75 - 36 * q^76 - 57 * q^77 + 66 * q^78 - 21 * q^79 - 72 * q^80 + 57 * q^81 - 18 * q^82 + 90 * q^83 + 51 * q^84 + 9 * q^85 - 33 * q^86 - 9 * q^87 + 45 * q^88 - 9 * q^89 - 81 * q^90 - 21 * q^91 + 150 * q^92 - 87 * q^93 - 9 * q^94 + 27 * q^95 - 9 * q^96 - 180 * q^98 + 96 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/189\mathbb{Z}\right)^\times$$.

 $$n$$ $$29$$ $$136$$ $$\chi(n)$$ $$e\left(\frac{7}{18}\right)$$ $$e\left(\frac{5}{6}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −2.06025 0.363278i −1.45682 0.256876i −0.611545 0.791210i $$-0.709452\pi$$
−0.845274 + 0.534333i $$0.820563\pi$$
$$3$$ −1.46652 0.921586i −0.846695 0.532078i
$$4$$ 2.23328 + 0.812849i 1.11664 + 0.406425i
$$5$$ 0.338534 + 0.123216i 0.151397 + 0.0551040i 0.416607 0.909087i $$-0.363219\pi$$
−0.265210 + 0.964191i $$0.585441\pi$$
$$6$$ 2.68661 + 2.43145i 1.09680 + 0.992637i
$$7$$ 1.84499 + 1.89632i 0.697340 + 0.716741i
$$8$$ −0.682329 0.393943i −0.241240 0.139280i
$$9$$ 1.30136 + 2.70305i 0.433787 + 0.901016i
$$10$$ −0.652704 0.376839i −0.206403 0.119167i
$$11$$ −2.14028 5.88038i −0.645320 1.77300i −0.634330 0.773063i $$-0.718724\pi$$
−0.0109905 0.999940i $$-0.503498\pi$$
$$12$$ −2.52605 3.25022i −0.729207 0.938258i
$$13$$ 0.429890 1.18111i 0.119230 0.327582i −0.865693 0.500576i $$-0.833122\pi$$
0.984923 + 0.172994i $$0.0553440\pi$$
$$14$$ −3.11225 4.57714i −0.831784 1.22329i
$$15$$ −0.382913 0.492688i −0.0988676 0.127211i
$$16$$ −2.37852 1.99582i −0.594631 0.498954i
$$17$$ −0.468609 + 0.811655i −0.113654 + 0.196855i −0.917241 0.398332i $$-0.869589\pi$$
0.803587 + 0.595188i $$0.202922\pi$$
$$18$$ −1.69917 6.04172i −0.400499 1.42405i
$$19$$ 6.61941 3.82172i 1.51860 0.876762i 0.518836 0.854874i $$-0.326365\pi$$
0.999760 0.0218885i $$-0.00696789\pi$$
$$20$$ 0.655887 + 0.550354i 0.146661 + 0.123063i
$$21$$ −0.958091 4.48130i −0.209073 0.977900i
$$22$$ 2.27331 + 12.8926i 0.484672 + 2.74871i
$$23$$ 1.68421 0.296971i 0.351181 0.0619228i 0.00472501 0.999989i $$-0.498496\pi$$
0.346456 + 0.938066i $$0.387385\pi$$
$$24$$ 0.637596 + 1.20655i 0.130149 + 0.246286i
$$25$$ −3.73080 3.13051i −0.746160 0.626102i
$$26$$ −1.31476 + 2.27722i −0.257845 + 0.446600i
$$27$$ 0.582620 5.16339i 0.112125 0.993694i
$$28$$ 2.57896 + 5.73471i 0.487378 + 1.08376i
$$29$$ −0.731568 2.00997i −0.135849 0.373241i 0.853051 0.521828i $$-0.174750\pi$$
−0.988899 + 0.148587i $$0.952528\pi$$
$$30$$ 0.609914 + 1.15416i 0.111355 + 0.210721i
$$31$$ 1.98478 5.45314i 0.356477 0.979412i −0.623765 0.781612i $$-0.714398\pi$$
0.980242 0.197801i $$-0.0633799\pi$$
$$32$$ 5.18821 + 6.18306i 0.917154 + 1.09302i
$$33$$ −2.28051 + 10.5962i −0.396986 + 1.84455i
$$34$$ 1.26031 1.50198i 0.216141 0.257587i
$$35$$ 0.390934 + 0.869301i 0.0660799 + 0.146939i
$$36$$ 0.709137 + 7.09448i 0.118189 + 1.18241i
$$37$$ −3.33513 −0.548292 −0.274146 0.961688i $$-0.588395\pi$$
−0.274146 + 0.961688i $$0.588395\pi$$
$$38$$ −15.0260 + 5.46902i −2.43754 + 0.887192i
$$39$$ −1.71894 + 1.33595i −0.275251 + 0.213923i
$$40$$ −0.182451 0.217437i −0.0288481 0.0343798i
$$41$$ 8.66669 + 3.15442i 1.35351 + 0.492637i 0.914041 0.405621i $$-0.132945\pi$$
0.439468 + 0.898258i $$0.355167\pi$$
$$42$$ 0.345950 + 9.58067i 0.0533812 + 1.47833i
$$43$$ −0.688669 + 3.90564i −0.105021 + 0.595604i 0.886191 + 0.463320i $$0.153342\pi$$
−0.991212 + 0.132284i $$0.957769\pi$$
$$44$$ 14.8723i 2.24208i
$$45$$ 0.107495 + 1.07542i 0.0160244 + 0.160315i
$$46$$ −3.57777 −0.527514
$$47$$ 4.74048 1.72539i 0.691470 0.251674i 0.0277052 0.999616i $$-0.491180\pi$$
0.663764 + 0.747942i $$0.268958\pi$$
$$48$$ 1.64883 + 5.11892i 0.237989 + 0.738852i
$$49$$ −0.192044 + 6.99737i −0.0274348 + 0.999624i
$$50$$ 6.54914 + 7.80496i 0.926189 + 1.10379i
$$51$$ 1.43524 0.758445i 0.200973 0.106204i
$$52$$ 1.92013 2.28833i 0.266275 0.317334i
$$53$$ 3.01037 1.73804i 0.413506 0.238738i −0.278789 0.960352i $$-0.589933\pi$$
0.692295 + 0.721614i $$0.256600\pi$$
$$54$$ −3.07609 + 10.4262i −0.418603 + 1.41883i
$$55$$ 2.25443i 0.303987i
$$56$$ −0.511847 2.02073i −0.0683984 0.270032i
$$57$$ −13.2295 0.495729i −1.75229 0.0656609i
$$58$$ 0.777037 + 4.40680i 0.102030 + 0.578641i
$$59$$ 4.89583 4.10809i 0.637383 0.534828i −0.265830 0.964020i $$-0.585646\pi$$
0.903213 + 0.429192i $$0.141202\pi$$
$$60$$ −0.454672 1.41156i −0.0586979 0.182232i
$$61$$ −3.57768 9.82960i −0.458075 1.25855i −0.926916 0.375269i $$-0.877550\pi$$
0.468840 0.883283i $$-0.344672\pi$$
$$62$$ −6.07015 + 10.5138i −0.770910 + 1.33526i
$$63$$ −2.72484 + 7.45488i −0.343298 + 0.939226i
$$64$$ −5.33790 9.24552i −0.667238 1.15569i
$$65$$ 0.291065 0.346878i 0.0361022 0.0430249i
$$66$$ 8.54777 21.0023i 1.05216 2.58520i
$$67$$ −0.0504771 0.286270i −0.00616676 0.0349734i 0.981569 0.191108i $$-0.0612079\pi$$
−0.987736 + 0.156134i $$0.950097\pi$$
$$68$$ −1.70629 + 1.43175i −0.206918 + 0.173625i
$$69$$ −2.74361 1.11663i −0.330291 0.134426i
$$70$$ −0.489624 1.93300i −0.0585213 0.231037i
$$71$$ −4.18316 + 2.41515i −0.496450 + 0.286625i −0.727246 0.686377i $$-0.759200\pi$$
0.230797 + 0.973002i $$0.425867\pi$$
$$72$$ 0.176891 2.35703i 0.0208467 0.277778i
$$73$$ 3.69086i 0.431983i 0.976395 + 0.215992i $$0.0692984\pi$$
−0.976395 + 0.215992i $$0.930702\pi$$
$$74$$ 6.87121 + 1.21158i 0.798762 + 0.140843i
$$75$$ 2.58625 + 8.02921i 0.298635 + 0.927133i
$$76$$ 17.8895 3.15440i 2.05207 0.361835i
$$77$$ 7.20228 14.9079i 0.820776 1.69891i
$$78$$ 4.02677 2.12793i 0.455942 0.240941i
$$79$$ 1.79265 10.1666i 0.201689 1.14384i −0.700876 0.713283i $$-0.747207\pi$$
0.902565 0.430553i $$-0.141682\pi$$
$$80$$ −0.559294 0.968725i −0.0625309 0.108307i
$$81$$ −5.61293 + 7.03527i −0.623659 + 0.781697i
$$82$$ −16.7096 9.64732i −1.84527 1.06537i
$$83$$ −6.06917 + 2.20900i −0.666178 + 0.242469i −0.652901 0.757443i $$-0.726448\pi$$
