Properties

Label 189.2.bd.a.185.19
Level $189$
Weight $2$
Character 189.185
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(47,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([7, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.47");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.bd (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 185.19
Character \(\chi\) \(=\) 189.185
Dual form 189.2.bd.a.47.19

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.87320 - 0.330296i) q^{2} +(0.583821 - 1.63069i) q^{3} +(1.52040 - 0.553380i) q^{4} +(-0.848304 + 0.308757i) q^{5} +(0.555004 - 3.24744i) q^{6} +(2.48993 + 0.894564i) q^{7} +(-0.629295 + 0.363324i) q^{8} +(-2.31831 - 1.90406i) q^{9} +O(q^{10})\) \(q+(1.87320 - 0.330296i) q^{2} +(0.583821 - 1.63069i) q^{3} +(1.52040 - 0.553380i) q^{4} +(-0.848304 + 0.308757i) q^{5} +(0.555004 - 3.24744i) q^{6} +(2.48993 + 0.894564i) q^{7} +(-0.629295 + 0.363324i) q^{8} +(-2.31831 - 1.90406i) q^{9} +(-1.48706 + 0.858555i) q^{10} +(-1.19563 + 3.28497i) q^{11} +(-0.0147504 - 2.80238i) q^{12} +(-1.35464 - 3.72184i) q^{13} +(4.95961 + 0.853285i) q^{14} +(0.00822998 + 1.56358i) q^{15} +(-3.53767 + 2.96846i) q^{16} +(-0.233932 - 0.405183i) q^{17} +(-4.97156 - 2.80097i) q^{18} +(3.14258 + 1.81437i) q^{19} +(-1.11890 + 0.938869i) q^{20} +(2.91243 - 3.53804i) q^{21} +(-1.15465 + 6.54832i) q^{22} +(3.44344 + 0.607171i) q^{23} +(0.225073 + 1.23830i) q^{24} +(-3.20593 + 2.69010i) q^{25} +(-3.76682 - 6.52432i) q^{26} +(-4.45842 + 2.66881i) q^{27} +(4.28072 - 0.0177830i) q^{28} +(-1.79273 + 4.92550i) q^{29} +(0.531860 + 2.92618i) q^{30} +(-2.38270 - 6.54641i) q^{31} +(-4.71214 + 5.61571i) q^{32} +(4.65874 + 3.86754i) q^{33} +(-0.572032 - 0.681722i) q^{34} +(-2.38842 + 0.00992201i) q^{35} +(-4.57842 - 1.61203i) q^{36} +9.85377 q^{37} +(6.48596 + 2.36070i) q^{38} +(-6.86004 + 0.0361081i) q^{39} +(0.421655 - 0.502508i) q^{40} +(2.71326 - 0.987547i) q^{41} +(4.28697 - 7.58943i) q^{42} +(-1.54504 - 8.76238i) q^{43} +5.65611i q^{44} +(2.55452 + 0.899431i) q^{45} +6.65080 q^{46} +(-3.13508 - 1.14108i) q^{47} +(2.77527 + 7.50190i) q^{48} +(5.39951 + 4.45481i) q^{49} +(-5.11683 + 6.09800i) q^{50} +(-0.797302 + 0.144917i) q^{51} +(-4.11919 - 4.90906i) q^{52} +(-8.75304 - 5.05357i) q^{53} +(-7.47001 + 6.47181i) q^{54} -3.15581i q^{55} +(-1.89192 + 0.341706i) q^{56} +(4.79338 - 4.06531i) q^{57} +(-1.73128 + 9.81858i) q^{58} +(-2.48304 - 2.08352i) q^{59} +(0.877767 + 2.37271i) q^{60} +(0.0209011 - 0.0574254i) q^{61} +(-6.62553 - 11.4757i) q^{62} +(-4.06911 - 6.81486i) q^{63} +(-2.35384 + 4.07697i) q^{64} +(2.29829 + 2.73900i) q^{65} +(10.0042 + 5.70592i) q^{66} +(1.78024 - 10.0962i) q^{67} +(-0.579891 - 0.486586i) q^{68} +(3.00046 - 5.26070i) q^{69} +(-4.47071 + 0.807471i) q^{70} +(-2.19935 - 1.26979i) q^{71} +(2.15069 + 0.355923i) q^{72} -8.37008i q^{73} +(18.4581 - 3.25466i) q^{74} +(2.51503 + 6.79842i) q^{75} +(5.78202 + 1.01953i) q^{76} +(-5.91566 + 7.10978i) q^{77} +(-12.8383 + 2.33348i) q^{78} +(1.64089 + 9.30597i) q^{79} +(2.08449 - 3.61044i) q^{80} +(1.74908 + 8.82840i) q^{81} +(4.75630 - 2.74605i) q^{82} +(-10.6153 - 3.86367i) q^{83} +(2.47018 - 6.99092i) q^{84} +(0.323549 + 0.271490i) q^{85} +(-5.78836 - 15.9034i) q^{86} +(6.98533 + 5.79900i) q^{87} +(-0.441103 - 2.50162i) q^{88} +(-1.51868 + 2.63043i) q^{89} +(5.08221 + 0.841067i) q^{90} +(-0.0435318 - 10.4789i) q^{91} +(5.57140 - 0.982388i) q^{92} +(-12.0662 + 0.0635112i) q^{93} +(-6.24952 - 1.10196i) q^{94} +(-3.22606 - 0.568842i) q^{95} +(6.40644 + 10.9626i) q^{96} +(5.02929 - 0.886800i) q^{97} +(11.5858 + 6.56131i) q^{98} +(9.02664 - 5.33901i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} + 18 q^{6} - 6 q^{7} - 18 q^{8} - 15 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} + 18 q^{6} - 6 q^{7} - 18 q^{8} - 15 q^{9} - 9 q^{10} + 9 q^{11} - 9 q^{12} - 42 q^{14} - 24 q^{15} - 15 q^{16} - 9 q^{17} - 3 q^{18} - 9 q^{19} - 18 q^{20} + 15 q^{21} - 12 q^{22} + 30 q^{23} - 36 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} - 3 q^{30} - 9 q^{31} - 51 q^{32} - 9 q^{33} + 18 q^{34} - 9 q^{35} - 6 q^{37} - 9 q^{38} - 9 q^{39} - 9 q^{40} + 27 q^{42} - 12 q^{43} - 63 q^{45} - 6 q^{46} + 45 q^{47} + 30 q^{49} - 9 q^{50} + 33 q^{51} - 9 q^{52} + 45 q^{53} + 117 q^{54} - 51 q^{56} - 3 q^{58} - 9 q^{59} - 15 q^{60} - 63 q^{61} + 99 q^{62} - 33 q^{63} + 18 q^{64} - 102 q^{65} + 63 q^{66} - 3 q^{67} + 144 q^{68} - 108 q^{69} - 15 q^{70} + 18 q^{71} + 15 q^{72} - 33 q^{74} - 9 q^{75} - 36 q^{76} - 57 q^{77} + 66 q^{78} - 21 q^{79} - 72 q^{80} + 57 q^{81} - 18 q^{82} + 90 q^{83} + 51 q^{84} + 9 q^{85} - 33 q^{86} - 9 q^{87} + 45 q^{88} - 9 q^{89} - 81 q^{90} - 21 q^{91} + 150 q^{92} - 87 q^{93} - 9 q^{94} + 27 q^{95} - 9 q^{96} - 180 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.87320 0.330296i 1.32455 0.233554i 0.533759 0.845637i \(-0.320779\pi\)
0.790794 + 0.612082i \(0.209668\pi\)
\(3\) 0.583821 1.63069i 0.337069 0.941480i
\(4\) 1.52040 0.553380i 0.760200 0.276690i
\(5\) −0.848304 + 0.308757i −0.379373 + 0.138080i −0.524666 0.851308i \(-0.675810\pi\)
0.145293 + 0.989389i \(0.453588\pi\)
\(6\) 0.555004 3.24744i 0.226579 1.32576i
\(7\) 2.48993 + 0.894564i 0.941105 + 0.338114i
\(8\) −0.629295 + 0.363324i −0.222489 + 0.128454i
\(9\) −2.31831 1.90406i −0.772768 0.634688i
\(10\) −1.48706 + 0.858555i −0.470250 + 0.271499i
\(11\) −1.19563 + 3.28497i −0.360497 + 0.990456i 0.618358 + 0.785897i \(0.287798\pi\)
−0.978854 + 0.204559i \(0.934424\pi\)
\(12\) −0.0147504 2.80238i −0.00425809 0.808977i
\(13\) −1.35464 3.72184i −0.375709 1.03225i −0.973116 0.230315i \(-0.926024\pi\)
0.597407 0.801938i \(-0.296198\pi\)
\(14\) 4.95961 + 0.853285i 1.32551 + 0.228050i
\(15\) 0.00822998 + 1.56358i 0.00212497 + 0.403715i
\(16\) −3.53767 + 2.96846i −0.884419 + 0.742115i
\(17\) −0.233932 0.405183i −0.0567369 0.0982712i 0.836262 0.548330i \(-0.184736\pi\)
−0.892999 + 0.450059i \(0.851403\pi\)
\(18\) −4.97156 2.80097i −1.17181 0.660194i
\(19\) 3.14258 + 1.81437i 0.720958 + 0.416245i 0.815105 0.579313i \(-0.196679\pi\)
−0.0941474 + 0.995558i \(0.530013\pi\)
\(20\) −1.11890 + 0.938869i −0.250194 + 0.209938i
\(21\) 2.91243 3.53804i 0.635545 0.772064i
\(22\) −1.15465 + 6.54832i −0.246171 + 1.39611i
\(23\) 3.44344 + 0.607171i 0.718006 + 0.126604i 0.520702 0.853738i \(-0.325670\pi\)
