Properties

Label 189.2.bd.a.185.8
Level $189$
Weight $2$
Character 189.185
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(47,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([7, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.47");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.bd (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 185.8
Character \(\chi\) \(=\) 189.185
Dual form 189.2.bd.a.47.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.910598 + 0.160563i) q^{2} +(-1.05237 + 1.37569i) q^{3} +(-1.07598 + 0.391623i) q^{4} +(-0.473927 + 0.172495i) q^{5} +(0.737399 - 1.42167i) q^{6} +(-2.46079 - 0.971863i) q^{7} +(2.51844 - 1.45402i) q^{8} +(-0.785044 - 2.89546i) q^{9} +O(q^{10})\) \(q+(-0.910598 + 0.160563i) q^{2} +(-1.05237 + 1.37569i) q^{3} +(-1.07598 + 0.391623i) q^{4} +(-0.473927 + 0.172495i) q^{5} +(0.737399 - 1.42167i) q^{6} +(-2.46079 - 0.971863i) q^{7} +(2.51844 - 1.45402i) q^{8} +(-0.785044 - 2.89546i) q^{9} +(0.403861 - 0.233169i) q^{10} +(1.66156 - 4.56510i) q^{11} +(0.593571 - 1.89234i) q^{12} +(1.60911 + 4.42100i) q^{13} +(2.39684 + 0.489865i) q^{14} +(0.261446 - 0.833505i) q^{15} +(-0.305533 + 0.256373i) q^{16} +(-2.38696 - 4.13434i) q^{17} +(1.17976 + 2.51055i) q^{18} +(-5.51758 - 3.18557i) q^{19} +(0.442381 - 0.371202i) q^{20} +(3.92664 - 2.36252i) q^{21} +(-0.780028 + 4.42376i) q^{22} +(-3.53298 - 0.622960i) q^{23} +(-0.650041 + 4.99475i) q^{24} +(-3.63537 + 3.05044i) q^{25} +(-2.17510 - 3.76739i) q^{26} +(4.80941 + 1.96711i) q^{27} +(3.02836 + 0.0819996i) q^{28} +(0.997075 - 2.73944i) q^{29} +(-0.104242 + 0.800967i) q^{30} +(-0.268468 - 0.737610i) q^{31} +(-3.50145 + 4.17286i) q^{32} +(4.53159 + 7.08995i) q^{33} +(2.83739 + 3.38147i) q^{34} +(1.33388 + 0.0361178i) q^{35} +(1.97862 + 2.80801i) q^{36} -5.47451 q^{37} +(5.53578 + 2.01486i) q^{38} +(-7.77529 - 2.43888i) q^{39} +(-0.942744 + 1.12352i) q^{40} +(-5.44849 + 1.98309i) q^{41} +(-3.19626 + 2.78178i) q^{42} +(-1.36729 - 7.75429i) q^{43} +5.56264i q^{44} +(0.871508 + 1.23682i) q^{45} +3.31715 q^{46} +(7.22256 + 2.62880i) q^{47} +(-0.0311561 - 0.690117i) q^{48} +(5.11096 + 4.78310i) q^{49} +(2.82057 - 3.36143i) q^{50} +(8.19953 + 1.06713i) q^{51} +(-3.46273 - 4.12672i) q^{52} +(4.26125 + 2.46023i) q^{53} +(-4.69529 - 1.01904i) q^{54} +2.45014i q^{55} +(-7.61045 + 1.13046i) q^{56} +(10.1889 - 4.23808i) q^{57} +(-0.468082 + 2.65462i) q^{58} +(-4.08557 - 3.42820i) q^{59} +(0.0451109 + 0.999221i) q^{60} +(-2.45624 + 6.74846i) q^{61} +(0.362900 + 0.628561i) q^{62} +(-0.882166 + 7.88808i) q^{63} +(2.91725 - 5.05283i) q^{64} +(-1.52520 - 1.81767i) q^{65} +(-5.26484 - 5.72849i) q^{66} +(1.51964 - 8.61830i) q^{67} +(4.18742 + 3.51366i) q^{68} +(4.57499 - 4.20470i) q^{69} +(-1.22043 + 0.181283i) q^{70} +(-11.3110 - 6.53043i) q^{71} +(-6.18714 - 6.15057i) q^{72} +9.73306i q^{73} +(4.98508 - 0.879004i) q^{74} +(-0.370709 - 8.21132i) q^{75} +(7.18433 + 1.26679i) q^{76} +(-8.52540 + 9.61893i) q^{77} +(7.47176 + 0.972412i) q^{78} +(-0.825069 - 4.67920i) q^{79} +(0.100577 - 0.174205i) q^{80} +(-7.76741 + 4.54613i) q^{81} +(4.64298 - 2.68063i) q^{82} +(-2.75845 - 1.00400i) q^{83} +(-3.29975 + 4.07978i) q^{84} +(1.84440 + 1.54764i) q^{85} +(2.49011 + 6.84151i) q^{86} +(2.71933 + 4.25456i) q^{87} +(-2.45321 - 13.9128i) q^{88} +(5.60470 - 9.70762i) q^{89} +(-0.992182 - 0.986316i) q^{90} +(0.336922 - 12.4430i) q^{91} +(4.04537 - 0.713308i) q^{92} +(1.29725 + 0.406908i) q^{93} +(-6.99893 - 1.23410i) q^{94} +(3.16443 + 0.557974i) q^{95} +(-2.05575 - 9.20829i) q^{96} +(2.41733 - 0.426241i) q^{97} +(-5.42202 - 3.53485i) q^{98} +(-14.5225 - 1.22718i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} + 18 q^{6} - 6 q^{7} - 18 q^{8} - 15 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} + 18 q^{6} - 6 q^{7} - 18 q^{8} - 15 q^{9} - 9 q^{10} + 9 q^{11} - 9 q^{12} - 42 q^{14} - 24 q^{15} - 15 q^{16} - 9 q^{17} - 3 q^{18} - 9 q^{19} - 18 q^{20} + 15 q^{21} - 12 q^{22} + 30 q^{23} - 36 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} - 3 q^{30} - 9 q^{31} - 51 q^{32} - 9 q^{33} + 18 q^{34} - 9 q^{35} - 6 q^{37} - 9 q^{38} - 9 q^{39} - 9 q^{40} + 27 q^{42} - 12 q^{43} - 63 q^{45} - 6 q^{46} + 45 q^{47} + 30 q^{49} - 9 q^{50} + 33 q^{51} - 9 q^{52} + 45 q^{53} + 117 q^{54} - 51 q^{56} - 3 q^{58} - 9 q^{59} - 15 q^{60} - 63 q^{61} + 99 q^{62} - 33 q^{63} + 18 q^{64} - 102 q^{65} + 63 q^{66} - 3 q^{67} + 144 q^{68} - 108 q^{69} - 15 q^{70} + 18 q^{71} + 15 q^{72} - 33 q^{74} - 9 q^{75} - 36 q^{76} - 57 q^{77} + 66 q^{78} - 21 q^{79} - 72 q^{80} + 57 q^{81} - 18 q^{82} + 90 q^{83} + 51 q^{84} + 9 q^{85} - 33 q^{86} - 9 q^{87} + 45 q^{88} - 9 q^{89} - 81 q^{90} - 21 q^{91} + 150 q^{92} - 87 q^{93} - 9 q^{94} + 27 q^{95} - 9 q^{96} - 180 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.910598 + 0.160563i −0.643890 + 0.113535i −0.486052 0.873930i \(-0.661564\pi\)
−0.157838 + 0.987465i \(0.550452\pi\)
\(3\) −1.05237 + 1.37569i −0.607585 + 0.794255i
\(4\) −1.07598 + 0.391623i −0.537988 + 0.195812i
\(5\) −0.473927 + 0.172495i −0.211947 + 0.0771423i −0.445812 0.895127i \(-0.647085\pi\)
0.233865 + 0.972269i \(0.424863\pi\)
\(6\) 0.737399 1.42167i 0.301042 0.580395i
\(7\) −2.46079 0.971863i −0.930091 0.367330i
\(8\) 2.51844 1.45402i 0.890401 0.514073i
\(9\) −0.785044 2.89546i −0.261681 0.965154i
\(10\) 0.403861 0.233169i 0.127712 0.0737346i
\(11\) 1.66156 4.56510i 0.500979 1.37643i −0.389341 0.921094i \(-0.627297\pi\)
0.890320 0.455335i \(-0.150481\pi\)
\(12\) 0.593571 1.89234i 0.171349 0.546272i
\(13\) 1.60911 + 4.42100i 0.446287 + 1.22616i 0.935290 + 0.353882i \(0.115138\pi\)
−0.489003 + 0.872282i \(0.662639\pi\)
\(14\) 2.39684 + 0.489865i 0.640581 + 0.130922i
\(15\) 0.261446 0.833505i 0.0675050 0.215210i
\(16\) −0.305533 + 0.256373i −0.0763833 + 0.0640932i
\(17\) −2.38696 4.13434i −0.578923 1.00272i −0.995603 0.0936714i \(-0.970140\pi\)
0.416680 0.909053i \(-0.363194\pi\)
\(18\) 1.17976 + 2.51055i 0.278073 + 0.591743i
\(19\) −5.51758 3.18557i −1.26582 0.730821i −0.291625 0.956533i \(-0.594196\pi\)
−0.974194 + 0.225712i \(0.927529\pi\)
\(20\) 0.442381 0.371202i 0.0989195 0.0830033i
\(21\) 3.92664 2.36252i 0.856862 0.515545i
\(22\) −0.780028 + 4.42376i −0.166302 + 0.943148i
\(23\) −3.53298 0.622960i −0.736677 0.129896i −0.207294 0.978279i \(-0.566466\pi\)
