Properties

Label 189.2.bd.a.185.2
Level $189$
Weight $2$
Character 189.185
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(47,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([7, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.47");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.bd (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 185.2
Character \(\chi\) \(=\) 189.185
Dual form 189.2.bd.a.47.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.47573 + 0.436538i) q^{2} +(-1.50729 - 0.853281i) q^{3} +(4.05929 - 1.47746i) q^{4} +(-2.58032 + 0.939158i) q^{5} +(4.10412 + 1.45451i) q^{6} +(-2.62404 - 0.338290i) q^{7} +(-5.05050 + 2.91591i) q^{8} +(1.54382 + 2.57228i) q^{9} +O(q^{10})\) \(q+(-2.47573 + 0.436538i) q^{2} +(-1.50729 - 0.853281i) q^{3} +(4.05929 - 1.47746i) q^{4} +(-2.58032 + 0.939158i) q^{5} +(4.10412 + 1.45451i) q^{6} +(-2.62404 - 0.338290i) q^{7} +(-5.05050 + 2.91591i) q^{8} +(1.54382 + 2.57228i) q^{9} +(5.97819 - 3.45151i) q^{10} +(1.43170 - 3.93357i) q^{11} +(-7.37920 - 1.23676i) q^{12} +(0.0398496 + 0.109486i) q^{13} +(6.64408 - 0.307977i) q^{14} +(4.69064 + 0.786155i) q^{15} +(4.61245 - 3.87030i) q^{16} +(2.57344 + 4.45733i) q^{17} +(-4.94499 - 5.69433i) q^{18} +(4.51931 + 2.60922i) q^{19} +(-9.08669 + 7.62463i) q^{20} +(3.66652 + 2.74894i) q^{21} +(-1.82736 + 10.3635i) q^{22} +(7.39321 + 1.30362i) q^{23} +(10.1006 - 0.0856107i) q^{24} +(1.94579 - 1.63271i) q^{25} +(-0.146452 - 0.253662i) q^{26} +(-0.132107 - 5.19447i) q^{27} +(-11.1515 + 2.50369i) q^{28} +(1.21597 - 3.34086i) q^{29} +(-11.9559 + 0.101336i) q^{30} +(-0.106042 - 0.291348i) q^{31} +(-2.23240 + 2.66047i) q^{32} +(-5.51443 + 4.70737i) q^{33} +(-8.31695 - 9.91175i) q^{34} +(7.08855 - 1.59149i) q^{35} +(10.0673 + 8.16068i) q^{36} +1.91994 q^{37} +(-12.3276 - 4.48688i) q^{38} +(0.0333575 - 0.199030i) q^{39} +(10.2934 - 12.2672i) q^{40} +(-6.29347 + 2.29063i) q^{41} +(-10.2773 - 5.20506i) q^{42} +(0.411100 + 2.33146i) q^{43} -18.0828i q^{44} +(-6.39933 - 5.18740i) q^{45} -18.8727 q^{46} +(-4.74491 - 1.72700i) q^{47} +(-10.2547 + 1.89794i) q^{48} +(6.77112 + 1.77537i) q^{49} +(-4.10452 + 4.89157i) q^{50} +(-0.0755560 - 8.91435i) q^{51} +(0.323522 + 0.385559i) q^{52} +(3.76047 + 2.17111i) q^{53} +(2.59465 + 12.8024i) q^{54} +11.4945i q^{55} +(14.2391 - 5.94291i) q^{56} +(-4.58549 - 7.78908i) q^{57} +(-1.55201 + 8.80190i) q^{58} +(8.02306 + 6.73214i) q^{59} +(20.2022 - 3.73901i) q^{60} +(-0.395365 + 1.08626i) q^{61} +(0.389715 + 0.675007i) q^{62} +(-3.18087 - 7.27201i) q^{63} +(-1.65570 + 2.86775i) q^{64} +(-0.205649 - 0.245083i) q^{65} +(11.5973 - 14.0614i) q^{66} +(1.92499 - 10.9172i) q^{67} +(17.0319 + 14.2915i) q^{68} +(-10.0313 - 8.27342i) q^{69} +(-16.8546 + 7.03452i) q^{70} +(-5.47124 - 3.15882i) q^{71} +(-15.2976 - 8.48964i) q^{72} -2.58177i q^{73} +(-4.75325 + 0.838127i) q^{74} +(-4.32603 + 0.800659i) q^{75} +(22.2002 + 3.91449i) q^{76} +(-5.08753 + 9.83750i) q^{77} +(0.00429980 + 0.507305i) q^{78} +(2.74201 + 15.5507i) q^{79} +(-8.26674 + 14.3184i) q^{80} +(-4.23322 + 7.94228i) q^{81} +(14.5810 - 8.41833i) q^{82} +(10.6778 + 3.88640i) q^{83} +(18.9449 + 5.74161i) q^{84} +(-10.8264 - 9.08446i) q^{85} +(-2.03554 - 5.59261i) q^{86} +(-4.68352 + 3.99807i) q^{87} +(4.23912 + 24.0412i) q^{88} +(-0.456832 + 0.791256i) q^{89} +(18.1075 + 10.0490i) q^{90} +(-0.0675288 - 0.300776i) q^{91} +(31.9372 - 5.63140i) q^{92} +(-0.0887660 + 0.529628i) q^{93} +(12.5010 + 2.20427i) q^{94} +(-14.1117 - 2.48828i) q^{95} +(5.63499 - 2.10523i) q^{96} +(5.88114 - 1.03700i) q^{97} +(-17.5385 - 1.43948i) q^{98} +(12.3285 - 2.39000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} + 18 q^{6} - 6 q^{7} - 18 q^{8} - 15 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} + 18 q^{6} - 6 q^{7} - 18 q^{8} - 15 q^{9} - 9 q^{10} + 9 q^{11} - 9 q^{12} - 42 q^{14} - 24 q^{15} - 15 q^{16} - 9 q^{17} - 3 q^{18} - 9 q^{19} - 18 q^{20} + 15 q^{21} - 12 q^{22} + 30 q^{23} - 36 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} - 3 q^{30} - 9 q^{31} - 51 q^{32} - 9 q^{33} + 18 q^{34} - 9 q^{35} - 6 q^{37} - 9 q^{38} - 9 q^{39} - 9 q^{40} + 27 q^{42} - 12 q^{43} - 63 q^{45} - 6 q^{46} + 45 q^{47} + 30 q^{49} - 9 q^{50} + 33 q^{51} - 9 q^{52} + 45 q^{53} + 117 q^{54} - 51 q^{56} - 3 q^{58} - 9 q^{59} - 15 q^{60} - 63 q^{61} + 99 q^{62} - 33 q^{63} + 18 q^{64} - 102 q^{65} + 63 q^{66} - 3 q^{67} + 144 q^{68} - 108 q^{69} - 15 q^{70} + 18 q^{71} + 15 q^{72} - 33 q^{74} - 9 q^{75} - 36 q^{76} - 57 q^{77} + 66 q^{78} - 21 q^{79} - 72 q^{80} + 57 q^{81} - 18 q^{82} + 90 q^{83} + 51 q^{84} + 9 q^{85} - 33 q^{86} - 9 q^{87} + 45 q^{88} - 9 q^{89} - 81 q^{90} - 21 q^{91} + 150 q^{92} - 87 q^{93} - 9 q^{94} + 27 q^{95} - 9 q^{96} - 180 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.47573 + 0.436538i −1.75061 + 0.308679i −0.954883 0.296982i \(-0.904020\pi\)
−0.795723 + 0.605661i \(0.792909\pi\)
\(3\) −1.50729 0.853281i −0.870232 0.492642i
\(4\) 4.05929 1.47746i 2.02965 0.738731i
\(5\) −2.58032 + 0.939158i −1.15395 + 0.420004i −0.846933 0.531699i \(-0.821554\pi\)
−0.307019 + 0.951703i \(0.599332\pi\)
\(6\) 4.10412 + 1.45451i 1.67550 + 0.593800i
\(7\) −2.62404 0.338290i −0.991792 0.127862i
\(8\) −5.05050 + 2.91591i −1.78562 + 1.03093i
\(9\) 1.54382 + 2.57228i 0.514608 + 0.857426i
\(10\) 5.97819 3.45151i 1.89047 1.09146i
\(11\) 1.43170 3.93357i 0.431675 1.18602i −0.513109 0.858323i \(-0.671506\pi\)
0.944784 0.327694i \(-0.106271\pi\)
\(12\) −7.37920 1.23676i −2.13019 0.357022i
\(13\) 0.0398496 + 0.109486i 0.0110523 + 0.0303659i 0.945096 0.326793i \(-0.105968\pi\)
−0.934044 + 0.357158i \(0.883746\pi\)
\(14\) 6.64408 0.307977i 1.77571 0.0823103i
\(15\) 4.69064 + 0.786155i 1.21112 + 0.202984i
\(16\) 4.61245 3.87030i 1.15311 0.967575i
\(17\) 2.57344 + 4.45733i 0.624152 + 1.08106i 0.988704 + 0.149879i \(0.0478886\pi\)
−0.364553 + 0.931183i \(0.618778\pi\)
\(18\) −4.94499 5.69433i −1.16554 1.34217i
\(19\) 4.51931 + 2.60922i 1.03680 + 0.598597i 0.918925 0.394432i \(-0.129059\pi\)
0.117875 + 0.993028i \(0.462392\pi\)
\(20\) −9.08669 + 7.62463i −2.03184 + 1.70492i
\(21\) 3.66652 + 2.74894i 0.800099 + 0.599868i
\(22\) −1.82736 + 10.3635i −0.389594 + 2.20950i
\(23\) 7.39321 + 1.30362i 1.54159 + 0.271824i 0.878877 0.477049i \(-0.158294\pi\)