−0.0132766 + 0.999912i $$0.504226\pi$$
$$84$$ 1.50293 10.7868i 0.163983 1.17694i
$$85$$ −0.258650 + 0.217033i −0.0280545 + 0.0235405i
$$86$$ 2.83766 7.79642i 0.305993 0.840709i
$$87$$ −0.779497 + 3.62186i −0.0835709 + 0.388304i
$$88$$ −0.856156 + 4.85550i −0.0912665 + 0.517598i
$$89$$ 2.56195 + 4.43743i 0.271566 + 0.470367i 0.969263 0.246026i $$-0.0791250\pi$$
−0.697697 + 0.716393i $$0.745792\pi$$
$$90$$ 0.169211 2.25469i 0.0178364 0.237666i
$$91$$ 3.03291 1.36393i 0.317935 0.142979i
$$92$$ 4.00271 + 0.705785i 0.417311 + 0.0735832i
$$93$$ −7.93625 + 6.16799i −0.822951 + 0.639591i
$$94$$ −10.3934 + 1.83263i −1.07199 + 0.189022i
$$95$$ 2.71179 0.478163i 0.278224 0.0490584i
$$96$$ −1.91038 13.8490i −0.194978 1.41345i
$$97$$ 7.91567 + 1.39575i 0.803714 + 0.141717i 0.560390 0.828229i $$-0.310651\pi$$
0.243324 + 0.969945i $$0.421762\pi$$
$$98$$ 2.93765 14.3466i 0.296747 1.44922i
$$99$$ 13.1097 13.4378i 1.31757 1.35055i
$$100$$ −5.78730 10.0239i −0.578730 1.00239i
$$101$$ −2.47268 + 14.0233i −0.246041 + 1.39537i 0.572021 + 0.820239i $$0.306160\pi$$
−0.818062 + 0.575130i $$0.804952\pi$$
$$102$$ −3.23247 + 1.04120i −0.320063 + 0.103094i
$$103$$ −2.18829 + 6.01227i −0.215618 + 0.592406i −0.999597 0.0283812i $$-0.990965\pi$$
0.783979 + 0.620787i $$0.213187\pi$$
$$104$$ −0.758617 + 0.636556i −0.0743886 + 0.0624194i
$$105$$ 0.227823 1.63513i 0.0222333 0.159572i
$$106$$ −6.83352 + 2.48720i −0.663730 + 0.241578i
$$107$$ 2.81413 + 1.62474i 0.272053 + 0.157070i 0.629820 0.776741i $$-0.283129\pi$$
−0.357767 + 0.933811i $$0.616462\pi$$
$$108$$ 5.49821 11.0577i 0.529066 1.06403i
$$109$$ 6.30335 + 10.9177i 0.603751 + 1.04573i 0.992247 + 0.124278i $$0.0396613\pi$$
−0.388496 + 0.921450i $$0.627005\pi$$
$$110$$ −0.818985 + 4.64469i −0.0780871 + 0.442854i
$$111$$ 4.89103 + 3.07361i 0.464236 + 0.291734i
$$112$$ −0.603640 8.19269i −0.0570386 0.774137i
$$113$$ −14.5530 + 2.56609i −1.36903 + 0.241397i −0.809358 0.587315i $$-0.800185\pi$$
−0.559674 + 0.828713i $$0.689074\pi$$
$$114$$ 27.0761 + 5.82733i 2.53591 + 0.545779i
$$115$$ 0.606753 + 0.106987i 0.0565800 + 0.00997659i
$$116$$ 5.08348i 0.471989i
$$117$$ 3.75205 0.375040i 0.346877 0.0346725i
$$118$$ −11.5790 + 6.68515i −1.06594 + 0.615418i
$$119$$ −2.40374 + 0.608861i −0.220350 + 0.0558142i
$$120$$ 0.0671816 + 0.487020i 0.00613281 + 0.0444587i
$$121$$ −21.5716 + 18.1007i −1.96105 + 1.64552i
$$122$$ 3.80005 + 21.5512i 0.344041 + 1.95115i
$$123$$ −9.80281 12.6131i −0.883889 1.13729i
$$124$$ 8.86515 10.5651i 0.796114 0.948772i
$$125$$ −1.77792 3.07945i −0.159022 0.275435i
$$126$$ 8.32206 14.3691i 0.741388 1.28010i
$$127$$ 7.01123 12.1438i 0.622146 1.07759i −0.366939 0.930245i $$-0.619594\pi$$
0.989085 0.147344i $$-0.0470724\pi$$
$$128$$ 2.11756 + 5.81795i 0.187168 + 0.514239i
$$129$$ 4.60933 5.09302i 0.405828 0.448416i
$$130$$ −0.725681 + 0.608918i −0.0636464 + 0.0534057i
$$131$$ 0.455349 + 2.58241i 0.0397841 + 0.225627i 0.998217 0.0596917i $$-0.0190118\pi$$
−0.958433 + 0.285318i $$0.907901\pi$$
$$132$$ −13.7061 + 21.8105i −1.19296 + 1.89836i
$$133$$ 19.4599 + 5.50148i 1.68739 + 0.477039i
$$134$$ 0.608125i 0.0525340i
$$135$$ 0.833451 1.67619i 0.0717320 0.144264i
$$136$$ 0.639491 0.369210i 0.0548359 0.0316595i
$$137$$ −6.26152 + 7.46219i −0.534958 + 0.637538i −0.964049 0.265723i $$-0.914389\pi$$
0.429092 + 0.903261i $$0.358834\pi$$
$$138$$ 5.24688 + 3.29723i 0.446644 + 0.280679i
$$139$$ −0.0836111 0.0996438i −0.00709180 0.00845168i 0.762487 0.647004i $$-0.223978\pi$$
−0.769579 + 0.638552i $$0.779534\pi$$
$$140$$ 0.166456 + 2.25917i 0.0140681 + 0.190934i
$$141$$ −8.54210 1.83843i −0.719374 0.154824i
$$142$$ 9.49573 3.45616i 0.796864 0.290035i
$$143$$ −7.86549 −0.657745
$$144$$ 2.29947 9.02653i 0.191623 0.752211i
$$145$$ 0.770583i 0.0639934i
$$146$$ 1.34081 7.60411i 0.110966 0.629321i
$$147$$ 6.73031 10.0848i 0.555106 0.831779i
$$148$$ −7.44829 2.71096i −0.612246 0.222839i
$$149$$ −9.24727 11.0205i −0.757566 0.902832i 0.240125 0.970742i $$-0.422811\pi$$
−0.997691 + 0.0679097i $$0.978367\pi$$
$$150$$ −2.41150 17.4817i −0.196898 1.42738i
$$151$$ −19.0335 + 6.92763i −1.54892 + 0.563762i −0.968165 0.250313i $$-0.919466\pi$$
−0.580759 + 0.814075i $$0.697244\pi$$
$$152$$ −6.02215 −0.488461
$$153$$ −2.80377 0.210418i −0.226672 0.0170113i
$$154$$ −20.2542 + 28.0976i −1.63213 + 2.26417i
$$155$$ 1.34383 1.60152i 0.107939 0.128637i
$$156$$ −4.92480 + 1.58631i −0.394300 + 0.127006i
$$157$$ 2.54977 + 3.03870i 0.203494 + 0.242515i 0.858134 0.513426i $$-0.171624\pi$$
−0.654640 + 0.755941i $$0.727180\pi$$
$$158$$ −7.38664 + 20.2946i −0.587649 + 1.61455i
$$159$$ −6.01652 0.225447i −0.477141 0.0178791i
$$160$$ 0.994530 + 2.73245i 0.0786245 + 0.216019i
$$161$$ 3.67049 + 2.64588i 0.289275 + 0.208525i
$$162$$ 14.1198 12.4554i 1.10936 0.978587i
$$163$$ −8.65872 + 14.9973i −0.678203 + 1.17468i 0.297318 + 0.954778i $$0.403908\pi$$
−0.975522 + 0.219904i $$0.929426\pi$$
$$164$$ 16.7911 + 14.0894i 1.31117 + 1.10020i
$$165$$ −2.07765 + 3.30616i −0.161745 + 0.257385i
$$166$$ 13.3065 2.34630i 1.03279 0.182108i
$$167$$ −2.13178 12.0899i −0.164962 0.935548i −0.949103 0.314965i $$-0.898007\pi$$
0.784141 0.620583i $$-0.213104\pi$$
$$168$$ −1.11164 + 3.43515i −0.0857651 + 0.265028i
$$169$$ 8.74835 + 7.34074i 0.672950 + 0.564672i
$$170$$ 0.611727 0.353181i 0.0469173 0.0270877i
$$171$$ 18.9445 + 12.9191i 1.44872 + 0.987952i
$$172$$ −4.71269 + 8.16261i −0.359339 + 0.622393i
$$173$$ 16.1769 + 13.5741i 1.22991 + 1.03202i 0.998245 + 0.0592207i $$0.0188616\pi$$
0.231664 + 0.972796i $$0.425583\pi$$
$$174$$ 2.92170 7.17876i 0.221494 0.544221i
$$175$$ −0.946831 12.8505i −0.0715737 0.971409i
$$176$$ −6.64546 + 18.2582i −0.500920 + 1.37627i
$$177$$ −10.9658 + 1.51267i −0.824239 + 0.113699i