−0.529383 + 0.848383i \(0.677577\pi\)
\(24\) −0.650041 + 4.99475i −0.132689 + 1.01955i
\(25\) −3.63537 + 3.05044i −0.727074 + 0.610087i
\(26\) −2.17510 3.76739i −0.426573 0.738846i
\(27\) 4.80941 + 1.96711i 0.925572 + 0.378571i
\(28\) 3.02836 + 0.0819996i 0.572305 + 0.0154965i
\(29\) 0.997075 2.73944i 0.185152 0.508701i −0.812039 0.583604i \(-0.801642\pi\)
0.997191 + 0.0749022i \(0.0238645\pi\)
\(30\) −0.104242 + 0.800967i −0.0190319 + 0.146236i
\(31\) −0.268468 0.737610i −0.0482183 0.132479i 0.913246 0.407409i \(-0.133568\pi\)
−0.961464 + 0.274930i \(0.911345\pi\)
\(32\) −3.50145 + 4.17286i −0.618975 + 0.737665i
\(33\) 4.53159 + 7.08995i 0.788848 + 1.23420i
\(34\) 2.83739 + 3.38147i 0.486608 + 0.579916i
\(35\) 1.33388 + 0.0361178i 0.225466 + 0.00610501i
\(36\) 1.97862 + 2.80801i 0.329770 + 0.468001i
\(37\) −5.47451 −0.900004 −0.450002 0.893028i \(-0.648577\pi\)
−0.450002 + 0.893028i \(0.648577\pi\)
\(38\) 5.53578 + 2.01486i 0.898022 + 0.326853i
\(39\) −7.77529 2.43888i −1.24504 0.390533i
\(40\) −0.942744 + 1.12352i −0.149061 + 0.177644i
\(41\) −5.44849 + 1.98309i −0.850912 + 0.309707i −0.730412 0.683007i \(-0.760672\pi\)
−0.120500 + 0.992713i \(0.538450\pi\)
\(42\) −3.19626 + 2.78178i −0.493193 + 0.429238i
\(43\) −1.36729 7.75429i −0.208510 1.18252i −0.891820 0.452390i \(-0.850571\pi\)
0.683310 0.730128i \(-0.260540\pi\)
\(44\) 5.56264i 0.838600i
\(45\) 0.871508 + 1.23682i 0.129917 + 0.184375i
\(46\) 3.31715 0.489087
\(47\) 7.22256 + 2.62880i 1.05352 + 0.383449i 0.809989 0.586445i \(-0.199473\pi\)
0.243529 + 0.969894i \(0.421695\pi\)
\(48\) −0.0311561 0.690117i −0.00449700 0.0996099i
\(49\) 5.11096 + 4.78310i 0.730138 + 0.683300i
\(50\) 2.82057 3.36143i 0.398889 0.475378i
\(51\) 8.19953 + 1.06713i 1.14816 + 0.149428i
\(52\) −3.46273 4.12672i −0.480194 0.572273i
\(53\) 4.26125 + 2.46023i 0.585328 + 0.337939i 0.763248 0.646106i \(-0.223604\pi\)
−0.177920 + 0.984045i \(0.556937\pi\)
\(54\) −4.69529 1.01904i −0.638948 0.138673i
\(55\) 2.45014i 0.330376i
\(56\) −7.61045 + 1.13046i −1.01699 + 0.151064i
\(57\) 10.1889 4.23808i 1.34955 0.561347i
\(58\) −0.468082 + 2.65462i −0.0614621 + 0.348569i
\(59\) −4.08557 3.42820i −0.531896 0.446313i 0.336860 0.941555i \(-0.390635\pi\)
−0.868755 + 0.495241i \(0.835080\pi\)
\(60\) 0.0451109 + 0.999221i 0.00582380 + 0.128999i
\(61\) −2.45624 + 6.74846i −0.314489 + 0.864052i 0.677247 + 0.735756i \(0.263173\pi\)
−0.991736 + 0.128296i \(0.959049\pi\)
\(62\) 0.362900 + 0.628561i 0.0460883 + 0.0798273i
\(63\) −0.882166 + 7.88808i −0.111143 + 0.993804i
\(64\) 2.91725 5.05283i 0.364656 0.631603i
\(65\) −1.52520 1.81767i −0.189178 0.225454i
\(66\) −5.26484 5.72849i −0.648057 0.705129i
\(67\) 1.51964 8.61830i 0.185653 1.05289i −0.739460 0.673201i \(-0.764919\pi\)
0.925113 0.379692i \(-0.123970\pi\)
\(68\) 4.18742 + 3.51366i 0.507799 + 0.426094i
\(69\) 4.57499 4.20470i 0.550764 0.506187i
\(70\) −1.22043 + 0.181283i −0.145869 + 0.0216674i
\(71\) −11.3110 6.53043i −1.34237 0.775019i −0.355217 0.934784i \(-0.615593\pi\)
−0.987155 + 0.159764i \(0.948927\pi\)
\(72\) −6.18714 6.15057i −0.729162 0.724851i
\(73\) 9.73306i 1.13917i 0.821933 + 0.569584i \(0.192896\pi\)
−0.821933 + 0.569584i \(0.807104\pi\)
\(74\) 4.98508 0.879004i 0.579504 0.102182i
\(75\) −0.370709 8.21132i −0.0428058 0.948162i
\(76\) 7.18433 + 1.26679i 0.824099 + 0.145311i
\(77\) −8.52540 + 9.61893i −0.971560 + 1.09618i
\(78\) 7.47176 + 0.972412i 0.846011 + 0.110104i
\(79\) −0.825069 4.67920i −0.0928275 0.526451i −0.995391 0.0958952i \(-0.969429\pi\)
0.902564 0.430556i \(-0.141682\pi\)
\(80\) 0.100577 0.174205i 0.0112449 0.0194767i
\(81\) −7.76741 + 4.54613i −0.863046 + 0.505126i
\(82\) 4.64298 2.68063i 0.512731 0.296026i
\(83\) −2.75845 1.00400i −0.302780 0.110203i 0.186163 0.982519i \(-0.440395\pi\)
−0.488942 + 0.872316i \(0.662617\pi\)
\(84\) −3.29975 + 4.07978i −0.360032 + 0.445141i
\(85\) 1.84440 + 1.54764i 0.200053 + 0.167865i
\(86\) 2.49011 + 6.84151i 0.268515 + 0.737739i
\(87\) 2.71933 + 4.25456i 0.291543 + 0.456137i
\(88\) −2.45321 13.9128i −0.261513 1.48311i
\(89\) 5.60470 9.70762i 0.594097 1.02901i −0.399577 0.916700i \(-0.630843\pi\)
0.993674 0.112306i \(-0.0358236\pi\)
\(90\) −0.992182 0.986316i −0.104585 0.103967i
\(91\) 0.336922 12.4430i 0.0353190 1.30438i
\(92\) 4.04537 0.713308i 0.421759 0.0743675i
\(93\) 1.29725 + 0.406908i 0.134519 + 0.0421944i
\(94\) −6.99893 1.23410i −0.721885 0.127288i
\(95\) 3.16443 + 0.557974i 0.324663 + 0.0572469i
\(96\) −2.05575 9.20829i −0.209815 0.939818i
\(97\) 2.41733 0.426241i 0.245443 0.0432783i −0.0495730 0.998771i \(-0.515786\pi\)
0.295016 + 0.955492i \(0.404675\pi\)
\(98\) −5.42202 3.53485i −0.547707 0.357074i
\(99\) −14.5225 1.22718i −1.45956 0.123336i
\(100\) 2.71695 4.70589i 0.271695 0.470589i
\(101\) −1.05002 5.95496i −0.104481 0.592540i −0.991426 0.130666i \(-0.958288\pi\)
0.886946 0.461874i \(-0.152823\pi\)
\(102\) −7.63782 + 0.344818i −0.756257 + 0.0341421i
\(103\) 3.34509 + 9.19055i 0.329601 + 0.905572i 0.988212 + 0.153089i \(0.0489220\pi\)
−0.658611 + 0.752483i \(0.728856\pi\)
\(104\) 10.4807 + 8.79431i 1.02771 + 0.862354i
\(105\) −1.45342 + 1.79699i −0.141839 + 0.175368i
\(106\) −4.27531 1.55609i −0.415255 0.151140i
\(107\) −13.9175 + 8.03528i −1.34546 + 0.776800i −0.987602 0.156977i \(-0.949825\pi\)
−0.357855 + 0.933777i \(0.616492\pi\)
\(108\) −5.94518 0.233090i −0.572076 0.0224291i
\(109\) 7.22285 12.5103i 0.691823 1.19827i −0.279417 0.960170i \(-0.590141\pi\)
0.971240 0.238103i \(-0.0765256\pi\)
\(110\) −0.393401 2.23109i −0.0375093 0.212726i
\(111\) 5.76120 7.53123i 0.546829 0.714833i
\(112\) 1.00101 0.333943i 0.0945867 0.0315546i
\(113\) −1.50934 0.266138i −0.141987 0.0250361i 0.102203 0.994764i \(-0.467411\pi\)
−0.244190 + 0.969727i \(0.578522\pi\)
\(114\) −8.59750 + 5.49515i −0.805230 + 0.514667i
\(115\) 1.78183 0.314185i 0.166157 0.0292979i
\(116\) 3.33805i 0.309930i
\(117\) 11.5376 8.12980i 1.06665 0.751600i
\(118\) 4.27075 + 2.46572i 0.393155 + 0.226988i
\(119\) 1.85580 + 12.4935i 0.170121 + 1.14528i
\(120\) −0.553499 2.47928i −0.0505273 0.226326i
\(121\) −9.65286 8.09971i −0.877532 0.736337i
\(122\) 1.15309 6.53952i 0.104396 0.592060i
\(123\) 3.00570 9.58238i 0.271015 0.864014i
\(124\) 0.577731 + 0.688513i 0.0518818 + 0.0618303i
\(125\) 2.45757 4.25664i 0.219812 0.380725i