0.662714 + 0.748873i \(0.269405\pi\)
\(24\) 10.1006 0.0856107i 2.06178 0.0174752i
\(25\) 1.94579 1.63271i 0.389158 0.326543i
\(26\) −0.146452 0.253662i −0.0287215 0.0497472i
\(27\) −0.132107 5.19447i −0.0254240 0.999677i
\(28\) −11.1515 + 2.50369i −2.10744 + 0.473153i
\(29\) 1.21597 3.34086i 0.225801 0.620383i −0.774119 0.633040i \(-0.781807\pi\)
0.999920 + 0.0126573i \(0.00402906\pi\)
\(30\) −11.9559 + 0.101336i −2.18285 + 0.0185013i
\(31\) −0.106042 0.291348i −0.0190457 0.0523276i 0.929805 0.368051i \(-0.119975\pi\)
−0.948851 + 0.315724i \(0.897753\pi\)
\(32\) −2.23240 + 2.66047i −0.394636 + 0.470309i
\(33\) −5.51443 + 4.70737i −0.959939 + 0.819449i
\(34\) −8.31695 9.91175i −1.42634 1.69985i
\(35\) 7.08855 1.59149i 1.19818 0.269011i
\(36\) 10.0673 + 8.16068i 1.67788 + 1.36011i
\(37\) 1.91994 0.315636 0.157818 0.987468i \(-0.449554\pi\)
0.157818 + 0.987468i \(0.449554\pi\)
\(38\) −12.3276 4.48688i −1.99980 0.727868i
\(39\) 0.0333575 0.199030i 0.00534147 0.0318702i
\(40\) 10.2934 12.2672i 1.62753 1.93961i
\(41\) −6.29347 + 2.29063i −0.982874 + 0.357737i −0.782957 0.622076i \(-0.786290\pi\)
−0.199917 + 0.979813i \(0.564067\pi\)
\(42\) −10.2773 5.20506i −1.58582 0.803158i
\(43\) 0.411100 + 2.33146i 0.0626921 + 0.355545i 0.999976 + 0.00697673i \(0.00222078\pi\)
−0.937284 + 0.348568i \(0.886668\pi\)
\(44\) 18.0828i 2.72609i
\(45\) −6.39933 5.18740i −0.953955 0.773291i
\(46\) −18.8727 −2.78262
\(47\) −4.74491 1.72700i −0.692116 0.251910i −0.0280749 0.999606i \(-0.508938\pi\)
−0.664041 + 0.747696i \(0.731160\pi\)
\(48\) −10.2547 + 1.89794i −1.48014 + 0.273944i
\(49\) 6.77112 + 1.77537i 0.967303 + 0.253624i
\(50\) −4.10452 + 4.89157i −0.580466 + 0.691773i
\(51\) −0.0755560 8.91435i −0.0105800 1.24826i
\(52\) 0.323522 + 0.385559i 0.0448645 + 0.0534674i
\(53\) 3.76047 + 2.17111i 0.516541 + 0.298225i 0.735518 0.677505i \(-0.236939\pi\)
−0.218977 + 0.975730i \(0.570272\pi\)
\(54\) 2.59465 + 12.8024i 0.353087 + 1.74219i
\(55\) 11.4945i 1.54991i
\(56\) 14.2391 5.94291i 1.90278 0.794155i
\(57\) −4.58549 7.78908i −0.607362 1.03169i
\(58\) −1.55201 + 8.80190i −0.203789 + 1.15575i
\(59\) 8.02306 + 6.73214i 1.04451 + 0.876450i 0.992506 0.122196i \(-0.0389937\pi\)
0.0520070 + 0.998647i \(0.483438\pi\)
\(60\) 20.2022 3.73901i 2.60809 0.482704i
\(61\) −0.395365 + 1.08626i −0.0506214 + 0.139081i −0.962427 0.271542i \(-0.912466\pi\)
0.911805 + 0.410623i \(0.134689\pi\)
\(62\) 0.389715 + 0.675007i 0.0494939 + 0.0857260i
\(63\) −3.18087 7.27201i −0.400752 0.916187i
\(64\) −1.65570 + 2.86775i −0.206962 + 0.358469i
\(65\) −0.205649 0.245083i −0.0255077 0.0303988i
\(66\) 11.5973 14.0614i 1.42753 1.73084i
\(67\) 1.92499 10.9172i 0.235175 1.33374i −0.607070 0.794648i \(-0.707655\pi\)
0.842245 0.539095i \(-0.181234\pi\)
\(68\) 17.0319 + 14.2915i 2.06542 + 1.73309i
\(69\) −10.0313 8.27342i −1.20763 0.996002i
\(70\) −16.8546 + 7.03452i −2.01451 + 0.840786i
\(71\) −5.47124 3.15882i −0.649317 0.374883i 0.138878 0.990310i \(-0.455650\pi\)
−0.788194 + 0.615426i \(0.788984\pi\)
\(72\) −15.2976 8.48964i −1.80284 1.00051i
\(73\) 2.58177i 0.302173i −0.988521 0.151087i \(-0.951723\pi\)
0.988521 0.151087i \(-0.0482773\pi\)
\(74\) −4.75325 + 0.838127i −0.552555 + 0.0974303i
\(75\) −4.32603 + 0.800659i −0.499527 + 0.0924521i
\(76\) 22.2002 + 3.91449i 2.54654 + 0.449023i
\(77\) −5.08753 + 9.83750i −0.579778 + 1.12109i
\(78\) 0.00429980 + 0.507305i 0.000486857 + 0.0574410i
\(79\) 2.74201 + 15.5507i 0.308501 + 1.74959i 0.606552 + 0.795044i \(0.292552\pi\)
−0.298052 + 0.954550i \(0.596337\pi\)
\(80\) −8.26674 + 14.3184i −0.924250 + 1.60085i
\(81\) −4.23322 + 7.94228i −0.470358 + 0.882476i
\(82\) 14.5810 8.41833i 1.61020 0.929649i
\(83\) 10.6778 + 3.88640i 1.17204 + 0.426588i 0.853384 0.521282i \(-0.174546\pi\)
0.318657 + 0.947870i \(0.396768\pi\)
\(84\) 18.9449 + 5.74161i 2.06706 + 0.626461i
\(85\) −10.8264 9.08446i −1.17429 0.985348i
\(86\) −2.03554 5.59261i −0.219498 0.603067i
\(87\) −4.68352 + 3.99807i −0.502126 + 0.428638i
\(88\) 4.23912 + 24.0412i 0.451891 + 2.56280i
\(89\) −0.456832 + 0.791256i −0.0484241 + 0.0838730i −0.889221 0.457477i \(-0.848753\pi\)
0.840797 + 0.541350i \(0.182087\pi\)
\(90\) 18.1075 + 10.0490i 1.90870 + 1.05926i
\(91\) −0.0675288 0.300776i −0.00707894 0.0315299i
\(92\) 31.9372 5.63140i 3.32969 0.587114i
\(93\) −0.0887660 + 0.529628i −0.00920460 + 0.0549198i
\(94\) 12.5010 + 2.20427i 1.28938 + 0.227353i
\(95\) −14.1117 2.48828i −1.44783 0.255292i
\(96\) 5.63499 2.10523i 0.575119 0.214864i
\(97\) 5.88114 1.03700i 0.597140 0.105292i 0.133094 0.991103i \(-0.457509\pi\)
0.464045 + 0.885812i \(0.346398\pi\)
\(98\) −17.5385 1.43948i −1.77165 0.145410i
\(99\) 12.3285 2.39000i 1.23906 0.240204i
\(100\) 5.48627 9.50249i 0.548627 0.950249i
\(101\) 1.43057 + 8.11319i 0.142347 + 0.807292i 0.969459 + 0.245254i \(0.0788714\pi\)
−0.827111 + 0.562038i \(0.810017\pi\)
\(102\) 4.07851 + 22.0365i 0.403833 + 2.18194i
\(103\) −0.337183 0.926404i −0.0332237 0.0912813i 0.921972 0.387257i \(-0.126577\pi\)
−0.955195 + 0.295976i \(0.904355\pi\)
\(104\) −0.520511 0.436761i −0.0510403 0.0428279i
\(105\) −12.0425 3.64969i −1.17522 0.356174i
\(106\) −10.2577 3.73349i −0.996315 0.362629i
\(107\) 11.2050 6.46919i 1.08322 0.625400i 0.151460 0.988463i \(-0.451603\pi\)
0.931764 + 0.363064i \(0.118269\pi\)
\(108\) −8.21089 20.8907i −0.790093 2.01021i
\(109\) 1.89554 3.28318i 0.181560 0.314471i −0.760852 0.648926i \(-0.775219\pi\)
0.942412 + 0.334454i \(0.108552\pi\)
\(110\) −5.01777 28.4572i −0.478426 2.71329i
\(111\) −2.89390 1.63825i −0.274677 0.155496i
\(112\) −13.4125 + 8.59546i −1.26736 + 0.812195i
\(113\) 2.66007 + 0.469041i 0.250238 + 0.0441237i 0.297360 0.954765i \(-0.403894\pi\)
−0.0471221 + 0.998889i \(0.515005\pi\)
\(114\) 14.7527 + 17.2819i 1.38171 + 1.61860i
\(115\) −20.3011 + 3.57964i −1.89309 + 0.333803i
\(116\) 15.3581i 1.42596i
\(117\) −0.220107 + 0.271531i −0.0203489 + 0.0251031i
\(118\) −22.8018 13.1646i −2.09907 1.21190i
\(119\) −5.24493 12.5668i −0.480802 1.15199i
\(120\) −25.9824 + 9.70700i −2.37186 + 0.886124i
\(121\) −4.99673 4.19276i −0.454249 0.381160i
\(122\) 0.504625 2.86187i 0.0456866 0.259102i
\(123\) 11.4406 + 1.91745i 1.03156 + 0.172891i
\(124\) −0.860909 1.02599i −0.0773120 0.0921368i