0.197304 + 0.980342i \(0.436781\pi\)
\(24\) 0.225073 + 1.23830i 0.0459428 + 0.252767i
\(25\) −3.20593 + 2.69010i −0.641187 + 0.538020i
\(26\) −3.76682 6.52432i −0.738734 1.27953i
\(27\) −4.45842 + 2.66881i −0.858023 + 0.513612i
\(28\) 4.28072 0.0177830i 0.808981 0.00336068i
\(29\) −1.79273 + 4.92550i −0.332902 + 0.914642i 0.654451 + 0.756105i \(0.272900\pi\)
−0.987353 + 0.158537i \(0.949322\pi\)
\(30\) 0.531860 + 2.92618i 0.0971040 + 0.534245i
\(31\) −2.38270 6.54641i −0.427945 1.17577i −0.947057 0.321064i \(-0.895959\pi\)
0.519112 0.854706i \(-0.326263\pi\)
\(32\) −4.71214 + 5.61571i −0.832997 + 0.992727i
\(33\) 4.65874 + 3.86754i 0.810982 + 0.673253i
\(34\) −0.572032 0.681722i −0.0981027 0.116914i
\(35\) −2.38842 + 0.00992201i −0.403717 + 0.00167713i
\(36\) −4.57842 1.61203i −0.763070 0.268672i
\(37\) 9.85377 1.61995 0.809975 0.586464i \(-0.199481\pi\)
0.809975 + 0.586464i \(0.199481\pi\)
\(38\) 6.48596 + 2.36070i 1.05216 + 0.382956i
\(39\) −6.86004 + 0.0361081i −1.09849 + 0.00578193i
\(40\) 0.421655 0.502508i 0.0666695 0.0794536i
\(41\) 2.71326 0.987547i 0.423741 0.154229i −0.121343 0.992611i \(-0.538720\pi\)
0.545084 + 0.838382i \(0.316498\pi\)
\(42\) 4.28697 7.58943i 0.661494 1.17107i
\(43\) −1.54504 8.76238i −0.235617 1.33625i −0.841310 0.540553i \(-0.818215\pi\)
0.605693 0.795698i \(-0.292896\pi\)
\(44\) 5.65611i 0.852690i
\(45\) 2.55452 + 0.899431i 0.380805 + 0.134079i
\(46\) 6.65080 0.980606
\(47\) −3.13508 1.14108i −0.457298 0.166443i 0.103092 0.994672i \(-0.467126\pi\)
−0.560390 + 0.828229i \(0.689349\pi\)
\(48\) 2.77527 + 7.50190i 0.400576 + 1.08281i
\(49\) 5.39951 + 4.45481i 0.771358 + 0.636401i
\(50\) −5.11683 + 6.09800i −0.723629 + 0.862387i
\(51\) −0.797302 + 0.144917i −0.111645 + 0.0202924i
\(52\) −4.11919 4.90906i −0.571228 0.680764i
\(53\) −8.75304 5.05357i −1.20232 0.694161i −0.241251 0.970463i \(-0.577558\pi\)
−0.961071 + 0.276302i \(0.910891\pi\)
\(54\) −7.47001 + 6.47181i −1.01654 + 0.880701i
\(55\) 3.15581i 0.425530i
\(56\) −1.89192 + 0.341706i −0.252818 + 0.0456624i
\(57\) 4.79338 4.06531i 0.634899 0.538464i
\(58\) −1.73128 + 9.81858i −0.227328 + 1.28924i
\(59\) −2.48304 2.08352i −0.323265 0.271251i 0.466684 0.884424i \(-0.345449\pi\)
−0.789949 + 0.613173i \(0.789893\pi\)
\(60\) 0.877767 + 2.37271i 0.113319 + 0.306316i
\(61\) 0.0209011 0.0574254i 0.00267611 0.00735257i −0.938347 0.345694i \(-0.887644\pi\)
0.941023 + 0.338341i \(0.109866\pi\)
\(62\) −6.62553 11.4757i −0.841443 1.45742i
\(63\) −4.06911 6.81486i −0.512660 0.858592i
\(64\) −2.35384 + 4.07697i −0.294230 + 0.509621i
\(65\) 2.29829 + 2.73900i 0.285068 + 0.339731i
\(66\) 10.0042 + 5.70592i 1.23143 + 0.702350i
\(67\) 1.78024 10.0962i 0.217491 1.23345i −0.659041 0.752107i \(-0.729038\pi\)
0.876532 0.481344i \(-0.159851\pi\)
\(68\) −0.579891 0.486586i −0.0703221 0.0590072i
\(69\) 3.00046 5.26070i 0.361213 0.633314i
\(70\) −4.47071 + 0.807471i −0.534352 + 0.0965113i
\(71\) −2.19935 1.26979i −0.261014 0.150697i 0.363783 0.931484i \(-0.381485\pi\)
−0.624797 + 0.780787i \(0.714818\pi\)
\(72\) 2.15069 + 0.355923i 0.253461 + 0.0419459i
\(73\) 8.37008i 0.979643i −0.871823 0.489822i \(-0.837062\pi\)
0.871823 0.489822i \(-0.162938\pi\)
\(74\) 18.4581 3.25466i 2.14571 0.378346i
\(75\) 2.51503 + 6.79842i 0.290410 + 0.785014i
\(76\) 5.78202 + 1.01953i 0.663243 + 0.116948i
\(77\) −5.91566 + 7.10978i −0.674152 + 0.810235i
\(78\) −12.8383 + 2.33348i −1.45365 + 0.264215i
\(79\) 1.64089 + 9.30597i 0.184615 + 1.04700i 0.926449 + 0.376420i \(0.122845\pi\)
−0.741834 + 0.670583i \(0.766044\pi\)
\(80\) 2.08449 3.61044i 0.233053 0.403659i
\(81\) 1.74908 + 8.82840i 0.194342 + 0.980934i
\(82\) 4.75630 2.74605i 0.525246 0.303251i
\(83\) −10.6153 3.86367i −1.16518 0.424092i −0.314237 0.949344i \(-0.601749\pi\)
−0.850947 + 0.525252i \(0.823971\pi\)
\(84\) 2.47018 6.99092i 0.269519 0.762772i
\(85\) 0.323549 + 0.271490i 0.0350938 + 0.0294472i
\(86\) −5.78836 15.9034i −0.624175 1.71491i
\(87\) 6.98533 + 5.79900i 0.748906 + 0.621719i
\(88\) −0.441103 2.50162i −0.0470217 0.266673i
\(89\) −1.51868 + 2.63043i −0.160980 + 0.278825i −0.935220 0.354066i \(-0.884799\pi\)
0.774241 + 0.632891i \(0.218132\pi\)
\(90\) 5.08221 + 0.841067i 0.535712 + 0.0886562i
\(91\) −0.0435318 10.4789i −0.00456337 1.09849i
\(92\) 5.57140 0.982388i 0.580858 0.102421i
\(93\) −12.0662 + 0.0635112i −1.25121 + 0.00658581i
\(94\) −6.24952 1.10196i −0.644589 0.113658i
\(95\) −3.22606 0.568842i −0.330987 0.0583620i
\(96\) 6.40644 + 10.9626i 0.653855 + 1.11887i
\(97\) 5.02929 0.886800i 0.510647 0.0900409i 0.0876131 0.996155i \(-0.472076\pi\)
0.423034 + 0.906114i \(0.360965\pi\)
\(98\) 11.5858 + 6.56131i 1.17034 + 0.662792i
\(99\) 9.02664 5.33901i 0.907211 0.536590i
\(100\) −3.38565 + 5.86413i −0.338565 + 0.586413i
\(101\) 2.32953 + 13.2114i 0.231797 + 1.31459i 0.849255 + 0.527983i \(0.177052\pi\)
−0.617457 + 0.786604i \(0.711837\pi\)
\(102\) −1.44564 + 0.534804i −0.143140 + 0.0529535i
\(103\) 5.15600 + 14.1660i 0.508036 + 1.39582i 0.883260 + 0.468883i \(0.155343\pi\)
−0.375225 + 0.926934i \(0.622434\pi\)
\(104\) 2.20470 + 1.84996i 0.216189 + 0.181404i
\(105\) −1.37823 + 3.90057i −0.134502 + 0.380656i
\(106\) −18.0654 6.57525i −1.75466 0.638645i
\(107\) 12.8332 7.40924i 1.24063 0.716278i 0.271407 0.962465i \(-0.412511\pi\)
0.969222 + 0.246187i \(0.0791777\pi\)
\(108\) −5.30171 + 6.52485i −0.510157 + 0.627854i
\(109\) −1.48332 + 2.56918i −0.142076 + 0.246083i −0.928278 0.371886i \(-0.878711\pi\)
0.786202 + 0.617969i \(0.212044\pi\)
\(110\) −1.04235 5.91147i −0.0993844 0.563637i
\(111\) 5.75284 16.0685i 0.546036 1.52515i
\(112\) −11.4640 + 4.22659i −1.08325 + 0.399375i
\(113\) 12.0005 + 2.11601i 1.12891 + 0.199058i 0.706751 0.707463i \(-0.250160\pi\)
0.422162 + 0.906520i \(0.361271\pi\)
\(114\) 7.63621 9.19838i 0.715197 0.861507i
\(115\) −3.10855 + 0.548121i −0.289874 + 0.0511126i
\(116\) 8.48079i 0.787421i
\(117\) −3.94616 + 11.2077i −0.364822 + 1.03615i
\(118\) −5.33942 3.08271i −0.491533 0.283787i
\(119\) −0.220013 1.21814i −0.0201686 0.111667i
\(120\) −0.573265 0.980963i −0.0523317 0.0895493i
\(121\) −0.935012 0.784569i −0.0850011 0.0713244i
\(122\) 0.0201846 0.114473i 0.00182743 0.0103639i
\(123\) −0.0263232 5.00105i −0.00237349 0.450929i