$$178$$ −3.66625 10.0729i −0.274797 0.754998i
$$179$$ 8.13538 + 4.69697i 0.608067 + 0.351068i 0.772209 0.635369i $$-0.219152\pi$$
−0.164141 + 0.986437i $$0.552485\pi$$
$$180$$ −0.634089 + 2.48910i −0.0472622 + 0.185527i
$$181$$ 8.05463 + 4.65035i 0.598696 + 0.345657i 0.768529 0.639816i $$-0.220989\pi$$
−0.169832 + 0.985473i $$0.554323\pi$$
$$182$$ −6.74405 + 1.70825i −0.499902 + 0.126624i
$$183$$ −3.81208 + 17.7125i −0.281797 + 1.30934i
$$184$$ −1.26617 0.460849i −0.0933434 0.0339742i
$$185$$ −1.12906 0.410943i −0.0830098 0.0302131i
$$186$$ 18.5914 9.82455i 1.36319 0.720371i
$$187$$ 5.77580 + 1.01843i 0.422369 + 0.0744750i
$$188$$ 11.9893 0.874411
$$189$$ 10.8663 8.42155i 0.790411 0.612578i
$$190$$ −5.76069 −0.417924
$$191$$ 8.98811 + 1.58485i 0.650357 + 0.114675i 0.489087 0.872235i $$-0.337330\pi$$
0.161270 + 0.986910i $$0.448441\pi$$
$$192$$ −0.692399 + 18.4781i −0.0499696 + 1.33354i
$$193$$ 3.29363 + 1.19878i 0.237081 + 0.0862902i 0.457828 0.889041i $$-0.348627\pi$$
−0.220748 + 0.975331i $$0.570850\pi$$
$$194$$ −15.8012 5.75118i −1.13446 0.412911i
$$195$$ −0.746530 + 0.240462i −0.0534602 + 0.0172198i
$$196$$ −6.11669 + 15.4710i −0.436906 + 1.10507i
$$197$$ −17.0883 9.86593i −1.21749 0.702918i −0.253110 0.967438i $$-0.581453\pi$$
−0.964380 + 0.264519i $$0.914787\pi$$
$$198$$ −31.8909 + 22.9228i −2.26639 + 1.62905i
$$199$$ 9.64829 + 5.57044i 0.683949 + 0.394878i 0.801341 0.598207i $$-0.204120\pi$$
−0.117392 + 0.993086i $$0.537453\pi$$
$$200$$ 1.31239 + 3.60576i 0.0927999 + 0.254966i
$$201$$ −0.189796 + 0.466339i −0.0133872 + 0.0328930i
$$202$$ 10.1887 27.9932i 0.716875 1.96960i
$$203$$ 2.46180 5.09564i 0.172785 0.357644i
$$204$$ 3.82179 0.527194i 0.267579 0.0369109i
$$205$$ 2.54530 + 2.13576i 0.177771 + 0.149168i
$$206$$ 6.69255 11.5918i 0.466292 0.807641i
$$207$$ 2.99449 + 4.16602i 0.208131 + 0.289559i
$$208$$ −3.37979 + 1.95132i −0.234346 + 0.135300i
$$209$$ −36.6406 30.7451i −2.53448 2.12668i
$$210$$ −1.06338 + 3.28601i −0.0733801 + 0.226756i
$$211$$ −1.40219 7.95221i −0.0965307 0.547453i −0.994268 0.106921i $$-0.965901\pi$$
0.897737 0.440532i $$-0.145210\pi$$
$$212$$ 8.13578 1.43456i 0.558767 0.0985258i
$$213$$ 8.36045 + 0.313278i 0.572849 + 0.0214654i
$$214$$ −5.20759 4.36969i −0.355984 0.298706i
$$215$$ −0.714376 + 1.23734i −0.0487201 + 0.0843856i
$$216$$ −2.43162 + 3.29361i −0.165450 + 0.224102i
$$217$$ 14.0028 6.29720i 0.950570 0.427481i
$$218$$ −9.02032 24.7831i −0.610933 1.67853i
$$219$$ 3.40145 5.41273i 0.229849 0.365758i
$$220$$ 1.83251 5.03478i 0.123548 0.339445i
$$221$$ 0.757207 + 0.902404i 0.0509352 + 0.0607023i
$$222$$ −8.96019 8.10921i −0.601369 0.544255i
$$223$$ −4.16647 + 4.96540i −0.279007 + 0.332508i −0.887290 0.461213i $$-0.847414\pi$$
0.608282 + 0.793721i $$0.291859\pi$$
$$224$$ −2.15288 + 21.2462i −0.143845 + 1.41957i
$$225$$ 3.60681 14.1584i 0.240454 0.943896i
$$226$$ 30.9151 2.05644
$$227$$ 6.51828 2.37246i 0.432634 0.157466i −0.116518 0.993189i $$-0.537173\pi$$
0.549152 + 0.835723i $$0.314951\pi$$
$$228$$ −29.1424 11.8607i −1.93000 0.785495i
$$229$$ −11.8635 14.1384i −0.783964 0.934292i 0.215142 0.976583i $$-0.430979\pi$$
−0.999105 + 0.0422913i $$0.986534\pi$$
$$230$$ −1.21120 0.440840i −0.0798641 0.0290682i
$$231$$ −24.3012 + 15.2252i −1.59890 + 1.00174i
$$232$$ −0.292641 + 1.65965i −0.0192129 + 0.108962i
$$233$$ 24.0601i 1.57623i −0.615529 0.788115i $$-0.711057\pi$$
0.615529 0.788115i $$-0.288943\pi$$
$$234$$ −7.86641 0.590360i −0.514243 0.0385930i
$$235$$ 1.81741 0.118555
$$236$$ 14.2730 5.19496i 0.929096 0.338163i
$$237$$ −11.9984 + 13.2575i −0.779379 + 0.861167i
$$238$$ 5.17349 0.381184i 0.335347 0.0247085i
$$239$$ −3.56306 4.24628i −0.230475 0.274669i 0.638396 0.769708i $$-0.279598\pi$$
−0.868871 + 0.495039i $$0.835154\pi$$
$$240$$ −0.0725480 + 1.93609i −0.00468296 + 0.124974i
$$241$$ −6.55253 + 7.80900i −0.422086 + 0.503022i −0.934622 0.355644i $$-0.884262\pi$$
0.512536 + 0.858666i $$0.328706\pi$$
$$242$$ 51.0185 29.4556i 3.27960 1.89348i
$$243$$ 14.7151 5.14457i 0.943972 0.330024i
$$244$$ 24.8604i 1.59153i
$$245$$ −0.927203 + 2.34518i −0.0592368 + 0.149828i
$$246$$ 15.6142 + 29.5473i 0.995524 + 1.88387i
$$247$$ −1.66826 9.46120i −0.106149 0.602001i
$$248$$ −3.50249 + 2.93894i −0.222409 + 0.186623i
$$249$$ 10.9363 + 2.35372i 0.693062 + 0.149161i
$$250$$ 2.54427 + 6.99034i 0.160914 + 0.442108i
$$251$$ −10.3890 + 17.9942i −0.655746 + 1.13579i 0.325960 + 0.945384i $$0.394312\pi$$
−0.981706 + 0.190402i $$0.939021\pi$$
$$252$$ −12.1450 + 14.4340i −0.765066 + 0.909255i
$$253$$ −5.35099 9.26818i −0.336414 0.582685i
$$254$$ −18.8565 + 22.4723i −1.18316 + 1.41004i
$$255$$ 0.579329 0.0799150i 0.0362790 0.00500447i
$$256$$ 1.45849 + 8.27153i 0.0911558 + 0.516970i
$$257$$ 19.4196 16.2950i 1.21136 1.01645i 0.212129 0.977242i $$-0.431960\pi$$
0.999231 0.0392104i $$-0.0124843\pi$$
$$258$$ −11.3466 + 8.81845i −0.706406 + 0.549013i
$$259$$ −6.15327 6.32447i −0.382346 0.392983i
$$260$$ 0.931991 0.538085i 0.0577996 0.0333706i
$$261$$ 4.48100 4.59315i 0.277367 0.284309i
$$262$$ 5.48585i 0.338917i
$$263$$ 3.91251 + 0.689881i 0.241256 + 0.0425399i 0.292968 0.956122i $$-0.405357\pi$$
−0.0517128 + 0.998662i $$0.516468\pi$$
$$264$$ 5.73033 6.33167i 0.352678 0.389687i
$$265$$ 1.23327 0.217458i 0.0757591 0.0133584i
$$266$$ −38.0938 18.4038i −2.33568 1.12841i
$$267$$ 0.332320 8.86864i 0.0203377 0.542752i
$$268$$ 0.119964 0.680352i 0.00732799 0.0415591i
$$269$$ 2.35052 + 4.07121i 0.143313 + 0.248226i 0.928742 0.370726i $$-0.120891\pi$$
−0.785429 + 0.618952i $$0.787558\pi$$
$$270$$ −2.32604 + 3.15061i −0.141558 + 0.191740i
$$271$$ −7.44995 4.30123i −0.452552 0.261281i 0.256355 0.966583i $$-0.417478\pi$$
−0.708907 + 0.705302i $$0.750812\pi$$
$$272$$ 2.73451 0.995282i 0.165804 0.0603478i