\(125\) 3.37741 5.84984i 0.302084 0.523225i
\(126\) 11.0495 + 16.6150i 0.984366 + 1.48018i
\(127\) 0.619432 + 1.07289i 0.0549657 + 0.0952034i 0.892199 0.451642i \(-0.149162\pi\)
−0.837233 + 0.546846i \(0.815828\pi\)
\(128\) 5.22285 14.3496i 0.461639 1.26834i
\(129\) 1.36975 3.86496i 0.120600 0.340291i
\(130\) 0.616120 + 0.516986i 0.0540373 + 0.0453427i
\(131\) 1.30100 7.37831i 0.113669 0.644646i −0.873732 0.486407i \(-0.838307\pi\)
0.987401 0.158239i \(-0.0505817\pi\)
\(132\) −15.4297 + 27.2560i −1.34298 + 2.37233i
\(133\) −10.9761 8.37553i −0.951752 0.726250i
\(134\) 27.8683i 2.40745i
\(135\) 5.21931 + 13.2793i 0.449207 + 1.14290i
\(136\) −25.9943 15.0078i −2.22900 1.28691i
\(137\) 10.4685 + 12.4759i 0.894383 + 1.06588i 0.997461 + 0.0712111i \(0.0226864\pi\)
−0.103078 + 0.994673i \(0.532869\pi\)
\(138\) 28.4465 + 16.1037i 2.42153 + 1.37084i
\(139\) 6.25623 7.45589i 0.530647 0.632400i −0.432417 0.901674i \(-0.642339\pi\)
0.963064 + 0.269274i \(0.0867836\pi\)
\(140\) 26.4231 16.9334i 2.23316 1.43113i
\(141\) 5.67831 + 6.65183i 0.478200 + 0.560185i
\(142\) 14.9243 + 5.43199i 1.25242 + 0.455842i
\(143\) 0.487724 0.0407855
\(144\) 17.0763 + 5.88943i 1.42302 + 0.490786i
\(145\) 9.76248i 0.810730i
\(146\) 1.12704 + 6.39177i 0.0932746 + 0.528987i
\(147\) −8.69113 8.45366i −0.716832 0.697246i
\(148\) 7.79359 2.83664i 0.640630 0.233170i
\(149\) −10.7706 + 12.8359i −0.882365 + 1.05156i 0.115934 + 0.993257i \(0.463014\pi\)
−0.998299 + 0.0583043i \(0.981431\pi\)
\(150\) 10.3606 3.87069i 0.845936 0.316041i
\(151\) 14.0649 + 5.11922i 1.14459 + 0.416596i 0.843568 0.537022i \(-0.180451\pi\)
0.301020 + 0.953618i \(0.402673\pi\)
\(152\) −30.4330 −2.46844
\(153\) −7.49256 + 13.5009i −0.605738 + 1.09149i
\(154\) 8.30090 26.5759i 0.668906 2.14155i
\(155\) 0.547243 + 0.652179i 0.0439556 + 0.0523843i
\(156\) −0.158651 0.857203i −0.0127022 0.0686312i
\(157\) −2.07640 + 2.47456i −0.165715 + 0.197492i −0.842511 0.538679i \(-0.818924\pi\)
0.676796 + 0.736171i \(0.263368\pi\)
\(158\) −13.5770 37.3024i −1.08013 2.96762i
\(159\) −3.81554 6.48123i −0.302592 0.513995i
\(160\) 3.26169 8.96143i 0.257860 0.708464i
\(161\) −18.9590 5.92180i −1.49418 0.466703i
\(162\) 7.01321 21.5109i 0.551010 1.69006i
\(163\) 3.85622 + 6.67918i 0.302043 + 0.523153i 0.976599 0.215070i \(-0.0689981\pi\)
−0.674556 + 0.738224i \(0.735665\pi\)
\(164\) −22.1627 + 18.5967i −1.73062 + 1.45216i
\(165\) 9.80801 17.3254i 0.763552 1.34878i
\(166\) −28.1319 4.96042i −2.18346 0.385003i
\(167\) 0.286318 1.62379i 0.0221559 0.125652i −0.971724 0.236121i \(-0.924124\pi\)
0.993880 + 0.110468i \(0.0352350\pi\)
\(168\) −26.5334 3.19230i −2.04710 0.246291i
\(169\) 9.94818 8.34751i 0.765245 0.642116i
\(170\) 30.7691 + 17.7645i 2.35988 + 1.36248i
\(171\) 0.265363 + 15.6531i 0.0202928 + 1.19702i
\(172\) 5.11342 + 8.85670i 0.389894 + 0.675317i
\(173\) −14.0046 + 11.7513i −1.06475 + 0.893434i −0.994567 0.104100i \(-0.966804\pi\)
−0.0701858 + 0.997534i \(0.522359\pi\)
\(174\) 9.84982 11.9427i 0.746713 0.905372i
\(175\) −5.65816 + 3.62606i −0.427716 + 0.274104i
\(176\) −8.62046 23.6845i −0.649792 1.78529i
\(177\) −6.34863 16.9932i −0.477192 1.27729i
\(178\) 0.785580 2.15836i 0.0588817 0.161776i
\(179\) 3.65498 2.11020i 0.273186 0.157724i −0.357149 0.934048i \(-0.616251\pi\)
0.630335 + 0.776324i \(0.282918\pi\)
\(180\) −33.6409 11.6024i −2.50745 0.864791i
\(181\) −9.51249 + 5.49204i −0.707058 + 0.408220i −0.809971 0.586470i \(-0.800517\pi\)
0.102913 + 0.994690i \(0.467184\pi\)
\(182\) 0.298483 + 0.715161i 0.0221250 + 0.0530112i
\(183\) 1.52281 1.29994i 0.112569 0.0960946i
\(184\) −41.1406 + 14.9740i −3.03293 + 1.10390i
\(185\) −4.95405 + 1.80313i −0.364229 + 0.132569i
\(186\) −0.0114420 1.34997i −0.000838968 0.0989843i
\(187\) 21.2177 3.74125i 1.55159 0.273587i
\(188\) −21.8125 −1.59084
\(189\) −1.41058 + 13.6752i −0.102605 + 0.994722i
\(190\) 36.0230 2.61338
\(191\) −10.0041 + 1.76400i −0.723872 + 0.127638i −0.523432 0.852068i \(-0.675348\pi\)
−0.200441 + 0.979706i \(0.564237\pi\)
\(192\) 4.94260 2.90974i 0.356702 0.209993i
\(193\) −8.12064 + 2.95567i −0.584536 + 0.212754i −0.617325 0.786708i \(-0.711784\pi\)
0.0327883 + 0.999462i \(0.489561\pi\)
\(194\) −14.1074 + 5.13469i −1.01285 + 0.368649i
\(195\) 0.100847 + 0.544887i 0.00722183 + 0.0390202i
\(196\) 30.1090 2.79733i 2.15064 0.199809i
\(197\) 0.625155 0.360933i 0.0445405 0.0257154i −0.477564 0.878597i \(-0.658480\pi\)
0.522105 + 0.852881i \(0.325147\pi\)
\(198\) −29.4788 + 11.2989i −2.09497 + 0.802976i
\(199\) 18.8603 10.8890i 1.33697 0.771899i 0.350612 0.936521i \(-0.385974\pi\)
0.986357 + 0.164622i \(0.0526403\pi\)
\(200\) −5.06638 + 13.9198i −0.358247 + 0.984276i
\(201\) −12.2169 + 14.8127i −0.861715 + 1.04481i
\(202\) −7.08343 19.4616i −0.498388 1.36931i
\(203\) −4.32094 + 8.35519i −0.303271 + 0.586419i
\(204\) −13.4773 36.0743i −0.943600 2.52571i
\(205\) 14.0879 11.8211i 0.983939 0.825623i
\(206\) 1.23919 + 2.14633i 0.0863382 + 0.149542i
\(207\) 8.06052 + 21.0299i 0.560245 + 1.46168i
\(208\) 0.607548 + 0.350768i 0.0421259 + 0.0243214i
\(209\) 16.7339 14.0414i 1.15751 0.971263i
\(210\) 31.4071 + 3.77867i 2.16730 + 0.260753i
\(211\) 1.68157 9.53668i 0.115764 0.656532i −0.870605 0.491983i \(-0.836272\pi\)
0.986369 0.164549i \(-0.0526168\pi\)
\(212\) 18.4726 + 3.25722i 1.26870 + 0.223706i
\(213\) 5.55136 + 9.42975i 0.380373 + 0.646116i
\(214\) −24.9164 + 20.9074i −1.70325 + 1.42920i
\(215\) −3.25038 5.62982i −0.221674 0.383951i
\(216\) 15.8138 + 25.8495i 1.07599 + 1.75883i
\(217\) 0.179698 + 0.800379i 0.0121987 + 0.0543333i
\(218\) −3.25962 + 8.95574i −0.220769 + 0.606559i
\(219\) −2.20298 + 3.89147i −0.148863 + 0.262961i
\(220\) 16.9826 + 46.6594i 1.14497 + 3.14577i
\(221\) −0.385465 + 0.459379i −0.0259292 + 0.0309012i
\(222\) 7.87967 + 2.79256i 0.528849 + 0.187425i
\(223\) −18.0896 21.5583i −1.21137 1.44365i −0.862184 0.506596i \(-0.830904\pi\)
−0.349183 0.937055i \(-0.613541\pi\)
\(224\) 6.75791 6.22597i 0.451532 0.415990i
\(225\) 7.20375 + 2.48450i 0.480250 + 0.165633i
\(226\) −6.79036 −0.451688
\(227\) −7.19954 2.62042i −0.477850 0.173923i 0.0918550 0.995772i \(-0.470720\pi\)
−0.569705 + 0.821849i \(0.692943\pi\)
\(228\) −30.1219 24.8433i −1.99487 1.64529i
\(229\) 9.13922 10.8917i 0.603937 0.719744i −0.374283 0.927314i \(-0.622111\pi\)