\(124\) −7.24531 8.63463i −0.650648 0.775412i
\(125\) 4.14588 7.18088i 0.370819 0.642277i
\(126\) −9.87318 11.4216i −0.879573 1.01752i
\(127\) −4.12812 7.15011i −0.366311 0.634469i 0.622675 0.782481i \(-0.286046\pi\)
−0.988986 + 0.148012i \(0.952713\pi\)
\(128\) 1.95195 5.36295i 0.172530 0.474022i
\(129\) −15.1908 2.59618i −1.33747 0.228581i
\(130\) 5.20984 + 4.37157i 0.456933 + 0.383412i
\(131\) 3.60230 20.4297i 0.314734 1.78495i −0.258970 0.965885i \(-0.583383\pi\)
0.573704 0.819062i \(-0.305506\pi\)
\(132\) 9.22336 + 3.30216i 0.802791 + 0.287416i
\(133\) 6.20174 + 7.32890i 0.537759 + 0.635496i
\(134\) 19.5003i 1.68457i
\(135\) 2.95808 3.64053i 0.254591 0.313327i
\(136\) 0.294425 + 0.169986i 0.0252467 + 0.0145762i
\(137\) 7.84338 + 9.34738i 0.670105 + 0.798600i 0.988798 0.149258i \(-0.0476884\pi\)
−0.318693 + 0.947858i \(0.603244\pi\)
\(138\) 3.88288 10.8454i 0.330532 0.923221i
\(139\) −11.5620 + 13.7791i −0.980677 + 1.16873i 0.00498385 + 0.999988i \(0.498414\pi\)
−0.985661 + 0.168738i \(0.946031\pi\)
\(140\) −3.62586 + 1.33679i −0.306441 + 0.112979i
\(141\) −3.69107 + 4.44616i −0.310844 + 0.374434i
\(142\) −4.53923 1.65214i −0.380923 0.138645i
\(143\) 13.8458 1.15784
\(144\) 13.8536 0.145842i 1.15446 0.0121535i
\(145\) 4.73184i 0.392958i
\(146\) −2.76460 15.6788i −0.228800 1.29759i
\(147\) 10.4168 6.20412i 0.859160 0.511707i
\(148\) 14.9817 5.45288i 1.23149 0.448224i
\(149\) −7.23973 + 8.62797i −0.593102 + 0.706831i −0.976199 0.216877i \(-0.930413\pi\)
0.383097 + 0.923708i \(0.374857\pi\)
\(150\) 6.95664 + 11.9041i 0.568007 + 0.971966i
\(151\) 5.72173 + 2.08254i 0.465628 + 0.169475i 0.564171 0.825658i \(-0.309196\pi\)
−0.0985428 + 0.995133i \(0.531418\pi\)
\(152\) −2.63682 −0.213874
\(153\) −0.229167 + 1.38476i −0.0185271 + 0.111951i
\(154\) −8.73288 + 15.2720i −0.703716 + 1.23065i
\(155\) 4.04251 + 4.81767i 0.324702 + 0.386965i
\(156\) −10.4100 + 3.85111i −0.833469 + 0.308336i
\(157\) 3.07275 3.66196i 0.245232 0.292256i −0.629362 0.777112i \(-0.716684\pi\)
0.874594 + 0.484856i \(0.161128\pi\)
\(158\) 6.14744 + 16.8900i 0.489064 + 1.34369i
\(159\) −13.3510 + 11.3231i −1.05880 + 0.897981i
\(160\) 2.26344 6.21874i 0.178940 0.491635i
\(161\) 8.03077 + 4.59219i 0.632913 + 0.361915i
\(162\) 6.19236 + 15.9597i 0.486518 + 1.25391i
\(163\) 3.98040 + 6.89426i 0.311769 + 0.540000i 0.978745 0.205079i \(-0.0657451\pi\)
−0.666976 + 0.745079i \(0.732412\pi\)
\(164\) 3.57876 3.00293i 0.279454 0.234490i
\(165\) −5.14616 1.84243i −0.400628 0.143433i
\(166\) −21.1608 3.73122i −1.64240 0.289599i
\(167\) −3.90196 + 22.1291i −0.301943 + 1.71240i 0.335613 + 0.942000i \(0.391057\pi\)
−0.637556 + 0.770404i \(0.720055\pi\)
\(168\) −0.547325 + 3.28463i −0.0422271 + 0.253415i
\(169\) −2.05848 + 1.72727i −0.158344 + 0.132867i
\(170\) 0.695744 + 0.401688i 0.0533611 + 0.0308080i
\(171\) −3.83079 10.1899i −0.292948 0.779244i
\(172\) −7.19802 12.4673i −0.548844 0.950625i
\(173\) 5.93288 4.97828i 0.451069 0.378491i −0.388764 0.921338i \(-0.627098\pi\)
0.839832 + 0.542846i \(0.182653\pi\)
\(174\) 15.0003 + 8.55548i 1.13717 + 0.648589i
\(175\) −10.3890 + 3.83024i −0.785336 + 0.289539i
\(176\) −5.52155 15.1703i −0.416203 1.14351i
\(177\) −4.84723 + 2.83267i −0.364340 + 0.212917i
\(178\) −1.97597 + 5.42893i −0.148105 + 0.406916i
\(179\) 1.62040 0.935541i 0.121115 0.0699256i −0.438219 0.898868i \(-0.644390\pi\)
0.559333 + 0.828943i \(0.311057\pi\)
\(180\) 4.38162 0.0461270i 0.326587 0.00343810i
\(181\) −18.1786 + 10.4954i −1.35121 + 0.780121i −0.988419 0.151751i \(-0.951509\pi\)
−0.362790 + 0.931871i \(0.618176\pi\)
\(182\) −3.54269 19.6148i −0.262602 1.45394i
\(183\) −0.0814405 0.0676094i −0.00602026 0.00499783i
\(184\) −2.38754 + 0.868993i −0.176012 + 0.0640630i
\(185\) −8.35899 + 3.04242i −0.614565 + 0.223683i
\(186\) −22.5815 + 4.10440i −1.65576 + 0.300949i
\(187\) 1.61071 0.284012i 0.117787 0.0207690i
\(188\) −5.39802 −0.393691
\(189\) −13.4886 + 2.65680i −0.981149 + 0.193254i
\(190\) −6.23095 −0.452041
\(191\) 10.0948 1.77999i 0.730436 0.128796i 0.203952 0.978981i \(-0.434621\pi\)
0.526484 + 0.850185i \(0.323510\pi\)
\(192\) 5.27405 + 6.21860i 0.380622 + 0.448789i
\(193\) 9.47459 3.44847i 0.681996 0.248226i 0.0222917 0.999752i \(-0.492904\pi\)
0.659704 + 0.751525i \(0.270682\pi\)
\(194\) 9.12797 3.32231i 0.655350 0.238528i
\(195\) 5.80825 2.14872i 0.415937 0.153873i
\(196\) 10.6746 + 3.78510i 0.762472 + 0.270365i
\(197\) −23.0223 + 13.2919i −1.64027 + 0.947010i −0.659533 + 0.751676i \(0.729246\pi\)
−0.980737 + 0.195334i \(0.937421\pi\)
\(198\) 15.1452 12.9825i 1.07633 0.922626i
\(199\) −16.8725 + 9.74135i −1.19606 + 0.690546i −0.959675 0.281113i \(-0.909297\pi\)
−0.236387 + 0.971659i \(0.575963\pi\)
\(200\) 1.04010 2.85766i 0.0735464 0.202067i
\(201\) −15.4245 8.79742i −1.08796 0.620522i
\(202\) 8.72737 + 23.9782i 0.614055 + 1.68710i
\(203\) −8.86996 + 10.6604i −0.622549 + 0.748215i
\(204\) −1.13202 + 0.661543i −0.0792575 + 0.0463173i
\(205\) −1.99676 + 1.67548i −0.139460 + 0.117021i
\(206\) 14.3372 + 24.8327i 0.998919 + 1.73018i
\(207\) −6.82685 7.96413i −0.474499 0.553546i
\(208\) 15.8404 + 9.14547i 1.09834 + 0.634124i
\(209\) −9.71752 + 8.15397i −0.672175 + 0.564022i
\(210\) −1.29336 + 7.76177i −0.0892504 + 0.535613i
\(211\) −0.926175 + 5.25260i −0.0637605 + 0.361604i 0.936188 + 0.351499i \(0.114328\pi\)
−0.999949 + 0.0101053i \(0.996783\pi\)
\(212\) −16.1047 2.83969i −1.10607 0.195030i
\(213\) −3.35467 + 2.84512i −0.229858 + 0.194945i
\(214\) 21.5919 18.1177i 1.47599 1.23850i
\(215\) 4.01612 + 6.95612i 0.273897 + 0.474403i
\(216\) 1.83602 3.29932i 0.124925 0.224490i
\(217\) −0.0765688 18.4316i −0.00519783 1.25122i
\(218\) −1.92996 + 5.30253i −0.130713 + 0.359132i
\(219\) −13.6490 4.88663i −0.922314 0.330208i
\(220\) −1.74636 4.79810i −0.117740 0.323488i
\(221\) −1.19113 + 1.41954i −0.0801242 + 0.0954883i
\(222\) 5.46888 31.9996i 0.367047 2.14767i
\(223\) 5.44697 + 6.49144i 0.364756 + 0.434699i 0.916941 0.399022i \(-0.130650\pi\)
−0.552185 + 0.833721i \(0.686206\pi\)
\(224\) −16.7565 + 9.76742i −1.11959 + 0.652613i
\(225\) 12.5545 0.132166i 0.836964 0.00881104i
\(226\) 23.1783 1.54180
\(227\) −21.1352 7.69258i −1.40279 0.510575i −0.473787 0.880640i \(-0.657113\pi\)
−0.929006 + 0.370065i \(0.879335\pi\)
\(228\) 5.03820 8.83346i 0.333663 0.585010i