$$273$$ −5.70480 0.794854i −0.345270 0.0481067i
$$274$$ 15.6112 13.0993i 0.943105 0.791359i
$$275$$ −10.4236 + 28.6387i −0.628569 + 1.72698i
$$276$$ −5.21960 4.72388i −0.314183 0.284344i
$$277$$ 2.75863 15.6450i 0.165750 0.940015i −0.782538 0.622603i $$-0.786075\pi$$
0.948288 0.317412i $$-0.102814\pi$$
$$278$$ 0.136062 + 0.235665i 0.00816043 + 0.0141343i
$$279$$ 17.3230 1.73154i 1.03710 0.103665i
$$280$$ 0.0757094 0.747154i 0.00452450 0.0446510i
$$281$$ 21.2686 + 3.75023i 1.26878 + 0.223720i 0.767208 0.641398i $$-0.221645\pi$$
0.501569 + 0.865118i $$0.332756\pi$$
$$282$$ 16.9310 + 6.89080i 1.00823 + 0.410341i
$$283$$ −4.47736 + 0.789480i −0.266152 + 0.0469297i −0.305131 0.952310i $$-0.598700\pi$$
0.0389797 + 0.999240i $$0.487589\pi$$
$$284$$ −11.3053 + 1.99344i −0.670848 + 0.118289i
$$285$$ −4.41757 1.79792i −0.261674 0.106499i
$$286$$ 16.2049 + 2.85736i 0.958216 + 0.168959i
$$287$$ 10.0082 + 22.2547i 0.590763 + 1.31365i
$$288$$ −9.96139 + 22.0703i −0.586980 + 1.30051i
$$289$$ 8.06081 + 13.9617i 0.474165 + 0.821278i
$$290$$ −0.279936 + 1.58760i −0.0164384 + 0.0932268i
$$291$$ −10.3222 9.34186i −0.605097 0.547629i
$$292$$ −3.00012 + 8.24275i −0.175568 + 0.482370i
$$293$$ 6.06074 5.08556i 0.354072 0.297102i −0.448351 0.893858i $$-0.647988\pi$$
0.802423 + 0.596756i $$0.203544\pi$$
$$294$$ −17.5297 + 18.3322i −1.02235 + 1.06916i
$$295$$ 2.16359 0.787482i 0.125969 0.0458490i
$$296$$ 2.27565 + 1.31385i 0.132270 + 0.0763660i
$$297$$ −31.6097 + 7.62508i −1.83418 + 0.442452i
$$298$$ 15.0482 + 26.0643i 0.871720 + 1.50986i
$$299$$ 0.373267 2.11690i 0.0215866 0.122424i
$$300$$ −0.750692 + 20.0337i −0.0433412 + 1.15665i
$$301$$ −8.67691 + 5.89991i −0.500129 + 0.340065i
$$302$$ 41.7305 7.35821i 2.40132 0.423417i
$$303$$ 16.5499 18.2866i 0.950767 1.05054i
$$304$$ −23.3719 4.12109i −1.34047 0.236361i
$$305$$ 3.76849i 0.215783i
$$306$$ 5.70004 + 1.45206i 0.325850 + 0.0830089i
$$307$$ −16.6860 + 9.63367i −0.952321 + 0.549823i −0.893801 0.448464i $$-0.851971\pi$$
−0.0585197 + 0.998286i $$0.518638\pi$$
$$308$$ 28.2026 27.4392i 1.60699 1.56349i
$$309$$ 8.74998 6.80041i 0.497769 0.386862i
$$310$$ −3.35043 + 2.81134i −0.190292 + 0.159674i
$$311$$ −2.30794 13.0890i −0.130871 0.742208i −0.977646 0.210257i $$-0.932570\pi$$
0.846775 0.531951i $$-0.178541\pi$$
$$312$$ 1.69917 0.234390i 0.0961964 0.0132697i
$$313$$ −9.61460 + 11.4582i −0.543449 + 0.647658i −0.965957 0.258701i $$-0.916705\pi$$
0.422508 + 0.906359i $$0.361150\pi$$
$$314$$ −4.14928 7.18676i −0.234157 0.405573i
$$315$$ −1.84102 + 2.18799i −0.103730 + 0.123279i
$$316$$ 12.2675 21.2479i 0.690098 1.19528i
$$317$$ 5.67633 + 15.5956i 0.318815 + 0.875936i 0.990795 + 0.135367i $$0.0432215\pi$$
−0.671981 + 0.740569i $$0.734556\pi$$
$$318$$ 12.3136 + 2.65015i 0.690515 + 0.148613i
$$319$$ −10.2536 + 8.60379i −0.574092 + 0.481720i
$$320$$ −0.667863 3.78764i −0.0373347 0.211736i
$$321$$ −2.62964 4.97618i −0.146772 0.277743i
$$322$$ −6.60095 6.78460i −0.367856 0.378091i
$$323$$ 7.16357i 0.398592i
$$324$$ −18.2539 + 11.1493i −1.01410 + 0.619406i
$$325$$ −5.30133 + 3.06072i −0.294065 + 0.169778i
$$326$$ 23.2874 27.7528i 1.28977 1.53708i
$$327$$ 0.817630 21.8201i 0.0452151 1.20666i
$$328$$ −4.67087 5.56653i −0.257906 0.307360i
$$329$$ 12.0180 + 5.80612i 0.662574 + 0.320102i
$$330$$ 5.48154 6.05677i 0.301749 0.333414i
$$331$$ 21.5799 7.85444i 1.18614 0.431719i 0.327773 0.944757i $$-0.393702\pi$$
0.858366 + 0.513037i $$0.171480\pi$$
$$332$$ −15.3498 −0.842428
$$333$$ −4.34020 9.01501i −0.237842 0.494020i
$$334$$ 25.6828i 1.40530i
$$335$$ 0.0181849 0.103132i 0.000993547 0.00563469i
$$336$$ −6.66502 + 12.5710i −0.363607 + 0.685807i
$$337$$ 25.8190 + 9.39733i 1.40645 + 0.511905i 0.930085 0.367344i $$-0.119733\pi$$
0.476363 + 0.879249i $$0.341955\pi$$
$$338$$ −15.3571 18.3019i −0.835315 0.995490i
$$339$$ 23.7072 + 9.64863i 1.28760 + 0.524042i
$$340$$ −0.754053 + 0.274453i −0.0408943 + 0.0148843i
$$341$$ −36.3145 −1.96654
$$342$$ −34.3372 33.4988i −1.85675 1.81141i
$$343$$ −13.6235 + 12.5459i −0.735602 + 0.677414i
$$344$$ 2.00849 2.39363i 0.108291 0.129056i
$$345$$ −0.791218 0.716074i −0.0425977 0.0385521i
$$346$$ −28.3974 33.8427i −1.52665 1.81940i
$$347$$ −3.41079 + 9.37108i −0.183101 + 0.503066i −0.996953 0.0780065i $$-0.975144\pi$$
0.813852 + 0.581072i $$0.197367\pi$$
$$348$$ −4.68486 + 7.45502i −0.251135 + 0.399631i
$$349$$ 9.55483 + 26.2517i 0.511458 + 1.40522i 0.879717 + 0.475497i $$0.157732\pi$$
−0.368259 + 0.929723i $$0.620046\pi$$
$$350$$ −2.71761 + 26.8193i −0.145262 + 1.43355i
$$351$$ −5.84808 2.90783i −0.312148 0.155208i
$$352$$ 25.2545 43.7421i 1.34607 2.33146i
$$353$$ −18.1012 15.1887i −0.963429 0.808413i 0.0180788 0.999837i $$-0.494245\pi$$
−0.981507 + 0.191424i $$0.938689\pi$$
$$354$$ 23.1418 + 0.867156i 1.22997 + 0.0460888i
$$355$$ −1.71373 + 0.302177i −0.0909552 + 0.0160379i
$$356$$ 2.11461 + 11.9925i 0.112074 + 0.635603i
$$357$$ 4.08624 + 1.32234i 0.216267 + 0.0699857i
$$358$$ −15.0546 12.6323i −0.795662 0.667640i
$$359$$ 0.0258053 0.0148987i 0.00136195 0.000786324i −0.499319 0.866418i $$-0.666416\pi$$
0.500681 + 0.865632i $$0.333083\pi$$
$$360$$ 0.350308 0.776138i 0.0184628 0.0409061i
$$361$$ 19.7111 34.1405i 1.03742 1.79687i
$$362$$ −14.9052 12.5070i −0.783401 0.657351i
$$363$$ 48.3165 6.66499i 2.53596 0.349821i
$$364$$ 7.88202 0.580749i 0.413130 0.0304395i
$$365$$ −0.454775 + 1.24948i −0.0238040 + 0.0654010i
$$366$$ 14.2884 35.1073i 0.746866 1.83509i
$$367$$ 5.36231 + 14.7328i 0.279910 + 0.769047i 0.997372 + 0.0724491i $$0.0230815\pi$$
−0.717462 + 0.696598i $$0.754696\pi$$
$$368$$ −4.59862 2.65502i −0.239720 0.138402i
$$369$$ 2.75194 + 27.5315i 0.143260 + 1.43323i
$$370$$ 2.17685 + 1.25681i 0.113169 + 0.0653383i
$$371$$ 8.84997 + 2.50196i 0.459467 + 0.129895i
