Properties

Label 189.2.bd.a.185.4
Level $189$
Weight $2$
Character 189.185
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(47,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([7, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.47");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.bd (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 185.4
Character \(\chi\) \(=\) 189.185
Dual form 189.2.bd.a.47.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.06025 + 0.363278i) q^{2} +(-1.46652 + 0.921586i) q^{3} +(2.23328 - 0.812849i) q^{4} +(0.338534 - 0.123216i) q^{5} +(2.68661 - 2.43145i) q^{6} +(1.84499 - 1.89632i) q^{7} +(-0.682329 + 0.393943i) q^{8} +(1.30136 - 2.70305i) q^{9} +O(q^{10})\) \(q+(-2.06025 + 0.363278i) q^{2} +(-1.46652 + 0.921586i) q^{3} +(2.23328 - 0.812849i) q^{4} +(0.338534 - 0.123216i) q^{5} +(2.68661 - 2.43145i) q^{6} +(1.84499 - 1.89632i) q^{7} +(-0.682329 + 0.393943i) q^{8} +(1.30136 - 2.70305i) q^{9} +(-0.652704 + 0.376839i) q^{10} +(-2.14028 + 5.88038i) q^{11} +(-2.52605 + 3.25022i) q^{12} +(0.429890 + 1.18111i) q^{13} +(-3.11225 + 4.57714i) q^{14} +(-0.382913 + 0.492688i) q^{15} +(-2.37852 + 1.99582i) q^{16} +(-0.468609 - 0.811655i) q^{17} +(-1.69917 + 6.04172i) q^{18} +(6.61941 + 3.82172i) q^{19} +(0.655887 - 0.550354i) q^{20} +(-0.958091 + 4.48130i) q^{21} +(2.27331 - 12.8926i) q^{22} +(1.68421 + 0.296971i) q^{23} +(0.637596 - 1.20655i) q^{24} +(-3.73080 + 3.13051i) q^{25} +(-1.31476 - 2.27722i) q^{26} +(0.582620 + 5.16339i) q^{27} +(2.57896 - 5.73471i) q^{28} +(-0.731568 + 2.00997i) q^{29} +(0.609914 - 1.15416i) q^{30} +(1.98478 + 5.45314i) q^{31} +(5.18821 - 6.18306i) q^{32} +(-2.28051 - 10.5962i) q^{33} +(1.26031 + 1.50198i) q^{34} +(0.390934 - 0.869301i) q^{35} +(0.709137 - 7.09448i) q^{36} -3.33513 q^{37} +(-15.0260 - 5.46902i) q^{38} +(-1.71894 - 1.33595i) q^{39} +(-0.182451 + 0.217437i) q^{40} +(8.66669 - 3.15442i) q^{41} +(0.345950 - 9.58067i) q^{42} +(-0.688669 - 3.90564i) q^{43} +14.8723i q^{44} +(0.107495 - 1.07542i) q^{45} -3.57777 q^{46} +(4.74048 + 1.72539i) q^{47} +(1.64883 - 5.11892i) q^{48} +(-0.192044 - 6.99737i) q^{49} +(6.54914 - 7.80496i) q^{50} +(1.43524 + 0.758445i) q^{51} +(1.92013 + 2.28833i) q^{52} +(3.01037 + 1.73804i) q^{53} +(-3.07609 - 10.4262i) q^{54} +2.25443i q^{55} +(-0.511847 + 2.02073i) q^{56} +(-13.2295 + 0.495729i) q^{57} +(0.777037 - 4.40680i) q^{58} +(4.89583 + 4.10809i) q^{59} +(-0.454672 + 1.41156i) q^{60} +(-3.57768 + 9.82960i) q^{61} +(-6.07015 - 10.5138i) q^{62} +(-2.72484 - 7.45488i) q^{63} +(-5.33790 + 9.24552i) q^{64} +(0.291065 + 0.346878i) q^{65} +(8.54777 + 21.0023i) q^{66} +(-0.0504771 + 0.286270i) q^{67} +(-1.70629 - 1.43175i) q^{68} +(-2.74361 + 1.11663i) q^{69} +(-0.489624 + 1.93300i) q^{70} +(-4.18316 - 2.41515i) q^{71} +(0.176891 + 2.35703i) q^{72} -3.69086i q^{73} +(6.87121 - 1.21158i) q^{74} +(2.58625 - 8.02921i) q^{75} +(17.8895 + 3.15440i) q^{76} +(7.20228 + 14.9079i) q^{77} +(4.02677 + 2.12793i) q^{78} +(1.79265 + 10.1666i) q^{79} +(-0.559294 + 0.968725i) q^{80} +(-5.61293 - 7.03527i) q^{81} +(-16.7096 + 9.64732i) q^{82} +(-6.06917 - 2.20900i) q^{83} +(1.50293 + 10.7868i) q^{84} +(-0.258650 - 0.217033i) q^{85} +(2.83766 + 7.79642i) q^{86} +(-0.779497 - 3.62186i) q^{87} +(-0.856156 - 4.85550i) q^{88} +(2.56195 - 4.43743i) q^{89} +(0.169211 + 2.25469i) q^{90} +(3.03291 + 1.36393i) q^{91} +(4.00271 - 0.705785i) q^{92} +(-7.93625 - 6.16799i) q^{93} +(-10.3934 - 1.83263i) q^{94} +(2.71179 + 0.478163i) q^{95} +(-1.91038 + 13.8490i) q^{96} +(7.91567 - 1.39575i) q^{97} +(2.93765 + 14.3466i) q^{98} +(13.1097 + 13.4378i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} + 18 q^{6} - 6 q^{7} - 18 q^{8} - 15 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} + 18 q^{6} - 6 q^{7} - 18 q^{8} - 15 q^{9} - 9 q^{10} + 9 q^{11} - 9 q^{12} - 42 q^{14} - 24 q^{15} - 15 q^{16} - 9 q^{17} - 3 q^{18} - 9 q^{19} - 18 q^{20} + 15 q^{21} - 12 q^{22} + 30 q^{23} - 36 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} - 3 q^{30} - 9 q^{31} - 51 q^{32} - 9 q^{33} + 18 q^{34} - 9 q^{35} - 6 q^{37} - 9 q^{38} - 9 q^{39} - 9 q^{40} + 27 q^{42} - 12 q^{43} - 63 q^{45} - 6 q^{46} + 45 q^{47} + 30 q^{49} - 9 q^{50} + 33 q^{51} - 9 q^{52} + 45 q^{53} + 117 q^{54} - 51 q^{56} - 3 q^{58} - 9 q^{59} - 15 q^{60} - 63 q^{61} + 99 q^{62} - 33 q^{63} + 18 q^{64} - 102 q^{65} + 63 q^{66} - 3 q^{67} + 144 q^{68} - 108 q^{69} - 15 q^{70} + 18 q^{71} + 15 q^{72} - 33 q^{74} - 9 q^{75} - 36 q^{76} - 57 q^{77} + 66 q^{78} - 21 q^{79} - 72 q^{80} + 57 q^{81} - 18 q^{82} + 90 q^{83} + 51 q^{84} + 9 q^{85} - 33 q^{86} - 9 q^{87} + 45 q^{88} - 9 q^{89} - 81 q^{90} - 21 q^{91} + 150 q^{92} - 87 q^{93} - 9 q^{94} + 27 q^{95} - 9 q^{96} - 180 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.06025 + 0.363278i −1.45682 + 0.256876i −0.845274 0.534333i \(-0.820563\pi\)
−0.611545 + 0.791210i \(0.709452\pi\)
\(3\) −1.46652 + 0.921586i −0.846695 + 0.532078i
\(4\) 2.23328 0.812849i 1.11664 0.406425i
\(5\) 0.338534 0.123216i 0.151397 0.0551040i −0.265210 0.964191i \(-0.585441\pi\)
0.416607 + 0.909087i \(0.363219\pi\)
\(6\) 2.68661 2.43145i 1.09680 0.992637i
\(7\) 1.84499 1.89632i 0.697340 0.716741i
\(8\) −0.682329 + 0.393943i −0.241240 + 0.139280i
\(9\) 1.30136 2.70305i 0.433787 0.901016i
\(10\) −0.652704 + 0.376839i −0.206403 + 0.119167i
\(11\) −2.14028 + 5.88038i −0.645320 + 1.77300i −0.0109905 + 0.999940i \(0.503498\pi\)
−0.634330 + 0.773063i \(0.718724\pi\)
\(12\) −2.52605 + 3.25022i −0.729207 + 0.938258i
\(13\) 0.429890 + 1.18111i 0.119230 + 0.327582i 0.984923 0.172994i \(-0.0553440\pi\)
−0.865693 + 0.500576i \(0.833122\pi\)
\(14\) −3.11225 + 4.57714i −0.831784 + 1.22329i
\(15\) −0.382913 + 0.492688i −0.0988676 + 0.127211i
\(16\) −2.37852 + 1.99582i −0.594631 + 0.498954i
\(17\) −0.468609 0.811655i −0.113654 0.196855i 0.803587 0.595188i \(-0.202922\pi\)
−0.917241 + 0.398332i \(0.869589\pi\)
\(18\) −1.69917 + 6.04172i −0.400499 + 1.42405i
\(19\) 6.61941 + 3.82172i 1.51860 + 0.876762i 0.999760 + 0.0218885i \(0.00696789\pi\)
0.518836 + 0.854874i \(0.326365\pi\)
\(20\) 0.655887 0.550354i 0.146661 0.123063i
\(21\) −0.958091 + 4.48130i −0.209073 + 0.977900i
\(22\) 2.27331 12.8926i 0.484672 2.74871i
\(23\) 1.68421 + 0.296971i 0.351181 + 0.0619228i 0.346456 0.938066i \(-0.387385\pi\)