\(229\) 0.509720 0.607461i 0.0336833 0.0401421i −0.748940 0.662638i \(-0.769437\pi\)
0.782623 + 0.622496i \(0.213881\pi\)
\(230\) −5.64189 + 2.05348i −0.372015 + 0.135403i
\(231\) 8.14017 + 13.7975i 0.535584 + 0.907806i
\(232\) −0.661391 3.75093i −0.0434224 0.246261i
\(233\) 8.67731i 0.568470i 0.958755 + 0.284235i \(0.0917395\pi\)
−0.958755 + 0.284235i \(0.908260\pi\)
\(234\) −3.69009 + 22.2976i −0.241229 + 1.45764i
\(235\) 3.01181 0.196469
\(236\) −4.92820 1.79372i −0.320798 0.116761i
\(237\) 16.1331 + 2.75723i 1.04796 + 0.179101i
\(238\) −0.814477 2.20916i −0.0527947 0.143199i
\(239\) 14.4054 17.1677i 0.931810 1.11049i −0.0618527 0.998085i \(-0.519701\pi\)
0.993663 0.112403i \(-0.0358546\pi\)
\(240\) −4.67054 5.50701i −0.301482 0.355476i
\(241\) 6.75864 + 8.05464i 0.435362 + 0.518845i 0.938461 0.345384i \(-0.112251\pi\)
−0.503099 + 0.864229i \(0.667807\pi\)
\(242\) −2.01061 1.16082i −0.129247 0.0746206i
\(243\) 15.4175 + 2.30200i 0.989036 + 0.147673i
\(244\) 0.0988758i 0.00632987i
\(245\) −5.95588 2.11189i −0.380507 0.134924i
\(246\) −1.70113 9.35927i −0.108460 0.596725i
\(247\) 2.49573 14.1540i 0.158800 0.900598i
\(248\) 3.87789 + 3.25394i 0.246246 + 0.206625i
\(249\) −12.4979 + 15.0546i −0.792022 + 0.954049i
\(250\) 5.39426 14.8206i 0.341163 0.937337i
\(251\) −4.71175 8.16098i −0.297403 0.515117i 0.678138 0.734934i \(-0.262787\pi\)
−0.975541 + 0.219818i \(0.929454\pi\)
\(252\) −9.95789 8.10955i −0.627288 0.510853i
\(253\) −6.11162 + 10.5856i −0.384234 + 0.665514i
\(254\) −10.0944 12.0301i −0.633381 0.754835i
\(255\) 0.631610 0.369107i 0.0395530 0.0231144i
\(256\) 3.52000 19.9629i 0.220000 1.24768i
\(257\) 9.03217 + 7.57889i 0.563411 + 0.472758i 0.879452 0.475987i \(-0.157909\pi\)
−0.316041 + 0.948746i \(0.602354\pi\)
\(258\) −29.3129 + 0.154290i −1.82494 + 0.00960565i
\(259\) 24.5352 + 8.81483i 1.52454 + 0.547727i
\(260\) 5.01003 + 2.89254i 0.310709 + 0.179388i
\(261\) 13.5346 8.00533i 0.837769 0.495517i
\(262\) 39.4587i 2.43777i
\(263\) −4.57306 + 0.806354i −0.281987 + 0.0497219i −0.312853 0.949802i \(-0.601285\pi\)
0.0308658 + 0.999524i \(0.490174\pi\)
\(264\) −4.33689 0.741196i −0.266917 0.0456174i
\(265\) 8.98556 + 1.58440i 0.551978 + 0.0973287i
\(266\) 14.0378 + 11.6801i 0.860713 + 0.716152i
\(267\) 3.40278 + 4.01220i 0.208247 + 0.245542i
\(268\) −2.88038 16.3355i −0.175947 0.997847i
\(269\) 13.5452 23.4609i 0.825864 1.43044i −0.0753937 0.997154i \(-0.524021\pi\)
0.901257 0.433284i \(-0.142645\pi\)
\(270\) 4.33862 7.79648i 0.264040 0.474479i
\(271\) −3.93162 + 2.26992i −0.238829 + 0.137888i −0.614638 0.788809i \(-0.710698\pi\)
0.375810 + 0.926697i \(0.377365\pi\)
\(272\) 2.03035 + 0.738985i 0.123108 + 0.0448076i
\(273\) −17.1133 6.04684i −1.03575 0.365971i
\(274\) 17.7796 + 14.9189i 1.07411 + 0.901282i
\(275\) −5.00378 13.7478i −0.301739 0.829022i
\(276\) 1.65073 9.65877i 0.0993623 0.581389i
\(277\) 1.38431 + 7.85082i 0.0831752 + 0.471710i 0.997735 + 0.0672603i \(0.0214258\pi\)
−0.914560 + 0.404450i \(0.867463\pi\)
\(278\) −17.1068 + 29.6298i −1.02600 + 1.77708i
\(279\) −6.94096 + 19.7134i −0.415545 + 1.18021i
\(280\) 1.49942 0.874014i 0.0896073 0.0522323i
\(281\) 6.05459 1.06759i 0.361187 0.0636870i 0.00988990 0.999951i \(-0.496852\pi\)
0.351297 + 0.936264i \(0.385741\pi\)
\(282\) −5.44556 + 9.54769i −0.324278 + 0.568557i
\(283\) −11.2989 1.99229i −0.671647 0.118430i −0.172584 0.984995i \(-0.555212\pi\)
−0.499064 + 0.866565i \(0.666323\pi\)
\(284\) −4.04657 0.713519i −0.240119 0.0423395i
\(285\) −2.81105 + 4.92861i −0.166512 + 0.291946i
\(286\) 25.9359 4.57321i 1.53362 0.270419i
\(287\) 7.63926 0.0317351i 0.450931 0.00187327i
\(288\) 21.6169 4.04672i 1.27379 0.238455i
\(289\) 8.39055 14.5329i 0.493562 0.854874i
\(290\) −1.56291 8.86368i −0.0917770 0.520493i
\(291\) 1.49011 8.71896i 0.0873519 0.511114i
\(292\) −4.63183 12.7259i −0.271058 0.744725i
\(293\) −0.840836 0.705545i −0.0491222 0.0412184i 0.617896 0.786260i \(-0.287985\pi\)
−0.667018 + 0.745041i \(0.732430\pi\)
\(294\) 17.4635 15.0622i 1.01849 0.878444i
\(295\) 2.74968 + 1.00080i 0.160092 + 0.0582689i
\(296\) −6.20093 + 3.58011i −0.360422 + 0.208090i
\(297\) −3.43633 17.8367i −0.199396 1.03499i
\(298\) −10.7117 + 18.5532i −0.620511 + 1.07476i
\(299\) −2.40482 13.6384i −0.139074 0.788730i
\(300\) 7.58596 + 8.94456i 0.437976 + 0.516414i
\(301\) 3.99146 23.1999i 0.230064 1.33722i
\(302\) 11.4058 + 2.01115i 0.656331 + 0.115729i
\(303\) 22.9038 + 3.91437i 1.31579 + 0.224875i
\(304\) −16.5033 + 2.90998i −0.946530 + 0.166899i
\(305\) 0.0551675i 0.00315888i
\(306\) 0.0281042 + 2.66962i 0.00160661 + 0.152612i
\(307\) −5.93612 3.42722i −0.338792 0.195602i 0.320945 0.947098i \(-0.395999\pi\)
−0.659738 + 0.751496i \(0.729333\pi\)
\(308\) −5.05975 + 14.0833i −0.288306 + 0.802472i
\(309\) 26.1105 0.137434i 1.48538 0.00781835i
\(310\) 9.16368 + 7.68924i 0.520462 + 0.436720i
\(311\) 3.87680 21.9864i 0.219833 1.24674i −0.652487 0.757800i \(-0.726274\pi\)
0.872320 0.488935i \(-0.162615\pi\)
\(312\) 4.30387 2.51514i 0.243659 0.142392i
\(313\) 0.650065 + 0.774717i 0.0367439 + 0.0437896i 0.784103 0.620630i \(-0.213123\pi\)
−0.747360 + 0.664420i \(0.768679\pi\)
\(314\) 4.54635 7.87450i 0.256565 0.444384i
\(315\) 5.55598 + 4.52470i 0.313044 + 0.254938i
\(316\) 7.64455 + 13.2408i 0.430040 + 0.744850i
\(317\) −8.50091 + 23.3561i −0.477459 + 1.31181i 0.434184 + 0.900824i \(0.357037\pi\)
−0.911643 + 0.410983i \(0.865186\pi\)
\(318\) −21.2692 + 25.6203i −1.19271 + 1.43671i
\(319\) −14.0367 11.7782i −0.785902 0.659450i
\(320\) 0.737976 4.18527i 0.0412541 0.233964i
\(321\) −4.58989 25.2526i −0.256183 1.40946i
\(322\) 16.5600 + 5.94956i 0.922854 + 0.331556i
\(323\) 1.69776i 0.0944659i
\(324\) 7.54477 + 12.4548i 0.419154 + 0.691933i
\(325\) 14.3550 + 8.28786i 0.796272 + 0.459728i
\(326\) 9.73324 + 11.5996i 0.539074 + 0.642444i
\(327\) 3.32355 + 3.91877i 0.183793 + 0.216709i
\(328\) −1.34864 + 1.60725i −0.0744664 + 0.0887457i
\(329\) −6.78536 5.64573i −0.374089 0.311259i
\(330\) −10.2483 1.75149i −0.564152 0.0964163i
\(331\) −24.9441 9.07889i −1.37105 0.499021i −0.451597 0.892222i \(-0.649145\pi\)
−0.919453 + 0.393201i \(0.871368\pi\)
\(332\) −18.2776 −1.00312
\(333\) −22.8441 18.7622i −1.25185 1.02816i
\(334\) 42.7411i 2.33869i
\(335\) 1.60710 + 9.11434i 0.0878054 + 0.497969i