0.978220 + 0.207571i \(0.0665557\pi\)
\(230\) 48.6975 17.7244i 3.21102 1.16871i
\(231\) 16.0625 10.4868i 1.05684 0.689983i
\(232\) 3.60037 + 20.4187i 0.236376 + 1.34055i
\(233\) 22.4909i 1.47343i 0.676204 + 0.736714i \(0.263624\pi\)
−0.676204 + 0.736714i \(0.736376\pi\)
\(234\) 0.426393 0.768323i 0.0278742 0.0502269i
\(235\) 13.8653 0.904472
\(236\) 42.5144 + 15.4740i 2.76745 + 1.00727i
\(237\) 9.13614 25.7791i 0.593456 1.67453i
\(238\) 18.4709 + 28.8223i 1.19729 + 1.86827i
\(239\) −15.3178 + 18.2550i −0.990825 + 1.18082i −0.00731345 + 0.999973i \(0.502328\pi\)
−0.983511 + 0.180846i \(0.942116\pi\)
\(240\) 24.6780 14.5281i 1.59296 0.937785i
\(241\) 8.71797 + 10.3897i 0.561574 + 0.669257i 0.969879 0.243588i \(-0.0783245\pi\)
−0.408305 + 0.912846i \(0.633880\pi\)
\(242\) 14.2009 + 8.19887i 0.912866 + 0.527044i
\(243\) 13.1577 8.35916i 0.844065 0.536240i
\(244\) 4.99357i 0.319681i
\(245\) −19.1390 + 1.77814i −1.22274 + 0.113601i
\(246\) −29.1609 + 0.247161i −1.85923 + 0.0157584i
\(247\) −0.105581 + 0.598777i −0.00671793 + 0.0380993i
\(248\) 1.38511 + 1.16224i 0.0879544 + 0.0738025i
\(249\) −12.7783 14.9691i −0.809792 0.948627i
\(250\) −5.80787 + 15.9570i −0.367322 + 1.00921i
\(251\) 4.77251 + 8.26623i 0.301238 + 0.521760i 0.976417 0.215895i \(-0.0692668\pi\)
−0.675179 + 0.737654i \(0.735933\pi\)
\(252\) −23.6562 24.8196i −1.49020 1.56349i
\(253\) 15.7128 27.2153i 0.987854 1.71101i
\(254\) −2.00190 2.38578i −0.125611 0.149697i
\(255\) 8.56694 + 22.9309i 0.536483 + 1.43599i
\(256\) −5.51615 + 31.2837i −0.344760 + 1.95523i
\(257\) −4.23694 3.55522i −0.264293 0.221768i 0.501005 0.865445i \(-0.332964\pi\)
−0.765298 + 0.643676i \(0.777408\pi\)
\(258\) −1.70392 + 10.1666i −0.106082 + 0.632942i
\(259\) −5.03799 0.649496i −0.313045 0.0403577i
\(260\) −1.19689 0.691025i −0.0742280 0.0428556i
\(261\) 10.4709 2.02988i 0.648131 0.125646i
\(262\) 18.8347i 1.16361i
\(263\) −8.23979 + 1.45290i −0.508087 + 0.0895895i −0.421815 0.906682i \(-0.638607\pi\)
−0.0862727 + 0.996272i \(0.527496\pi\)
\(264\) 14.1244 39.8542i 0.869295 2.45285i
\(265\) −11.7422 2.07047i −0.721319 0.127188i
\(266\) 30.8302 + 15.9440i 1.89032 + 0.977592i
\(267\) 1.36374 0.802844i 0.0834596 0.0491332i
\(268\) −8.31559 47.1600i −0.507955 2.88076i
\(269\) 9.52435 16.4967i 0.580710 1.00582i −0.414685 0.909965i \(-0.636108\pi\)
0.995395 0.0958542i \(-0.0305583\pi\)
\(270\) −18.7185 30.5976i −1.13917 1.86211i
\(271\) −21.6453 + 12.4969i −1.31486 + 0.759134i −0.982896 0.184159i \(-0.941044\pi\)
−0.331962 + 0.943293i \(0.607710\pi\)
\(272\) 29.1211 + 10.5992i 1.76573 + 0.642671i
\(273\) −0.154861 + 0.510976i −0.00937261 + 0.0309257i
\(274\) −31.3633 26.3170i −1.89473 1.58987i
\(275\) −3.63660 9.99148i −0.219295 0.602509i
\(276\) −52.9437 18.7633i −3.18684 1.12942i
\(277\) 3.87669 + 21.9858i 0.232928 + 1.32100i 0.846934 + 0.531698i \(0.178446\pi\)
−0.614006 + 0.789301i \(0.710443\pi\)
\(278\) −12.2340 + 21.1899i −0.733745 + 1.27088i
\(279\) 0.585717 0.722558i 0.0350660 0.0432584i
\(280\) −31.1601 + 28.7074i −1.86217 + 1.71559i
\(281\) 11.7375 2.06964i 0.700200 0.123464i 0.187795 0.982208i \(-0.439866\pi\)
0.512405 + 0.858744i \(0.328755\pi\)
\(282\) −16.9617 13.9893i −1.01006 0.833053i
\(283\) −3.98101 0.701959i −0.236646 0.0417271i 0.0540671 0.998537i \(-0.482782\pi\)
−0.290713 + 0.956810i \(0.593893\pi\)
\(284\) −26.8764 4.73903i −1.59482 0.281210i
\(285\) 19.1472 + 15.7918i 1.13418 + 0.935425i
\(286\) −1.20747 + 0.212910i −0.0713994 + 0.0125896i
\(287\) 17.2892 3.88169i 1.02055 0.229129i
\(288\) −10.2899 1.63506i −0.606338 0.0963467i
\(289\) −4.74522 + 8.21896i −0.279130 + 0.483468i
\(290\) −4.26169 24.1693i −0.250255 1.41927i
\(291\) −9.74942 3.45521i −0.571521 0.202548i
\(292\) −3.81447 10.4802i −0.223225 0.613305i
\(293\) −1.36115 1.14214i −0.0795192 0.0667245i 0.602162 0.798374i \(-0.294306\pi\)
−0.681681 + 0.731650i \(0.738751\pi\)
\(294\) 25.2072 + 17.1350i 1.47012 + 0.999332i
\(295\) −27.0246 9.83614i −1.57343 0.572682i
\(296\) −9.69666 + 5.59837i −0.563607 + 0.325399i
\(297\) −20.6220 6.91729i −1.19661 0.401382i
\(298\) 21.0618 36.4801i 1.22008 2.11324i
\(299\) 0.151888 + 0.861401i 0.00878392 + 0.0498161i
\(300\) −16.3777 + 9.64165i −0.945565 + 0.556661i
\(301\) −0.290030 6.25691i −0.0167170 0.360642i
\(302\) −37.0557 6.53392i −2.13232 0.375985i
\(303\) 4.76654 13.4496i 0.273831 0.772658i
\(304\) 30.9435 5.45618i 1.77473 0.312933i
\(305\) 3.17420i 0.181754i
\(306\) 12.6559 36.6955i 0.723489 2.09774i
\(307\) 17.0250 + 9.82941i 0.971670 + 0.560994i 0.899745 0.436416i \(-0.143752\pi\)
0.0719253 + 0.997410i \(0.477086\pi\)
\(308\) −6.11723 + 47.4499i −0.348561 + 2.70371i
\(309\) −0.282251 + 1.68407i −0.0160567 + 0.0958033i
\(310\) −1.63953 1.37573i −0.0931189 0.0781360i
\(311\) 4.59744 26.0734i 0.260697 1.47849i −0.520317 0.853973i \(-0.674186\pi\)
0.781014 0.624514i \(-0.214703\pi\)
\(312\) 0.411880 + 1.10247i 0.0233181 + 0.0624149i
\(313\) 3.24044 + 3.86181i 0.183161 + 0.218282i 0.849810 0.527089i \(-0.176717\pi\)
−0.666649 + 0.745371i \(0.732272\pi\)
\(314\) 4.06038 7.03278i 0.229140 0.396883i
\(315\) 15.0372 + 15.7767i 0.847251 + 0.888918i
\(316\) 34.1062 + 59.0737i 1.91862 + 3.32316i
\(317\) 10.5704 29.0420i 0.593694 1.63116i −0.169897 0.985462i \(-0.554344\pi\)
0.763592 0.645699i \(-0.223434\pi\)
\(318\) 12.2756 + 14.3801i 0.688379 + 0.806398i
\(319\) −11.4006 9.56625i −0.638312 0.535607i
\(320\) 1.57895 8.95466i 0.0882659 0.500581i
\(321\) −22.4091 + 0.189934i −1.25075 + 0.0106011i
\(322\) 49.5225 + 6.38443i 2.75978 + 0.355790i
\(323\) 26.8587i 1.49446i
\(324\) −5.44947 + 38.4945i −0.302748 + 2.13858i
\(325\) 0.256298 + 0.147974i 0.0142169 + 0.00820811i
\(326\) −12.4627 14.8525i −0.690244 0.822601i
\(327\) −5.65860 + 3.33125i −0.312921 + 0.184219i
\(328\) 25.1059 29.9200i 1.38624 1.65206i
\(329\) 11.8666 + 6.13688i 0.654225 + 0.338337i
\(330\) −16.7188 + 47.1747i −0.920338 + 2.59688i
\(331\) −15.4130 5.60987i −0.847174 0.308346i −0.118286 0.992980i \(-0.537740\pi\)
−0.728888 + 0.684633i \(0.759962\pi\)
\(332\) 49.0863 2.69396
\(333\) 2.96405 + 4.93862i 0.162429 + 0.270635i
\(334\) 4.14505i 0.226807i
\(335\) 5.28586 + 29.9776i 0.288797 + 1.63785i
\(336\) 27.5508 1.51119i 1.50302 0.0824420i