0.00472501 + 0.999989i \(0.498496\pi\)
\(24\) 0.637596 1.20655i 0.130149 0.246286i
\(25\) −3.73080 + 3.13051i −0.746160 + 0.626102i
\(26\) −1.31476 2.27722i −0.257845 0.446600i
\(27\) 0.582620 + 5.16339i 0.112125 + 0.993694i
\(28\) 2.57896 5.73471i 0.487378 1.08376i
\(29\) −0.731568 + 2.00997i −0.135849 + 0.373241i −0.988899 0.148587i \(-0.952528\pi\)
0.853051 + 0.521828i \(0.174750\pi\)
\(30\) 0.609914 1.15416i 0.111355 0.210721i
\(31\) 1.98478 + 5.45314i 0.356477 + 0.979412i 0.980242 + 0.197801i \(0.0633799\pi\)
−0.623765 + 0.781612i \(0.714398\pi\)
\(32\) 5.18821 6.18306i 0.917154 1.09302i
\(33\) −2.28051 10.5962i −0.396986 1.84455i
\(34\) 1.26031 + 1.50198i 0.216141 + 0.257587i
\(35\) 0.390934 0.869301i 0.0660799 0.146939i
\(36\) 0.709137 7.09448i 0.118189 1.18241i
\(37\) −3.33513 −0.548292 −0.274146 0.961688i \(-0.588395\pi\)
−0.274146 + 0.961688i \(0.588395\pi\)
\(38\) −15.0260 5.46902i −2.43754 0.887192i
\(39\) −1.71894 1.33595i −0.275251 0.213923i
\(40\) −0.182451 + 0.217437i −0.0288481 + 0.0343798i
\(41\) 8.66669 3.15442i 1.35351 0.492637i 0.439468 0.898258i \(-0.355167\pi\)
0.914041 + 0.405621i \(0.132945\pi\)
\(42\) 0.345950 9.58067i 0.0533812 1.47833i
\(43\) −0.688669 3.90564i −0.105021 0.595604i −0.991212 0.132284i \(-0.957769\pi\)
0.886191 0.463320i \(-0.153342\pi\)
\(44\) 14.8723i 2.24208i
\(45\) 0.107495 1.07542i 0.0160244 0.160315i
\(46\) −3.57777 −0.527514
\(47\) 4.74048 + 1.72539i 0.691470 + 0.251674i 0.663764 0.747942i \(-0.268958\pi\)
0.0277052 + 0.999616i \(0.491180\pi\)
\(48\) 1.64883 5.11892i 0.237989 0.738852i
\(49\) −0.192044 6.99737i −0.0274348 0.999624i
\(50\) 6.54914 7.80496i 0.926189 1.10379i
\(51\) 1.43524 + 0.758445i 0.200973 + 0.106204i
\(52\) 1.92013 + 2.28833i 0.266275 + 0.317334i
\(53\) 3.01037 + 1.73804i 0.413506 + 0.238738i 0.692295 0.721614i \(-0.256600\pi\)
−0.278789 + 0.960352i \(0.589933\pi\)
\(54\) −3.07609 10.4262i −0.418603 1.41883i
\(55\) 2.25443i 0.303987i
\(56\) −0.511847 + 2.02073i −0.0683984 + 0.270032i
\(57\) −13.2295 + 0.495729i −1.75229 + 0.0656609i
\(58\) 0.777037 4.40680i 0.102030 0.578641i
\(59\) 4.89583 + 4.10809i 0.637383 + 0.534828i 0.903213 0.429192i \(-0.141202\pi\)
−0.265830 + 0.964020i \(0.585646\pi\)
\(60\) −0.454672 + 1.41156i −0.0586979 + 0.182232i
\(61\) −3.57768 + 9.82960i −0.458075 + 1.25855i 0.468840 + 0.883283i \(0.344672\pi\)
−0.926916 + 0.375269i \(0.877550\pi\)
\(62\) −6.07015 10.5138i −0.770910 1.33526i
\(63\) −2.72484 7.45488i −0.343298 0.939226i
\(64\) −5.33790 + 9.24552i −0.667238 + 1.15569i
\(65\) 0.291065 + 0.346878i 0.0361022 + 0.0430249i
\(66\) 8.54777 + 21.0023i 1.05216 + 2.58520i
\(67\) −0.0504771 + 0.286270i −0.00616676 + 0.0349734i −0.987736 0.156134i \(-0.950097\pi\)
0.981569 + 0.191108i \(0.0612079\pi\)
\(68\) −1.70629 1.43175i −0.206918 0.173625i
\(69\) −2.74361 + 1.11663i −0.330291 + 0.134426i
\(70\) −0.489624 + 1.93300i −0.0585213 + 0.231037i
\(71\) −4.18316 2.41515i −0.496450 0.286625i 0.230797 0.973002i \(-0.425867\pi\)
−0.727246 + 0.686377i \(0.759200\pi\)
\(72\) 0.176891 + 2.35703i 0.0208467 + 0.277778i
\(73\) 3.69086i 0.431983i −0.976395 0.215992i \(-0.930702\pi\)
0.976395 0.215992i \(-0.0692984\pi\)
\(74\) 6.87121 1.21158i 0.798762 0.140843i
\(75\) 2.58625 8.02921i 0.298635 0.927133i
\(76\) 17.8895 + 3.15440i 2.05207 + 0.361835i
\(77\) 7.20228 + 14.9079i 0.820776 + 1.69891i
\(78\) 4.02677 + 2.12793i 0.455942 + 0.240941i
\(79\) 1.79265 + 10.1666i 0.201689 + 1.14384i 0.902565 + 0.430553i \(0.141682\pi\)
−0.700876 + 0.713283i \(0.747207\pi\)
\(80\) −0.559294 + 0.968725i −0.0625309 + 0.108307i
\(81\) −5.61293 7.03527i −0.623659 0.781697i
\(82\) −16.7096 + 9.64732i −1.84527 + 1.06537i
\(83\) −6.06917 2.20900i −0.666178 0.242469i −0.0132766 0.999912i \(-0.504226\pi\)
−0.652901 + 0.757443i \(0.726448\pi\)
\(84\) 1.50293 + 10.7868i 0.163983 + 1.17694i
\(85\) −0.258650 0.217033i −0.0280545 0.0235405i
\(86\) 2.83766 + 7.79642i 0.305993 + 0.840709i
\(87\) −0.779497 3.62186i −0.0835709 0.388304i
\(88\) −0.856156 4.85550i −0.0912665 0.517598i
\(89\) 2.56195 4.43743i 0.271566 0.470367i −0.697697 0.716393i \(-0.745792\pi\)
0.969263 + 0.246026i \(0.0791250\pi\)
\(90\) 0.169211 + 2.25469i 0.0178364 + 0.237666i
\(91\) 3.03291 + 1.36393i 0.317935 + 0.142979i
\(92\) 4.00271 0.705785i 0.417311 0.0735832i
\(93\) −7.93625 6.16799i −0.822951 0.639591i
\(94\) −10.3934 1.83263i −1.07199 0.189022i
\(95\) 2.71179 + 0.478163i 0.278224 + 0.0490584i
\(96\) −1.91038 + 13.8490i −0.194978 + 1.41345i
\(97\) 7.91567 1.39575i 0.803714 0.141717i 0.243324 0.969945i \(-0.421762\pi\)
0.560390 + 0.828229i \(0.310651\pi\)
\(98\) 2.93765 + 14.3466i 0.296747 + 1.44922i
\(99\) 13.1097 + 13.4378i 1.31757 + 1.35055i
\(100\) −5.78730 + 10.0239i −0.578730 + 1.00239i
\(101\) −2.47268 14.0233i −0.246041 1.39537i −0.818062 0.575130i \(-0.804952\pi\)
0.572021 0.820239i \(-0.306160\pi\)
\(102\) −3.23247 1.04120i −0.320063 0.103094i
\(103\) −2.18829 6.01227i −0.215618 0.592406i 0.783979 0.620787i \(-0.213187\pi\)
−0.999597 + 0.0283812i \(0.990965\pi\)
\(104\) −0.758617 0.636556i −0.0743886 0.0624194i
\(105\) 0.227823 + 1.63513i 0.0222333 + 0.159572i
\(106\) −6.83352 2.48720i −0.663730 0.241578i
\(107\) 2.81413 1.62474i 0.272053 0.157070i −0.357767 0.933811i \(-0.616462\pi\)
0.629820 + 0.776741i \(0.283129\pi\)
\(108\) 5.49821 + 11.0577i 0.529066 + 1.06403i
\(109\) 6.30335 10.9177i 0.603751 1.04573i −0.388496 0.921450i \(-0.627005\pi\)
0.992247 0.124278i \(-0.0396613\pi\)
\(110\) −0.818985 4.64469i −0.0780871 0.442854i
\(111\) 4.89103 3.07361i 0.464236 0.291734i
\(112\) −0.603640 + 8.19269i −0.0570386 + 0.774137i
\(113\) −14.5530 2.56609i −1.36903 0.241397i −0.559674 0.828713i \(-0.689074\pi\)
−0.809358 + 0.587315i \(0.800185\pi\)
\(114\) 27.0761 5.82733i 2.53591 0.545779i
\(115\) 0.606753 0.106987i 0.0565800 0.00997659i
\(116\) 5.08348i 0.471989i
\(117\) 3.75205 + 0.375040i 0.346877 + 0.0346725i
\(118\) −11.5790 6.68515i −1.06594 0.615418i
\(119\) −2.40374 0.608861i −0.220350 0.0558142i
\(120\) 0.0671816 0.487020i 0.00613281 0.0444587i
\(121\) −21.5716 18.1007i −1.96105 1.64552i
\(122\) 3.80005 21.5512i 0.344041 1.95115i
\(123\) −9.80281 + 12.6131i −0.883889 + 1.13729i
\(124\) 8.86515 + 10.5651i 0.796114 + 0.948772i
\(125\) −1.77792 + 3.07945i −0.159022 + 0.275435i