\(336\) 0.199302 + 21.1619i 0.0108728 + 1.15448i
\(337\) 23.2967 8.47930i 1.26905 0.461897i 0.382254 0.924057i \(-0.375148\pi\)
0.886796 + 0.462161i \(0.152926\pi\)
\(338\) −3.28543 + 3.91542i −0.178704 + 0.212971i
\(339\) 10.4567 18.3337i 0.567931 0.995752i
\(340\) 0.642160 + 0.233727i 0.0348260 + 0.0126756i
\(341\) 24.3536 1.31882
\(342\) −10.5415 17.8225i −0.570020 0.963731i
\(343\) 9.45929 + 15.9224i 0.510754 + 0.859727i
\(344\) 4.15587 + 4.95278i 0.224070 + 0.267036i
\(345\) −0.921021 + 5.38909i −0.0495861 + 0.290139i
\(346\) 9.46917 11.2849i 0.509066 0.606681i
\(347\) −6.40998 17.6113i −0.344106 0.945423i −0.984190 0.177118i \(-0.943323\pi\)
0.640084 0.768305i \(-0.278900\pi\)
\(348\) 13.8295 + 4.95126i 0.741341 + 0.265416i
\(349\) −8.31455 + 22.8440i −0.445067 + 1.22281i 0.491052 + 0.871130i \(0.336613\pi\)
−0.936119 + 0.351682i \(0.885610\pi\)
\(350\) −18.1956 + 10.6063i −0.972596 + 0.566929i
\(351\) 15.9724 + 12.9782i 0.852545 + 0.692727i
\(352\) −12.8135 22.1936i −0.682960 1.18292i
\(353\) 17.5265 14.7065i 0.932841 0.782747i −0.0434839 0.999054i \(-0.513846\pi\)
0.976325 + 0.216307i \(0.0694013\pi\)
\(354\) −8.14422 + 6.90719i −0.432860 + 0.367113i
\(355\) 2.25777 + 0.398106i 0.119830 + 0.0211293i
\(356\) −0.853371 + 4.83971i −0.0452286 + 0.256504i
\(357\) −2.11487 0.352405i −0.111931 0.0186512i
\(358\) 2.72634 2.28767i 0.144091 0.120907i
\(359\) 7.23348 + 4.17625i 0.381768 + 0.220414i 0.678587 0.734520i \(-0.262592\pi\)
−0.296819 + 0.954934i \(0.595926\pi\)
\(360\) −1.93433 + 0.362111i −0.101948 + 0.0190849i
\(361\) −2.91612 5.05087i −0.153480 0.265835i
\(362\) −30.5857 + 25.6644i −1.60755 + 1.34889i
\(363\) −1.82527 + 1.06667i −0.0958018 + 0.0559856i
\(364\) −5.86502 15.9081i −0.307411 0.833810i
\(365\) 2.58432 + 7.10037i 0.135270 + 0.371650i
\(366\) −0.174886 0.0997466i −0.00914141 0.00521384i
\(367\) 3.33853 9.17253i 0.174270 0.478802i −0.821551 0.570136i \(-0.806891\pi\)
0.995820 + 0.0913333i \(0.0291129\pi\)
\(368\) −13.9841 + 8.07374i −0.728973 + 0.420873i
\(369\) −8.17053 2.87679i −0.425341 0.149760i
\(370\) −14.6532 + 8.46001i −0.761782 + 0.439815i
\(371\) −17.2737 20.4132i −0.896806 1.05980i
\(372\) −18.3104 + 6.77379i −0.949349 + 0.351204i
\(373\) −9.95905 + 3.62480i −0.515660 + 0.187685i −0.586724 0.809787i \(-0.699583\pi\)
0.0710640 + 0.997472i \(0.477361\pi\)
\(374\) 2.92338 1.06402i 0.151164 0.0550193i
\(375\) −9.28934 10.9530i −0.479700 0.565611i
\(376\) 2.38747 0.420975i 0.123124 0.0217102i
\(377\) 20.7604 1.06922
\(378\) −24.3893 + 9.43194i −1.25445 + 0.485127i
\(379\) −6.26462 −0.321792 −0.160896 0.986971i \(-0.551438\pi\)
−0.160896 + 0.986971i \(0.551438\pi\)
\(380\) −5.21969 + 0.920373i −0.267765 + 0.0472141i
\(381\) −14.0697 + 2.55730i −0.720812 + 0.131014i
\(382\) 18.3217 6.66856i 0.937420 0.341193i
\(383\) 7.86054 2.86100i 0.401655 0.146190i −0.133291 0.991077i \(-0.542554\pi\)
0.534945 + 0.844887i \(0.320332\pi\)
\(384\) −7.60572 6.31404i −0.388128 0.322212i
\(385\) 2.82308 7.85776i 0.143877 0.400468i
\(386\) 16.6088 9.58909i 0.845365 0.488072i
\(387\) −13.1023 + 23.2557i −0.666025 + 1.18216i
\(388\) 7.15580 4.13140i 0.363281 0.209740i
\(389\) −6.64622 + 18.2603i −0.336977 + 0.925835i 0.649270 + 0.760558i \(0.275074\pi\)
−0.986247 + 0.165278i \(0.947148\pi\)
\(390\) 10.1703 5.94342i 0.514993 0.300957i
\(391\) −0.559516 1.53726i −0.0282960 0.0777425i
\(392\) −5.01642 0.841618i −0.253368 0.0425081i
\(393\) −31.2114 17.8015i −1.57441 0.897967i
\(394\) −38.7351 + 32.5026i −1.95145 + 1.63746i
\(395\) −4.26526 7.38765i −0.214609 0.371713i
\(396\) 10.7696 13.1126i 0.541192 0.658932i
\(397\) −24.5677 14.1842i −1.23302 0.711882i −0.265359 0.964150i \(-0.585490\pi\)
−0.967658 + 0.252267i \(0.918824\pi\)
\(398\) −28.3881 + 23.8204i −1.42297 + 1.19401i
\(399\) 15.5719 5.83435i 0.779569 0.292083i
\(400\) 3.35610 19.0334i 0.167805 0.951669i
\(401\) −19.2271 3.39026i −0.960157 0.169302i −0.328461 0.944518i \(-0.606530\pi\)
−0.631696 + 0.775216i \(0.717641\pi\)
\(402\) −31.7989 11.3847i −1.58599 0.567816i
\(403\) −21.1370 + 17.7361i −1.05291 + 0.883496i
\(404\) 10.8528 + 18.7976i 0.539946 + 0.935213i
\(405\) −4.20959 6.94913i −0.209176 0.345305i
\(406\) −13.0941 + 22.8988i −0.649850 + 1.13645i
\(407\) −11.7815 + 32.3694i −0.583986 + 1.60449i
\(408\) 0.449087 0.380875i 0.0222331 0.0188561i
\(409\) 11.9596 + 32.8586i 0.591362 + 1.62475i 0.767980 + 0.640474i \(0.221262\pi\)
−0.176618 + 0.984279i \(0.556516\pi\)
\(410\) −3.18693 + 3.79803i −0.157391 + 0.187571i
\(411\) 19.8218 7.33293i 0.977738 0.361707i
\(412\) 15.6784 + 18.6847i 0.772418 + 0.920531i
\(413\) −4.31876 7.40907i −0.212512 0.364576i
\(414\) −15.4186 12.6635i −0.757782 0.622379i
\(415\) 10.1980 0.500598
\(416\) 27.2840 + 9.93058i 1.33771 + 0.486887i
\(417\) 15.7193 + 26.8986i 0.769775 + 1.31723i
\(418\) −15.5096 + 18.4837i −0.758602 + 0.904066i
\(419\) 38.1160 13.8731i 1.86209 0.677745i 0.884748 0.466070i \(-0.154331\pi\)
0.977340 0.211674i \(-0.0678916\pi\)
\(420\) 0.0630355 + 6.69311i 0.00307582 + 0.326590i
\(421\) 2.74861 + 15.5881i 0.133959 + 0.759718i 0.975579 + 0.219649i \(0.0704911\pi\)
−0.841620 + 0.540070i \(0.818398\pi\)
\(422\) 10.1451i 0.493855i
\(423\) 5.09539 + 8.61475i 0.247746 + 0.418864i
\(424\) 7.34433 0.356672
\(425\) 1.83995 + 0.669688i 0.0892508 + 0.0324846i
\(426\) −5.34423 + 6.43752i −0.258929 + 0.311899i
\(427\) 0.103413 0.124288i 0.00500451 0.00601471i
\(428\) 15.4114 18.3666i 0.744939 0.887784i
\(429\) 8.08347 22.5782i 0.390273 1.09009i
\(430\) 9.82057 + 11.7037i 0.473590 + 0.564403i
\(431\) −6.88208 3.97337i −0.331498 0.191391i 0.325008 0.945711i \(-0.394633\pi\)
−0.656506 + 0.754321i \(0.727966\pi\)
\(432\) 7.85017 22.6760i 0.377692 1.09100i
\(433\) 16.4757i 0.791770i −0.918300 0.395885i \(-0.870438\pi\)
0.918300 0.395885i \(-0.129562\pi\)
\(434\) −6.23131 34.5008i −0.299112 1.65609i
\(435\) −7.71616 2.76255i −0.369962 0.132454i
\(436\) −0.833501 + 4.72702i −0.0399175 + 0.226383i
\(437\) 9.71965 + 8.15575i 0.464954 + 0.390143i
\(438\) −27.1814 4.64542i −1.29878 0.221967i
\(439\) 2.08683 5.73351i 0.0995988 0.273646i −0.879879 0.475198i \(-0.842376\pi\)
0.979478 + 0.201552i \(0.0645986\pi\)
\(440\) 1.14658 + 1.98594i 0.0546612 + 0.0946759i
\(441\) −4.03548 20.6086i −0.192166 0.981363i
\(442\) −1.76236 + 3.05250i −0.0838270 + 0.145193i