$$372$$ −22.7375 + 7.32390i −1.17889 + 0.379726i
$$373$$ −14.4007 5.24143i −0.745640 0.271391i −0.0588703 0.998266i $$-0.518750\pi$$
−0.686770 + 0.726875i $$0.740972\pi$$
$$374$$ −11.5296 4.19645i −0.596183 0.216993i
$$375$$ −0.230621 + 6.15459i −0.0119092 + 0.317822i
$$376$$ −3.91427 0.690191i −0.201863 0.0355939i
$$377$$ −2.68849 −0.138464
$$378$$ −25.4468 + 13.4030i −1.30884 + 0.689376i
$$379$$ 17.9559 0.922330 0.461165 0.887314i $$-0.347432\pi$$
0.461165 + 0.887314i $$0.347432\pi$$
$$380$$ 6.44488 + 1.13641i 0.330616 + 0.0582964i
$$381$$ −21.4737 + 11.3477i −1.10013 + 0.581359i
$$382$$ −17.9420 6.53037i −0.917995 0.334123i
$$383$$ −32.4762 11.8204i −1.65945 0.603992i −0.669177 0.743103i $$-0.733353\pi$$
−0.990277 + 0.139111i $$0.955575\pi$$
$$384$$ 2.25629 10.4836i 0.115141 0.534991i
$$385$$ 4.27511 4.15939i 0.217880 0.211982i
$$386$$ −6.35021 3.66630i −0.323217 0.186610i
$$387$$ −11.4533 + 3.22113i −0.582205 + 0.163739i
$$388$$ 16.5434 + 9.55134i 0.839864 + 0.484896i
$$389$$ 0.118139 + 0.324583i 0.00598986 + 0.0164570i 0.942652 0.333779i $$-0.108324\pi$$
−0.936662 + 0.350236i $$0.886102\pi$$
$$390$$ 1.62540 0.224214i 0.0823051 0.0113535i
$$391$$ −0.548197 + 1.50616i −0.0277235 + 0.0761697i
$$392$$ 2.88760 4.69885i 0.145846 0.237328i
$$393$$ 1.71214 4.20681i 0.0863659 0.212205i
$$394$$ 31.6221 + 26.5341i 1.59310 + 1.33677i
$$395$$ 1.85957 3.22087i 0.0935652 0.162060i
$$396$$ 40.2005 19.3542i 2.02015 0.972585i
$$397$$ 2.27062 1.31094i 0.113959 0.0657943i −0.441937 0.897046i $$-0.645709\pi$$
0.555896 + 0.831252i $$0.312375\pi$$
$$398$$ −17.8543 14.9815i −0.894955 0.750956i
$$399$$ −23.4683 26.0020i −1.17488 1.30173i
$$400$$ 2.62586 + 14.8920i 0.131293 + 0.744599i
$$401$$ 17.0025 2.99801i 0.849066 0.149713i 0.267848 0.963461i $$-0.413687\pi$$
0.581218 + 0.813748i $$0.302576\pi$$
$$402$$ 0.560439 0.891827i 0.0279522 0.0444803i
$$403$$ −5.58754 4.68850i −0.278335 0.233551i
$$404$$ −16.9210 + 29.3081i −0.841852 + 1.45813i
$$405$$ −2.76703 + 1.69008i −0.137495 + 0.0839805i
$$406$$ −6.92307 + 9.60400i −0.343586 + 0.476638i
$$407$$ 7.13813 + 19.6118i 0.353824 + 0.972123i
$$408$$ −1.27809 0.0478916i −0.0632747 0.00237099i
$$409$$ −7.89678 + 21.6962i −0.390471 + 1.07281i 0.576317 + 0.817227i $$0.304490\pi$$
−0.966787 + 0.255583i $$0.917733\pi$$
$$410$$ −4.46808 5.32485i −0.220663 0.262975i
$$411$$ 16.0597 5.17292i 0.792166 0.255161i
$$412$$ −9.77413 + 11.6484i −0.481537 + 0.573873i
$$413$$ 16.8230 + 1.70468i 0.827805 + 0.0838817i
$$414$$ −4.65597 9.67089i −0.228828 0.475298i
$$415$$ −2.32681 −0.114218
$$416$$ 9.53326 3.46982i 0.467406 0.170122i
$$417$$ 0.0307870 + 0.223184i 0.00150764 + 0.0109294i
$$418$$ 64.3198 + 76.6534i 3.14599 + 3.74924i
$$419$$ −21.7961 7.93314i −1.06481 0.387559i −0.250577 0.968097i $$-0.580620\pi$$
−0.814234 + 0.580537i $$0.802843\pi$$
$$420$$ 1.83791 3.46652i 0.0896806 0.169149i
$$421$$ −3.28202 + 18.6133i −0.159956 + 0.907156i 0.794158 + 0.607712i $$0.207912\pi$$
−0.954114 + 0.299444i $$0.903199\pi$$
$$422$$ 16.8929i 0.822336i
$$423$$ 10.8329 + 10.5684i 0.526713 + 0.513852i
$$424$$ −2.73875 −0.133005
$$425$$ 4.28918 1.56114i 0.208056 0.0757262i
$$426$$ −17.1108 3.68260i −0.829023 0.178423i
$$427$$ 12.0393 24.9199i 0.582621 1.20596i
$$428$$ 4.96409 + 5.91598i 0.239949 + 0.285959i
$$429$$ 11.5349 + 7.24872i 0.556910 + 0.349972i
$$430$$ 1.92129 2.28971i 0.0926530 0.110420i
$$431$$ −35.0297 + 20.2244i −1.68732 + 0.974175i −0.730764 + 0.682630i $$0.760836\pi$$
−0.956557 + 0.291545i $$0.905831\pi$$
$$432$$ −11.6909 + 11.1184i −0.562481 + 0.534935i
$$433$$ 5.57490i 0.267912i −0.990987 0.133956i $$-0.957232\pi$$
0.990987 0.133956i $$-0.0427681\pi$$
$$434$$ −31.1369 + 7.88691i −1.49462 + 0.378584i
$$435$$ −0.710158 + 1.13008i −0.0340495 + 0.0541830i
$$436$$ 5.20271 + 29.5060i 0.249165 + 1.41308i
$$437$$ 10.0135 8.40234i 0.479011 0.401938i
$$438$$ −8.97417 + 9.91591i −0.428802 + 0.473800i
$$439$$ −11.6900 32.1181i −0.557934 1.53291i −0.822628 0.568580i $$-0.807493\pi$$
0.264694 0.964332i $$-0.414729\pi$$
$$440$$ −0.888115 + 1.53826i −0.0423392 + 0.0733337i
$$441$$ −19.1641 + 8.58699i −0.912577 + 0.408904i
$$442$$ −1.23221 2.13426i −0.0586104 0.101516i
$$443$$ −8.54217 + 10.1802i −0.405851 + 0.483674i −0.929795 0.368079i $$-0.880016\pi$$
0.523944 + 0.851753i $$0.324460\pi$$
$$444$$ 8.42469 + 10.8399i 0.399818 + 0.514440i
$$445$$ 0.320544 + 1.81790i 0.0151953 + 0.0861766i
$$446$$ 10.3878 8.71640i 0.491876 0.412733i
$$447$$ 3.40500 + 24.6839i 0.161051 + 1.16751i
$$448$$ 7.68408 27.1802i 0.363039 1.28414i
$$449$$ −10.5259 + 6.07712i −0.496747 + 0.286797i −0.727369 0.686247i $$-0.759257\pi$$
0.230622 + 0.973043i $$0.425924\pi$$
$$450$$ −12.5744 + 27.8597i −0.592763 + 1.31332i
$$451$$ 57.7148i 2.71768i
$$452$$ −34.5869 6.09860i −1.62683 0.286854i
$$453$$ 34.2974 + 7.38150i 1.61143 + 0.346813i
$$454$$ −14.2912 + 2.51992i −0.670718 + 0.118266i
$$455$$ 1.19480 0.0880333i 0.0560132 0.00412707i
$$456$$ 8.83160 + 5.54993i 0.413578 + 0.259899i
$$457$$ −2.48520 + 14.0943i −0.116253 + 0.659303i 0.869869 + 0.493282i $$0.164203\pi$$
−0.986122 + 0.166021i $$0.946908\pi$$
$$458$$ 19.3057 + 33.4384i 0.902095 + 1.56248i
$$459$$ 3.91787 + 2.89250i 0.182870 + 0.135010i
$$460$$ 1.26809 + 0.732131i 0.0591249 + 0.0341358i
$$461$$ 23.2811 8.47362i 1.08431 0.394656i 0.262798 0.964851i $$-0.415355\pi$$
0.821509 + 0.570195i $$0.193132\pi$$
$$462$$ 55.5976 22.5397i 2.58663 1.04864i
$$463$$ −13.5051 + 11.3321i −0.627634 + 0.526647i −0.900193 0.435492i $$-0.856574\pi$$
0.272559 + 0.962139i $$0.412130\pi$$
$$464$$ −2.27147 + 6.24082i −0.105450 + 0.289723i
$$465$$ −3.44669 + 1.11020i −0.159836 + 0.0514842i
$$466$$ −8.74050 + 49.5699i −0.404896 + 2.29628i
$$467$$ 1.78544 + 3.09247i 0.0826202 + 0.143102i 0.904375 0.426739i $$-0.140338\pi$$