\(337\) −1.34897 + 0.490985i −0.0734831 + 0.0267457i −0.378500 0.925601i \(-0.623560\pi\)
0.305017 + 0.952347i \(0.401338\pi\)
\(338\) −20.9850 + 25.0090i −1.14143 + 1.36031i
\(339\) −3.60926 2.97676i −0.196028 0.161676i
\(340\) −57.3696 20.8808i −3.11130 1.13242i
\(341\) −1.29786 −0.0702829
\(342\) −7.49013 38.6370i −0.405020 2.08925i
\(343\) −17.1671 6.94923i −0.926934 0.375223i
\(344\) −8.87459 10.5763i −0.478486 0.570237i
\(345\) 33.6540 + 11.9270i 1.81187 + 0.642130i
\(346\) 29.5418 35.2066i 1.58818 1.89272i
\(347\) 2.17743 + 5.98243i 0.116890 + 0.321154i 0.984316 0.176413i \(-0.0564493\pi\)
−0.867426 + 0.497566i \(0.834227\pi\)
\(348\) −13.1048 + 23.1490i −0.702489 + 1.24092i
\(349\) −2.99689 + 8.23388i −0.160420 + 0.440749i −0.993696 0.112107i \(-0.964240\pi\)
0.833276 + 0.552856i \(0.186462\pi\)
\(350\) 12.4252 11.4471i 0.664153 0.611875i
\(351\) 0.563457 0.221462i 0.0300751 0.0118207i
\(352\) 7.26902 + 12.5903i 0.387440 + 0.671066i
\(353\) −1.68284 + 1.41207i −0.0895683 + 0.0751568i −0.686472 0.727156i \(-0.740842\pi\)
0.596904 + 0.802313i \(0.296397\pi\)
\(354\) 23.1357 + 39.2991i 1.22965 + 2.08873i
\(355\) 17.0842 + 3.01240i 0.906733 + 0.159881i
\(356\) −0.685364 + 3.88689i −0.0363242 + 0.206005i
\(357\) −2.81737 + 23.4171i −0.149111 + 1.23937i
\(358\) −8.12756 + 6.81983i −0.429555 + 0.360439i
\(359\) −11.5360 6.66031i −0.608847 0.351518i 0.163667 0.986516i \(-0.447668\pi\)
−0.772514 + 0.634998i \(0.781001\pi\)
\(360\) 47.4458 + 7.53910i 2.50061 + 0.397345i
\(361\) 4.11608 + 7.12926i 0.216636 + 0.375224i
\(362\) 21.1529 17.7494i 1.11177 0.932887i
\(363\) 3.95391 + 10.5833i 0.207526 + 0.555479i
\(364\) −0.718503 1.12116i −0.0376598 0.0587650i
\(365\) 2.42469 + 6.66179i 0.126914 + 0.348694i
\(366\) −3.20260 + 3.88307i −0.167402 + 0.202972i
\(367\) −3.64673 + 10.0193i −0.190358 + 0.523003i −0.997752 0.0670083i \(-0.978655\pi\)
0.807395 + 0.590012i \(0.200877\pi\)
\(368\) 39.1462 22.6011i 2.04064 1.17816i
\(369\) −15.6081 12.6522i −0.812527 0.658648i
\(370\) 11.4778 6.62669i 0.596701 0.344505i
\(371\) −9.13315 6.96920i −0.474169 0.361823i
\(372\) 0.422177 + 2.28106i 0.0218889 + 0.118268i
\(373\) 13.1561 4.78843i 0.681197 0.247935i 0.0218355 0.999762i \(-0.493049\pi\)
0.659361 + 0.751826i \(0.270827\pi\)
\(374\) −50.8960 + 18.5246i −2.63177 + 0.957886i
\(375\) −10.0823 + 5.93550i −0.520646 + 0.306508i
\(376\) 28.9999 5.11347i 1.49556 0.263707i
\(377\) 0.414234 0.0213341
\(378\) −2.47751 34.4718i −0.127429 1.77304i
\(379\) −34.6102 −1.77781 −0.888903 0.458095i \(-0.848532\pi\)
−0.888903 + 0.458095i \(0.848532\pi\)
\(380\) −60.9599 + 10.7489i −3.12718 + 0.551405i
\(381\) −0.0181865 2.14570i −0.000931720 0.109928i
\(382\) 23.9974 8.73436i 1.22782 0.446888i
\(383\) −15.9030 + 5.78823i −0.812607 + 0.295765i −0.714700 0.699431i \(-0.753437\pi\)
−0.0979068 + 0.995196i \(0.531215\pi\)
\(384\) −20.1166 + 17.1725i −1.02657 + 0.876329i
\(385\) 3.88846 30.1619i 0.198174 1.53719i
\(386\) 18.8143 10.8624i 0.957620 0.552882i
\(387\) −5.36250 + 4.65683i −0.272591 + 0.236720i
\(388\) 22.3411 12.8987i 1.13420 0.654830i
\(389\) 1.49572 4.10945i 0.0758359 0.208357i −0.895982 0.444090i \(-0.853527\pi\)
0.971818 + 0.235733i \(0.0757491\pi\)
\(390\) −0.487535 1.30497i −0.0246873 0.0660797i
\(391\) 13.2153 + 36.3088i 0.668327 + 1.83621i
\(392\) −39.3744 + 10.7775i −1.98871 + 0.544344i
\(393\) −8.25675 + 10.0111i −0.416498 + 0.504994i
\(394\) −1.39015 + 1.16648i −0.0700350 + 0.0587663i
\(395\) −21.6799 37.5506i −1.09083 1.88938i
\(396\) 46.5140 27.9166i 2.33742 1.40286i
\(397\) 9.37906 + 5.41500i 0.470721 + 0.271771i 0.716542 0.697544i \(-0.245724\pi\)
−0.245820 + 0.969315i \(0.579057\pi\)
\(398\) −41.9395 + 35.1914i −2.10224 + 1.76399i
\(399\) 9.39751 + 21.9900i 0.470464 + 1.10088i
\(400\) 2.65577 15.0616i 0.132788 0.753080i
\(401\) 6.39743 + 1.12804i 0.319472 + 0.0563316i 0.331085 0.943601i \(-0.392585\pi\)
−0.0116126 + 0.999933i \(0.503696\pi\)
\(402\) 23.7795 42.0055i 1.18601 2.09504i
\(403\) 0.0276727 0.0232202i 0.00137848 0.00115668i
\(404\) 17.7940 + 30.8202i 0.885286 + 1.53336i
\(405\) 3.46399 24.4693i 0.172127 1.21589i
\(406\) 7.05013 22.5715i 0.349892 1.12020i
\(407\) 2.74878 7.55222i 0.136252 0.374350i
\(408\) 26.3750 + 44.8016i 1.30576 + 2.21801i
\(409\) −5.29809 14.5564i −0.261974 0.719766i −0.999034 0.0439398i \(-0.986009\pi\)
0.737061 0.675827i \(-0.236213\pi\)
\(410\) −29.7174 + 35.4158i −1.46764 + 1.74906i
\(411\) −5.13359 27.7372i −0.253221 1.36818i
\(412\) −2.73745 3.26237i −0.134865 0.160725i
\(413\) −18.7754 20.3795i −0.923875 1.00281i
\(414\) −29.1361 48.5457i −1.43196 2.38589i
\(415\) −31.2021 −1.53165
\(416\) −0.380244 0.138398i −0.0186430 0.00678550i
\(417\) −15.7919 + 5.89983i −0.773333 + 0.288916i
\(418\) −35.2990 + 42.0677i −1.72653 + 2.05760i
\(419\) 14.7586 5.37170i 0.721006 0.262425i 0.0446532 0.999003i \(-0.485782\pi\)
0.676353 + 0.736578i \(0.263559\pi\)
\(420\) −54.2761 + 2.97709i −2.64840 + 0.145267i
\(421\) −2.01941 11.4527i −0.0984202 0.558168i −0.993646 0.112555i \(-0.964097\pi\)
0.895225 0.445614i \(-0.147014\pi\)
\(422\) 24.3443i 1.18506i
\(423\) −2.88296 14.8714i −0.140174 0.723073i
\(424\) −25.3230 −1.22980
\(425\) 12.2849 + 4.47135i 0.595907 + 0.216892i
\(426\) −17.8601 20.9221i −0.865325 1.01368i
\(427\) 1.40492 2.71663i 0.0679890 0.131467i
\(428\) 35.9262 42.8152i 1.73656 2.06955i
\(429\) −0.735139 0.416165i −0.0354929 0.0200927i
\(430\) 10.5047 + 12.5190i 0.506581 + 0.603720i
\(431\) −12.5999 7.27456i −0.606916 0.350403i 0.164841 0.986320i \(-0.447289\pi\)
−0.771758 + 0.635917i \(0.780622\pi\)
\(432\) −20.7135 23.4479i −0.996579 1.12814i
\(433\) 12.8056i 0.615396i 0.951484 + 0.307698i \(0.0995587\pi\)
−0.951484 + 0.307698i \(0.900441\pi\)
\(434\) −0.794279 1.90308i −0.0381266 0.0913507i
\(435\) 8.33014 14.7148i 0.399400 0.705523i
\(436\) 2.84379 16.1280i 0.136193 0.772389i
\(437\) 30.0107 + 25.1820i 1.43561 + 1.20462i
\(438\) 3.75520 10.5959i 0.179430 0.506292i
\(439\) 10.3334 28.3908i 0.493187 1.35502i −0.404561 0.914511i \(-0.632576\pi\)
0.897748 0.440509i \(-0.145202\pi\)
\(440\) −33.5168 58.0528i −1.59785 2.76756i
\(441\) 5.88667 + 20.1581i 0.280318 + 0.959907i
\(442\) 0.753770 1.30557i 0.0358532 0.0620995i
\(443\) −16.6774 19.8753i −0.792367 0.944306i 0.207054 0.978329i \(-0.433612\pi\)