\(126\) −0.463235 7.32451i −0.0412682 0.652520i
\(127\) 5.33708 + 9.24410i 0.473590 + 0.820281i 0.999543 0.0302322i \(-0.00962466\pi\)
−0.525953 + 0.850513i \(0.676291\pi\)
\(128\) 1.88102 5.16805i 0.166260 0.456796i
\(129\) 12.1064 + 6.27940i 1.06591 + 0.552870i
\(130\) 1.68070 + 1.41027i 0.147407 + 0.123689i
\(131\) −1.59928 + 9.06999i −0.139730 + 0.792449i 0.831718 + 0.555198i \(0.187357\pi\)
−0.971448 + 0.237251i \(0.923754\pi\)
\(132\) −7.65247 5.85395i −0.666062 0.509521i
\(133\) 10.4816 + 13.2014i 0.908874 + 1.14470i
\(134\) 8.09180i 0.699025i
\(135\) −2.61863 0.102667i −0.225376 0.00883621i
\(136\) −12.0228 6.94138i −1.03095 0.595218i
\(137\) 9.57049 + 11.4057i 0.817663 + 0.974452i 0.999961 0.00879090i \(-0.00279827\pi\)
−0.182299 + 0.983243i \(0.558354\pi\)
\(138\) −3.49086 + 4.56337i −0.297162 + 0.388460i
\(139\) −6.89067 + 8.21198i −0.584459 + 0.696531i −0.974531 0.224254i \(-0.928006\pi\)
0.390072 + 0.920784i \(0.372450\pi\)
\(140\) −1.44936 + 0.483516i −0.122494 + 0.0408645i
\(141\) −11.2172 + 7.16954i −0.944658 + 0.603784i
\(142\) 11.3484 + 4.13046i 0.952333 + 0.346621i
\(143\) 22.8559 1.91131
\(144\) 0.982175 + 0.683396i 0.0818479 + 0.0569497i
\(145\) 1.47029i 0.122101i
\(146\) −1.56277 8.86290i −0.129336 0.733499i
\(147\) −11.9587 + 1.99752i −0.986335 + 0.164753i
\(148\) 5.89045 2.14395i 0.484192 0.176231i
\(149\) 1.37019 1.63293i 0.112250 0.133775i −0.706994 0.707220i \(-0.749949\pi\)
0.819244 + 0.573445i \(0.194394\pi\)
\(150\) 1.65600 + 7.41769i 0.135212 + 0.605652i
\(151\) −6.24885 2.27439i −0.508524 0.185088i 0.0750000 0.997184i \(-0.476104\pi\)
−0.583524 + 0.812096i \(0.698327\pi\)
\(152\) −18.5276 −1.50278
\(153\) −10.0970 + 10.1570i −0.816291 + 0.821145i
\(154\) 6.21877 10.1278i 0.501123 0.816125i
\(155\) 0.254469 + 0.303264i 0.0204394 + 0.0243588i
\(156\) 9.32116 0.420814i 0.746290 0.0336921i
\(157\) −0.380802 + 0.453822i −0.0303913 + 0.0362189i −0.781026 0.624499i \(-0.785303\pi\)
0.750635 + 0.660717i \(0.229748\pi\)
\(158\) 1.50261 + 4.12840i 0.119541 + 0.328438i
\(159\) −7.86892 + 3.27309i −0.624046 + 0.259573i
\(160\) 0.939632 2.58162i 0.0742844 0.204095i
\(161\) 8.08848 + 4.96655i 0.637462 + 0.391419i
\(162\) 6.34305 5.38686i 0.498357 0.423232i
\(163\) 9.38783 + 16.2602i 0.735311 + 1.27360i 0.954587 + 0.297934i \(0.0962975\pi\)
−0.219275 + 0.975663i \(0.570369\pi\)
\(164\) 5.08583 4.26752i 0.397136 0.333237i
\(165\) −3.37063 2.57844i −0.262403 0.200732i
\(166\) 2.67305 + 0.471331i 0.207469 + 0.0365823i
\(167\) 2.39928 13.6070i 0.185662 1.05294i −0.739441 0.673221i \(-0.764910\pi\)
0.925102 0.379718i \(-0.123979\pi\)
\(168\) 6.45383 11.6593i 0.497924 0.899532i
\(169\) −6.99739 + 5.87151i −0.538261 + 0.451654i
\(170\) −1.92800 1.11313i −0.147871 0.0853734i
\(171\) −4.89217 + 18.4768i −0.374114 + 1.41295i
\(172\) 4.50794 + 7.80797i 0.343727 + 0.595352i
\(173\) 3.37313 2.83039i 0.256454 0.215191i −0.505491 0.862832i \(-0.668689\pi\)
0.761946 + 0.647641i \(0.224244\pi\)
\(174\) −3.15934 3.43757i −0.239509 0.260602i
\(175\) 11.9105 3.97340i 0.900348 0.300361i
\(176\) 0.662705 + 1.82077i 0.0499533 + 0.137246i
\(177\) 9.01566 2.01275i 0.677658 0.151287i
\(178\) −3.54494 + 9.73965i −0.265705 + 0.730017i
\(179\) −2.60964 + 1.50667i −0.195053 + 0.112614i −0.594346 0.804209i \(-0.702589\pi\)
0.399293 + 0.916823i \(0.369256\pi\)
\(180\) −1.42209 0.989489i −0.105996 0.0737521i
\(181\) −1.98157 + 1.14406i −0.147289 + 0.0850373i −0.571833 0.820370i \(-0.693768\pi\)
0.424544 + 0.905407i \(0.360434\pi\)
\(182\) 1.69108 + 11.3846i 0.125351 + 0.843886i
\(183\) −6.69892 10.4809i −0.495198 0.774769i
\(184\) −9.80338 + 3.56814i −0.722715 + 0.263047i
\(185\) 2.59452 0.944328i 0.190753 0.0694284i
\(186\) −1.24661 0.162240i −0.0914057 0.0118960i
\(187\) −22.8398 + 4.02726i −1.67021 + 0.294503i
\(188\) −8.80080 −0.641864
\(189\) −9.92318 9.51475i −0.721805 0.692096i
\(190\) −2.97111 −0.215547
\(191\) 12.9505 2.28352i 0.937063 0.165229i 0.315795 0.948828i \(-0.397729\pi\)
0.621268 + 0.783598i \(0.286618\pi\)
\(192\) 3.88110 + 9.33066i 0.280094 + 0.673383i
\(193\) 0.0352236 0.0128203i 0.00253545 0.000922827i −0.340752 0.940153i \(-0.610682\pi\)
0.343288 + 0.939230i \(0.388459\pi\)
\(194\) −2.13278 + 0.776269i −0.153125 + 0.0557329i
\(195\) 4.10562 0.185353i 0.294010 0.0132734i
\(196\) −7.37245 3.14493i −0.526604 0.224638i
\(197\) −4.43094 + 2.55821i −0.315692 + 0.182265i −0.649471 0.760387i \(-0.725009\pi\)
0.333779 + 0.942651i \(0.391676\pi\)
\(198\) 13.4212 1.21430i 0.953802 0.0862968i
\(199\) 5.34761 3.08744i 0.379082 0.218863i −0.298337 0.954461i \(-0.596432\pi\)
0.677419 + 0.735598i \(0.263099\pi\)
\(200\) −4.72005 + 12.9682i −0.333758 + 0.916992i
\(201\) 10.2569 + 11.1602i 0.723465 + 0.787178i
\(202\) 1.91229 + 5.25398i 0.134548 + 0.369669i
\(203\) −5.11595 + 5.77216i −0.359069 + 0.405126i
\(204\) −9.24041 + 2.06293i −0.646958 + 0.144434i
\(205\) 2.24012 1.87968i 0.156457 0.131283i
\(206\) −4.52169 7.83180i −0.315041 0.545668i
\(207\) 0.969789 + 10.7187i 0.0674050 + 0.744999i
\(208\) −1.62506 0.938229i −0.112678 0.0650545i
\(209\) −23.7103 + 19.8953i −1.64007 + 1.37618i
\(210\) 1.03495 1.86970i 0.0714182 0.129022i
\(211\) 0.583521 3.30931i 0.0401712 0.227822i −0.958112 0.286394i \(-0.907543\pi\)
0.998283 + 0.0585715i \(0.0186546\pi\)
\(212\) −5.54849 0.978349i −0.381072 0.0671933i
\(213\) 20.8872 8.68806i 1.43117 0.595296i
\(214\) 11.3831 9.55155i 0.778133 0.652931i
\(215\) 1.98558 + 3.43912i 0.135415 + 0.234546i
\(216\) 14.9724 2.03893i 1.01874 0.138732i
\(217\) −0.0562129 + 2.07602i −0.00381598 + 0.140929i
\(218\) −4.56841 + 12.5516i −0.309412 + 0.850103i
\(219\) −13.3897 10.2428i −0.904790 0.692141i
\(220\) −0.959531 2.63629i −0.0646915 0.177739i
\(221\) 14.4370 17.2054i 0.971139 1.15736i
\(222\) −4.03690 + 7.78296i −0.270939 + 0.522358i
\(223\) 4.25268 + 5.06814i 0.284780 + 0.339388i 0.889403 0.457124i \(-0.151120\pi\)
−0.604623 + 0.796512i \(0.706676\pi\)
\(224\) 12.6718 6.86561i 0.846669 0.458728i
\(225\) 11.6864 + 8.13135i 0.779090 + 0.542090i
\(226\) 1.41714 0.0942665
\(227\) −9.85012 3.58515i −0.653775 0.237955i −0.00622869 0.999981i \(-0.501983\pi\)
−0.647547 + 0.762026i \(0.724205\pi\)
\(228\) −9.30327 + 8.55028i −0.616124 + 0.566256i
\(229\) 11.2293 13.3825i 0.742052 0.884343i −0.254521 0.967067i \(-0.581918\pi\)