\(126\) 8.32206 + 14.3691i 0.741388 + 1.28010i
\(127\) 7.01123 + 12.1438i 0.622146 + 1.07759i 0.989085 + 0.147344i \(0.0470724\pi\)
−0.366939 + 0.930245i \(0.619594\pi\)
\(128\) 2.11756 5.81795i 0.187168 0.514239i
\(129\) 4.60933 + 5.09302i 0.405828 + 0.448416i
\(130\) −0.725681 0.608918i −0.0636464 0.0534057i
\(131\) 0.455349 2.58241i 0.0397841 0.225627i −0.958433 0.285318i \(-0.907901\pi\)
0.998217 + 0.0596917i \(0.0190118\pi\)
\(132\) −13.7061 21.8105i −1.19296 1.89836i
\(133\) 19.4599 5.50148i 1.68739 0.477039i
\(134\) 0.608125i 0.0525340i
\(135\) 0.833451 + 1.67619i 0.0717320 + 0.144264i
\(136\) 0.639491 + 0.369210i 0.0548359 + 0.0316595i
\(137\) −6.26152 7.46219i −0.534958 0.637538i 0.429092 0.903261i \(-0.358834\pi\)
−0.964049 + 0.265723i \(0.914389\pi\)
\(138\) 5.24688 3.29723i 0.446644 0.280679i
\(139\) −0.0836111 + 0.0996438i −0.00709180 + 0.00845168i −0.769579 0.638552i \(-0.779534\pi\)
0.762487 + 0.647004i \(0.223978\pi\)
\(140\) 0.166456 2.25917i 0.0140681 0.190934i
\(141\) −8.54210 + 1.83843i −0.719374 + 0.154824i
\(142\) 9.49573 + 3.45616i 0.796864 + 0.290035i
\(143\) −7.86549 −0.657745
\(144\) 2.29947 + 9.02653i 0.191623 + 0.752211i
\(145\) 0.770583i 0.0639934i
\(146\) 1.34081 + 7.60411i 0.110966 + 0.629321i
\(147\) 6.73031 + 10.0848i 0.555106 + 0.831779i
\(148\) −7.44829 + 2.71096i −0.612246 + 0.222839i
\(149\) −9.24727 + 11.0205i −0.757566 + 0.902832i −0.997691 0.0679097i \(-0.978367\pi\)
0.240125 + 0.970742i \(0.422811\pi\)
\(150\) −2.41150 + 17.4817i −0.196898 + 1.42738i
\(151\) −19.0335 6.92763i −1.54892 0.563762i −0.580759 0.814075i \(-0.697244\pi\)
−0.968165 + 0.250313i \(0.919466\pi\)
\(152\) −6.02215 −0.488461
\(153\) −2.80377 + 0.210418i −0.226672 + 0.0170113i
\(154\) −20.2542 28.0976i −1.63213 2.26417i
\(155\) 1.34383 + 1.60152i 0.107939 + 0.128637i
\(156\) −4.92480 1.58631i −0.394300 0.127006i
\(157\) 2.54977 3.03870i 0.203494 0.242515i −0.654640 0.755941i \(-0.727180\pi\)
0.858134 + 0.513426i \(0.171624\pi\)
\(158\) −7.38664 20.2946i −0.587649 1.61455i
\(159\) −6.01652 + 0.225447i −0.477141 + 0.0178791i
\(160\) 0.994530 2.73245i 0.0786245 0.216019i
\(161\) 3.67049 2.64588i 0.289275 0.208525i
\(162\) 14.1198 + 12.4554i 1.10936 + 0.978587i
\(163\) −8.65872 14.9973i −0.678203 1.17468i −0.975522 0.219904i \(-0.929426\pi\)
0.297318 0.954778i \(-0.403908\pi\)
\(164\) 16.7911 14.0894i 1.31117 1.10020i
\(165\) −2.07765 3.30616i −0.161745 0.257385i
\(166\) 13.3065 + 2.34630i 1.03279 + 0.182108i
\(167\) −2.13178 + 12.0899i −0.164962 + 0.935548i 0.784141 + 0.620583i \(0.213104\pi\)
−0.949103 + 0.314965i \(0.898007\pi\)
\(168\) −1.11164 3.43515i −0.0857651 0.265028i
\(169\) 8.74835 7.34074i 0.672950 0.564672i
\(170\) 0.611727 + 0.353181i 0.0469173 + 0.0270877i
\(171\) 18.9445 12.9191i 1.44872 0.987952i
\(172\) −4.71269 8.16261i −0.359339 0.622393i
\(173\) 16.1769 13.5741i 1.22991 1.03202i 0.231664 0.972796i \(-0.425583\pi\)
0.998245 0.0592207i \(-0.0188616\pi\)
\(174\) 2.92170 + 7.17876i 0.221494 + 0.544221i
\(175\) −0.946831 + 12.8505i −0.0715737 + 0.971409i
\(176\) −6.64546 18.2582i −0.500920 1.37627i
\(177\) −10.9658 1.51267i −0.824239 0.113699i
\(178\) −3.66625 + 10.0729i −0.274797 + 0.754998i
\(179\) 8.13538 4.69697i 0.608067 0.351068i −0.164141 0.986437i \(-0.552485\pi\)
0.772209 + 0.635369i \(0.219152\pi\)
\(180\) −0.634089 2.48910i −0.0472622 0.185527i
\(181\) 8.05463 4.65035i 0.598696 0.345657i −0.169832 0.985473i \(-0.554323\pi\)
0.768529 + 0.639816i \(0.220989\pi\)
\(182\) −6.74405 1.70825i −0.499902 0.126624i
\(183\) −3.81208 17.7125i −0.281797 1.30934i
\(184\) −1.26617 + 0.460849i −0.0933434 + 0.0339742i
\(185\) −1.12906 + 0.410943i −0.0830098 + 0.0302131i
\(186\) 18.5914 + 9.82455i 1.36319 + 0.720371i
\(187\) 5.77580 1.01843i 0.422369 0.0744750i
\(188\) 11.9893 0.874411
\(189\) 10.8663 + 8.42155i 0.790411 + 0.612578i
\(190\) −5.76069 −0.417924
\(191\) 8.98811 1.58485i 0.650357 0.114675i 0.161270 0.986910i \(-0.448441\pi\)
0.489087 + 0.872235i \(0.337330\pi\)
\(192\) −0.692399 18.4781i −0.0499696 1.33354i
\(193\) 3.29363 1.19878i 0.237081 0.0862902i −0.220748 0.975331i \(-0.570850\pi\)
0.457828 + 0.889041i \(0.348627\pi\)
\(194\) −15.8012 + 5.75118i −1.13446 + 0.412911i
\(195\) −0.746530 0.240462i −0.0534602 0.0172198i
\(196\) −6.11669 15.4710i −0.436906 1.10507i
\(197\) −17.0883 + 9.86593i −1.21749 + 0.702918i −0.964380 0.264519i \(-0.914787\pi\)
−0.253110 + 0.967438i \(0.581453\pi\)
\(198\) −31.8909 22.9228i −2.26639 1.62905i
\(199\) 9.64829 5.57044i 0.683949 0.394878i −0.117392 0.993086i \(-0.537453\pi\)
0.801341 + 0.598207i \(0.204120\pi\)
\(200\) 1.31239 3.60576i 0.0927999 0.254966i
\(201\) −0.189796 0.466339i −0.0133872 0.0328930i
\(202\) 10.1887 + 27.9932i 0.716875 + 1.96960i
\(203\) 2.46180 + 5.09564i 0.172785 + 0.357644i
\(204\) 3.82179 + 0.527194i 0.267579 + 0.0369109i
\(205\) 2.54530 2.13576i 0.177771 0.149168i
\(206\) 6.69255 + 11.5918i 0.466292 + 0.807641i
\(207\) 2.99449 4.16602i 0.208131 0.289559i
\(208\) −3.37979 1.95132i −0.234346 0.135300i
\(209\) −36.6406 + 30.7451i −2.53448 + 2.12668i
\(210\) −1.06338 3.28601i −0.0733801 0.226756i
\(211\) −1.40219 + 7.95221i −0.0965307 + 0.547453i 0.897737 + 0.440532i \(0.145210\pi\)
−0.994268 + 0.106921i \(0.965901\pi\)
\(212\) 8.13578 + 1.43456i 0.558767 + 0.0985258i
\(213\) 8.36045 0.313278i 0.572849 0.0214654i
\(214\) −5.20759 + 4.36969i −0.355984 + 0.298706i
\(215\) −0.714376 1.23734i −0.0487201 0.0843856i
\(216\) −2.43162 3.29361i −0.165450 0.224102i
\(217\) 14.0028 + 6.29720i 0.950570 + 0.427481i
\(218\) −9.02032 + 24.7831i −0.610933 + 1.67853i
\(219\) 3.40145 + 5.41273i 0.229849 + 0.365758i
\(220\) 1.83251 + 5.03478i 0.123548 + 0.339445i
\(221\) 0.757207 0.902404i 0.0509352 0.0607023i
\(222\) −8.96019 + 8.10921i −0.601369 + 0.544255i
\(223\) −4.16647 4.96540i −0.279007 0.332508i 0.608282 0.793721i \(-0.291859\pi\)
−0.887290 + 0.461213i \(0.847414\pi\)
\(224\) −2.15288 21.2462i −0.143845 1.41957i
\(225\) 3.60681 + 14.1584i 0.240454 + 0.943896i
\(226\) 30.9151 2.05644
\(227\) 6.51828 + 2.37246i 0.432634 + 0.157466i 0.549152 0.835723i \(-0.314951\pi\)
−0.116518 + 0.993189i \(0.537173\pi\)
\(228\) −29.1424 + 11.8607i −1.93000 + 0.785495i
\(229\) −11.8635 + 14.1384i −0.783964 + 0.934292i −0.999105 0.0422913i \(-0.986534\pi\)