−0.999421 + 0.0340234i \(0.989168\pi\)
\(444\) −14.1676 2.37450i −0.672366 0.112689i
\(445\) 0.435656 2.47073i 0.0206521 0.117124i
\(446\) 54.1959 + 45.4758i 2.56625 + 2.15334i
\(447\) 27.1871 10.1571i 1.28591 0.480412i
\(448\) 5.31473 6.96497i 0.251098 0.329064i
\(449\) 4.52779 + 2.61412i 0.213680 + 0.123368i 0.603020 0.797726i \(-0.293964\pi\)
−0.389341 + 0.921094i \(0.627297\pi\)
\(450\) −18.9191 3.00623i −0.891856 0.141715i
\(451\) 28.0353i 1.32013i
\(452\) 11.4910 2.02617i 0.540490 0.0953029i
\(453\) −16.8317 19.7175i −0.790824 0.926407i
\(454\) 18.9680 + 3.34458i 0.890214 + 0.156969i
\(455\) 0.456722 + 0.712676i 0.0214114 + 0.0334108i
\(456\) 45.8712 + 25.9679i 2.14812 + 1.21606i
\(457\) 6.70647 + 38.0343i 0.313715 + 1.77917i 0.579335 + 0.815090i \(0.303312\pi\)
−0.265620 + 0.964078i \(0.585576\pi\)
\(458\) −17.8716 + 30.9545i −0.835085 + 1.44641i
\(459\) 22.8135 13.9565i 1.06484 0.651435i
\(460\) −77.1194 + 44.5249i −3.59571 + 2.07598i
\(461\) 15.4949 + 5.63970i 0.721671 + 0.262667i 0.676635 0.736318i \(-0.263437\pi\)
0.0450362 + 0.998985i \(0.485660\pi\)
\(462\) −35.1886 + 32.9745i −1.63712 + 1.53411i
\(463\) 31.2960 + 26.2605i 1.45445 + 1.22043i 0.929251 + 0.369448i \(0.120453\pi\)
0.525198 + 0.850980i \(0.323991\pi\)
\(464\) −7.32153 20.1157i −0.339893 0.933850i
\(465\) −0.268360 1.44997i −0.0124449 0.0672409i
\(466\) −9.81814 55.6814i −0.454816 2.57939i
\(467\) 19.3503 33.5157i 0.895424 1.55092i 0.0621443 0.998067i \(-0.480206\pi\)
0.833279 0.552852i \(-0.186461\pi\)
\(468\) −0.492303 + 1.42742i −0.0227567 + 0.0659827i
\(469\) −8.74441 + 27.9958i −0.403779 + 1.29273i
\(470\) −34.3267 + 6.05273i −1.58337 + 0.279192i
\(471\) 5.24123 1.95812i 0.241503 0.0902253i
\(472\) −60.1508 10.6062i −2.76866 0.488190i
\(473\) 9.75955 + 1.72087i 0.448744 + 0.0791258i
\(474\) −11.3651 + 67.8104i −0.522015 + 3.11463i
\(475\) 13.0537 2.30173i 0.598947 0.105610i
\(476\) −39.8576 43.2630i −1.82687 1.98296i
\(477\) 0.220806 + 13.0248i 0.0101100 + 0.596364i
\(478\) 29.9537 51.8813i 1.37005 2.37300i
\(479\) 5.01429 + 28.4374i 0.229109 + 1.29934i 0.854673 + 0.519167i \(0.173758\pi\)
−0.625564 + 0.780172i \(0.715131\pi\)
\(480\) −12.5629 + 10.7243i −0.573417 + 0.489495i
\(481\) 0.0765089 + 0.210206i 0.00348850 + 0.00958459i
\(482\) −26.1188 21.9163i −1.18968 0.998260i
\(483\) 23.5237 + 25.1032i 1.07037 + 1.14224i
\(484\) −26.4778 9.63714i −1.20354 0.438052i
\(485\) −14.2013 + 8.19912i −0.644848 + 0.372303i
\(486\) −28.9258 + 26.4389i −1.31210 + 1.19929i
\(487\) 10.6879 18.5119i 0.484313 0.838854i −0.515525 0.856875i \(-0.672403\pi\)
0.999838 + 0.0180204i \(0.00573637\pi\)
\(488\) −1.17063 6.63899i −0.0529921 0.300533i
\(489\) −0.113218 13.3579i −0.00511991 0.604064i
\(490\) 46.6067 12.7571i 2.10548 0.576307i
\(491\) −17.7129 3.12326i −0.799372 0.140951i −0.240982 0.970530i \(-0.577469\pi\)
−0.558390 + 0.829579i \(0.688581\pi\)
\(492\) 49.2737 9.11955i 2.22143 0.411141i
\(493\) 18.0206 3.17752i 0.811606 0.143108i
\(494\) 1.52850i 0.0687705i
\(495\) −29.5669 + 17.7454i −1.32894 + 0.797597i
\(496\) −1.61672 0.933411i −0.0725927 0.0419114i
\(497\) 13.2881 + 10.1397i 0.596054 + 0.454829i
\(498\) 38.1702 + 31.4812i 1.71045 + 1.41071i
\(499\) −8.16488 6.85115i −0.365510 0.306700i 0.441472 0.897275i \(-0.354456\pi\)
−0.806983 + 0.590575i \(0.798901\pi\)
\(500\) 5.06696 28.7362i 0.226602 1.28512i
\(501\) −1.81711 + 2.20320i −0.0811825 + 0.0984318i
\(502\) −15.4240 18.3816i −0.688405 0.820410i
\(503\) 1.68293 2.91493i 0.0750383 0.129970i −0.826065 0.563575i \(-0.809425\pi\)
0.901103 + 0.433605i \(0.142759\pi\)
\(504\) 37.2695 + 27.4521i 1.66011 + 1.22282i
\(505\) −11.3109 19.5911i −0.503328 0.871790i
\(506\) −27.0201 + 74.2370i −1.20119 + 3.30024i
\(507\) −22.1175 + 4.09350i −0.982274 + 0.181799i
\(508\) 4.09961 + 3.43998i 0.181891 + 0.152624i
\(509\) 1.45437 8.24815i 0.0644639 0.365593i −0.935462 0.353427i \(-0.885016\pi\)
0.999926 0.0121658i \(-0.00387258\pi\)
\(510\) −31.2196 53.0309i −1.38243 2.34825i
\(511\) −0.873387 + 6.77466i −0.0386364 + 0.299693i
\(512\) 49.3168i 2.17951i
\(513\) 12.9565 23.8201i 0.572044 1.05168i
\(514\) 12.0415 + 6.95217i 0.531128 + 0.306647i
\(515\) 1.74008 + 2.07375i 0.0766771 + 0.0913802i
\(516\) −0.150129 17.7128i −0.00660907 0.779761i
\(517\) −13.5866 + 16.1919i −0.597538 + 0.712118i
\(518\) 12.7562 0.591297i 0.560477 0.0259801i
\(519\) 31.1361 5.76266i 1.36672 0.252953i
\(520\) 1.75327 + 0.638139i 0.0768861 + 0.0279842i
\(521\) −16.2480 −0.711838 −0.355919 0.934517i \(-0.615832\pi\)
−0.355919 + 0.934517i \(0.615832\pi\)
\(522\) −25.0370 + 9.59636i −1.09584 + 0.420021i
\(523\) 28.2596i 1.23571i −0.786294 0.617853i \(-0.788003\pi\)
0.786294 0.617853i \(-0.211997\pi\)
\(524\) −5.62005 31.8729i −0.245513 1.39237i
\(525\) 11.6225 0.637505i 0.507248 0.0278230i
\(526\) 19.7653 7.19397i 0.861806 0.313672i
\(527\) 1.02574 1.22243i 0.0446820 0.0532499i
\(528\) −7.21605 + 43.0550i −0.314038 + 1.87373i
\(529\) 31.3472 + 11.4094i 1.36292 + 0.496062i
\(530\) 29.9744 1.30201
\(531\) −4.93076 + 31.0308i −0.213977 + 1.34662i
\(532\) −56.9299 17.7819i −2.46822 0.770942i
\(533\) −0.501584 0.597765i −0.0217260 0.0258921i
\(534\) −3.02578 + 2.58295i −0.130938 + 0.111775i
\(535\) −22.8367 + 27.2158i −0.987319 + 1.17664i
\(536\) 22.1113 + 60.7502i 0.955062 + 2.62401i
\(537\) −7.30969 + 0.0619553i −0.315437 + 0.00267357i
\(538\) −16.3783 + 44.9990i −0.706119 + 1.94005i
\(539\) 16.6778 24.0929i 0.718363 1.03775i
\(540\) 40.8064 + 46.1933i 1.75603 + 1.98784i
\(541\) 3.36773 + 5.83309i 0.144790 + 0.250784i 0.929295 0.369339i \(-0.120416\pi\)
−0.784504 + 0.620123i \(0.787083\pi\)
\(542\) 48.1325 40.3880i 2.06747 1.73481i
\(543\) 19.0243 0.161246i 0.816411 0.00691971i
\(544\) −17.6036 3.10398i −0.754746 0.133082i
\(545\) −1.80768 + 10.2518i −0.0774324 + 0.439141i
\(546\) 0.160333 1.33264i 0.00686164 0.0570318i
\(547\) −31.5987 + 26.5144i −1.35106 + 1.13368i −0.372429 + 0.928061i \(0.621475\pi\)
−0.978633 + 0.205615i \(0.934080\pi\)
\(548\) 60.9272 + 35.1764i 2.60268 + 1.50266i
\(549\) −3.40453 + 0.660000i −0.145302 + 0.0281681i
\(550\) 13.3649 + 23.1487i 0.569881 + 0.987063i
\(551\) 14.2124 11.9256i 0.605469 0.508049i
\(552\) 74.7877 + 12.5345i 3.18318 + 0.533503i