0.996572 + 0.0827244i \(0.0263621\pi\)
\(230\) −1.57209 + 0.572193i −0.103660 + 0.0377293i
\(231\) −4.26081 21.8510i −0.280341 1.43769i
\(232\) −1.47213 8.34887i −0.0966501 0.548130i
\(233\) 10.2714i 0.672900i −0.941701 0.336450i \(-0.890774\pi\)
0.941701 0.336450i \(-0.109226\pi\)
\(234\) −9.20078 + 9.25549i −0.601474 + 0.605051i
\(235\) −3.87642 −0.252870
\(236\) 5.73854 + 2.08866i 0.373547 + 0.135960i
\(237\) 7.30540 + 3.78920i 0.474537 + 0.246135i
\(238\) −3.69589 11.0786i −0.239569 0.718120i
\(239\) 14.4600 17.2328i 0.935342 1.11470i −0.0578640 0.998324i \(-0.518429\pi\)
0.993206 0.116372i \(-0.0371266\pi\)
\(240\) 0.133808 + 0.321691i 0.00863726 + 0.0207651i
\(241\) 5.50391 + 6.55931i 0.354538 + 0.422522i 0.913606 0.406600i \(-0.133286\pi\)
−0.559068 + 0.829121i \(0.688841\pi\)
\(242\) 10.0904 + 5.82569i 0.648635 + 0.374489i
\(243\) 1.92011 15.4698i 0.123175 0.992385i
\(244\) 8.22310i 0.526430i
\(245\) −3.24729 1.38522i −0.207462 0.0884987i
\(246\) −1.19841 + 9.20830i −0.0764080 + 0.587100i
\(247\) 5.20502 29.5191i 0.331187 1.87826i
\(248\) −1.74862 1.46727i −0.111037 0.0931715i
\(249\) 4.28409 2.73820i 0.271493 0.173527i
\(250\) −1.55440 + 4.27068i −0.0983090 + 0.270102i
\(251\) −8.90861 15.4302i −0.562307 0.973943i −0.997295 0.0735073i \(-0.976581\pi\)
0.434988 0.900436i \(-0.356753\pi\)
\(252\) −2.13997 8.83286i −0.134805 0.556418i
\(253\) −8.71413 + 15.0933i −0.547853 + 0.948909i
\(254\) −6.34420 7.56072i −0.398071 0.474402i
\(255\) −4.07006 + 0.908641i −0.254877 + 0.0569013i
\(256\) −2.90935 + 16.4998i −0.181835 + 1.03124i
\(257\) −18.3114 15.3650i −1.14223 0.958445i −0.142721 0.989763i \(-0.545585\pi\)
−0.999509 + 0.0313176i \(0.990030\pi\)
\(258\) −12.0323 3.77417i −0.749098 0.234970i
\(259\) 13.4716 + 5.32048i 0.837086 + 0.330598i
\(260\) 2.35292 + 1.35846i 0.145922 + 0.0842482i
\(261\) −8.71470 0.736411i −0.539426 0.0455827i
\(262\) 8.51590i 0.526114i
\(263\) −8.75677 + 1.54405i −0.539965 + 0.0952104i −0.436978 0.899472i \(-0.643951\pi\)
−0.102987 + 0.994683i \(0.532840\pi\)
\(264\) 21.7214 + 11.2666i 1.33686 + 0.693410i
\(265\) −2.44390 0.430926i −0.150128 0.0264716i
\(266\) −11.6642 10.3382i −0.715179 0.633874i
\(267\) 7.45647 + 17.9263i 0.456328 + 1.09707i
\(268\) 1.74003 + 9.86821i 0.106289 + 0.602797i
\(269\) −0.579284 + 1.00335i −0.0353195 + 0.0611752i −0.883145 0.469100i \(-0.844578\pi\)
0.847825 + 0.530276i \(0.177912\pi\)
\(270\) 2.40101 0.326966i 0.146121 0.0198985i
\(271\) −22.8894 + 13.2152i −1.39043 + 0.802766i −0.993363 0.115023i \(-0.963306\pi\)
−0.397069 + 0.917789i \(0.629973\pi\)
\(272\) 1.78923 + 0.651226i 0.108488 + 0.0394864i
\(273\) 16.7631 + 13.5581i 1.01455 + 0.820573i
\(274\) −10.5462 8.84932i −0.637120 0.534607i
\(275\) 7.88516 + 21.6643i 0.475493 + 1.30641i
\(276\) −3.27593 + 6.31583i −0.197188 + 0.380169i
\(277\) −1.90615 10.8103i −0.114529 0.649529i −0.986982 0.160830i \(-0.948583\pi\)
0.872453 0.488699i \(-0.162528\pi\)
\(278\) 4.95609 8.58420i 0.297246 0.514846i
\(279\) −1.92496 + 1.35640i −0.115245 + 0.0812053i
\(280\) 3.41180 1.84852i 0.203894 0.110470i
\(281\) 0.726106 0.128032i 0.0433159 0.00763776i −0.151948 0.988388i \(-0.548555\pi\)
0.195264 + 0.980751i \(0.437444\pi\)
\(282\) 9.06319 8.32963i 0.539705 0.496022i
\(283\) −9.06936 1.59917i −0.539117 0.0950609i −0.102542 0.994729i \(-0.532698\pi\)
−0.436575 + 0.899668i \(0.643809\pi\)
\(284\) 14.7279 + 2.59692i 0.873939 + 0.154099i
\(285\) −4.09774 + 3.76608i −0.242729 + 0.223083i
\(286\) −20.8126 + 3.66982i −1.23067 + 0.217001i
\(287\) 15.3349 + 0.415227i 0.905190 + 0.0245101i
\(288\) 14.8312 + 6.86243i 0.873935 + 0.404373i
\(289\) −2.89518 + 5.01460i −0.170305 + 0.294976i
\(290\) −0.236074 1.33884i −0.0138627 0.0786194i
\(291\) −1.95755 + 3.77407i −0.114754 + 0.221240i
\(292\) −3.81169 10.4725i −0.223062 0.612859i
\(293\) −17.3436 14.5530i −1.01322 0.850196i −0.0244632 0.999701i \(-0.507788\pi\)
−0.988761 + 0.149505i \(0.952232\pi\)
\(294\) 10.5688 3.73906i 0.616386 0.218066i
\(295\) 2.52761 + 0.919975i 0.147163 + 0.0535630i
\(296\) −13.7872 + 7.96005i −0.801365 + 0.462668i
\(297\) 16.9712 18.6870i 0.984769 1.08433i
\(298\) −0.985503 + 1.70694i −0.0570887 + 0.0988805i
\(299\) −2.93085 16.6217i −0.169496 0.961258i
\(300\) 3.61462 + 8.69001i 0.208690 + 0.501718i
\(301\) −4.17150 + 20.4105i −0.240441 + 1.17644i
\(302\) 6.05537 + 1.06773i 0.348448 + 0.0614407i
\(303\) 9.29718 + 4.82230i 0.534109 + 0.277034i
\(304\) 2.50250 0.441258i 0.143528 0.0253079i
\(305\) 3.62197i 0.207393i
\(306\) 7.56343 10.8701i 0.432373 0.621405i
\(307\) −18.3264 10.5807i −1.04594 0.603875i −0.124432 0.992228i \(-0.539711\pi\)
−0.921511 + 0.388353i \(0.873044\pi\)
\(308\) 5.40613 13.6885i 0.308043 0.779974i
\(309\) −16.1636 5.07004i −0.919516 0.288424i
\(310\) −0.280412 0.235293i −0.0159263 0.0133638i
\(311\) −1.43987 + 8.16591i −0.0816476 + 0.463046i 0.916382 + 0.400304i \(0.131096\pi\)
−0.998030 + 0.0627420i \(0.980015\pi\)
\(312\) −23.1278 + 5.16328i −1.30935 + 0.292313i
\(313\) 18.3841 + 21.9093i 1.03913 + 1.23839i 0.970589 + 0.240741i \(0.0773904\pi\)
0.0685426 + 0.997648i \(0.478165\pi\)
\(314\) 0.273890 0.474392i 0.0154565 0.0267715i
\(315\) −0.942575 3.89055i −0.0531081 0.219207i
\(316\) 2.72024 + 4.71159i 0.153025 + 0.265048i
\(317\) 6.91030 18.9859i 0.388121 1.06635i −0.579725 0.814812i \(-0.696840\pi\)
0.967846 0.251542i \(-0.0809377\pi\)
\(318\) 6.63989 4.24393i 0.372347 0.237988i
\(319\) −10.8491 9.10349i −0.607434 0.509698i
\(320\) −0.510975 + 2.89788i −0.0285644 + 0.161997i
\(321\) 3.59229 27.6023i 0.200502 1.54061i
\(322\) −8.16280 3.22382i −0.454895 0.179656i
\(323\) 30.4154i 1.69236i
\(324\) 6.57718 7.93343i 0.365399 0.440746i
\(325\) −19.3357 11.1635i −1.07255 0.619238i
\(326\) −11.1593 13.2992i −0.618058 0.736573i
\(327\) 9.60925 + 23.1019i 0.531393 + 1.27754i
\(328\) −10.8382 + 12.9165i −0.598441 + 0.713194i
\(329\) −15.2184 13.4882i −0.839015 0.743631i
\(330\) 3.48329 + 1.80673i 0.191749 + 0.0994572i
\(331\) 14.0414 + 5.11066i 0.771786 + 0.280907i 0.697743 0.716348i \(-0.254188\pi\)
0.0740427 + 0.997255i \(0.476410\pi\)
\(332\) 3.36122 0.184471
\(333\) 4.29773 + 15.8512i 0.235514 + 0.868643i
\(334\) 12.7757i 0.699056i
\(335\) 0.766419 + 4.34658i 0.0418739 + 0.237479i