\(443\) 12.7961 + 15.2497i 0.607959 + 0.724537i 0.978950 0.204099i \(-0.0654265\pi\)
−0.370991 + 0.928636i \(0.620982\pi\)
\(444\) −0.145347 27.6140i −0.00689789 1.31050i
\(445\) 0.476137 2.70031i 0.0225710 0.128007i
\(446\) 12.3474 + 10.3607i 0.584664 + 0.490592i
\(447\) 9.84285 + 16.8430i 0.465551 + 0.796645i
\(448\) −9.50800 + 8.04570i −0.449211 + 0.380124i
\(449\) −0.412263 0.238020i −0.0194559 0.0112329i 0.490241 0.871587i \(-0.336909\pi\)
−0.509696 + 0.860354i \(0.670242\pi\)
\(450\) 23.4734 4.39426i 1.10654 0.207147i
\(451\) 10.0937i 0.475295i
\(452\) 19.4165 3.42366i 0.913277 0.161035i
\(453\) 6.73645 8.11455i 0.316506 0.381255i
\(454\) −42.1313 7.42888i −1.97732 0.348655i
\(455\) 3.27238 + 8.87588i 0.153411 + 0.416108i
\(456\) −1.53943 + 4.29983i −0.0720904 + 0.201358i
\(457\) 2.00670 + 11.3806i 0.0938695 + 0.532360i 0.995088 + 0.0989952i \(0.0315628\pi\)
−0.901218 + 0.433365i \(0.857326\pi\)
\(458\) 0.754166 1.30625i 0.0352399 0.0610373i
\(459\) 2.12432 + 1.18215i 0.0991548 + 0.0551782i
\(460\) −4.42292 + 2.55357i −0.206220 + 0.119061i
\(461\) 19.0273 + 6.92536i 0.886189 + 0.322546i 0.744705 0.667394i \(-0.232590\pi\)
0.141484 + 0.989941i \(0.454813\pi\)
\(462\) 19.8054 + 23.1567i 0.921431 + 1.07735i
\(463\) −4.74389 3.98059i −0.220467 0.184994i 0.525864 0.850569i \(-0.323742\pi\)
−0.746331 + 0.665575i \(0.768186\pi\)
\(464\) −8.27904 22.7465i −0.384345 1.05598i
\(465\) 10.2162 3.77942i 0.473766 0.175266i
\(466\) 2.86608 + 16.2543i 0.132769 + 0.752968i
\(467\) 1.90348 3.29692i 0.0880826 0.152563i −0.818618 0.574338i \(-0.805259\pi\)
0.906701 + 0.421775i \(0.138593\pi\)
\(468\) 0.202377 + 19.2239i 0.00935489 + 0.888624i
\(469\) 13.4644 23.5464i 0.621728 1.08727i
\(470\) 5.64173 0.994790i 0.260234 0.0458862i
\(471\) −4.17759 7.14863i −0.192493 0.329392i
\(472\) 2.31956 + 0.409001i 0.106766 + 0.0188258i
\(473\) 30.6315 + 5.40116i 1.40844 + 0.248346i
\(474\) 31.1313 0.163861i 1.42991 0.00752639i
\(475\) −14.9557 + 2.63710i −0.686217 + 0.120998i
\(476\) −1.00861 1.73032i −0.0462293 0.0793089i
\(477\) 10.6699 + 28.3821i 0.488541 + 1.29952i
\(478\) 21.3138 36.9166i 0.974872 1.68853i
\(479\) −5.21941 29.6008i −0.238481 1.35249i −0.835157 0.550011i \(-0.814623\pi\)
0.596676 0.802482i \(-0.296488\pi\)
\(480\) −8.81940 7.32160i −0.402549 0.334184i
\(481\) −13.3483 36.6742i −0.608630 1.67220i
\(482\) 15.3207 + 12.8556i 0.697839 + 0.585556i
\(483\) 12.1770 10.4147i 0.554072 0.473884i
\(484\) −1.85576 0.675440i −0.0843526 0.0307018i
\(485\) −3.99256 + 2.30511i −0.181293 + 0.104670i
\(486\) 29.6405 0.780244i 1.34452 0.0353926i
\(487\) −18.9944 + 32.8993i −0.860720 + 1.49081i 0.0105150 + 0.999945i \(0.496653\pi\)
−0.871235 + 0.490866i \(0.836680\pi\)
\(488\) 0.00771102 + 0.0437314i 0.000349062 + 0.00197963i
\(489\) 13.5663 2.46579i 0.613487 0.111507i
\(490\) −11.8541 1.98879i −0.535514 0.0898445i
\(491\) −31.0131 5.46844i −1.39960 0.246787i −0.577622 0.816305i \(-0.696019\pi\)
−0.821979 + 0.569517i \(0.807130\pi\)
\(492\) −2.80750 7.58902i −0.126572 0.342140i
\(493\) 2.41510 0.425848i 0.108771 0.0191792i
\(494\) 27.3376i 1.22998i
\(495\) −6.00887 + 7.31614i −0.270079 + 0.328836i
\(496\) 27.8620 + 16.0861i 1.25104 + 0.722288i
\(497\) −4.34031 5.12916i −0.194689 0.230074i
\(498\) −18.4386 + 32.3284i −0.826253 + 1.44867i
\(499\) −14.4091 12.0907i −0.645039 0.541252i 0.260522 0.965468i \(-0.416105\pi\)
−0.905561 + 0.424216i \(0.860550\pi\)
\(500\) 2.32964 13.2121i 0.104185 0.590861i
\(501\) 33.8077 + 19.2824i 1.51042 + 0.861472i
\(502\) −11.5216 13.7309i −0.514233 0.612839i
\(503\) 3.04934 5.28161i 0.135963 0.235495i −0.790002 0.613105i \(-0.789920\pi\)
0.925965 + 0.377609i \(0.123254\pi\)
\(504\) 5.03667 + 2.81015i 0.224351 + 0.125174i
\(505\) −6.05528 10.4881i −0.269456 0.466712i
\(506\) −7.95190 + 21.8477i −0.353505 + 0.971247i
\(507\) 1.61486 + 4.36515i 0.0717182 + 0.193863i
\(508\) −10.2331 8.58660i −0.454021 0.380969i
\(509\) 7.51248 42.6054i 0.332985 1.88845i −0.113303 0.993560i \(-0.536143\pi\)
0.446288 0.894889i \(-0.352746\pi\)
\(510\) 1.06122 0.900029i 0.0469915 0.0398539i
\(511\) 7.48757 20.8409i 0.331231 0.921947i
\(512\) 27.1429i 1.19956i
\(513\) −18.8531 + 0.297725i −0.832386 + 0.0131449i
\(514\) 19.4223 + 11.2135i 0.856683 + 0.494606i
\(515\) −8.74771 10.4251i −0.385470 0.459385i
\(516\) −24.5327 + 4.45905i −1.07999 + 0.196299i
\(517\) 7.49680 8.93434i 0.329709 0.392932i
\(518\) 48.8709 + 8.40807i 2.14726 + 0.369430i
\(519\) −4.65429 12.5811i −0.204301 0.552250i
\(520\) −2.44145 0.888614i −0.107065 0.0389683i
\(521\) −20.0431 −0.878105 −0.439053 0.898461i \(-0.644686\pi\)
−0.439053 + 0.898461i \(0.644686\pi\)
\(522\) 22.7088 19.4660i 0.993939 0.852003i
\(523\) 26.6736i 1.16635i 0.812345 + 0.583177i \(0.198191\pi\)
−0.812345 + 0.583177i \(0.801809\pi\)
\(524\) −5.82843 33.0547i −0.254616 1.44400i
\(525\) 0.180613 + 19.1775i 0.00788258 + 0.836973i
\(526\) −8.29992 + 3.02093i −0.361894 + 0.131719i
\(527\) −2.09510 + 2.49685i −0.0912641 + 0.108764i
\(528\) −27.9617 + 0.147178i −1.21688 + 0.00640510i
\(529\) −10.1243 3.68495i −0.440188 0.160215i
\(530\) 17.3551 0.753856
\(531\) 1.78930 + 9.55811i 0.0776489 + 0.414787i
\(532\) 13.4848 + 7.71093i 0.584640 + 0.334311i
\(533\) −7.35099 8.76057i −0.318407 0.379462i
\(534\) 7.69930 + 6.39172i 0.333181 + 0.276597i
\(535\) −8.59877 + 10.2476i −0.371757 + 0.443043i
\(536\) 2.54791 + 7.00032i 0.110053 + 0.302368i
\(537\) −0.579552 3.18857i −0.0250095 0.137597i
\(538\) 17.6238 48.4209i 0.759815 2.08757i
\(539\) −21.0897 + 12.4109i −0.908399 + 0.534576i
\(540\) 2.48286 7.17200i 0.106845 0.308634i
\(541\) −5.16825 8.95167i −0.222200 0.384862i 0.733275 0.679932i \(-0.237991\pi\)
−0.955476 + 0.295069i \(0.904657\pi\)
\(542\) −6.61497 + 5.55061i −0.284137 + 0.238419i
\(543\) 6.50175 + 35.7712i 0.279017 + 1.53509i
\(544\) 3.37771 + 0.595582i 0.144818 + 0.0255354i
\(545\) 0.465050 2.63743i 0.0199206 0.112975i
\(546\) −34.0539 5.67449i −1.45737 0.242846i
\(547\) 2.39360 2.00847i 0.102343 0.0858758i −0.590181 0.807271i \(-0.700943\pi\)
0.692523 + 0.721396i \(0.256499\pi\)
\(548\) 17.0977 + 9.87138i 0.730379 + 0.421684i
\(549\) −0.157797 + 0.0933325i −0.00673460 + 0.00398333i
\(550\) −13.9139 24.0996i −0.593291 1.02761i
\(551\) −14.5705 + 12.2261i −0.620724 + 0.520849i