\(553\) −1.93448 41.7332i −0.0822627 1.77468i
\(554\) −19.1953 52.7386i −0.815530 2.24065i
\(555\) 9.00575 + 1.50937i 0.382273 + 0.0640692i
\(556\) 14.3801 39.5090i 0.609852 1.67555i
\(557\) −5.64369 + 3.25839i −0.239131 + 0.138062i −0.614777 0.788701i \(-0.710754\pi\)
0.375646 + 0.926763i \(0.377421\pi\)
\(558\) −1.13465 + 2.04455i −0.0480337 + 0.0865526i
\(559\) −0.238880 + 0.137917i −0.0101036 + 0.00583329i
\(560\) 26.5360 34.7755i 1.12135 1.46953i
\(561\) −35.1734 12.4655i −1.48502 0.526294i
\(562\) −28.1554 + 10.2477i −1.18766 + 0.432274i
\(563\) 25.6976 9.35315i 1.08302 0.394188i 0.261991 0.965070i \(-0.415621\pi\)
0.821032 + 0.570882i \(0.193399\pi\)
\(564\) 32.8777 + 18.6122i 1.38440 + 0.783716i
\(565\) −7.30431 + 1.28795i −0.307295 + 0.0541844i
\(566\) 10.1623 0.427155
\(567\) 13.7949 19.4088i 0.579332 0.815092i
\(568\) 36.8433 1.54591
\(569\) 28.6452 5.05093i 1.20087 0.211746i 0.462796 0.886465i \(-0.346846\pi\)
0.738075 + 0.674719i \(0.235735\pi\)
\(570\) −54.2970 30.7378i −2.27425 1.28746i
\(571\) −16.3768 + 5.96065i −0.685346 + 0.249446i −0.661141 0.750262i \(-0.729928\pi\)
−0.0242047 + 0.999707i \(0.507705\pi\)
\(572\) 1.97981 0.720593i 0.0827801 0.0301295i
\(573\) 16.5842 + 5.87748i 0.692817 + 0.245535i
\(574\) −41.1088 + 17.1574i −1.71585 + 0.716136i
\(575\) 16.5141 9.53441i 0.688685 0.397612i
\(576\) −9.93275 + 0.168387i −0.413864 + 0.00701614i
\(577\) −19.6718 + 11.3575i −0.818949 + 0.472821i −0.850054 0.526696i \(-0.823431\pi\)
0.0311048 + 0.999516i \(0.490097\pi\)
\(578\) 8.15999 22.4194i 0.339411 0.932524i
\(579\) 14.7621 + 2.47415i 0.613494 + 0.102822i
\(580\) 14.4237 + 39.6287i 0.598911 + 1.64549i
\(581\) −26.7042 13.8102i −1.10788 0.572946i
\(582\) 25.6453 + 4.29817i 1.06303 + 0.178165i
\(583\) 13.9241 11.6837i 0.576677 0.483890i
\(584\) 7.52821 + 13.0392i 0.311519 + 0.539567i
\(585\) 0.312936 0.907352i 0.0129383 0.0375144i
\(586\) 3.86842 + 2.23344i 0.159803 + 0.0922624i
\(587\) 1.35014 1.13291i 0.0557264 0.0467600i −0.614499 0.788918i \(-0.710642\pi\)
0.670225 + 0.742158i \(0.266197\pi\)
\(588\) −47.7698 21.4751i −1.96999 0.885616i
\(589\) 0.280955 1.59338i 0.0115766 0.0656539i
\(590\) 71.1994 + 12.5544i 2.93123 + 0.516856i
\(591\) −1.25027 + 0.0105970i −0.0514290 + 0.000435901i
\(592\) 8.85562 7.43075i 0.363964 0.305402i
\(593\) 20.7313 + 35.9077i 0.851334 + 1.47455i 0.880005 + 0.474965i \(0.157539\pi\)
−0.0286712 + 0.999589i \(0.509128\pi\)
\(594\) 54.0741 + 8.12308i 2.21869 + 0.333294i
\(595\) 25.3358 + 27.5004i 1.03867 + 1.12741i
\(596\) −24.7565 + 68.0180i −1.01407 + 2.78613i
\(597\) −37.7192 + 0.319699i −1.54374 + 0.0130844i
\(598\) −0.752069 2.06629i −0.0307544 0.0844970i
\(599\) 13.6209 16.2328i 0.556535 0.663253i −0.412274 0.911060i \(-0.635265\pi\)
0.968809 + 0.247807i \(0.0797098\pi\)
\(600\) 19.5140 16.6580i 0.796654 0.680061i
\(601\) −5.31277 6.33151i −0.216712 0.258268i 0.646726 0.762723i \(-0.276138\pi\)
−0.863438 + 0.504455i \(0.831693\pi\)
\(602\) 3.44941 + 15.3638i 0.140588 + 0.626182i
\(603\) 31.0538 11.9026i 1.26461 0.484709i
\(604\) 64.6571 2.63086
\(605\) 16.8308 + 6.12592i 0.684270 + 0.249054i
\(606\) −5.92943 + 35.3783i −0.240867 + 1.43715i
\(607\) −10.1572 + 12.1049i −0.412267 + 0.491321i −0.931720 0.363179i \(-0.881691\pi\)
0.519452 + 0.854499i \(0.326136\pi\)
\(608\) −17.0307 + 6.19865i −0.690684 + 0.251389i
\(609\) 13.6422 8.90669i 0.552811 0.360917i
\(610\) 1.38566 + 7.85846i 0.0561037 + 0.318180i
\(611\) 0.588321i 0.0238009i
\(612\) −10.4674 + 65.8742i −0.423118 + 2.66281i
\(613\) −18.8108 −0.759762 −0.379881 0.925035i \(-0.624035\pi\)
−0.379881 + 0.925035i \(0.624035\pi\)
\(614\) −46.4403 16.9029i −1.87418 0.682145i
\(615\) −31.3212 + 5.79690i −1.26299 + 0.233754i
\(616\) −2.99069 64.5191i −0.120498 2.59955i
\(617\) −1.65294 + 1.96989i −0.0665447 + 0.0793049i −0.798290 0.602273i \(-0.794262\pi\)
0.731745 + 0.681578i \(0.238706\pi\)
\(618\) −0.0363823 4.29251i −0.00146351 0.172670i
\(619\) −10.1248 12.0663i −0.406951 0.484985i 0.523175 0.852225i \(-0.324747\pi\)
−0.930126 + 0.367240i \(0.880303\pi\)
\(620\) 3.18499 + 1.83885i 0.127912 + 0.0738501i
\(621\) 5.79494 38.5760i 0.232543 1.54800i
\(622\) 66.5577i 2.66872i
\(623\) 1.46642 1.92174i 0.0587508 0.0769930i
\(624\) −0.616445 1.04712i −0.0246775 0.0419182i
\(625\) −5.42623 + 30.7737i −0.217049 + 1.23095i
\(626\) −9.70829 8.14622i −0.388021 0.325588i
\(627\) −37.2040 + 6.88569i −1.48578 + 0.274988i
\(628\) −4.77266 + 13.1128i −0.190450 + 0.523257i
\(629\) 4.94086 + 8.55781i 0.197005 + 0.341222i
\(630\) −44.1152 32.4946i −1.75759 1.29462i
\(631\) −21.8676 + 37.8758i −0.870536 + 1.50781i −0.00909374 + 0.999959i \(0.502895\pi\)
−0.861443 + 0.507855i \(0.830439\pi\)
\(632\) −59.1930 70.5435i −2.35457 2.80607i
\(633\) −10.6721 + 12.9396i −0.424177 + 0.514305i
\(634\) −13.4916 + 76.5146i −0.535819 + 3.03878i
\(635\) −2.60594 2.18665i −0.103414 0.0867744i
\(636\) −25.0642 20.6719i −0.993858 0.819693i
\(637\) 0.0754487 + 0.812090i 0.00298938 + 0.0321762i
\(638\) 32.4009 + 18.7067i 1.28276 + 0.740604i
\(639\) −0.321258 18.9502i −0.0127088 0.749658i
\(640\) 41.9317i 1.65750i
\(641\) 24.5241 4.32427i 0.968645 0.170798i 0.333125 0.942883i \(-0.391897\pi\)
0.635520 + 0.772084i \(0.280786\pi\)
\(642\) 55.3960 10.2527i 2.18631 0.404640i
\(643\) −22.2139 3.91690i −0.876029 0.154468i −0.282488 0.959271i \(-0.591160\pi\)
−0.593542 + 0.804803i \(0.702271\pi\)
\(644\) −85.7095 + 3.97294i −3.37743 + 0.156556i
\(645\) 0.0954307 + 11.2592i 0.00375758 + 0.443332i
\(646\) −11.7249 66.4950i −0.461308 2.61621i
\(647\) 1.19357 2.06732i 0.0469239 0.0812747i −0.841609 0.540087i \(-0.818391\pi\)
0.888533 + 0.458812i \(0.151725\pi\)
\(648\) −1.77907 52.4562i −0.0698883 2.06067i
\(649\) 37.9680 21.9208i 1.49038 0.860468i
\(650\) −0.699122 0.254459i −0.0274218 0.00998072i
\(651\) 0.412093 1.35973i 0.0161512 0.0532921i
\(652\) 25.5218 + 21.4153i 0.999509 + 0.838688i
\(653\) −12.6049 34.6318i −0.493269 1.35525i −0.897672 0.440665i \(-0.854743\pi\)
0.404403 0.914581i \(-0.367479\pi\)
\(654\) 12.5549 10.7175i 0.490937 0.419087i
\(655\) 3.57242 + 20.2602i 0.139586 + 0.791633i
\(656\) −20.1628 + 34.9230i −0.787226 + 1.36352i
\(657\) 6.64103 3.98580i 0.259091 0.155501i
\(658\) −32.0574 10.0130i −1.24973 0.390349i