\(336\) −0.594031 + 1.72851i −0.0324071 + 0.0942981i
\(337\) −10.4942 + 3.81956i −0.571653 + 0.208065i −0.611641 0.791136i \(-0.709490\pi\)
0.0399880 + 0.999200i \(0.487268\pi\)
\(338\) 5.42906 6.47011i 0.295302 0.351927i
\(339\) 1.95451 1.79631i 0.106154 0.0975623i
\(340\) −2.59062 0.942910i −0.140496 0.0511365i
\(341\) −3.81334 −0.206504
\(342\) 1.48812 17.6104i 0.0804682 0.952262i
\(343\) −7.92848 16.7374i −0.428098 0.903732i
\(344\) −14.7183 17.5406i −0.793559 0.945727i
\(345\) −1.44292 + 2.78189i −0.0776843 + 0.149772i
\(346\) −2.61711 + 3.11895i −0.140697 + 0.167676i
\(347\) −6.22372 17.0995i −0.334107 0.917950i −0.987031 0.160528i \(-0.948680\pi\)
0.652925 0.757423i \(-0.273542\pi\)
\(348\) −4.59212 3.51286i −0.246164 0.188309i
\(349\) 8.74024 24.0136i 0.467854 1.28542i −0.451599 0.892221i \(-0.649146\pi\)
0.919454 0.393198i \(-0.128631\pi\)
\(350\) −10.2077 + 5.53055i −0.545624 + 0.295621i
\(351\) −0.957726 + 24.4277i −0.0511196 + 1.30385i
\(352\) 13.2317 + 22.9179i 0.705250 + 1.22153i
\(353\) 9.82463 8.24385i 0.522913 0.438776i −0.342733 0.939433i \(-0.611353\pi\)
0.865646 + 0.500657i \(0.166908\pi\)
\(354\) −7.88647 + 3.28039i −0.419161 + 0.174351i
\(355\) 6.48708 + 1.14385i 0.344298 + 0.0607091i
\(356\) −2.22879 + 12.6401i −0.118126 + 0.669924i
\(357\) −19.1402 10.5948i −1.01301 0.560736i
\(358\) 2.13441 1.79099i 0.112807 0.0946565i
\(359\) 18.5666 + 10.7194i 0.979908 + 0.565750i 0.902242 0.431229i \(-0.141920\pi\)
0.0776659 + 0.996979i \(0.475253\pi\)
\(360\) 3.99320 + 1.84767i 0.210460 + 0.0973806i
\(361\) 10.7958 + 18.6988i 0.568199 + 0.984149i
\(362\) 1.62072 1.35995i 0.0851831 0.0714771i
\(363\) 21.3010 4.75546i 1.11801 0.249597i
\(364\) 4.51044 + 13.5203i 0.236411 + 0.708656i
\(365\) −1.67891 4.61276i −0.0878780 0.241443i
\(366\) 7.78287 + 8.46827i 0.406817 + 0.442644i
\(367\) 2.38366 6.54905i 0.124426 0.341858i −0.861803 0.507243i \(-0.830665\pi\)
0.986229 + 0.165385i \(0.0528868\pi\)
\(368\) 1.23915 0.715425i 0.0645953 0.0372941i
\(369\) 10.0193 + 14.2191i 0.521582 + 0.740217i
\(370\) −2.21094 + 1.27649i −0.114941 + 0.0663614i
\(371\) −8.09503 10.1955i −0.420273 0.529322i
\(372\) −1.55517 + 0.0702097i −0.0806316 + 0.00364020i
\(373\) 10.8547 3.95079i 0.562035 0.204564i −0.0453508 0.998971i \(-0.514441\pi\)
0.607386 + 0.794407i \(0.292218\pi\)
\(374\) 20.1512 7.33444i 1.04199 0.379255i
\(375\) 3.26955 + 7.86041i 0.168839 + 0.405910i
\(376\) 22.0119 3.88128i 1.13518 0.200162i
\(377\) 13.7155 0.706382
\(378\) 10.5638 + 7.07082i 0.543341 + 0.363684i
\(379\) 6.46443 0.332055 0.166028 0.986121i \(-0.446906\pi\)
0.166028 + 0.986121i \(0.446906\pi\)
\(380\) −3.62337 + 0.638897i −0.185875 + 0.0327747i
\(381\) −18.3336 2.38602i −0.939258 0.122240i
\(382\) −11.4260 + 4.15873i −0.584606 + 0.212779i
\(383\) −2.18674 + 0.795907i −0.111737 + 0.0406690i −0.397284 0.917696i \(-0.630047\pi\)
0.285547 + 0.958365i \(0.407825\pi\)
\(384\) 5.13012 + 8.02639i 0.261795 + 0.409595i
\(385\) 2.38120 6.02927i 0.121357 0.307280i
\(386\) −0.0300160 + 0.0173298i −0.00152778 + 0.000882062i
\(387\) −21.3789 + 10.0464i −1.08675 + 0.510687i
\(388\) −2.43407 + 1.40531i −0.123571 + 0.0713438i
\(389\) −11.2737 + 30.9741i −0.571597 + 1.57045i 0.230383 + 0.973100i \(0.426002\pi\)
−0.801980 + 0.597351i \(0.796220\pi\)
\(390\) −3.70881 + 0.827993i −0.187803 + 0.0419270i
\(391\) 5.85756 + 16.0935i 0.296230 + 0.813884i
\(392\) 19.8264 + 4.61449i 1.00138 + 0.233067i
\(393\) −10.7945 11.7451i −0.544508 0.592461i
\(394\) 3.62406 3.04094i 0.182577 0.153201i
\(395\) 1.19816 + 2.07528i 0.0602861 + 0.104419i
\(396\) 16.1064 4.36692i 0.809379 0.219446i
\(397\) −21.9971 12.7000i −1.10400 0.637397i −0.166734 0.986002i \(-0.553322\pi\)
−0.937270 + 0.348605i \(0.886656\pi\)
\(398\) −4.37379 + 3.67005i −0.219238 + 0.183963i
\(399\) −29.1915 + 0.526813i −1.46140 + 0.0263736i
\(400\) 0.328677 1.86402i 0.0164339 0.0932010i
\(401\) 19.2008 + 3.38563i 0.958844 + 0.169070i 0.631104 0.775698i \(-0.282602\pi\)
0.327740 + 0.944768i \(0.393713\pi\)
\(402\) −11.1318 8.51555i −0.555204 0.424717i
\(403\) 2.82898 2.37379i 0.140921 0.118247i
\(404\) 3.46190 + 5.99618i 0.172236 + 0.298321i
\(405\) 2.89700 3.49438i 0.143953 0.173637i
\(406\) 3.73178 6.07756i 0.185205 0.301624i
\(407\) −9.09623 + 24.9917i −0.450883 + 1.23879i
\(408\) 22.2016 9.23479i 1.09914 0.457190i
\(409\) −5.92119 16.2683i −0.292784 0.804417i −0.995657 0.0931015i \(-0.970322\pi\)
0.702873 0.711316i \(-0.251900\pi\)
\(410\) −1.73804 + 2.07131i −0.0858356 + 0.102295i
\(411\) −25.7623 + 1.16307i −1.27076 + 0.0573700i
\(412\) −7.19847 8.57880i −0.354643 0.422647i
\(413\) 6.72198 + 12.4067i 0.330767 + 0.610493i
\(414\) −2.60411 9.60468i −0.127985 0.472044i
\(415\) 1.48049 0.0726745
\(416\) −24.0824 8.76529i −1.18074 0.429754i
\(417\) −4.04562 18.1214i −0.198115 0.887411i
\(418\) 18.3961 21.9236i 0.899781 1.07232i
\(419\) −3.08710 + 1.12361i −0.150815 + 0.0548920i −0.416324 0.909216i \(-0.636682\pi\)
0.265510 + 0.964108i \(0.414460\pi\)
\(420\) 0.860097 2.50271i 0.0419685 0.122120i
\(421\) −0.564741 3.20281i −0.0275238 0.156095i 0.967948 0.251150i \(-0.0808086\pi\)
−0.995472 + 0.0950543i \(0.969698\pi\)
\(422\) 3.10714i 0.151253i
\(423\) 1.94155 22.9764i 0.0944016 1.11715i
\(424\) 14.3089 0.694902
\(425\) 21.2890 + 7.74858i 1.03267 + 0.375861i
\(426\) −17.6249 + 11.2650i −0.853928 + 0.545793i
\(427\) 12.6029 14.2194i 0.609895 0.688125i
\(428\) 11.8281 14.0962i 0.571734 0.681366i
\(429\) −24.0528 + 31.4426i −1.16128 + 1.51807i
\(430\) −2.36026 2.81285i −0.113822 0.135648i
\(431\) 29.6610 + 17.1248i 1.42872 + 0.824872i 0.997020 0.0771457i \(-0.0245807\pi\)
0.431700 + 0.902017i \(0.357914\pi\)
\(432\) −1.97375 + 0.631984i −0.0949621 + 0.0304063i
\(433\) 27.4243i 1.31793i 0.752174 + 0.658965i \(0.229005\pi\)
−0.752174 + 0.658965i \(0.770995\pi\)
\(434\) −0.282144 1.89944i −0.0135434 0.0911762i
\(435\) −2.02266 1.54728i −0.0969790 0.0741865i
\(436\) −2.87227 + 16.2895i −0.137557 + 0.780124i
\(437\) 17.5090 + 14.6918i 0.837569 + 0.702804i
\(438\) 13.8372 + 7.17715i 0.661168 + 0.342937i
\(439\) 1.29268 3.55162i 0.0616964 0.169510i −0.905014 0.425381i \(-0.860140\pi\)
0.966711 + 0.255871i \(0.0823624\pi\)
\(440\) 3.56255 + 6.17051i 0.169838 + 0.294168i
\(441\) 9.83696 18.5536i 0.468427 0.883502i
\(442\) −10.3838 + 17.9852i −0.493906 + 0.855470i