0.215142 + 0.976583i \(0.430979\pi\)
\(230\) −1.21120 + 0.440840i −0.0798641 + 0.0290682i
\(231\) −24.3012 15.2252i −1.59890 1.00174i
\(232\) −0.292641 1.65965i −0.0192129 0.108962i
\(233\) 24.0601i 1.57623i 0.615529 + 0.788115i \(0.288943\pi\)
−0.615529 + 0.788115i \(0.711057\pi\)
\(234\) −7.86641 + 0.590360i −0.514243 + 0.0385930i
\(235\) 1.81741 0.118555
\(236\) 14.2730 + 5.19496i 0.929096 + 0.338163i
\(237\) −11.9984 13.2575i −0.779379 0.861167i
\(238\) 5.17349 + 0.381184i 0.335347 + 0.0247085i
\(239\) −3.56306 + 4.24628i −0.230475 + 0.274669i −0.868871 0.495039i \(-0.835154\pi\)
0.638396 + 0.769708i \(0.279598\pi\)
\(240\) −0.0725480 1.93609i −0.00468296 0.124974i
\(241\) −6.55253 7.80900i −0.422086 0.503022i 0.512536 0.858666i \(-0.328706\pi\)
−0.934622 + 0.355644i \(0.884262\pi\)
\(242\) 51.0185 + 29.4556i 3.27960 + 1.89348i
\(243\) 14.7151 + 5.14457i 0.943972 + 0.330024i
\(244\) 24.8604i 1.59153i
\(245\) −0.927203 2.34518i −0.0592368 0.149828i
\(246\) 15.6142 29.5473i 0.995524 1.88387i
\(247\) −1.66826 + 9.46120i −0.106149 + 0.602001i
\(248\) −3.50249 2.93894i −0.222409 0.186623i
\(249\) 10.9363 2.35372i 0.693062 0.149161i
\(250\) 2.54427 6.99034i 0.160914 0.442108i
\(251\) −10.3890 17.9942i −0.655746 1.13579i −0.981706 0.190402i \(-0.939021\pi\)
0.325960 0.945384i \(-0.394312\pi\)
\(252\) −12.1450 14.4340i −0.765066 0.909255i
\(253\) −5.35099 + 9.26818i −0.336414 + 0.582685i
\(254\) −18.8565 22.4723i −1.18316 1.41004i
\(255\) 0.579329 + 0.0799150i 0.0362790 + 0.00500447i
\(256\) 1.45849 8.27153i 0.0911558 0.516970i
\(257\) 19.4196 + 16.2950i 1.21136 + 1.01645i 0.999231 + 0.0392104i \(0.0124843\pi\)
0.212129 + 0.977242i \(0.431960\pi\)
\(258\) −11.3466 8.81845i −0.706406 0.549013i
\(259\) −6.15327 + 6.32447i −0.382346 + 0.392983i
\(260\) 0.931991 + 0.538085i 0.0577996 + 0.0333706i
\(261\) 4.48100 + 4.59315i 0.277367 + 0.284309i
\(262\) 5.48585i 0.338917i
\(263\) 3.91251 0.689881i 0.241256 0.0425399i −0.0517128 0.998662i \(-0.516468\pi\)
0.292968 + 0.956122i \(0.405357\pi\)
\(264\) 5.73033 + 6.33167i 0.352678 + 0.389687i
\(265\) 1.23327 + 0.217458i 0.0757591 + 0.0133584i
\(266\) −38.0938 + 18.4038i −2.33568 + 1.12841i
\(267\) 0.332320 + 8.86864i 0.0203377 + 0.542752i
\(268\) 0.119964 + 0.680352i 0.00732799 + 0.0415591i
\(269\) 2.35052 4.07121i 0.143313 0.248226i −0.785429 0.618952i \(-0.787558\pi\)
0.928742 + 0.370726i \(0.120891\pi\)
\(270\) −2.32604 3.15061i −0.141558 0.191740i
\(271\) −7.44995 + 4.30123i −0.452552 + 0.261281i −0.708907 0.705302i \(-0.750812\pi\)
0.256355 + 0.966583i \(0.417478\pi\)
\(272\) 2.73451 + 0.995282i 0.165804 + 0.0603478i
\(273\) −5.70480 + 0.794854i −0.345270 + 0.0481067i
\(274\) 15.6112 + 13.0993i 0.943105 + 0.791359i
\(275\) −10.4236 28.6387i −0.628569 1.72698i
\(276\) −5.21960 + 4.72388i −0.314183 + 0.284344i
\(277\) 2.75863 + 15.6450i 0.165750 + 0.940015i 0.948288 + 0.317412i \(0.102814\pi\)
−0.782538 + 0.622603i \(0.786075\pi\)
\(278\) 0.136062 0.235665i 0.00816043 0.0141343i
\(279\) 17.3230 + 1.73154i 1.03710 + 0.103665i
\(280\) 0.0757094 + 0.747154i 0.00452450 + 0.0446510i
\(281\) 21.2686 3.75023i 1.26878 0.223720i 0.501569 0.865118i \(-0.332756\pi\)
0.767208 + 0.641398i \(0.221645\pi\)
\(282\) 16.9310 6.89080i 1.00823 0.410341i
\(283\) −4.47736 0.789480i −0.266152 0.0469297i 0.0389797 0.999240i \(-0.487589\pi\)
−0.305131 + 0.952310i \(0.598700\pi\)
\(284\) −11.3053 1.99344i −0.670848 0.118289i
\(285\) −4.41757 + 1.79792i −0.261674 + 0.106499i
\(286\) 16.2049 2.85736i 0.958216 0.168959i
\(287\) 10.0082 22.2547i 0.590763 1.31365i
\(288\) −9.96139 22.0703i −0.586980 1.30051i
\(289\) 8.06081 13.9617i 0.474165 0.821278i
\(290\) −0.279936 1.58760i −0.0164384 0.0932268i
\(291\) −10.3222 + 9.34186i −0.605097 + 0.547629i
\(292\) −3.00012 8.24275i −0.175568 0.482370i
\(293\) 6.06074 + 5.08556i 0.354072 + 0.297102i 0.802423 0.596756i \(-0.203544\pi\)
−0.448351 + 0.893858i \(0.647988\pi\)
\(294\) −17.5297 18.3322i −1.02235 1.06916i
\(295\) 2.16359 + 0.787482i 0.125969 + 0.0458490i
\(296\) 2.27565 1.31385i 0.132270 0.0763660i
\(297\) −31.6097 7.62508i −1.83418 0.442452i
\(298\) 15.0482 26.0643i 0.871720 1.50986i
\(299\) 0.373267 + 2.11690i 0.0215866 + 0.122424i
\(300\) −0.750692 20.0337i −0.0433412 1.15665i
\(301\) −8.67691 5.89991i −0.500129 0.340065i
\(302\) 41.7305 + 7.35821i 2.40132 + 0.423417i
\(303\) 16.5499 + 18.2866i 0.950767 + 1.05054i
\(304\) −23.3719 + 4.12109i −1.34047 + 0.236361i
\(305\) 3.76849i 0.215783i
\(306\) 5.70004 1.45206i 0.325850 0.0830089i
\(307\) −16.6860 9.63367i −0.952321 0.549823i −0.0585197 0.998286i \(-0.518638\pi\)
−0.893801 + 0.448464i \(0.851971\pi\)
\(308\) 28.2026 + 27.4392i 1.60699 + 1.56349i
\(309\) 8.74998 + 6.80041i 0.497769 + 0.386862i
\(310\) −3.35043 2.81134i −0.190292 0.159674i
\(311\) −2.30794 + 13.0890i −0.130871 + 0.742208i 0.846775 + 0.531951i \(0.178541\pi\)
−0.977646 + 0.210257i \(0.932570\pi\)
\(312\) 1.69917 + 0.234390i 0.0961964 + 0.0132697i
\(313\) −9.61460 11.4582i −0.543449 0.647658i 0.422508 0.906359i \(-0.361150\pi\)
−0.965957 + 0.258701i \(0.916705\pi\)
\(314\) −4.14928 + 7.18676i −0.234157 + 0.405573i
\(315\) −1.84102 2.18799i −0.103730 0.123279i
\(316\) 12.2675 + 21.2479i 0.690098 + 1.19528i
\(317\) 5.67633 15.5956i 0.318815 0.875936i −0.671981 0.740569i \(-0.734556\pi\)
0.990795 0.135367i \(-0.0432215\pi\)
\(318\) 12.3136 2.65015i 0.690515 0.148613i
\(319\) −10.2536 8.60379i −0.574092 0.481720i
\(320\) −0.667863 + 3.78764i −0.0373347 + 0.211736i
\(321\) −2.62964 + 4.97618i −0.146772 + 0.277743i
\(322\) −6.60095 + 6.78460i −0.367856 + 0.378091i
\(323\) 7.16357i 0.398592i
\(324\) −18.2539 11.1493i −1.01410 0.619406i
\(325\) −5.30133 3.06072i −0.294065 0.169778i
\(326\) 23.2874 + 27.7528i 1.28977 + 1.53708i
\(327\) 0.817630 + 21.8201i 0.0452151 + 1.20666i
\(328\) −4.67087 + 5.56653i −0.257906 + 0.307360i
\(329\) 12.0180 5.80612i 0.662574 0.320102i
\(330\) 5.48154 + 6.05677i 0.301749 + 0.333414i
\(331\) 21.5799 + 7.85444i 1.18614 + 0.431719i 0.858366 0.513037i \(-0.171480\pi\)
0.327773 + 0.944757i \(0.393702\pi\)
\(332\) −15.3498 −0.842428
\(333\) −4.34020 + 9.01501i −0.237842 + 0.494020i
\(334\) 25.6828i 1.40530i
\(335\) 0.0181849 + 0.103132i 0.000993547 + 0.00563469i
\(336\) −6.66502 12.5710i −0.363607 0.685807i