\(552\) 0.0231632 + 4.40067i 0.000985889 + 0.187305i
\(553\) −4.23908 + 24.6391i −0.180264 + 1.04776i
\(554\) 5.18618 + 14.2489i 0.220340 + 0.605379i
\(555\) 0.0810963 + 15.4072i 0.00344235 + 0.653998i
\(556\) −9.95382 + 27.3479i −0.422136 + 1.15981i
\(557\) 12.2609 7.07881i 0.519509 0.299939i −0.217225 0.976122i \(-0.569700\pi\)
0.736734 + 0.676183i \(0.236367\pi\)
\(558\) −6.49057 + 39.2197i −0.274768 + 1.66030i
\(559\) −30.5192 + 17.6203i −1.29083 + 0.745259i
\(560\) 8.42000 7.12504i 0.355810 0.301088i
\(561\) 0.477232 2.79238i 0.0201487 0.117894i
\(562\) 10.9888 3.99961i 0.463537 0.168714i
\(563\) −21.1089 + 7.68303i −0.889636 + 0.323801i −0.746092 0.665843i \(-0.768072\pi\)
−0.143544 + 0.989644i \(0.545850\pi\)
\(564\) −3.15148 + 8.80251i −0.132701 + 0.370652i
\(565\) −10.8334 + 1.91022i −0.455765 + 0.0803637i
\(566\) −21.8231 −0.917292
\(567\) −3.54249 + 23.5468i −0.148770 + 0.988872i
\(568\) 1.84539 0.0774306
\(569\) −18.4001 + 3.24444i −0.771373 + 0.136014i −0.545464 0.838135i \(-0.683646\pi\)
−0.225909 + 0.974148i \(0.572535\pi\)
\(570\) −3.63776 + 10.1608i −0.152369 + 0.425587i
\(571\) 34.2455 12.4643i 1.43313 0.521616i 0.495303 0.868720i \(-0.335057\pi\)
0.937827 + 0.347104i \(0.112835\pi\)
\(572\) 21.0511 7.66199i 0.880192 0.320364i
\(573\) 2.99096 17.5007i 0.124949 0.731104i
\(574\) 14.2994 2.58266i 0.596845 0.107798i
\(575\) −12.6728 + 7.31663i −0.528492 + 0.305125i
\(576\) 13.2197 4.96979i 0.550821 0.207075i
\(577\) −25.0637 + 14.4705i −1.04341 + 0.602416i −0.920799 0.390039i \(-0.872462\pi\)
−0.122616 + 0.992454i \(0.539128\pi\)
\(578\) 10.9170 29.9943i 0.454089 1.24760i
\(579\) −0.0919195 17.4634i −0.00382004 0.725755i
\(580\) −2.61850 7.19428i −0.108728 0.298726i
\(581\) −22.9751 19.1164i −0.953170 0.793080i
\(582\) −0.0885567 16.8245i −0.00367079 0.697399i
\(583\) 27.0662 22.7113i 1.12097 0.940605i
\(584\) 3.04105 + 5.26725i 0.125839 + 0.217960i
\(585\) −0.112916 10.7259i −0.00466850 0.443462i
\(586\) −1.80809 1.04390i −0.0746916 0.0431232i
\(587\) 24.4251 20.4951i 1.00813 0.845924i 0.0200431 0.999799i \(-0.493620\pi\)
0.988090 + 0.153875i \(0.0491752\pi\)
\(588\) 12.4044 15.1972i 0.511549 0.626721i
\(589\) 4.38979 24.8957i 0.180878 1.02581i
\(590\) 5.48126 + 0.966494i 0.225660 + 0.0397899i
\(591\) 8.23411 + 45.3023i 0.338706 + 1.86349i
\(592\) −34.8594 + 29.2505i −1.43271 + 1.20219i
\(593\) 2.99491 + 5.18734i 0.122986 + 0.213018i 0.920944 0.389695i \(-0.127420\pi\)
−0.797958 + 0.602713i \(0.794086\pi\)
\(594\) −12.3283 32.2767i −0.505837 1.32433i
\(595\) 0.562749 + 0.965426i 0.0230705 + 0.0395786i
\(596\) −6.23273 + 17.1243i −0.255303 + 0.701438i
\(597\) 6.03460 + 33.2011i 0.246980 + 1.35883i
\(598\) −9.00943 24.7532i −0.368423 1.01223i
\(599\) 5.26383 6.27319i 0.215074 0.256316i −0.647711 0.761886i \(-0.724274\pi\)
0.862785 + 0.505570i \(0.168718\pi\)
\(600\) −4.05272 3.36445i −0.165452 0.137353i
\(601\) −11.1245 13.2576i −0.453777 0.540791i 0.489847 0.871808i \(-0.337052\pi\)
−0.943625 + 0.331018i \(0.892608\pi\)
\(602\) −0.186011 44.7764i −0.00758123 1.82495i
\(603\) −23.3510 + 20.0165i −0.950927 + 0.815134i
\(604\) 9.85176 0.400862
\(605\) 1.03542 + 0.376860i 0.0420956 + 0.0153216i
\(606\) 44.1963 0.232629i 1.79535 0.00944992i
\(607\) −12.6088 + 15.0266i −0.511776 + 0.609911i −0.958616 0.284703i \(-0.908105\pi\)
0.446839 + 0.894614i \(0.352550\pi\)
\(608\) −24.9973 + 9.09826i −1.01377 + 0.368983i
\(609\) 12.2054 + 20.6879i 0.494588 + 0.838318i
\(610\) 0.0182216 + 0.103340i 0.000737771 + 0.00418411i
\(611\) 13.2140i 0.534582i
\(612\) 0.417873 + 2.23220i 0.0168915 + 0.0902315i
\(613\) 27.8234 1.12378 0.561889 0.827213i \(-0.310075\pi\)
0.561889 + 0.827213i \(0.310075\pi\)
\(614\) −12.2515 4.45920i −0.494432 0.179959i
\(615\) 1.56644 + 4.23428i 0.0631649 + 0.170743i
\(616\) 1.13954 6.62345i 0.0459135 0.266866i
\(617\) −18.1901 + 21.6782i −0.732308 + 0.872730i −0.995764 0.0919408i \(-0.970693\pi\)
0.263457 + 0.964671i \(0.415137\pi\)
\(618\) 48.8649 8.88164i 1.96563 0.357272i
\(619\) −18.7035 22.2899i −0.751755 0.895907i 0.245542 0.969386i \(-0.421034\pi\)
−0.997297 + 0.0734791i \(0.976590\pi\)
\(620\) 8.81223 + 5.08774i 0.353908 + 0.204329i
\(621\) −16.9727 + 6.48285i −0.681091 + 0.260148i
\(622\) 42.4655i 1.70271i
\(623\) −6.13449 + 5.19103i −0.245773 + 0.207974i
\(624\) 24.1614 20.4915i 0.967230 0.820317i
\(625\) 2.33381 13.2357i 0.0933525 0.529428i
\(626\) 1.47359 + 1.23649i 0.0588964 + 0.0494200i
\(627\) 7.62331 + 20.6067i 0.304446 + 0.822954i
\(628\) 2.64535 7.26804i 0.105561 0.290026i
\(629\) −2.30512 3.99258i −0.0919110 0.159194i
\(630\) 11.9020 + 6.64056i 0.474185 + 0.264566i
\(631\) 3.11061 5.38773i 0.123831 0.214482i −0.797444 0.603393i \(-0.793815\pi\)
0.921275 + 0.388911i \(0.127149\pi\)
\(632\) −4.41368 5.26002i −0.175567 0.209233i
\(633\) 8.02464 + 4.57688i 0.318951 + 0.181915i
\(634\) −8.20950 + 46.5584i −0.326041 + 1.84907i
\(635\) 5.70954 + 4.79088i 0.226576 + 0.190120i
\(636\) −14.0329 + 24.6039i −0.556440 + 0.975606i
\(637\) 9.26569 26.1308i 0.367120 1.03534i
\(638\) −30.1838 17.4266i −1.19499 0.689926i
\(639\) 2.68099 + 7.13147i 0.106058 + 0.282116i
\(640\) 5.15209i 0.203654i
\(641\) 6.29675 1.11029i 0.248707 0.0438537i −0.0479049 0.998852i \(-0.515254\pi\)
0.296612 + 0.954998i \(0.404143\pi\)
\(642\) −16.9386 45.7872i −0.668514 1.80708i
\(643\) 2.20568 + 0.388920i 0.0869834 + 0.0153375i 0.216970 0.976178i \(-0.430382\pi\)
−0.129987 + 0.991516i \(0.541494\pi\)
\(644\) 14.7512 + 2.53790i 0.581279 + 0.100007i
\(645\) 13.6880 2.48792i 0.538964 0.0979616i
\(646\) −0.560763 3.18024i −0.0220629 0.125125i
\(647\) −13.4891 + 23.3638i −0.530311 + 0.918525i 0.469064 + 0.883164i \(0.344591\pi\)
−0.999375 + 0.0353609i \(0.988742\pi\)
\(648\) −4.30826 4.92019i −0.169244 0.193283i
\(649\) 9.81311 5.66560i 0.385198 0.222394i
\(650\) 29.6272 + 10.7834i 1.16208 + 0.422961i
\(651\) −30.1009 10.6359i −1.17975 0.416854i
\(652\) 9.86695 + 8.27936i 0.386420 + 0.324245i
\(653\) −7.80301 21.4386i −0.305355 0.838957i −0.993546 0.113427i \(-0.963817\pi\)
0.688191 0.725529i \(-0.258405\pi\)
\(654\) 7.52003 + 6.24290i 0.294056 + 0.244117i
\(655\) 3.25196 + 18.4428i 0.127065 + 0.720620i
\(656\) −6.66715 + 11.5478i −0.260308 + 0.450867i
\(657\) −15.9372 + 19.4044i −0.621768 + 0.757037i