\(443\) −13.8797 16.5412i −0.659444 0.785894i 0.327862 0.944726i \(-0.393672\pi\)
−0.987306 + 0.158831i \(0.949227\pi\)
\(444\) −3.24951 + 10.3596i −0.154215 + 0.491647i
\(445\) −0.981699 + 5.56749i −0.0465370 + 0.263924i
\(446\) −4.68624 3.93222i −0.221900 0.186196i
\(447\) 0.804458 + 3.60339i 0.0380496 + 0.170435i
\(448\) −12.0894 + 9.59877i −0.571170 + 0.453499i
\(449\) −15.0109 8.66655i −0.708408 0.409000i 0.102063 0.994778i \(-0.467456\pi\)
−0.810471 + 0.585778i \(0.800789\pi\)
\(450\) −11.9472 5.52800i −0.563195 0.260592i
\(451\) 28.1679i 1.32638i
\(452\) 1.72824 0.304736i 0.0812897 0.0143336i
\(453\) 9.70494 6.20297i 0.455978 0.291441i
\(454\) 9.54514 + 1.68307i 0.447976 + 0.0789902i
\(455\) 1.98668 + 5.95518i 0.0931370 + 0.279183i
\(456\) 19.4978 25.4882i 0.913068 1.19359i
\(457\) 5.69846 + 32.3176i 0.266563 + 1.51175i 0.764548 + 0.644567i \(0.222962\pi\)
−0.497985 + 0.867186i \(0.665927\pi\)
\(458\) −8.07662 + 13.9891i −0.377396 + 0.653669i
\(459\) −3.34717 24.5792i −0.156232 1.14726i
\(460\) −1.79417 + 1.03586i −0.0836535 + 0.0482974i
\(461\) 0.748682 + 0.272498i 0.0348696 + 0.0126915i 0.359396 0.933185i \(-0.382983\pi\)
−0.324526 + 0.945877i \(0.605205\pi\)
\(462\) 7.38835 + 19.2133i 0.343737 + 0.893885i
\(463\) 8.79280 + 7.37804i 0.408636 + 0.342887i 0.823820 0.566851i \(-0.191838\pi\)
−0.415184 + 0.909737i \(0.636283\pi\)
\(464\) 0.397679 + 1.09261i 0.0184618 + 0.0507233i
\(465\) −0.684992 + 0.0309247i −0.0317657 + 0.00143410i
\(466\) 1.64920 + 9.35309i 0.0763978 + 0.433273i
\(467\) 2.59486 4.49443i 0.120076 0.207977i −0.799722 0.600371i \(-0.795020\pi\)
0.919797 + 0.392394i \(0.128353\pi\)
\(468\) −9.23037 + 13.2659i −0.426674 + 0.613215i
\(469\) −12.1153 + 19.7309i −0.559433 + 0.911090i
\(470\) 3.52986 0.622410i 0.162820 0.0287096i
\(471\) −0.223574 1.00145i −0.0103018 0.0461445i
\(472\) −15.2739 2.69320i −0.703039 0.123965i
\(473\) −37.6710 6.64241i −1.73211 0.305418i
\(474\) −7.26069 2.27746i −0.333495 0.104607i
\(475\) 29.7758 5.25028i 1.36621 0.240899i
\(476\) −6.88956 12.7160i −0.315782 0.582836i
\(477\) 3.77825 14.2697i 0.172994 0.653364i
\(478\) −10.4003 + 18.0139i −0.475700 + 0.823937i
\(479\) 3.21688 + 18.2438i 0.146983 + 0.833582i 0.965754 + 0.259461i \(0.0835449\pi\)
−0.818771 + 0.574121i \(0.805344\pi\)
\(480\) 2.56267 + 4.00945i 0.116969 + 0.183006i
\(481\) −8.80910 24.2028i −0.401660 1.10355i
\(482\) −6.06503 5.08917i −0.276255 0.231805i
\(483\) −15.3445 + 5.90061i −0.698198 + 0.268487i
\(484\) 13.5583 + 4.93481i 0.616285 + 0.224310i
\(485\) −1.07212 + 0.618987i −0.0486823 + 0.0281067i
\(486\) 0.735426 + 14.3950i 0.0333596 + 0.652972i
\(487\) 12.9714 22.4672i 0.587792 1.01809i −0.406729 0.913549i \(-0.633331\pi\)
0.994521 0.104537i \(-0.0333360\pi\)
\(488\) 3.62651 + 20.5670i 0.164165 + 0.931023i
\(489\) −32.2484 4.19697i −1.45832 0.189793i
\(490\) 3.17939 + 0.739988i 0.143630 + 0.0334293i
\(491\) 17.9073 + 3.15754i 0.808146 + 0.142498i 0.562431 0.826844i \(-0.309866\pi\)
0.245715 + 0.969342i \(0.420977\pi\)
\(492\) 0.518617 + 11.4875i 0.0233811 + 0.517897i
\(493\) −13.7058 + 2.41669i −0.617276 + 0.108842i
\(494\) 27.7158i 1.24699i
\(495\) 7.09428 1.92347i 0.318864 0.0864533i
\(496\) 0.271129 + 0.156536i 0.0121741 + 0.00702870i
\(497\) 21.4874 + 27.0628i 0.963841 + 1.21393i
\(498\) −3.46143 + 3.18127i −0.155111 + 0.142556i
\(499\) −18.7234 15.7108i −0.838173 0.703311i 0.118979 0.992897i \(-0.462038\pi\)
−0.957152 + 0.289586i \(0.906482\pi\)
\(500\) −0.977290 + 5.54249i −0.0437057 + 0.247868i
\(501\) 16.1940 + 17.6202i 0.723497 + 0.787212i
\(502\) 10.5897 + 12.6203i 0.472641 + 0.563271i
\(503\) 7.81528 13.5365i 0.348466 0.603561i −0.637511 0.770441i \(-0.720036\pi\)
0.985977 + 0.166880i \(0.0533693\pi\)
\(504\) 9.24774 + 21.1483i 0.411927 + 0.942020i
\(505\) 1.52484 + 2.64109i 0.0678543 + 0.117527i
\(506\) 5.51164 15.1431i 0.245022 0.673194i
\(507\) −0.713544 15.8052i −0.0316896 0.701935i
\(508\) −9.36278 7.85631i −0.415406 0.348567i
\(509\) −4.24348 + 24.0660i −0.188089 + 1.06671i 0.733833 + 0.679330i \(0.237729\pi\)
−0.921922 + 0.387375i \(0.873382\pi\)
\(510\) 3.56029 1.48091i 0.157652 0.0655757i
\(511\) 9.45920 23.9510i 0.418450 1.05953i
\(512\) 4.49234i 0.198535i
\(513\) −20.2699 26.1745i −0.894939 1.15563i
\(514\) 19.1413 + 11.0513i 0.844288 + 0.487450i
\(515\) −3.17066 3.77864i −0.139716 0.166507i
\(516\) −15.4854 2.01534i −0.681705 0.0887204i
\(517\) 24.0014 28.6038i 1.05558 1.25799i
\(518\) −13.1215 2.68177i −0.576526 0.117830i
\(519\) 0.343968 + 7.61899i 0.0150985 + 0.334437i
\(520\) −6.48405 2.36000i −0.284344 0.103493i
\(521\) −33.1998 −1.45451 −0.727255 0.686367i \(-0.759204\pi\)
−0.727255 + 0.686367i \(0.759204\pi\)
\(522\) 8.05383 0.728683i 0.352506 0.0318936i
\(523\) 39.1939i 1.71383i −0.515458 0.856915i \(-0.672378\pi\)
0.515458 0.856915i \(-0.327622\pi\)
\(524\) −1.83123 10.3854i −0.0799976 0.453689i
\(525\) −7.06805 + 20.5666i −0.308475 + 0.897600i
\(526\) 7.72598 2.81203i 0.336869 0.122610i
\(527\) −2.40871 + 2.87059i −0.104925 + 0.125045i
\(528\) −3.20222 1.00444i −0.139359 0.0437127i
\(529\) −9.51906 3.46466i −0.413872 0.150637i
\(530\) 2.29460 0.0996712
\(531\) −6.71887 + 14.5209i −0.291574 + 0.630153i
\(532\) −16.4480 10.0995i −0.713110 0.437869i
\(533\) −17.5345 20.8968i −0.759502 0.905139i
\(534\) −9.66815 15.1264i −0.418382 0.654585i
\(535\) 5.20984 6.20885i 0.225241 0.268432i
\(536\) −8.70406 23.9142i −0.375958 1.03294i
\(537\) 0.673581 5.17562i 0.0290671 0.223345i
\(538\) 0.366394 1.00666i 0.0157964 0.0434002i
\(539\) 30.3275 15.3846i 1.30630 0.662663i
\(540\) 2.85779 0.915049i 0.122980 0.0393775i
\(541\) −22.2029 38.4566i −0.954578 1.65338i −0.735330 0.677709i \(-0.762973\pi\)
−0.219248 0.975669i \(-0.570360\pi\)
\(542\) 18.7212 15.7089i 0.804143 0.674756i
\(543\) 0.511469 3.92999i 0.0219492 0.168652i
\(544\) 25.6099 + 4.51571i 1.09801 + 0.193609i
\(545\) −1.26513 + 7.17490i −0.0541921 + 0.307339i
\(546\) −17.4414 9.65443i −0.746422 0.413172i
\(547\) 10.6883 8.96856i 0.456999 0.383468i −0.385026 0.922906i \(-0.625808\pi\)
0.842025 + 0.539438i \(0.181363\pi\)
\(548\) −14.7644 8.52420i −0.630702 0.364136i
\(549\) 21.4682 + 1.81411i 0.916239 + 0.0774242i
\(550\) −10.6587 18.4614i −0.454489 0.787197i
\(551\) −14.2281 + 11.9388i −0.606139 + 0.508611i