\(337\) 25.8190 9.39733i 1.40645 0.511905i 0.476363 0.879249i \(-0.341955\pi\)
0.930085 + 0.367344i \(0.119733\pi\)
\(338\) −15.3571 + 18.3019i −0.835315 + 0.995490i
\(339\) 23.7072 9.64863i 1.28760 0.524042i
\(340\) −0.754053 0.274453i −0.0408943 0.0148843i
\(341\) −36.3145 −1.96654
\(342\) −34.3372 + 33.4988i −1.85675 + 1.81141i
\(343\) −13.6235 12.5459i −0.735602 0.677414i
\(344\) 2.00849 + 2.39363i 0.108291 + 0.129056i
\(345\) −0.791218 + 0.716074i −0.0425977 + 0.0385521i
\(346\) −28.3974 + 33.8427i −1.52665 + 1.81940i
\(347\) −3.41079 9.37108i −0.183101 0.503066i 0.813852 0.581072i \(-0.197367\pi\)
−0.996953 + 0.0780065i \(0.975144\pi\)
\(348\) −4.68486 7.45502i −0.251135 0.399631i
\(349\) 9.55483 26.2517i 0.511458 1.40522i −0.368259 0.929723i \(-0.620046\pi\)
0.879717 0.475497i \(-0.157732\pi\)
\(350\) −2.71761 26.8193i −0.145262 1.43355i
\(351\) −5.84808 + 2.90783i −0.312148 + 0.155208i
\(352\) 25.2545 + 43.7421i 1.34607 + 2.33146i
\(353\) −18.1012 + 15.1887i −0.963429 + 0.808413i −0.981507 0.191424i \(-0.938689\pi\)
0.0180788 + 0.999837i \(0.494245\pi\)
\(354\) 23.1418 0.867156i 1.22997 0.0460888i
\(355\) −1.71373 0.302177i −0.0909552 0.0160379i
\(356\) 2.11461 11.9925i 0.112074 0.635603i
\(357\) 4.08624 1.32234i 0.216267 0.0699857i
\(358\) −15.0546 + 12.6323i −0.795662 + 0.667640i
\(359\) 0.0258053 + 0.0148987i 0.00136195 + 0.000786324i 0.500681 0.865632i \(-0.333083\pi\)
−0.499319 + 0.866418i \(0.666416\pi\)
\(360\) 0.350308 + 0.776138i 0.0184628 + 0.0409061i
\(361\) 19.7111 + 34.1405i 1.03742 + 1.79687i
\(362\) −14.9052 + 12.5070i −0.783401 + 0.657351i
\(363\) 48.3165 + 6.66499i 2.53596 + 0.349821i
\(364\) 7.88202 + 0.580749i 0.413130 + 0.0304395i
\(365\) −0.454775 1.24948i −0.0238040 0.0654010i
\(366\) 14.2884 + 35.1073i 0.746866 + 1.83509i
\(367\) 5.36231 14.7328i 0.279910 0.769047i −0.717462 0.696598i \(-0.754696\pi\)
0.997372 0.0724491i \(-0.0230815\pi\)
\(368\) −4.59862 + 2.65502i −0.239720 + 0.138402i
\(369\) 2.75194 27.5315i 0.143260 1.43323i
\(370\) 2.17685 1.25681i 0.113169 0.0653383i
\(371\) 8.84997 2.50196i 0.459467 0.129895i
\(372\) −22.7375 7.32390i −1.17889 0.379726i
\(373\) −14.4007 + 5.24143i −0.745640 + 0.271391i −0.686770 0.726875i \(-0.740972\pi\)
−0.0588703 + 0.998266i \(0.518750\pi\)
\(374\) −11.5296 + 4.19645i −0.596183 + 0.216993i
\(375\) −0.230621 6.15459i −0.0119092 0.317822i
\(376\) −3.91427 + 0.690191i −0.201863 + 0.0355939i
\(377\) −2.68849 −0.138464
\(378\) −25.4468 13.4030i −1.30884 0.689376i
\(379\) 17.9559 0.922330 0.461165 0.887314i \(-0.347432\pi\)
0.461165 + 0.887314i \(0.347432\pi\)
\(380\) 6.44488 1.13641i 0.330616 0.0582964i
\(381\) −21.4737 11.3477i −1.10013 0.581359i
\(382\) −17.9420 + 6.53037i −0.917995 + 0.334123i
\(383\) −32.4762 + 11.8204i −1.65945 + 0.603992i −0.990277 0.139111i \(-0.955575\pi\)
−0.669177 + 0.743103i \(0.733353\pi\)
\(384\) 2.25629 + 10.4836i 0.115141 + 0.534991i
\(385\) 4.27511 + 4.15939i 0.217880 + 0.211982i
\(386\) −6.35021 + 3.66630i −0.323217 + 0.186610i
\(387\) −11.4533 3.22113i −0.582205 0.163739i
\(388\) 16.5434 9.55134i 0.839864 0.484896i
\(389\) 0.118139 0.324583i 0.00598986 0.0164570i −0.936662 0.350236i \(-0.886102\pi\)
0.942652 + 0.333779i \(0.108324\pi\)
\(390\) 1.62540 + 0.224214i 0.0823051 + 0.0113535i
\(391\) −0.548197 1.50616i −0.0277235 0.0761697i
\(392\) 2.88760 + 4.69885i 0.145846 + 0.237328i
\(393\) 1.71214 + 4.20681i 0.0863659 + 0.212205i
\(394\) 31.6221 26.5341i 1.59310 1.33677i
\(395\) 1.85957 + 3.22087i 0.0935652 + 0.162060i
\(396\) 40.2005 + 19.3542i 2.02015 + 0.972585i
\(397\) 2.27062 + 1.31094i 0.113959 + 0.0657943i 0.555896 0.831252i \(-0.312375\pi\)
−0.441937 + 0.897046i \(0.645709\pi\)
\(398\) −17.8543 + 14.9815i −0.894955 + 0.750956i
\(399\) −23.4683 + 26.0020i −1.17488 + 1.30173i
\(400\) 2.62586 14.8920i 0.131293 0.744599i
\(401\) 17.0025 + 2.99801i 0.849066 + 0.149713i 0.581218 0.813748i \(-0.302576\pi\)
0.267848 + 0.963461i \(0.413687\pi\)
\(402\) 0.560439 + 0.891827i 0.0279522 + 0.0444803i
\(403\) −5.58754 + 4.68850i −0.278335 + 0.233551i
\(404\) −16.9210 29.3081i −0.841852 1.45813i
\(405\) −2.76703 1.69008i −0.137495 0.0839805i
\(406\) −6.92307 9.60400i −0.343586 0.476638i
\(407\) 7.13813 19.6118i 0.353824 0.972123i
\(408\) −1.27809 + 0.0478916i −0.0632747 + 0.00237099i
\(409\) −7.89678 21.6962i −0.390471 1.07281i −0.966787 0.255583i \(-0.917733\pi\)
0.576317 0.817227i \(-0.304490\pi\)
\(410\) −4.46808 + 5.32485i −0.220663 + 0.262975i
\(411\) 16.0597 + 5.17292i 0.792166 + 0.255161i
\(412\) −9.77413 11.6484i −0.481537 0.573873i
\(413\) 16.8230 1.70468i 0.827805 0.0838817i
\(414\) −4.65597 + 9.67089i −0.228828 + 0.475298i
\(415\) −2.32681 −0.114218
\(416\) 9.53326 + 3.46982i 0.467406 + 0.170122i
\(417\) 0.0307870 0.223184i 0.00150764 0.0109294i
\(418\) 64.3198 76.6534i 3.14599 3.74924i
\(419\) −21.7961 + 7.93314i −1.06481 + 0.387559i −0.814234 0.580537i \(-0.802843\pi\)
−0.250577 + 0.968097i \(0.580620\pi\)
\(420\) 1.83791 + 3.46652i 0.0896806 + 0.169149i
\(421\) −3.28202 18.6133i −0.159956 0.907156i −0.954114 0.299444i \(-0.903199\pi\)
0.794158 0.607712i \(-0.207912\pi\)
\(422\) 16.8929i 0.822336i
\(423\) 10.8329 10.5684i 0.526713 0.513852i
\(424\) −2.73875 −0.133005
\(425\) 4.28918 + 1.56114i 0.208056 + 0.0757262i
\(426\) −17.1108 + 3.68260i −0.829023 + 0.178423i
\(427\) 12.0393 + 24.9199i 0.582621 + 1.20596i
\(428\) 4.96409 5.91598i 0.239949 0.285959i
\(429\) 11.5349 7.24872i 0.556910 0.349972i
\(430\) 1.92129 + 2.28971i 0.0926530 + 0.110420i
\(431\) −35.0297 20.2244i −1.68732 0.974175i −0.956557 0.291545i \(-0.905831\pi\)
−0.730764 0.682630i \(-0.760836\pi\)
\(432\) −11.6909 11.1184i −0.562481 0.534935i
\(433\) 5.57490i 0.267912i 0.990987 + 0.133956i \(0.0427681\pi\)
−0.990987 + 0.133956i \(0.957232\pi\)
\(434\) −31.1369 7.88691i −1.49462 0.378584i
\(435\) −0.710158 1.13008i −0.0340495 0.0541830i
\(436\) 5.20271 29.5060i 0.249165 1.41308i
\(437\) 10.0135 + 8.40234i 0.479011 + 0.401938i
\(438\) −8.97417 9.91591i −0.428802 0.473800i
\(439\) −11.6900 + 32.1181i −0.557934 + 1.53291i 0.264694 + 0.964332i \(0.414729\pi\)
−0.822628 + 0.568580i \(0.807493\pi\)
\(440\) −0.888115 1.53826i −0.0423392 0.0733337i
\(441\) −19.1641 8.58699i −0.912577 0.408904i
\(442\) −1.23221 + 2.13426i −0.0586104 + 0.101516i