−0.821754 + 0.569842i $$0.807004\pi$$
$$468$$ 8.68424 + 2.21228i 0.401429 + 0.102263i
$$469$$ 0.449729 0.623884i 0.0207665 0.0288083i
$$470$$ −3.74432 0.660225i −0.172713 0.0304539i
$$471$$ −0.938868 6.80614i −0.0432607 0.313611i
$$472$$ −4.95892 + 0.874391i −0.228253 + 0.0402471i
$$473$$ 24.4406 4.30953i 1.12378 0.198153i
$$474$$ 29.5359 22.9550i 1.35663 1.05436i
$$475$$ −36.6596 6.46408i −1.68206 0.296592i
$$476$$ −5.86314 0.594113i −0.268736 0.0272311i
$$477$$ 8.61557 + 5.87536i 0.394480 + 0.269014i
$$478$$ 5.79821 + 10.0428i 0.265204 + 0.459347i
$$479$$ 1.11594 6.32882i 0.0509887 0.289171i −0.948642 0.316352i $$-0.897542\pi$$
0.999631 + 0.0271809i $$0.00865300\pi$$
$$480$$ 1.05969 4.92374i 0.0483679 0.224737i
$$481$$ −1.43374 + 3.93917i −0.0653729 + 0.179611i
$$482$$ 16.3367 13.7081i 0.744117 0.624388i
$$483$$ −2.94444 7.26291i −0.133977 0.330474i
$$484$$ −62.8887 + 22.8896i −2.85858 + 1.04044i
$$485$$ 2.50775 + 1.44785i 0.113871 + 0.0657434i
$$486$$ −32.1857 + 5.25345i −1.45997 + 0.238301i
$$487$$ 8.85684 + 15.3405i 0.401342 + 0.695144i 0.993888 0.110392i $$-0.0352107\pi$$
−0.592546 + 0.805536i $$0.701877\pi$$
$$488$$ −1.43114 + 8.11642i −0.0647848 + 0.367413i
$$489$$ 26.5195 14.0141i 1.19925 0.633741i
$$490$$ 2.76223 4.49484i 0.124785 0.203056i
$$491$$ 12.0720 2.12862i 0.544803 0.0960634i 0.105528 0.994416i $$-0.466347\pi$$
0.439274 + 0.898353i $$0.355236\pi$$
$$492$$ −11.6399 36.1369i −0.524767 1.62918i
$$493$$ 1.97422 + 0.348108i 0.0889143 + 0.0156780i
$$494$$ 20.0985i 0.904274i
$$495$$ 6.09383 2.93382i 0.273897 0.131866i
$$496$$ −15.6043 + 9.00915i −0.700654 + 0.404523i
$$497$$ −12.2978 3.47668i −0.551630 0.155951i
$$498$$ −21.6766 8.82220i −0.971350 0.395332i
$$499$$ 3.82390 3.20863i 0.171181 0.143638i −0.553172 0.833067i $$-0.686583\pi$$
0.724353 + 0.689429i $$0.242138\pi$$
$$500$$ −1.46748 8.32248i −0.0656276 0.372193i
$$501$$ −8.01562 + 19.6948i −0.358111 + 0.879897i
$$502$$ 27.9408 33.2986i 1.24706 1.48619i
$$503$$ 10.5236 + 18.2273i 0.469222 + 0.812717i 0.999381 0.0351814i $$-0.0112009\pi$$
−0.530158 + 0.847899i $$0.677868\pi$$
$$504$$ 4.79603 4.01324i 0.213632 0.178764i
$$505$$ −2.56499 + 4.44269i −0.114140 + 0.197697i
$$506$$ 7.65746 + 21.0387i 0.340415 + 0.935284i
$$507$$ −6.06451 18.8277i −0.269334 0.836167i
$$508$$ 25.5292 21.4215i 1.13267 0.950426i
$$509$$ 4.75075 + 26.9428i 0.210573 + 1.19422i 0.888425 + 0.459021i $$0.151800\pi$$
−0.677852 + 0.735198i $$0.737089\pi$$
$$510$$ −1.22260 0.0458123i −0.0541374 0.00202860i
$$511$$ −6.99905 + 6.80960i −0.309620 + 0.301239i
$$512$$ 29.9539i 1.32379i
$$513$$ −15.8764 36.4052i −0.700960 1.60733i
$$514$$ −45.9289 + 26.5170i −2.02583 + 1.16962i
$$515$$ −1.48162 + 1.76573i −0.0652879 + 0.0778071i
$$516$$ 14.4338 7.62749i 0.635412 0.335781i
$$517$$ −20.2919 24.1830i −0.892438 1.06357i
$$518$$ 10.3798 + 15.2653i 0.456060 + 0.670721i
$$519$$ −11.2141 34.8151i −0.492246 1.52821i
$$520$$ −0.335252 + 0.122022i −0.0147018 + 0.00535101i
$$521$$ 37.9904 1.66439 0.832194 0.554485i $$-0.187085\pi$$
0.832194 + 0.554485i $$0.187085\pi$$
$$522$$ −10.9006 + 7.83520i −0.477105 + 0.342937i
$$523$$ 0.849579i 0.0371495i −0.999827 0.0185747i $$-0.994087\pi$$
0.999827 0.0185747i $$-0.00591287\pi$$
$$524$$ −1.08219 + 6.13740i −0.0472756 + 0.268113i
$$525$$ −10.4543 + 19.7181i −0.456264 + 0.860571i
$$526$$ −7.81014 2.84266i −0.340538 0.123946i
$$527$$ 3.49598 + 4.16635i 0.152287 + 0.181489i
$$528$$ 26.5722 20.6517i 1.15641 0.898750i
$$529$$ −18.8646 + 6.86614i −0.820199 + 0.298528i
$$530$$ −2.61984 −0.113799
$$531$$ 17.4756 + 7.88756i 0.758376 + 0.342291i
$$532$$ 38.9877 + 28.1044i 1.69033 + 1.21848i
$$533$$ 7.45145 8.88030i 0.322758 0.384648i
$$534$$ −3.90645 + 18.1509i −0.169049 + 0.785467i
$$535$$ 0.752486 + 0.896778i 0.0325328 + 0.0387711i
$$536$$ −0.0783319 + 0.215215i −0.00338342 + 0.00929587i
$$537$$ −7.60204 14.3856i −0.328052 0.620786i
$$538$$ −3.36367 9.24162i −0.145018 0.398434i
$$539$$ 41.5582 13.8471i 1.79004 0.596435i
$$540$$ 3.22383 3.06595i 0.138731 0.131937i
$$541$$ 20.4690 35.4533i 0.880031 1.52426i 0.0287257 0.999587i $$-0.490855\pi$$
0.851305 0.524671i $$-0.175812\pi$$
$$542$$ 13.7862 + 11.5680i 0.592169 + 0.496889i
$$543$$ −7.52659 14.2429i −0.322997 0.611220i
$$544$$ −7.44976 + 1.31359i −0.319406 + 0.0563198i
$$545$$ 0.788657 + 4.47270i 0.0337824 + 0.191589i
$$546$$ 11.4646 + 3.71003i 0.490639 + 0.158775i
$$547$$ −9.03807 7.58384i −0.386440 0.324262i 0.428784 0.903407i $$-0.358942\pi$$
−0.815224 + 0.579145i $$0.803386\pi$$
$$548$$ −20.0494 + 11.5755i −0.856468 + 0.494482i
$$549$$ 21.9140 22.4625i 0.935268 0.958676i
$$550$$ 31.8792 55.2163i 1.35933 2.35443i
$$551$$ −12.5241 10.5089i −0.533543 0.447696i
$$552$$ 1.43215 + 1.84273i 0.0609565 + 0.0784318i
$$553$$ 22.5866 15.3579i 0.960480 0.653084i
$$554$$ −11.3670 + 31.2304i −0.482935 + 1.32685i
$$555$$ 1.27706 + 1.64318i 0.0542083 + 0.0697490i
$$556$$ −0.105732 0.290496i −0.00448403 0.0123198i
$$557$$ −27.0274 15.6043i −1.14519 0.661175i −0.197478 0.980307i $$-0.563275\pi$$
−0.947710 + 0.319132i $$0.896609\pi$$
$$558$$ −36.3188 2.72566i −1.53750 0.115386i
$$559$$ 4.31695 + 2.49239i 0.182587 + 0.105417i
$$560$$ 0.805121 2.84788i 0.0340226 0.120345i
$$561$$ −7.53176 6.81644i −0.317991 0.287791i
$$562$$ −42.4563 15.4528i −1.79091 0.651838i
$$563$$ −15.5954 5.67626i −0.657268 0.239226i −0.00821159 0.999966i $$-0.502614\pi$$
−0.649056 + 0.760740i $$0.724836\pi$$
$$564$$ −17.5826 11.0492i −0.740360 0.465255i
$$565$$ −5.24288 0.924461i −0.220570 0.0388924i
$$566$$ 9.51130 0.399790
$$567$$ −23.6969 + 2.33609i −0.995176 + 0.0981068i
$$568$$ 3.80572 0.159684
$$569$$ 12.9515 + 2.28370i 0.542956 + 0.0957378i 0.438398 0.898781i $$-0.355546\pi$$
0.104558 + 0.994519i $$0.466657\pi$$