\(552\) 5.40811 17.2414i 0.230184 0.733843i
\(553\) −2.51722 + 12.3164i −0.107043 + 0.523746i
\(554\) 3.47147 + 9.53780i 0.147489 + 0.405222i
\(555\) −1.43129 + 4.56304i −0.0607548 + 0.193690i
\(556\) 4.19819 11.5344i 0.178043 0.489169i
\(557\) 10.3785 5.99202i 0.439750 0.253890i −0.263741 0.964593i \(-0.584957\pi\)
0.703492 + 0.710704i \(0.251623\pi\)
\(558\) 1.53508 1.54421i 0.0649852 0.0653716i
\(559\) 32.0816 18.5223i 1.35691 0.783410i
\(560\) −0.416803 + 0.330935i −0.0176132 + 0.0139845i
\(561\) 18.4956 35.6586i 0.780883 1.50551i
\(562\) −0.640634 + 0.233172i −0.0270235 + 0.00983576i
\(563\) −0.925935 + 0.337013i −0.0390235 + 0.0142034i −0.361458 0.932388i \(-0.617721\pi\)
0.322435 + 0.946592i \(0.395499\pi\)
\(564\) 9.26168 12.1072i 0.389987 0.509804i
\(565\) 0.761226 0.134225i 0.0320250 0.00564688i
\(566\) 8.51531 0.357925
\(567\) 23.5322 3.63821i 0.988259 0.152790i
\(568\) −37.9815 −1.59367
\(569\) 5.45358 0.961613i 0.228626 0.0403129i −0.0581614 0.998307i \(-0.518524\pi\)
0.286787 + 0.957994i \(0.407413\pi\)
\(570\) 3.12670 4.08733i 0.130963 0.171199i
\(571\) 12.4065 4.51560i 0.519196 0.188972i −0.0691118 0.997609i \(-0.522017\pi\)
0.588308 + 0.808637i \(0.299794\pi\)
\(572\) −24.5924 + 8.95091i −1.02826 + 0.374256i
\(573\) −10.4872 + 20.2189i −0.438111 + 0.844657i
\(574\) −14.0306 + 2.08411i −0.585626 + 0.0869891i
\(575\) 14.7440 8.51244i 0.614867 0.354993i
\(576\) −16.9204 4.48010i −0.705018 0.186671i
\(577\) 16.5747 9.56942i 0.690015 0.398380i −0.113603 0.993526i \(-0.536239\pi\)
0.803617 + 0.595146i \(0.202906\pi\)
\(578\) 1.83119 5.03114i 0.0761673 0.209268i
\(579\) −0.0194313 + 0.0619484i −0.000807539 + 0.00257449i
\(580\) −0.575799 1.58199i −0.0239087 0.0656887i
\(581\) 5.81223 + 5.15146i 0.241132 + 0.213719i
\(582\) 1.17657 3.75097i 0.0487702 0.155483i
\(583\) 18.3115 15.3652i 0.758386 0.636362i
\(584\) 14.1521 + 24.5121i 0.585616 + 1.01432i
\(585\) −4.06563 + 5.84312i −0.168093 + 0.241583i
\(586\) 18.1297 + 10.4672i 0.748932 + 0.432396i
\(587\) −20.7501 + 17.4114i −0.856450 + 0.718647i −0.961200 0.275852i \(-0.911040\pi\)
0.104750 + 0.994499i \(0.466596\pi\)
\(588\) 12.0850 6.83258i 0.498376 0.281771i
\(589\) −0.868419 + 4.92505i −0.0357826 + 0.202933i
\(590\) −2.44935 0.431887i −0.100838 0.0177805i
\(591\) 1.14368 8.78778i 0.0470449 0.361481i
\(592\) 1.67265 1.40352i 0.0687453 0.0576841i
\(593\) −21.3668 37.0083i −0.877428 1.51975i −0.854154 0.520020i \(-0.825924\pi\)
−0.0232738 0.999729i \(-0.507409\pi\)
\(594\) −12.4535 + 19.7413i −0.510974 + 0.809994i
\(595\) −3.03459 5.60091i −0.124406 0.229615i
\(596\) −0.834798 + 2.29359i −0.0341946 + 0.0939490i
\(597\) −1.38029 + 10.6058i −0.0564914 + 0.434065i
\(598\) 5.33766 + 14.6651i 0.218273 + 0.599701i
\(599\) 20.1380 23.9996i 0.822817 0.980595i −0.177176 0.984179i \(-0.556696\pi\)
0.999994 + 0.00358376i \(0.00114075\pi\)
\(600\) −12.8730 20.1407i −0.525539 0.822239i
\(601\) −3.68912 4.39652i −0.150482 0.179338i 0.685537 0.728038i \(-0.259567\pi\)
−0.836019 + 0.548700i \(0.815123\pi\)
\(602\) 0.521388 19.2556i 0.0212502 0.784798i
\(603\) −26.1469 + 2.36569i −1.06479 + 0.0963382i
\(604\) 7.61432 0.309822
\(605\) 5.97191 + 2.17360i 0.242793 + 0.0883694i
\(606\) −9.24028 2.89840i −0.375361 0.117739i
\(607\) −8.69875 + 10.3668i −0.353071 + 0.420774i −0.913123 0.407683i \(-0.866337\pi\)
0.560052 + 0.828457i \(0.310781\pi\)
\(608\) 32.6125 11.8700i 1.32261 0.481391i
\(609\) −2.55684 13.1124i −0.103609 0.531341i
\(610\) 0.581554 + 3.29816i 0.0235464 + 0.133539i
\(611\) 36.1609i 1.46291i
\(612\) 6.88637 14.8829i 0.278365 0.601606i
\(613\) 1.85353 0.0748633 0.0374316 0.999299i \(-0.488082\pi\)
0.0374316 + 0.999299i \(0.488082\pi\)
\(614\) 18.3869 + 6.69227i 0.742033 + 0.270078i
\(615\) 0.228431 + 5.05982i 0.00921124 + 0.204032i
\(616\) −7.48455 + 36.6208i −0.301561 + 1.47549i
\(617\) −30.5178 + 36.3698i −1.22860 + 1.46419i −0.388779 + 0.921331i \(0.627103\pi\)
−0.839823 + 0.542860i \(0.817341\pi\)
\(618\) 15.5326 + 2.02149i 0.624814 + 0.0813163i
\(619\) −1.98050 2.36027i −0.0796031 0.0948672i 0.724773 0.688988i \(-0.241945\pi\)
−0.804376 + 0.594121i \(0.797500\pi\)
\(620\) −0.392568 0.226649i −0.0157659 0.00910245i
\(621\) −15.7661 9.94585i −0.632673 0.399113i
\(622\) 7.66706i 0.307421i
\(623\) −23.2264 + 18.4414i −0.930548 + 0.738839i
\(624\) 3.00087 1.24822i 0.120131 0.0499686i
\(625\) 3.68990 20.9264i 0.147596 0.837058i
\(626\) −20.2584 16.9988i −0.809688 0.679409i
\(627\) −2.41780 53.5551i −0.0965578 2.13878i
\(628\) 0.232006 0.637432i 0.00925806 0.0254363i
\(629\) 13.0675 + 22.6335i 0.521033 + 0.902456i
\(630\) 1.48298 + 3.39138i 0.0590835 + 0.135116i
\(631\) 12.7919 22.1562i 0.509238 0.882026i −0.490705 0.871326i \(-0.663261\pi\)
0.999943 0.0106999i \(-0.00340596\pi\)
\(632\) −8.88153 10.5846i −0.353288 0.421033i
\(633\) 3.93851 + 4.28535i 0.156542 + 0.170328i
\(634\) −3.24407 + 18.3981i −0.128839 + 0.730680i
\(635\) −4.12395 3.46041i −0.163654 0.137322i
\(636\) 7.18496 6.60342i 0.284902 0.261843i
\(637\) −12.9220 + 30.2921i −0.511987 + 1.20022i
\(638\) 11.3409 + 6.54765i 0.448989 + 0.259224i
\(639\) −10.0290 + 37.8774i −0.396739 + 1.49840i
\(640\) 2.77375i 0.109642i
\(641\) −12.9851 + 2.28962i −0.512879 + 0.0904345i −0.424097 0.905617i \(-0.639409\pi\)
−0.0887820 + 0.996051i \(0.528297\pi\)
\(642\) 1.16077 + 25.7114i 0.0458119 + 1.01475i
\(643\) −39.9985 7.05281i −1.57739 0.278136i −0.684703 0.728822i \(-0.740068\pi\)
−0.892682 + 0.450686i \(0.851179\pi\)
\(644\) −10.6480 2.17625i −0.419591 0.0857561i
\(645\) −6.82072 0.887681i −0.268566 0.0349524i
\(646\) −4.88359 27.6962i −0.192142 1.08969i
\(647\) −20.0184 + 34.6729i −0.787006 + 1.36313i 0.140788 + 0.990040i \(0.455036\pi\)
−0.927794 + 0.373094i \(0.878297\pi\)
\(648\) −12.9516 + 22.7431i −0.508785 + 0.893434i
\(649\) −22.4385 + 12.9549i −0.880787 + 0.508523i
\(650\) 19.3995 + 7.06083i 0.760910 + 0.276949i
\(651\) −2.79680 2.26207i −0.109615 0.0886573i
\(652\) −16.4690 13.8191i −0.644974 0.541198i
\(653\) −4.72454 12.9806i −0.184885 0.507968i 0.812275 0.583275i \(-0.198229\pi\)
−0.997160 + 0.0753061i \(0.976007\pi\)
\(654\) −12.4595 19.4936i −0.487204 0.762262i
\(655\) −0.806587 4.57438i −0.0315160 0.178736i
\(656\) 1.15629 2.00275i 0.0451454 0.0781941i
\(657\) 28.1817 7.64088i 1.09947 0.298099i