\(443\) −8.54217 10.1802i −0.405851 0.483674i 0.523944 0.851753i \(-0.324460\pi\)
−0.929795 + 0.368079i \(0.880016\pi\)
\(444\) 8.42469 10.8399i 0.399818 0.514440i
\(445\) 0.320544 1.81790i 0.0151953 0.0861766i
\(446\) 10.3878 + 8.71640i 0.491876 + 0.412733i
\(447\) 3.40500 24.6839i 0.161051 1.16751i
\(448\) 7.68408 + 27.1802i 0.363039 + 1.28414i
\(449\) −10.5259 6.07712i −0.496747 0.286797i 0.230622 0.973043i \(-0.425924\pi\)
−0.727369 + 0.686247i \(0.759257\pi\)
\(450\) −12.5744 27.8597i −0.592763 1.31332i
\(451\) 57.7148i 2.71768i
\(452\) −34.5869 + 6.09860i −1.62683 + 0.286854i
\(453\) 34.2974 7.38150i 1.61143 0.346813i
\(454\) −14.2912 2.51992i −0.670718 0.118266i
\(455\) 1.19480 + 0.0880333i 0.0560132 + 0.00412707i
\(456\) 8.83160 5.54993i 0.413578 0.259899i
\(457\) −2.48520 14.0943i −0.116253 0.659303i −0.986122 0.166021i \(-0.946908\pi\)
0.869869 0.493282i \(-0.164203\pi\)
\(458\) 19.3057 33.4384i 0.902095 1.56248i
\(459\) 3.91787 2.89250i 0.182870 0.135010i
\(460\) 1.26809 0.732131i 0.0591249 0.0341358i
\(461\) 23.2811 + 8.47362i 1.08431 + 0.394656i 0.821509 0.570195i \(-0.193132\pi\)
0.262798 + 0.964851i \(0.415355\pi\)
\(462\) 55.5976 + 22.5397i 2.58663 + 1.04864i
\(463\) −13.5051 11.3321i −0.627634 0.526647i 0.272559 0.962139i \(-0.412130\pi\)
−0.900193 + 0.435492i \(0.856574\pi\)
\(464\) −2.27147 6.24082i −0.105450 0.289723i
\(465\) −3.44669 1.11020i −0.159836 0.0514842i
\(466\) −8.74050 49.5699i −0.404896 2.29628i
\(467\) 1.78544 3.09247i 0.0826202 0.143102i −0.821754 0.569842i \(-0.807004\pi\)
0.904375 + 0.426739i \(0.140338\pi\)
\(468\) 8.68424 2.21228i 0.401429 0.102263i
\(469\) 0.449729 + 0.623884i 0.0207665 + 0.0288083i
\(470\) −3.74432 + 0.660225i −0.172713 + 0.0304539i
\(471\) −0.938868 + 6.80614i −0.0432607 + 0.313611i
\(472\) −4.95892 0.874391i −0.228253 0.0402471i
\(473\) 24.4406 + 4.30953i 1.12378 + 0.198153i
\(474\) 29.5359 + 22.9550i 1.35663 + 1.05436i
\(475\) −36.6596 + 6.46408i −1.68206 + 0.296592i
\(476\) −5.86314 + 0.594113i −0.268736 + 0.0272311i
\(477\) 8.61557 5.87536i 0.394480 0.269014i
\(478\) 5.79821 10.0428i 0.265204 0.459347i
\(479\) 1.11594 + 6.32882i 0.0509887 + 0.289171i 0.999631 0.0271809i \(-0.00865300\pi\)
−0.948642 + 0.316352i \(0.897542\pi\)
\(480\) 1.05969 + 4.92374i 0.0483679 + 0.224737i
\(481\) −1.43374 3.93917i −0.0653729 0.179611i
\(482\) 16.3367 + 13.7081i 0.744117 + 0.624388i
\(483\) −2.94444 + 7.26291i −0.133977 + 0.330474i
\(484\) −62.8887 22.8896i −2.85858 1.04044i
\(485\) 2.50775 1.44785i 0.113871 0.0657434i
\(486\) −32.1857 5.25345i −1.45997 0.238301i
\(487\) 8.85684 15.3405i 0.401342 0.695144i −0.592546 0.805536i \(-0.701877\pi\)
0.993888 + 0.110392i \(0.0352107\pi\)
\(488\) −1.43114 8.11642i −0.0647848 0.367413i
\(489\) 26.5195 + 14.0141i 1.19925 + 0.633741i
\(490\) 2.76223 + 4.49484i 0.124785 + 0.203056i
\(491\) 12.0720 + 2.12862i 0.544803 + 0.0960634i 0.439274 0.898353i \(-0.355236\pi\)
0.105528 + 0.994416i \(0.466347\pi\)
\(492\) −11.6399 + 36.1369i −0.524767 + 1.62918i
\(493\) 1.97422 0.348108i 0.0889143 0.0156780i
\(494\) 20.0985i 0.904274i
\(495\) 6.09383 + 2.93382i 0.273897 + 0.131866i
\(496\) −15.6043 9.00915i −0.700654 0.404523i
\(497\) −12.2978 + 3.47668i −0.551630 + 0.155951i
\(498\) −21.6766 + 8.82220i −0.971350 + 0.395332i
\(499\) 3.82390 + 3.20863i 0.171181 + 0.143638i 0.724353 0.689429i \(-0.242138\pi\)
−0.553172 + 0.833067i \(0.686583\pi\)
\(500\) −1.46748 + 8.32248i −0.0656276 + 0.372193i
\(501\) −8.01562 19.6948i −0.358111 0.879897i
\(502\) 27.9408 + 33.2986i 1.24706 + 1.48619i
\(503\) 10.5236 18.2273i 0.469222 0.812717i −0.530158 0.847899i \(-0.677868\pi\)
0.999381 + 0.0351814i \(0.0112009\pi\)
\(504\) 4.79603 + 4.01324i 0.213632 + 0.178764i
\(505\) −2.56499 4.44269i −0.114140 0.197697i
\(506\) 7.65746 21.0387i 0.340415 0.935284i
\(507\) −6.06451 + 18.8277i −0.269334 + 0.836167i
\(508\) 25.5292 + 21.4215i 1.13267 + 0.950426i
\(509\) 4.75075 26.9428i 0.210573 1.19422i −0.677852 0.735198i \(-0.737089\pi\)
0.888425 0.459021i \(-0.151800\pi\)
\(510\) −1.22260 + 0.0458123i −0.0541374 + 0.00202860i
\(511\) −6.99905 6.80960i −0.309620 0.301239i
\(512\) 29.9539i 1.32379i
\(513\) −15.8764 + 36.4052i −0.700960 + 1.60733i
\(514\) −45.9289 26.5170i −2.02583 1.16962i
\(515\) −1.48162 1.76573i −0.0652879 0.0778071i
\(516\) 14.4338 + 7.62749i 0.635412 + 0.335781i
\(517\) −20.2919 + 24.1830i −0.892438 + 1.06357i
\(518\) 10.3798 15.2653i 0.456060 0.670721i
\(519\) −11.2141 + 34.8151i −0.492246 + 1.52821i
\(520\) −0.335252 0.122022i −0.0147018 0.00535101i
\(521\) 37.9904 1.66439 0.832194 0.554485i \(-0.187085\pi\)
0.832194 + 0.554485i \(0.187085\pi\)
\(522\) −10.9006 7.83520i −0.477105 0.342937i
\(523\) 0.849579i 0.0371495i 0.999827 + 0.0185747i \(0.00591287\pi\)
−0.999827 + 0.0185747i \(0.994087\pi\)
\(524\) −1.08219 6.13740i −0.0472756 0.268113i
\(525\) −10.4543 19.7181i −0.456264 0.860571i
\(526\) −7.81014 + 2.84266i −0.340538 + 0.123946i
\(527\) 3.49598 4.16635i 0.152287 0.181489i
\(528\) 26.5722 + 20.6517i 1.15641 + 0.898750i
\(529\) −18.8646 6.86614i −0.820199 0.298528i
\(530\) −2.61984 −0.113799
\(531\) 17.4756 7.88756i 0.758376 0.342291i
\(532\) 38.9877 28.1044i 1.69033 1.21848i
\(533\) 7.45145 + 8.88030i 0.322758 + 0.384648i
\(534\) −3.90645 18.1509i −0.169049 0.785467i
\(535\) 0.752486 0.896778i 0.0325328 0.0387711i
\(536\) −0.0783319 0.215215i −0.00338342 0.00929587i
\(537\) −7.60204 + 14.3856i −0.328052 + 0.620786i
\(538\) −3.36367 + 9.24162i −0.145018 + 0.398434i
\(539\) 41.5582 + 13.8471i 1.79004 + 0.596435i
\(540\) 3.22383 + 3.06595i 0.138731 + 0.131937i
\(541\) 20.4690 + 35.4533i 0.880031 + 1.52426i 0.851305 + 0.524671i \(0.175812\pi\)
0.0287257 + 0.999587i \(0.490855\pi\)
\(542\) 13.7862 11.5680i 0.592169 0.496889i
\(543\) −7.52659 + 14.2429i −0.322997 + 0.611220i
\(544\) −7.44976 1.31359i −0.319406 0.0563198i
\(545\) 0.788657 4.47270i 0.0337824 0.191589i
\(546\) 11.4646 3.71003i 0.490639 0.158775i
\(547\) −9.03807 + 7.58384i −0.386440 + 0.324262i −0.815224 0.579145i \(-0.803386\pi\)
0.428784 + 0.903407i \(0.358942\pi\)
\(548\) −20.0494 11.5755i −0.856468 0.494482i
\(549\) 21.9140 + 22.4625i 0.935268 + 0.958676i
\(550\) 31.8792 + 55.2163i 1.35933 + 2.35443i
\(551\) −12.5241 + 10.5089i −0.533543 + 0.447696i
\(552\) 1.43215 1.84273i 0.0609565 0.0784318i