\(659\) −7.39431 + 1.30382i −0.288041 + 0.0507895i −0.315802 0.948825i \(-0.602274\pi\)
0.0277605 + 0.999615i \(0.491162\pi\)
\(660\) 14.2159 84.8199i 0.553353 3.30161i
\(661\) −8.19948 1.44579i −0.318923 0.0562347i 0.0118952 0.999929i \(-0.496214\pi\)
−0.330818 + 0.943695i \(0.607325\pi\)
\(662\) 40.6073 + 7.16016i 1.57825 + 0.278288i
\(663\) 0.972985 0.363506i 0.0377876 0.0141174i
\(664\) −65.2606 + 11.5072i −2.53260 + 0.446566i
\(665\) 36.1879 + 11.3032i 1.40331 + 0.438318i
\(666\) −9.49408 10.9328i −0.367888 0.423636i
\(667\) 13.3452 23.1145i 0.516727 0.894998i
\(668\) −1.23684 7.01445i −0.0478546 0.271397i
\(669\) 8.87085 + 47.9300i 0.342967 + 1.85308i
\(670\) −26.1727 71.9090i −1.01114 2.77809i
\(671\) 3.70683 + 3.11040i 0.143100 + 0.120076i
\(672\) −15.4986 + 3.61792i −0.597871 + 0.139564i
\(673\) 36.7067 + 13.3601i 1.41494 + 0.514995i 0.932575 0.360976i \(-0.117556\pi\)
0.482363 + 0.875971i \(0.339779\pi\)
\(674\) 3.12535 1.80442i 0.120384 0.0695038i
\(675\) −8.73814 9.89167i −0.336331 0.380731i
\(676\) 28.0494 48.5830i 1.07882 1.86858i
\(677\) −3.32662 18.8662i −0.127852 0.725087i −0.979573 0.201090i \(-0.935552\pi\)
0.851720 0.523997i \(-0.175560\pi\)
\(678\) 10.2350 + 5.79408i 0.393073 + 0.222520i
\(679\) −15.7831 + 0.731604i −0.605701 + 0.0280764i
\(680\) 81.1684 + 14.3122i 3.11267 + 0.548847i
\(681\) 8.61581 + 10.0929i 0.330159 + 0.386763i
\(682\) 3.21315 0.566564i 0.123038 0.0216949i
\(683\) 41.1007i 1.57268i 0.617796 + 0.786338i \(0.288026\pi\)
−0.617796 + 0.786338i \(0.711974\pi\)
\(684\) 24.2040 + 63.1484i 0.925463 + 2.41454i
\(685\) −38.7288 22.3601i −1.47975 0.854335i
\(686\) 45.5346 + 9.71034i 1.73852 + 0.370743i
\(687\) −23.0691 + 8.61858i −0.880141 + 0.328819i
\(688\) 10.9196 + 9.16266i 0.416307 + 0.349323i
\(689\) −0.0878526 + 0.498237i −0.00334692 + 0.0189813i
\(690\) −88.5249 14.8368i −3.37009 0.564829i
\(691\) 27.2928 + 32.5263i 1.03827 + 1.23736i 0.970863 + 0.239634i \(0.0770274\pi\)
0.0674047 + 0.997726i \(0.478528\pi\)
\(692\) −39.4868 + 68.3932i −1.50106 + 2.59992i
\(693\) −33.1590 + 2.10083i −1.25961 + 0.0798038i
\(694\) −8.00228 13.8604i −0.303763 0.526132i
\(695\) −9.14080 + 25.1141i −0.346730 + 0.952634i
\(696\) 11.9961 33.8490i 0.454711 1.28304i
\(697\) −26.4060 22.1573i −1.00020 0.839266i
\(698\) 3.82508 21.6931i 0.144781 0.821097i
\(699\) 19.1911 33.9002i 0.725873 1.28222i
\(700\) −17.6107 + 23.0789i −0.665624 + 0.872301i
\(701\) 18.1159i 0.684229i 0.939658 + 0.342114i \(0.111143\pi\)
−0.939658 + 0.342114i \(0.888857\pi\)
\(702\) −1.29829 + 0.794250i −0.0490009 + 0.0299770i
\(703\) 8.67679 + 5.00955i 0.327252 + 0.188939i
\(704\) 8.91004 + 10.6186i 0.335810 + 0.400202i
\(705\) −20.8990 11.8310i −0.787100 0.445581i
\(706\) 3.54983 4.23052i 0.133600 0.159218i
\(707\) −1.00927 21.7732i −0.0379574 0.818867i
\(708\) −50.8777 59.6004i −1.91210 2.23992i
\(709\) 8.87470 + 3.23013i 0.333296 + 0.121310i 0.503247 0.864143i \(-0.332139\pi\)
−0.169951 + 0.985453i \(0.554361\pi\)
\(710\) −43.6108 −1.63668
\(711\) −35.7676 + 31.0608i −1.34139 + 1.16487i
\(712\) 5.32832i 0.199687i
\(713\) −0.404182 2.29223i −0.0151367 0.0858448i
\(714\) −3.24741 59.2044i −0.121531 2.21567i
\(715\) −1.25848 + 0.458050i −0.0470645 + 0.0171301i
\(716\) 11.7189 13.9660i 0.437955 0.521934i
\(717\) 38.6649 14.4452i 1.44397 0.539465i
\(718\) 31.4675 + 11.4532i 1.17436 + 0.427431i
\(719\) −14.5552 −0.542817 −0.271408 0.962464i \(-0.587489\pi\)
−0.271408 + 0.962464i \(0.587489\pi\)
\(720\) −49.5933 + 0.840744i −1.84823 + 0.0313327i
\(721\) 0.571388 + 2.54498i 0.0212796 + 0.0947801i
\(722\) −13.3025 15.8533i −0.495068 0.589999i
\(723\) −4.27516 23.0991i −0.158995 0.859064i
\(724\) −30.4997 + 36.3481i −1.13351 + 1.35087i
\(725\) −3.08864 8.48596i −0.114709 0.315161i
\(726\) −14.4088 24.4754i −0.534762 0.908366i
\(727\) 5.63920 15.4936i 0.209146 0.574625i −0.790119 0.612954i \(-0.789981\pi\)
0.999265 + 0.0383287i \(0.0122034\pi\)
\(728\) 1.21809 + 1.32216i 0.0451454 + 0.0490025i
\(729\) −26.9651 + 1.37245i −0.998707 + 0.0508315i
\(730\) −8.91101 15.4343i −0.329811 0.571250i
\(731\) −9.33416 + 7.83229i −0.345236 + 0.289688i
\(732\) 4.26092 7.52674i 0.157488 0.278196i
\(733\) 30.6823 + 5.41012i 1.13328 + 0.199827i 0.708663 0.705547i \(-0.249299\pi\)
0.424614 + 0.905374i \(0.360410\pi\)
\(734\) 4.65451 26.3970i 0.171801 0.974332i
\(735\) 30.3652 + 13.6508i 1.12004 + 0.503516i
\(736\) −19.9728 + 16.7592i −0.736209 + 0.617753i
\(737\) −40.1874 23.2022i −1.48032 0.854665i
\(738\) 44.1647 + 24.5099i 1.62573 + 0.902222i
\(739\) 2.09919 + 3.63590i 0.0772198 + 0.133749i 0.902049 0.431633i \(-0.142062\pi\)
−0.824830 + 0.565381i \(0.808729\pi\)
\(740\) −17.4459 + 14.6388i −0.641324 + 0.538134i
\(741\) 0.670065 0.812438i 0.0246155 0.0298457i
\(742\) 25.6535 + 13.2669i 0.941771 + 0.487043i
\(743\) −15.8926 43.6646i −0.583044 1.60190i −0.782950 0.622085i \(-0.786286\pi\)
0.199906 0.979815i \(-0.435936\pi\)
\(744\) −1.09603 2.93372i −0.0401825 0.107555i
\(745\) 15.7367 43.2361i 0.576547 1.58405i
\(746\) −30.4806 + 17.5980i −1.11597 + 0.644308i
\(747\) 6.48773 + 33.4662i 0.237374 + 1.22446i
\(748\) 80.6011 46.5351i 2.94707 1.70149i
\(749\) −31.5907 + 13.1848i −1.15430 + 0.481764i
\(750\) 22.3699 19.0960i 0.816834 0.697287i
\(751\) −48.5632 + 17.6756i −1.77210 + 0.644990i −0.772142 + 0.635450i \(0.780815\pi\)
−0.999954 + 0.00954055i \(0.996963\pi\)
\(752\) −28.5697 + 10.3985i −1.04183 + 0.379194i
\(753\) −0.140120 16.5319i −0.00510627 0.602455i
\(754\) −1.02553 + 0.180829i −0.0373476 + 0.00658540i
\(755\) −41.0997 −1.49577
\(756\) 14.4786 + 57.5956i 0.526580 + 2.09473i
\(757\) −34.5687 −1.25642 −0.628210 0.778044i \(-0.716212\pi\)
−0.628210 + 0.778044i \(0.716212\pi\)
\(758\) 85.6855 15.1087i 3.11224 0.548772i
\(759\) −46.9060 + 27.6139i −1.70258 + 1.00232i
\(760\) 78.5268 28.5814i 2.84847 1.03676i
\(761\) −8.42366 + 3.06596i −0.305357 + 0.111141i −0.490154 0.871636i \(-0.663060\pi\)
0.184797 + 0.982777i \(0.440837\pi\)
\(762\) 0.981704 + 5.30423i 0.0355634 + 0.192152i
\(763\) −6.08463 + 7.97393i −0.220279 + 0.288675i
\(764\) −38.0034 + 21.9413i −1.37491 + 0.793807i
\(765\) 6.65365 41.8734i 0.240563 1.51394i
\(766\) 36.8448 21.2724i 1.33126 0.768602i
\(767\) −0.417359 + 1.14669i −0.0150700 + 0.0414044i