\(658\) 16.0235 + 9.83887i 0.624662 + 0.383559i
\(659\) 36.6031 6.45411i 1.42585 0.251417i 0.593131 0.805106i \(-0.297892\pi\)
0.832723 + 0.553690i \(0.186781\pi\)
\(660\) 4.63649 + 1.45433i 0.180475 + 0.0566097i
\(661\) 44.4693 + 7.84114i 1.72966 + 0.304985i 0.947893 0.318589i \(-0.103209\pi\)
0.781764 + 0.623575i \(0.214320\pi\)
\(662\) −13.6067 2.39922i −0.528838 0.0932484i
\(663\) 8.47619 + 37.9672i 0.329188 + 1.47452i
\(664\) −8.40682 + 1.48235i −0.326248 + 0.0575263i
\(665\) −7.24471 4.44845i −0.280938 0.172503i
\(666\) −6.45863 13.7441i −0.250267 0.532571i
\(667\) −5.22921 + 9.05725i −0.202476 + 0.350698i
\(668\) 2.74724 + 15.5804i 0.106294 + 0.602823i
\(669\) −11.4476 + 0.516813i −0.442589 + 0.0199812i
\(670\) −1.39580 3.83493i −0.0539244 0.148156i
\(671\) 26.7262 + 22.4259i 1.03175 + 0.865744i
\(672\) −3.89043 + 24.6576i −0.150076 + 0.951187i
\(673\) 4.43681 + 1.61487i 0.171026 + 0.0622485i 0.426114 0.904669i \(-0.359882\pi\)
−0.255088 + 0.966918i \(0.582104\pi\)
\(674\) 8.94268 5.16306i 0.344459 0.198874i
\(675\) −23.4846 + 7.51963i −0.903921 + 0.289431i
\(676\) 5.22961 9.05794i 0.201139 0.348382i
\(677\) −1.83606 10.4128i −0.0705656 0.400197i −0.999548 0.0300728i \(-0.990426\pi\)
0.928982 0.370125i \(-0.120685\pi\)
\(678\) −1.49135 + 1.94954i −0.0572749 + 0.0748717i
\(679\) −6.36280 1.30043i −0.244182 0.0499059i
\(680\) 6.89530 + 1.21583i 0.264423 + 0.0466248i
\(681\) 15.2980 9.77781i 0.586221 0.374686i
\(682\) 3.47242 0.612281i 0.132966 0.0234455i
\(683\) 9.29154i 0.355531i 0.984073 + 0.177765i \(0.0568868\pi\)
−0.984073 + 0.177765i \(0.943113\pi\)
\(684\) −1.97207 21.7964i −0.0754040 0.833408i
\(685\) −6.50314 3.75459i −0.248472 0.143456i
\(686\) 9.90706 + 13.9680i 0.378253 + 0.533300i
\(687\) 6.59288 + 29.5314i 0.251534 + 1.12669i
\(688\) 2.40574 + 2.01866i 0.0917181 + 0.0769606i
\(689\) −4.01986 + 22.7978i −0.153144 + 0.868526i
\(690\) 0.867254 2.76486i 0.0330158 0.105257i
\(691\) −6.66743 7.94594i −0.253641 0.302278i 0.624166 0.781292i \(-0.285439\pi\)
−0.877807 + 0.479014i \(0.840994\pi\)
\(692\) −2.52096 + 4.36643i −0.0958325 + 0.165987i
\(693\) 34.5441 + 17.1337i 1.31222 + 0.650855i
\(694\) 8.41286 + 14.5715i 0.319348 + 0.553126i
\(695\) 1.84915 5.08049i 0.0701421 0.192714i
\(696\) 13.0347 + 6.76089i 0.494078 + 0.256271i
\(697\) 21.2041 + 17.7924i 0.803163 + 0.673934i
\(698\) −4.10315 + 23.2701i −0.155306 + 0.880787i
\(699\) 14.1302 + 10.8093i 0.534454 + 0.408844i
\(700\) −11.2593 + 8.93971i −0.425563 + 0.337889i
\(701\) 32.6042i 1.23144i −0.787964 0.615721i \(-0.788865\pi\)
0.787964 0.615721i \(-0.211135\pi\)
\(702\) −3.05008 22.3976i −0.115118 0.845343i
\(703\) 30.2060 + 17.4395i 1.13924 + 0.657742i
\(704\) −18.2195 21.7131i −0.686672 0.818344i
\(705\) 4.07942 5.33275i 0.153640 0.200843i
\(706\) −7.62264 + 9.08431i −0.286882 + 0.341892i
\(707\) −3.20353 + 15.6744i −0.120481 + 0.589495i
\(708\) −8.91240 + 5.69641i −0.334948 + 0.214084i
\(709\) 11.3943 + 4.14720i 0.427923 + 0.155751i 0.546998 0.837134i \(-0.315771\pi\)
−0.119075 + 0.992885i \(0.537993\pi\)
\(710\) −6.09078 −0.228583
\(711\) −12.9007 + 6.06234i −0.483815 + 0.227355i
\(712\) 32.5973i 1.22164i
\(713\) 0.488991 + 2.77321i 0.0183129 + 0.103857i
\(714\) 19.1302 + 6.57439i 0.715929 + 0.246040i
\(715\) −10.8320 + 3.94254i −0.405095 + 0.147443i
\(716\) 2.21786 2.64314i 0.0828852 0.0987788i
\(717\) 8.48971 + 38.0278i 0.317054 + 1.42017i
\(718\) −18.6279 6.77999i −0.695186 0.253027i
\(719\) −10.2736 −0.383139 −0.191570 0.981479i \(-0.561358\pi\)
−0.191570 + 0.981479i \(0.561358\pi\)
\(720\) −0.583362 0.154459i −0.0217406 0.00575636i
\(721\) 0.700407 25.8670i 0.0260845 0.963337i
\(722\) −12.8330 15.2937i −0.477593 0.569173i
\(723\) −14.8157 + 0.668872i −0.551002 + 0.0248756i
\(724\) 1.68408 2.00701i 0.0625884 0.0745899i
\(725\) 4.73176 + 13.0004i 0.175733 + 0.482822i
\(726\) −18.6331 + 7.75048i −0.691541 + 0.287647i
\(727\) −12.1820 + 33.4698i −0.451806 + 1.24133i 0.479646 + 0.877462i \(0.340765\pi\)
−0.931452 + 0.363865i \(0.881457\pi\)
\(728\) −17.2438 31.8267i −0.639098 1.17958i
\(729\) 19.2609 + 18.9213i 0.713367 + 0.700790i
\(730\) 2.26945 + 3.93080i 0.0839961 + 0.145485i
\(731\) −28.7952 + 24.1621i −1.06503 + 0.893666i
\(732\) 11.3124 + 8.65373i 0.418120 + 0.319851i
\(733\) 9.19455 + 1.62125i 0.339608 + 0.0598821i 0.340852 0.940117i \(-0.389285\pi\)
−0.00124322 + 0.999999i \(0.500396\pi\)
\(734\) −1.11902 + 6.34628i −0.0413038 + 0.234246i
\(735\) 5.32298 3.00950i 0.196341 0.111007i
\(736\) 14.9701 12.5614i 0.551804 0.463019i
\(737\) −36.8184 21.2571i −1.35622 0.783016i
\(738\) −11.4066 11.3392i −0.419883 0.417400i
\(739\) 24.9361 + 43.1905i 0.917288 + 1.58879i 0.803517 + 0.595282i \(0.202959\pi\)
0.113770 + 0.993507i \(0.463707\pi\)
\(740\) −2.42182 + 2.03215i −0.0890279 + 0.0747033i
\(741\) 35.1316 + 38.2255i 1.29059 + 1.40425i
\(742\) 9.00833 + 7.98422i 0.330706 + 0.293110i
\(743\) −13.7749 37.8461i −0.505350 1.38844i −0.885985 0.463713i \(-0.846517\pi\)
0.380635 0.924725i \(-0.375705\pi\)
\(744\) 3.85869 0.861454i 0.141467 0.0315824i
\(745\) −0.367697 + 1.01024i −0.0134714 + 0.0370123i
\(746\) −9.24992 + 5.34044i −0.338664 + 0.195527i
\(747\) −0.741523 + 8.77518i −0.0271309 + 0.321067i
\(748\) 22.9979 13.2778i 0.840885 0.485485i
\(749\) 42.0573 6.24721i 1.53674 0.228268i
\(750\) −4.23933 6.63270i −0.154799 0.242192i
\(751\) −38.2116 + 13.9079i −1.39436 + 0.507506i −0.926500 0.376295i \(-0.877198\pi\)
−0.467862 + 0.883801i \(0.654976\pi\)
\(752\) −2.88068 + 1.04848i −0.105048 + 0.0382342i
\(753\) 30.6023 + 3.98273i 1.11521 + 0.145139i
\(754\) −12.4893 + 2.20220i −0.454833 + 0.0801992i
\(755\) 3.35382 0.122058
\(756\) 14.4033 + 6.35149i 0.523843 + 0.231002i
\(757\) 38.9341 1.41508 0.707542 0.706671i \(-0.249804\pi\)
0.707542 + 0.706671i \(0.249804\pi\)
\(758\) −5.88650 + 1.03795i −0.213807 + 0.0377000i
\(759\) −11.5932 27.8717i −0.420808 1.01168i
\(760\) 8.78071 3.19592i 0.318510 0.115928i
\(761\) 35.9569 13.0872i 1.30344 0.474412i 0.405322 0.914174i \(-0.367159\pi\)
0.898115 + 0.439761i \(0.144937\pi\)
\(762\) 17.0776 0.770989i 0.618658 0.0279300i
\(763\) −29.9322 + 23.7657i −1.08362 + 0.860375i
\(764\) −13.0401 + 7.52871i −0.471775 + 0.272379i
\(765\) 3.03319 6.55536i 0.109665 0.237009i
\(766\) 1.86345 1.07586i 0.0673291 0.0388724i
\(767\) 8.58192 23.5786i