\(553\) 22.5866 + 15.3579i 0.960480 + 0.653084i
\(554\) −11.3670 31.2304i −0.482935 1.32685i
\(555\) 1.27706 1.64318i 0.0542083 0.0697490i
\(556\) −0.105732 + 0.290496i −0.00448403 + 0.0123198i
\(557\) −27.0274 + 15.6043i −1.14519 + 0.661175i −0.947710 0.319132i \(-0.896609\pi\)
−0.197478 + 0.980307i \(0.563275\pi\)
\(558\) −36.3188 + 2.72566i −1.53750 + 0.115386i
\(559\) 4.31695 2.49239i 0.182587 0.105417i
\(560\) 0.805121 + 2.84788i 0.0340226 + 0.120345i
\(561\) −7.53176 + 6.81644i −0.317991 + 0.287791i
\(562\) −42.4563 + 15.4528i −1.79091 + 0.651838i
\(563\) −15.5954 + 5.67626i −0.657268 + 0.239226i −0.649056 0.760740i \(-0.724836\pi\)
−0.00821159 + 0.999966i \(0.502614\pi\)
\(564\) −17.5826 + 11.0492i −0.740360 + 0.465255i
\(565\) −5.24288 + 0.924461i −0.220570 + 0.0388924i
\(566\) 9.51130 0.399790
\(567\) −23.6969 2.33609i −0.995176 0.0981068i
\(568\) 3.80572 0.159684
\(569\) 12.9515 2.28370i 0.542956 0.0957378i 0.104558 0.994519i \(-0.466657\pi\)
0.438398 + 0.898781i \(0.355546\pi\)
\(570\) 8.44816 5.30897i 0.353855 0.222368i
\(571\) −13.3923 + 4.87441i −0.560452 + 0.203988i −0.606684 0.794943i \(-0.707501\pi\)
0.0462326 + 0.998931i \(0.485278\pi\)
\(572\) −17.5659 + 6.39346i −0.734466 + 0.267324i
\(573\) −11.7207 + 10.6075i −0.489638 + 0.443136i
\(574\) −12.5347 + 49.4860i −0.523188 + 2.06550i
\(575\) −7.21311 + 4.16449i −0.300807 + 0.173671i
\(576\) 18.0445 + 26.4603i 0.751856 + 1.10251i
\(577\) −0.474700 + 0.274068i −0.0197620 + 0.0114096i −0.509848 0.860264i \(-0.670299\pi\)
0.490086 + 0.871674i \(0.336965\pi\)
\(578\) −11.5353 + 31.6930i −0.479806 + 1.31826i
\(579\) −3.72539 + 4.79340i −0.154822 + 0.199207i
\(580\) 0.626368 + 1.72093i 0.0260085 + 0.0714578i
\(581\) −15.3865 + 7.43350i −0.638340 + 0.308394i
\(582\) 17.8726 22.9964i 0.740844 0.953232i
\(583\) −16.6634 + 13.9822i −0.690127 + 0.579085i
\(584\) 1.45399 + 2.51838i 0.0601665 + 0.104211i
\(585\) 1.31641 0.335350i 0.0544268 0.0138650i
\(586\) −14.3341 8.27581i −0.592137 0.341871i
\(587\) 19.8533 16.6589i 0.819432 0.687585i −0.133407 0.991061i \(-0.542592\pi\)
0.952839 + 0.303476i \(0.0981474\pi\)
\(588\) 23.2281 + 17.0515i 0.957911 + 0.703191i
\(589\) −7.70228 + 43.6818i −0.317367 + 1.79988i
\(590\) −4.74362 0.836428i −0.195292 0.0344352i
\(591\) 15.9680 30.2169i 0.656836 1.24296i
\(592\) 7.93268 6.65631i 0.326031 0.273573i
\(593\) 1.71212 + 2.96547i 0.0703082 + 0.121777i 0.899036 0.437874i \(-0.144268\pi\)
−0.828728 + 0.559651i \(0.810935\pi\)
\(594\) 67.8939 + 4.22650i 2.78572 + 0.173415i
\(595\) −0.888768 + 0.0900591i −0.0364359 + 0.00369206i
\(596\) −11.6938 + 32.1285i −0.478997 + 1.31603i
\(597\) −9.01577 + 17.0609i −0.368991 + 0.698256i
\(598\) −1.53805 4.22576i −0.0628956 0.172804i
\(599\) 17.8781 21.3063i 0.730479 0.870550i −0.265125 0.964214i \(-0.585413\pi\)
0.995604 + 0.0936635i \(0.0298578\pi\)
\(600\) 1.39837 + 6.49739i 0.0570883 + 0.265255i
\(601\) −4.26455 5.08229i −0.173955 0.207311i 0.672022 0.740531i \(-0.265426\pi\)
−0.845976 + 0.533220i \(0.820982\pi\)
\(602\) 20.0199 + 9.00318i 0.815952 + 0.366942i
\(603\) 0.708112 + 0.508982i 0.0288365 + 0.0207273i
\(604\) −48.1383 −1.95872
\(605\) −9.53303 3.46974i −0.387573 0.141065i
\(606\) −40.7401 31.6629i −1.65495 1.28622i
\(607\) −23.5073 + 28.0149i −0.954133 + 1.13709i 0.0363338 + 0.999340i \(0.488432\pi\)
−0.990467 + 0.137752i \(0.956012\pi\)
\(608\) 57.9728 21.1004i 2.35111 0.855733i
\(609\) −8.30635 5.20410i −0.336590 0.210881i
\(610\) −1.36901 7.76403i −0.0554295 0.314357i
\(611\) 6.34077i 0.256520i
\(612\) −6.09058 + 2.74897i −0.246197 + 0.111120i
\(613\) −15.8053 −0.638369 −0.319185 0.947693i \(-0.603409\pi\)
−0.319185 + 0.947693i \(0.603409\pi\)
\(614\) 37.8771 + 13.7861i 1.52860 + 0.556363i
\(615\) −1.76444 + 5.47784i −0.0711492 + 0.220888i
\(616\) −10.7872 7.33480i −0.434628 0.295527i
\(617\) 10.9448 13.0434i 0.440619 0.525109i −0.499336 0.866409i \(-0.666423\pi\)
0.939955 + 0.341299i \(0.110867\pi\)
\(618\) −20.4976 10.8319i −0.824535 0.435723i
\(619\) 15.2802 + 18.2102i 0.614163 + 0.731931i 0.980055 0.198726i \(-0.0636805\pi\)
−0.365892 + 0.930657i \(0.619236\pi\)
\(620\) 4.30295 + 2.48431i 0.172811 + 0.0997722i
\(621\) −0.552123 + 8.86923i −0.0221560 + 0.355910i
\(622\) 27.8050i 1.11488i
\(623\) −3.68801 13.0453i −0.147757 0.522648i
\(624\) 6.75484 0.253113i 0.270410 0.0101326i
\(625\) 4.00607 22.7195i 0.160243 0.908782i
\(626\) 23.9710 + 20.1141i 0.958075 + 0.803920i
\(627\) 25.3999 78.8557i 1.01437 3.14919i
\(628\) 3.22436 8.85886i 0.128666 0.353507i
\(629\) 1.56287 + 2.70698i 0.0623158 + 0.107934i
\(630\) 4.58781 + 3.83900i 0.182783 + 0.152950i
\(631\) 21.9990 38.1033i 0.875765 1.51687i 0.0198191 0.999804i \(-0.493691\pi\)
0.855946 0.517066i \(-0.172976\pi\)
\(632\) −5.22825 6.23079i −0.207969 0.247847i
\(633\) −5.27230 12.9543i −0.209555 0.514887i
\(634\) −6.02914 + 34.1930i −0.239448 + 1.35798i
\(635\) 3.86986 + 3.24720i 0.153571 + 0.128861i
\(636\) −13.2533 + 5.39401i −0.525529 + 0.213886i
\(637\) 8.18213 3.23492i 0.324188 0.128172i
\(638\) 24.2506 + 14.0011i 0.960090 + 0.554308i
\(639\) −11.9721 + 8.16430i −0.473607 + 0.322975i
\(640\) 2.23049i 0.0881679i
\(641\) 26.1576 4.61228i 1.03316 0.182174i 0.368740 0.929532i \(-0.379789\pi\)
0.664421 + 0.747358i \(0.268678\pi\)
\(642\) 3.61000 11.2075i 0.142475 0.442324i
\(643\) 21.8428 + 3.85147i 0.861394 + 0.151887i 0.586858 0.809690i \(-0.300365\pi\)
0.274536 + 0.961577i \(0.411476\pi\)
\(644\) 6.04655 8.89257i 0.238267 0.350416i
\(645\) 2.18796 + 1.15622i 0.0861508 + 0.0455261i
\(646\) 2.60237 + 14.7588i 0.102389 + 0.580676i
\(647\) 6.41692 11.1144i 0.252275 0.436954i −0.711877 0.702305i \(-0.752154\pi\)
0.964152 + 0.265351i \(0.0854878\pi\)
\(648\) 6.60135 + 2.58920i 0.259326 + 0.101713i
\(649\) −34.6356 + 19.9969i −1.35957 + 0.784946i
\(650\) 12.0340 + 4.38000i 0.472011 + 0.171798i
\(651\) −26.3387 + 3.66980i −1.03230 + 0.143831i
\(652\) −31.5280 26.4551i −1.23473 1.03606i
\(653\) 3.64829 + 10.0236i 0.142769 + 0.392254i 0.990382 0.138361i \(-0.0441834\pi\)
−0.847613 + 0.530615i \(0.821961\pi\)
\(654\) −9.61130 44.6579i −0.375832 1.74626i
\(655\) −0.164044 0.930342i −0.00640975 0.0363515i
\(656\) −14.3183 + 24.8000i −0.559035 + 0.968277i
\(657\) −9.97658 4.80314i −0.389223 0.187388i
\(658\) −22.6509 + 16.3280i −0.883024 + 0.636530i