\(658\) −14.5751 8.33441i −0.568197 0.324909i
\(659\) 21.2918 3.75431i 0.829409 0.146247i 0.257203 0.966357i \(-0.417199\pi\)
0.572206 + 0.820110i \(0.306088\pi\)
\(660\) −8.84378 + 0.0465496i −0.344244 + 0.00181194i
\(661\) 28.7597 + 5.07112i 1.11862 + 0.197244i 0.702237 0.711944i \(-0.252185\pi\)
0.416387 + 0.909187i \(0.363296\pi\)
\(662\) −49.7239 8.76767i −1.93258 0.340765i
\(663\) 1.61942 + 2.77112i 0.0628929 + 0.107621i
\(664\) 8.08394 1.42542i 0.313718 0.0553169i
\(665\) −7.52381 4.30230i −0.291761 0.166836i
\(666\) −48.9886 27.6001i −1.89827 1.06948i
\(667\) −9.16379 + 15.8721i −0.354823 + 0.614572i
\(668\) 6.31328 + 35.8044i 0.244268 + 1.38531i
\(669\) 13.7656 5.09248i 0.532208 0.196887i
\(670\) 6.02085 + 16.5422i 0.232606 + 0.639079i
\(671\) 0.163651 + 0.137319i 0.00631766 + 0.00530115i
\(672\) 6.14483 + 33.0271i 0.237042 + 1.27405i
\(673\) 22.4647 + 8.17648i 0.865950 + 0.315180i 0.736526 0.676409i \(-0.236465\pi\)
0.129424 + 0.991589i \(0.458687\pi\)
\(674\) 40.8387 23.5782i 1.57305 0.908199i
\(675\) 7.11404 20.5496i 0.273819 0.790954i
\(676\) −2.17387 + 3.76525i −0.0836104 + 0.144817i
\(677\) −5.37818 30.5012i −0.206700 1.17225i −0.894742 0.446584i \(-0.852641\pi\)
0.688042 0.725671i \(-0.258471\pi\)
\(678\) 13.5320 37.7966i 0.519692 1.45157i
\(679\) 13.3159 + 2.29096i 0.511017 + 0.0879188i
\(680\) −0.302246 0.0532942i −0.0115906 0.00204374i
\(681\) −24.8834 + 29.9739i −0.953534 + 1.14860i
\(682\) 45.6192 8.04390i 1.74685 0.308017i
\(683\) 3.83140i 0.146604i 0.997310 + 0.0733022i \(0.0233538\pi\)
−0.997310 + 0.0733022i \(0.976646\pi\)
\(684\) −11.4632 13.3729i −0.438308 0.511326i
\(685\) −9.53964 5.50771i −0.364491 0.210439i
\(686\) 22.9782 + 26.7014i 0.877313 + 1.01947i
\(687\) −0.692995 1.18584i −0.0264394 0.0452428i
\(688\) 31.4767 + 26.4121i 1.20004 + 1.00695i
\(689\) −6.95137 + 39.4232i −0.264826 + 1.50190i
\(690\) 0.0547359 + 10.3991i 0.00208376 + 0.395885i
\(691\) −5.31576 6.33507i −0.202221 0.240998i 0.655397 0.755284i \(-0.272501\pi\)
−0.857618 + 0.514287i \(0.828057\pi\)
\(692\) 6.26547 10.8521i 0.238177 0.412535i
\(693\) 27.2518 5.21885i 1.03521 0.198248i
\(694\) −17.8241 30.8723i −0.676594 1.17190i
\(695\) 5.55371 15.2587i 0.210664 0.578795i
\(696\) −6.50275 1.11135i −0.246486 0.0421257i
\(697\) −1.03486 0.868348i −0.0391980 0.0328910i
\(698\) −8.02953 + 45.5377i −0.303922 + 1.72363i
\(699\) 14.1500 + 5.06600i 0.535203 + 0.191614i
\(700\) −13.6759 + 11.5726i −0.516900 + 0.437402i
\(701\) 19.8898i 0.751226i 0.926777 + 0.375613i \(0.122568\pi\)
−0.926777 + 0.375613i \(0.877432\pi\)
\(702\) 34.2062 + 19.0352i 1.29103 + 0.718439i
\(703\) 30.9663 + 17.8784i 1.16792 + 0.674296i
\(704\) −10.5784 12.6068i −0.398688 0.475138i
\(705\) 1.75836 4.91134i 0.0662237 0.184972i
\(706\) 27.9732 33.3371i 1.05278 1.25466i
\(707\) −6.01811 + 34.9795i −0.226334 + 1.31554i
\(708\) −5.80219 + 6.98916i −0.218060 + 0.262669i
\(709\) −13.1341 4.78042i −0.493262 0.179533i 0.0833991 0.996516i \(-0.473422\pi\)
−0.576661 + 0.816984i \(0.695645\pi\)
\(710\) 4.36075 0.163656
\(711\) 13.9151 24.6984i 0.521856 0.926264i
\(712\) 2.20709i 0.0827141i
\(713\) −4.22989 23.9889i −0.158410 0.898390i
\(714\) −4.07796 + 0.0384061i −0.152614 + 0.00143731i
\(715\) −11.7454 + 4.27499i −0.439254 + 0.159876i
\(716\) 1.94595 2.31910i 0.0727237 0.0866687i
\(717\) −19.5851 33.5137i −0.731417 1.25159i
\(718\) 14.9292 + 5.43377i 0.557151 + 0.202786i
\(719\) −31.4331 −1.17226 −0.586128 0.810218i \(-0.699348\pi\)
−0.586128 + 0.810218i \(0.699348\pi\)
\(720\) −11.7070 + 4.40110i −0.436294 + 0.164019i
\(721\) 0.165690 + 39.8847i 0.00617061 + 1.48538i
\(722\) −7.13076 8.49811i −0.265380 0.316267i
\(723\) 17.0805 6.31879i 0.635229 0.234998i
\(724\) −21.8308 + 26.0170i −0.811337 + 0.966914i
\(725\) −7.50268 20.6134i −0.278643 0.765564i
\(726\) −3.06678 + 2.60096i −0.113819 + 0.0965308i
\(727\) −9.57818 + 26.3158i −0.355235 + 0.976000i 0.625426 + 0.780284i \(0.284925\pi\)
−0.980661 + 0.195716i \(0.937297\pi\)
\(728\) 3.83464 + 6.57853i 0.142121 + 0.243817i
\(729\) 12.7549 23.7973i 0.472405 0.881381i
\(730\) 7.18617 + 12.4468i 0.265972 + 0.460677i
\(731\) −3.18893 + 2.67583i −0.117947 + 0.0989692i
\(732\) −0.161236 0.0577258i −0.00595945 0.00213361i
\(733\) −24.5292 4.32516i −0.906006 0.159753i −0.298817 0.954311i \(-0.596592\pi\)
−0.607189 + 0.794557i \(0.707703\pi\)
\(734\) 3.22409 18.2847i 0.119003 0.674900i
\(735\) −6.92101 + 8.47923i −0.255285 + 0.312761i
\(736\) −19.6357 + 16.4763i −0.723780 + 0.607324i
\(737\) 31.0373 + 17.9194i 1.14327 + 0.660070i
\(738\) −16.2552 2.69012i −0.598363 0.0990246i
\(739\) −23.2659 40.2978i −0.855851 1.48238i −0.875853 0.482578i \(-0.839701\pi\)
0.0200017 0.999800i \(-0.493633\pi\)
\(740\) −11.0254 + 9.25140i −0.405301 + 0.340088i
\(741\) −21.6237 12.3332i −0.794368 0.453071i
\(742\) −39.0995 32.5326i −1.43539 1.19431i
\(743\) −11.9890 32.9395i −0.439834 1.20843i −0.939600 0.342273i \(-0.888803\pi\)
0.499767 0.866160i \(-0.333419\pi\)
\(744\) 7.57016 4.42392i 0.277535 0.162189i
\(745\) 3.47754 9.55446i 0.127407 0.350048i
\(746\) −17.4580 + 10.0794i −0.639185 + 0.369033i
\(747\) 17.2529 + 29.1694i 0.631251 + 1.06725i
\(748\) 2.29176 1.32315i 0.0837949 0.0483790i
\(749\) 38.5817 6.96838i 1.40975 0.254619i
\(750\) −21.0185 17.4489i −0.767488 0.637145i
\(751\) −3.85948 + 1.40474i −0.140834 + 0.0512595i −0.411476 0.911421i \(-0.634986\pi\)
0.270641 + 0.962680i \(0.412764\pi\)
\(752\) 14.4781 5.26961i 0.527963 0.192163i
\(753\) −16.0589 + 2.91885i −0.585217 + 0.106369i
\(754\) 38.8884 6.85708i 1.41623 0.249720i
\(755\) −5.49677 −0.200048
\(756\) −19.0378 + 11.5037i −0.692398 + 0.418386i
\(757\) −15.6872 −0.570161 −0.285081 0.958504i \(-0.592020\pi\)
−0.285081 + 0.958504i \(0.592020\pi\)
\(758\) −11.7349 + 2.06918i −0.426231 + 0.0751560i
\(759\) 13.6938 + 16.1463i 0.497054 + 0.586073i
\(760\) 2.23682 0.814136i 0.0811380 0.0295318i
\(761\) −26.4207 + 9.61636i −0.957751 + 0.348593i −0.773152 0.634221i \(-0.781321\pi\)
−0.184599 + 0.982814i \(0.559099\pi\)
\(762\) −25.5107 + 9.43749i −0.924155 + 0.341884i
\(763\) −5.99166 + 5.07016i −0.216912 + 0.183552i
\(764\) 14.3632 8.29258i 0.519641 0.300015i
\(765\) −0.233151 1.24545i −0.00842960 0.0450295i
\(766\) 13.7794 7.95553i 0.497869 0.287445i
\(767\) −4.39091 + 12.0639i −0.158546