$$570$$ 8.44816 + 5.30897i 0.353855 + 0.222368i
$$571$$ −13.3923 4.87441i −0.560452 0.203988i 0.0462326 0.998931i $$-0.485278\pi$$
−0.606684 + 0.794943i $$0.707501\pi$$
$$572$$ −17.5659 6.39346i −0.734466 0.267324i
$$573$$ −11.7207 10.6075i −0.489638 0.443136i
$$574$$ −12.5347 49.4860i −0.523188 2.06550i
$$575$$ −7.21311 4.16449i −0.300807 0.173671i
$$576$$ 18.0445 26.4603i 0.751856 1.10251i
$$577$$ −0.474700 0.274068i −0.0197620 0.0114096i 0.490086 0.871674i $$-0.336965\pi$$
−0.509848 + 0.860264i $$0.670299\pi$$
$$578$$ −11.5353 31.6930i −0.479806 1.31826i
$$579$$ −3.72539 4.79340i −0.154822 0.199207i
$$580$$ 0.626368 1.72093i 0.0260085 0.0714578i
$$581$$ −15.3865 7.43350i −0.638340 0.308394i
$$582$$ 17.8726 + 22.9964i 0.740844 + 0.953232i
$$583$$ −16.6634 13.9822i −0.690127 0.579085i
$$584$$ 1.45399 2.51838i 0.0601665 0.104211i
$$585$$ 1.31641 + 0.335350i 0.0544268 + 0.0138650i
$$586$$ −14.3341 + 8.27581i −0.592137 + 0.341871i
$$587$$ 19.8533 + 16.6589i 0.819432 + 0.687585i 0.952839 0.303476i $$-0.0981474\pi$$
−0.133407 + 0.991061i $$0.542592\pi$$
$$588$$ 23.2281 17.0515i 0.957911 0.703191i
$$589$$ −7.70228 43.6818i −0.317367 1.79988i
$$590$$ −4.74362 + 0.836428i −0.195292 + 0.0344352i
$$591$$ 15.9680 + 30.2169i 0.656836 + 1.24296i
$$592$$ 7.93268 + 6.65631i 0.326031 + 0.273573i
$$593$$ 1.71212 2.96547i 0.0703082 0.121777i −0.828728 0.559651i $$-0.810935\pi$$
0.899036 + 0.437874i $$0.144268\pi$$
$$594$$ 67.8939 4.22650i 2.78572 0.173415i
$$595$$ −0.888768 0.0900591i −0.0364359 0.00369206i
$$596$$ −11.6938 32.1285i −0.478997 1.31603i
$$597$$ −9.01577 17.0609i −0.368991 0.698256i
$$598$$ −1.53805 + 4.22576i −0.0628956 + 0.172804i
$$599$$ 17.8781 + 21.3063i 0.730479 + 0.870550i 0.995604 0.0936635i $$-0.0298578\pi$$
−0.265125 + 0.964214i $$0.585413\pi$$
$$600$$ 1.39837 6.49739i 0.0570883 0.265255i
$$601$$ −4.26455 + 5.08229i −0.173955 + 0.207311i −0.845976 0.533220i $$-0.820982\pi$$
0.672022 + 0.740531i $$0.265426\pi$$
$$602$$ 20.0199 9.00318i 0.815952 0.366942i
$$603$$ 0.708112 0.508982i 0.0288365 0.0207273i
$$604$$ −48.1383 −1.95872
$$605$$ −9.53303 + 3.46974i −0.387573 + 0.141065i
$$606$$ −40.7401 + 31.6629i −1.65495 + 1.28622i
$$607$$ −23.5073 28.0149i −0.954133 1.13709i −0.990467 0.137752i $$-0.956012\pi$$
0.0363338 0.999340i $$-0.488432\pi$$
$$608$$ 57.9728 + 21.1004i 2.35111 + 0.855733i
$$609$$ −8.30635 + 5.20410i −0.336590 + 0.210881i
$$610$$ −1.36901 + 7.76403i −0.0554295 + 0.314357i
$$611$$ 6.34077i 0.256520i
$$612$$ −6.09058 2.74897i −0.246197 0.111120i
$$613$$ −15.8053 −0.638369 −0.319185 0.947693i $$-0.603409\pi$$
−0.319185 + 0.947693i $$0.603409\pi$$
$$614$$ 37.8771 13.7861i 1.52860 0.556363i
$$615$$ −1.76444 5.47784i −0.0711492 0.220888i
$$616$$ −10.7872 + 7.33480i −0.434628 + 0.295527i
$$617$$ 10.9448 + 13.0434i 0.440619 + 0.525109i 0.939955 0.341299i $$-0.110867\pi$$
−0.499336 + 0.866409i $$0.666423\pi$$
$$618$$ −20.4976 + 10.8319i −0.824535 + 0.435723i
$$619$$ 15.2802 18.2102i 0.614163 0.731931i −0.365892 0.930657i $$-0.619236\pi$$
0.980055 + 0.198726i $$0.0636805\pi$$
$$620$$ 4.30295 2.48431i 0.172811 0.0997722i
$$621$$ −0.552123 8.86923i −0.0221560 0.355910i
$$622$$ 27.8050i 1.11488i
$$623$$ −3.68801 + 13.0453i −0.147757 + 0.522648i
$$624$$ 6.75484 + 0.253113i 0.270410 + 0.0101326i
$$625$$ 4.00607 + 22.7195i 0.160243 + 0.908782i
$$626$$ 23.9710 20.1141i 0.958075 0.803920i
$$627$$ 25.3999 + 78.8557i 1.01437 + 3.14919i
$$628$$ 3.22436 + 8.85886i 0.128666 + 0.353507i
$$629$$ 1.56287 2.70698i 0.0623158 0.107934i
$$630$$ 4.58781 3.83900i 0.182783 0.152950i
$$631$$ 21.9990 + 38.1033i 0.875765 + 1.51687i 0.855946 + 0.517066i $$0.172976\pi$$
0.0198191 + 0.999804i $$0.493691\pi$$
$$632$$ −5.22825 + 6.23079i −0.207969 + 0.247847i
$$633$$ −5.27230 + 12.9543i −0.209555 + 0.514887i
$$634$$ −6.02914 34.1930i −0.239448 1.35798i
$$635$$ 3.86986 3.24720i 0.153571 0.128861i
$$636$$ −13.2533 5.39401i −0.525529 0.213886i
$$637$$ 8.18213 + 3.23492i 0.324188 + 0.128172i
$$638$$ 24.2506 14.0011i 0.960090 0.554308i
$$639$$ −11.9721 8.16430i −0.473607 0.322975i
$$640$$ 2.23049i 0.0881679i
$$641$$ 26.1576 + 4.61228i 1.03316 + 0.182174i 0.664421 0.747358i $$-0.268678\pi$$
0.368740 + 0.929532i $$0.379789\pi$$
$$642$$ 3.61000 + 11.2075i 0.142475 + 0.442324i
$$643$$ 21.8428 3.85147i 0.861394 0.151887i 0.274536 0.961577i $$-0.411476\pi$$
0.586858 + 0.809690i $$0.300365\pi$$
$$644$$ 6.04655 + 8.89257i 0.238267 + 0.350416i
$$645$$ 2.18796 1.15622i 0.0861508 0.0455261i
$$646$$ 2.60237 14.7588i 0.102389 0.580676i
$$647$$ 6.41692 + 11.1144i 0.252275 + 0.436954i 0.964152 0.265351i $$-0.0854878\pi$$
−0.711877 + 0.702305i $$0.752154\pi$$
$$648$$ 6.60135 2.58920i 0.259326 0.101713i
$$649$$ −34.6356 19.9969i −1.35957 0.784946i
$$650$$ 12.0340 4.38000i 0.472011 0.171798i
$$651$$ −26.3387 3.66980i −1.03230 0.143831i
$$652$$ −31.5280 + 26.4551i −1.23473 + 1.03606i
$$653$$ 3.64829 10.0236i 0.142769 0.392254i −0.847613 0.530615i $$-0.821961\pi$$
0.990382 + 0.138361i $$0.0441834\pi$$
$$654$$ −9.61130 + 44.6579i −0.375832 + 1.74626i
$$655$$ −0.164044 + 0.930342i −0.00640975 + 0.0363515i
$$656$$ −14.3183 24.8000i −0.559035 0.968277i
$$657$$ −9.97658 + 4.80314i −0.389223 + 0.187388i
$$658$$ −22.6509 16.3280i −0.883024 0.636530i
$$659$$ 12.4568 + 2.19647i 0.485248 + 0.0855623i 0.410920 0.911672i $$-0.365208\pi$$
0.0743281 + 0.997234i $$0.476319\pi$$
$$660$$ −7.32740 + 5.69479i −0.285218 + 0.221669i
$$661$$ 32.7769 5.77946i 1.27487 0.224795i 0.505072 0.863077i $$-0.331466\pi$$
0.769802 + 0.638282i $$0.220355\pi$$
$$662$$ −47.3134 + 8.34263i −1.83889 + 0.324246i
$$663$$ −0.278816 2.02122i −0.0108283 0.0784978i
$$664$$ 5.01139 + 0.883643i 0.194479 + 0.0342920i
$$665$$ 5.90997 + 4.26022i 0.229179 + 0.165204i