\(659\) 12.4568 2.19647i 0.485248 0.0855623i 0.0743281 0.997234i \(-0.476319\pi\)
0.410920 + 0.911672i \(0.365208\pi\)
\(660\) −7.32740 5.69479i −0.285218 0.221669i
\(661\) 32.7769 + 5.77946i 1.27487 + 0.224795i 0.769802 0.638282i \(-0.220355\pi\)
0.505072 + 0.863077i \(0.331466\pi\)
\(662\) −47.3134 8.34263i −1.83889 0.324246i
\(663\) −0.278816 + 2.02122i −0.0108283 + 0.0784978i
\(664\) 5.01139 0.883643i 0.194479 0.0342920i
\(665\) 5.90997 4.26022i 0.229179 0.165204i
\(666\) 5.66696 20.1499i 0.219590 0.780793i
\(667\) −1.82901 + 3.16794i −0.0708196 + 0.122663i
\(668\) 5.06642 + 28.7331i 0.196026 + 1.11172i
\(669\) 10.6862 + 3.44210i 0.413154 + 0.133079i
\(670\) −0.0749310 0.205871i −0.00289484 0.00795350i
\(671\) −50.1446 42.0763i −1.93581 1.62434i
\(672\) 22.7374 + 29.1738i 0.877114 + 1.12541i
\(673\) 21.0468 + 7.66040i 0.811294 + 0.295287i 0.714158 0.699984i \(-0.246810\pi\)
0.0971357 + 0.995271i \(0.469032\pi\)
\(674\) −49.7797 + 28.7403i −1.91744 + 1.10704i
\(675\) −18.3377 17.4397i −0.705818 0.671253i
\(676\) 13.5706 23.5051i 0.521948 0.904040i
\(677\) −8.03399 45.5630i −0.308771 1.75113i −0.605199 0.796074i \(-0.706906\pi\)
0.296427 0.955055i \(-0.404205\pi\)
\(678\) −45.3376 + 28.4909i −1.74118 + 1.09419i
\(679\) 11.9575 17.5858i 0.458888 0.674879i
\(680\) 0.261982 + 0.0461946i 0.0100466 + 0.00177148i
\(681\) −11.7456 + 2.52790i −0.450093 + 0.0968692i
\(682\) 74.8171 13.1923i 2.86489 0.505158i
\(683\) 8.70104i 0.332936i 0.986047 + 0.166468i \(0.0532362\pi\)
−0.986047 + 0.166468i \(0.946764\pi\)
\(684\) 31.8072 44.2512i 1.21618 1.69199i
\(685\) −3.03920 1.75468i −0.116122 0.0670431i
\(686\) 32.6256 + 20.8985i 1.24565 + 0.797910i
\(687\) 4.36835 31.6675i 0.166663 1.20819i
\(688\) 9.43295 + 7.91518i 0.359628 + 0.301764i
\(689\) −0.758692 + 4.30276i −0.0289039 + 0.163922i
\(690\) 1.36997 1.76272i 0.0521541 0.0671058i
\(691\) −7.31456 8.71715i −0.278259 0.331616i 0.608755 0.793358i \(-0.291669\pi\)
−0.887014 + 0.461742i \(0.847225\pi\)
\(692\) 25.0940 43.4641i 0.953932 1.65226i
\(693\) 49.6695 0.0675694i 1.88679 0.00256675i
\(694\) 10.4314 + 18.0677i 0.395971 + 0.685841i
\(695\) −0.0160275 + 0.0440351i −0.000607956 + 0.00167035i
\(696\) 1.95868 + 2.16422i 0.0742434 + 0.0820345i
\(697\) −6.62159 5.55618i −0.250811 0.210455i
\(698\) −10.1487 + 57.5561i −0.384134 + 2.17853i
\(699\) −22.1734 35.2846i −0.838676 1.33459i
\(700\) 8.33100 + 29.4685i 0.314882 + 1.11381i
\(701\) 19.8586i 0.750050i 0.927015 + 0.375025i \(0.122366\pi\)
−0.927015 + 0.375025i \(0.877634\pi\)
\(702\) 10.9922 8.11535i 0.414873 0.306294i
\(703\) −22.0766 12.7459i −0.832634 0.480722i
\(704\) −42.9426 51.1769i −1.61846 1.92880i
\(705\) −2.66527 + 1.67490i −0.100380 + 0.0630803i
\(706\) 31.7753 37.8683i 1.19588 1.42519i
\(707\) −31.1547 21.1838i −1.17169 0.796698i
\(708\) −25.7193 + 5.53532i −0.966590 + 0.208030i
\(709\) −19.2290 6.99878i −0.722160 0.262845i −0.0453176 0.998973i \(-0.514430\pi\)
−0.676843 + 0.736128i \(0.736652\pi\)
\(710\) 3.64049 0.136625
\(711\) 29.8138 + 8.38483i 1.11810 + 0.314456i
\(712\) 4.03705i 0.151295i
\(713\) 1.72335 + 9.77363i 0.0645402 + 0.366025i
\(714\) −7.93831 + 4.20880i −0.297084 + 0.157510i
\(715\) −2.66274 + 0.969157i −0.0995807 + 0.0362444i
\(716\) 14.3507 17.1025i 0.536311 0.639150i
\(717\) 1.31198 9.51092i 0.0489966 0.355192i
\(718\) −0.0585778 0.0213206i −0.00218611 0.000795677i
\(719\) 22.3708 0.834292 0.417146 0.908840i \(-0.363030\pi\)
0.417146 + 0.908840i \(0.363030\pi\)
\(720\) 1.89067 + 2.77246i 0.0704610 + 0.103323i
\(721\) −15.4385 6.94287i −0.574961 0.258566i
\(722\) −53.0123 63.1776i −1.97291 2.35123i
\(723\) 16.8061 + 5.41334i 0.625025 + 0.201324i
\(724\) 14.2083 16.9327i 0.528046 0.629301i
\(725\) −3.56289 9.78896i −0.132322 0.363553i
\(726\) −101.966 + 3.82079i −3.78430 + 0.141803i
\(727\) 2.58356 7.09828i 0.0958190 0.263261i −0.882518 0.470278i \(-0.844154\pi\)
0.978337 + 0.207018i \(0.0663758\pi\)
\(728\) −2.60675 + 0.264143i −0.0966126 + 0.00978978i
\(729\) −26.3211 + 6.01659i −0.974856 + 0.222837i
\(730\) 1.39086 + 2.40904i 0.0514781 + 0.0891627i
\(731\) −2.84731 + 2.38918i −0.105312 + 0.0883670i
\(732\) −22.9110 36.4583i −0.846815 1.34754i
\(733\) 16.7724 + 2.95743i 0.619503 + 0.109235i 0.474586 0.880209i \(-0.342598\pi\)
0.144916 + 0.989444i \(0.453709\pi\)
\(734\) −5.69560 + 32.3013i −0.210228 + 1.19226i
\(735\) 3.52105 + 2.58476i 0.129876 + 0.0953404i
\(736\) 10.5742 8.87281i 0.389770 0.327056i
\(737\) −1.57534 0.909523i −0.0580284 0.0335027i
\(738\) 4.33190 + 57.7216i 0.159459 + 2.12476i
\(739\) −3.49112 6.04680i −0.128423 0.222435i 0.794643 0.607077i \(-0.207658\pi\)
−0.923066 + 0.384642i \(0.874325\pi\)
\(740\) −2.18747 + 1.83550i −0.0804129 + 0.0674745i
\(741\) −6.27276 15.4125i −0.230436 0.566191i
\(742\) −17.3243 + 8.36967i −0.635994 + 0.307260i
\(743\) −0.493042 1.35462i −0.0180880 0.0496962i 0.930320 0.366749i \(-0.119529\pi\)
−0.948408 + 0.317052i \(0.897307\pi\)
\(744\) 7.84496 + 1.08217i 0.287610 + 0.0396742i
\(745\) −1.77262 + 4.87022i −0.0649436 + 0.178431i
\(746\) 27.7650 16.0301i 1.01655 0.586905i
\(747\) −13.8692 + 13.5306i −0.507447 + 0.495057i
\(748\) 12.0712 6.96930i 0.441366 0.254823i
\(749\) 2.11102 8.33412i 0.0771349 0.304522i
\(750\) 2.71097 + 12.5962i 0.0989905 + 0.459949i
\(751\) 17.6380 6.41970i 0.643619 0.234258i 0.000470879 1.00000i \(-0.499850\pi\)
0.643148 + 0.765742i \(0.277628\pi\)
\(752\) −14.7189 + 5.35724i −0.536743 + 0.195358i
\(753\) 31.8189 + 16.8146i 1.15954 + 0.612757i
\(754\) 5.53897 0.976670i 0.201717 0.0355682i
\(755\) −7.29709 −0.265568
\(756\) 31.1131 + 9.97501i 1.13157 + 0.362788i
\(757\) −6.53601 −0.237555 −0.118778 0.992921i \(-0.537898\pi\)
−0.118778 + 0.992921i \(0.537898\pi\)
\(758\) −36.9936 + 6.52297i −1.34367 + 0.236925i
\(759\) −0.694096 18.5234i −0.0251941 0.672355i
\(760\) −2.03870 + 0.742027i −0.0739515 + 0.0269162i
\(761\) −3.33224 + 1.21283i −0.120793 + 0.0439652i −0.401710 0.915767i \(-0.631584\pi\)
0.280916 + 0.959732i \(0.409362\pi\)
\(762\) 48.3636 + 15.5782i 1.75203 + 0.564338i
\(763\) −9.07387 32.0962i −0.328496 1.16196i
\(764\) 18.7848 10.8454i 0.679609 0.392373i
\(765\) −0.923246 + 0.416704i −0.0333800 + 0.0150660i
\(766\) 62.6150 36.1508i 2.26237 1.30618i
\(767\) −2.74745 + 7.54856i −0.0992047 + 0.272563i</