$$666$$ 5.66696 + 20.1499i 0.219590 + 0.780793i
$$667$$ −1.82901 3.16794i −0.0708196 0.122663i
$$668$$ 5.06642 28.7331i 0.196026 1.11172i
$$669$$ 10.6862 3.44210i 0.413154 0.133079i
$$670$$ −0.0749310 + 0.205871i −0.00289484 + 0.00795350i
$$671$$ −50.1446 + 42.0763i −1.93581 + 1.62434i
$$672$$ 22.7374 29.1738i 0.877114 1.12541i
$$673$$ 21.0468 7.66040i 0.811294 0.295287i 0.0971357 0.995271i $$-0.469032\pi$$
0.714158 + 0.699984i $$0.246810\pi$$
$$674$$ −49.7797 28.7403i −1.91744 1.10704i
$$675$$ −18.3377 + 17.4397i −0.705818 + 0.671253i
$$676$$ 13.5706 + 23.5051i 0.521948 + 0.904040i
$$677$$ −8.03399 + 45.5630i −0.308771 + 1.75113i 0.296427 + 0.955055i $$0.404205\pi$$
−0.605199 + 0.796074i $$0.706906\pi$$
$$678$$ −45.3376 28.4909i −1.74118 1.09419i
$$679$$ 11.9575 + 17.5858i 0.458888 + 0.674879i
$$680$$ 0.261982 0.0461946i 0.0100466 0.00177148i
$$681$$ −11.7456 2.52790i −0.450093 0.0968692i
$$682$$ 74.8171 + 13.1923i 2.86489 + 0.505158i
$$683$$ 8.70104i 0.332936i −0.986047 0.166468i $$-0.946764\pi$$
0.986047 0.166468i $$-0.0532362\pi$$
$$684$$ 31.8072 + 44.2512i 1.21618 + 1.69199i
$$685$$ −3.03920 + 1.75468i −0.116122 + 0.0670431i
$$686$$ 32.6256 20.8985i 1.24565 0.797910i
$$687$$ 4.36835 + 31.6675i 0.166663 + 1.20819i
$$688$$ 9.43295 7.91518i 0.359628 0.301764i
$$689$$ −0.758692 4.30276i −0.0289039 0.163922i
$$690$$ 1.36997 + 1.76272i 0.0521541 + 0.0671058i
$$691$$ −7.31456 + 8.71715i −0.278259 + 0.331616i −0.887014 0.461742i $$-0.847225\pi$$
0.608755 + 0.793358i $$0.291669\pi$$
$$692$$ 25.0940 + 43.4641i 0.953932 + 1.65226i
$$693$$ 49.6695 + 0.0675694i 1.88679 + 0.00256675i
$$694$$ 10.4314 18.0677i 0.395971 0.685841i
$$695$$ −0.0160275 0.0440351i −0.000607956 0.00167035i
$$696$$ 1.95868 2.16422i 0.0742434 0.0820345i
$$697$$ −6.62159 + 5.55618i −0.250811 + 0.210455i
$$698$$ −10.1487 57.5561i −0.384134 2.17853i
$$699$$ −22.1734 + 35.2846i −0.838676 + 1.33459i
$$700$$ 8.33100 29.4685i 0.314882 1.11381i
$$701$$ 19.8586i 0.750050i −0.927015 0.375025i $$-0.877634\pi$$
0.927015 0.375025i $$-0.122366\pi$$
$$702$$ 10.9922 + 8.11535i 0.414873 + 0.306294i
$$703$$ −22.0766 + 12.7459i −0.832634 + 0.480722i
$$704$$ −42.9426 + 51.1769i −1.61846 + 1.92880i
$$705$$ −2.66527 1.67490i −0.100380 0.0630803i
$$706$$ 31.7753 + 37.8683i 1.19588 + 1.42519i
$$707$$ −31.1547 + 21.1838i −1.17169 + 0.796698i
$$708$$ −25.7193 5.53532i −0.966590 0.208030i
$$709$$ −19.2290 + 6.99878i −0.722160 + 0.262845i −0.676843 0.736128i $$-0.736652\pi$$
−0.0453176 + 0.998973i $$0.514430\pi$$
$$710$$ 3.64049 0.136625
$$711$$ 29.8138 8.38483i 1.11810 0.314456i
$$712$$ 4.03705i 0.151295i
$$713$$ 1.72335 9.77363i 0.0645402 0.366025i
$$714$$ −7.93831 4.20880i −0.297084 0.157510i
$$715$$ −2.66274 0.969157i −0.0995807 0.0362444i
$$716$$ 14.3507 + 17.1025i 0.536311 + 0.639150i
$$717$$ 1.31198 + 9.51092i 0.0489966 + 0.355192i
$$718$$ −0.0585778 + 0.0213206i −0.00218611 + 0.000795677i
$$719$$ 22.3708 0.834292 0.417146 0.908840i $$-0.363030\pi$$
0.417146 + 0.908840i $$0.363030\pi$$
$$720$$ 1.89067 2.77246i 0.0704610 0.103323i
$$721$$ −15.4385 + 6.94287i −0.574961 + 0.258566i
$$722$$ −53.0123 + 63.1776i −1.97291 + 2.35123i
$$723$$ 16.8061 5.41334i 0.625025 0.201324i
$$724$$ 14.2083 + 16.9327i 0.528046 + 0.629301i
$$725$$ −3.56289 + 9.78896i −0.132322 + 0.363553i
$$726$$ −101.966 3.82079i −3.78430 0.141803i
$$727$$ 2.58356 + 7.09828i 0.0958190 + 0.263261i 0.978337 0.207018i $$-0.0663758\pi$$
−0.882518 + 0.470278i $$0.844154\pi$$
$$728$$ −2.60675 0.264143i −0.0966126 0.00978978i
$$729$$ −26.3211 6.01659i −0.974856 0.222837i
$$730$$ 1.39086 2.40904i 0.0514781 0.0891627i
$$731$$ −2.84731 2.38918i −0.105312 0.0883670i
$$732$$ −22.9110 + 36.4583i −0.846815 + 1.34754i
$$733$$ 16.7724 2.95743i 0.619503 0.109235i 0.144916 0.989444i $$-0.453709\pi$$
0.474586 + 0.880209i $$0.342598\pi$$
$$734$$ −5.69560 32.3013i −0.210228 1.19226i
$$735$$ 3.52105 2.58476i 0.129876 0.0953404i
$$736$$ 10.5742 + 8.87281i 0.389770 + 0.327056i
$$737$$ −1.57534 + 0.909523i −0.0580284 + 0.0335027i
$$738$$ 4.33190 57.7216i 0.159459 2.12476i
$$739$$ −3.49112 + 6.04680i −0.128423 + 0.222435i −0.923066 0.384642i $$-0.874325\pi$$
0.794643 + 0.607077i $$0.207658\pi$$
$$740$$ −2.18747 1.83550i −0.0804129 0.0674745i
$$741$$ −6.27276 + 15.4125i −0.230436 + 0.566191i
$$742$$ −17.3243 8.36967i −0.635994 0.307260i
$$743$$ −0.493042 + 1.35462i −0.0180880 + 0.0496962i −0.948408 0.317052i $$-0.897307\pi$$
0.930320 + 0.366749i $$0.119529\pi$$
$$744$$ 7.84496 1.08217i 0.287610 0.0396742i
$$745$$ −1.77262 4.87022i −0.0649436 0.178431i
$$746$$ 27.7650 + 16.0301i 1.01655 + 0.586905i
$$747$$ −13.8692 13.5306i −0.507447 0.495057i
$$748$$ 12.0712 + 6.96930i 0.441366 + 0.254823i
$$749$$ 2.11102 + 8.33412i 0.0771349 + 0.304522i
$$750$$ 2.71097 12.5962i 0.0989905 0.459949i
$$751$$ 17.6380 + 6.41970i 0.643619 + 0.234258i 0.643148 0.765742i $$-0.277628\pi$$
0.000470879 1.00000i $$0.499850\pi$$
$$752$$ −14.7189 5.35724i −0.536743 0.195358i
$$753$$ 31.8189 16.8146i 1.15954 0.612757i
$$754$$ 5.53897 + 0.976670i 0.201717 + 0.0355682i
$$755$$ −7.29709 −0.265568
$$756$$ 31.1131 9.97501i 1.13157 0.362788i
$$757$$ −6.53601 −0.237555 −0.118778 0.992921i $$-0.537898\pi$$
−0.118778 + 0.992921i $$0.537898\pi$$
$$758$$ −36.9936 6.52297i −1.34367 0.236925i
$$759$$ −0.694096 + 18.5234i −0.0251941 + 0.672355i
$$760$$ −2.03870 0.742027i −0.0739515 0.0269162i
$$761$$ −3.33224 1.21283i −0.120793 0.0439652i 0.280916 0.959732i $$-0.409362\pi$$
−0.401710 + 0.915767i $$0.631584\pi$$
$$762$$ 48.3636 15.5782i 1.75203 0.564338i
$$763$$ −9.07387 + 32.0962i −0.328496 + 1.16196i
$$764$$ 18.7848 + 10.8454i 0.679609 + 0.392373i
$$765$$ −0.923246 0.416704i −0.0333800 0.0150660i
$$766$$ 62.6150 + 36.1508i 2.26237 + 1.30618i
$$767$$ −2.74745 7.54856i