Properties

Label 189.2.bd.a.185.18
Level $189$
Weight $2$
Character 189.185
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(47,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([7, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.47");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.bd (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 185.18
Character \(\chi\) \(=\) 189.185
Dual form 189.2.bd.a.47.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.66985 - 0.294440i) q^{2} +(0.685602 + 1.59058i) q^{3} +(0.822331 - 0.299304i) q^{4} +(1.39543 - 0.507895i) q^{5} +(1.61319 + 2.45417i) q^{6} +(-0.356869 - 2.62157i) q^{7} +(-1.65184 + 0.953692i) q^{8} +(-2.05990 + 2.18101i) q^{9} +O(q^{10})\) \(q+(1.66985 - 0.294440i) q^{2} +(0.685602 + 1.59058i) q^{3} +(0.822331 - 0.299304i) q^{4} +(1.39543 - 0.507895i) q^{5} +(1.61319 + 2.45417i) q^{6} +(-0.356869 - 2.62157i) q^{7} +(-1.65184 + 0.953692i) q^{8} +(-2.05990 + 2.18101i) q^{9} +(2.18062 - 1.25898i) q^{10} +(-0.0445037 + 0.122273i) q^{11} +(1.03986 + 1.10278i) q^{12} +(0.311287 + 0.855253i) q^{13} +(-1.36782 - 4.27257i) q^{14} +(1.76456 + 1.87133i) q^{15} +(-3.81827 + 3.20391i) q^{16} +(-2.81624 - 4.87788i) q^{17} +(-2.79755 + 4.24849i) q^{18} +(-0.0831162 - 0.0479872i) q^{19} +(0.995491 - 0.835316i) q^{20} +(3.92516 - 2.36499i) q^{21} +(-0.0383126 + 0.217282i) q^{22} +(6.39659 + 1.12789i) q^{23} +(-2.64943 - 1.97354i) q^{24} +(-2.14095 + 1.79647i) q^{25} +(0.771624 + 1.33649i) q^{26} +(-4.88135 - 1.78113i) q^{27} +(-1.07811 - 2.04899i) q^{28} +(0.238914 - 0.656410i) q^{29} +(3.49755 + 2.60529i) q^{30} +(-3.11204 - 8.55026i) q^{31} +(-2.98051 + 3.55203i) q^{32} +(-0.224997 + 0.0130438i) q^{33} +(-6.13896 - 7.31613i) q^{34} +(-1.82947 - 3.47697i) q^{35} +(-1.04113 + 2.41005i) q^{36} -3.45015 q^{37} +(-0.152921 - 0.0556588i) q^{38} +(-1.14693 + 1.08149i) q^{39} +(-1.82066 + 2.16977i) q^{40} +(2.04536 - 0.744450i) q^{41} +(5.85809 - 5.10490i) q^{42} +(1.37972 + 7.82480i) q^{43} +0.113869i q^{44} +(-1.76672 + 4.08966i) q^{45} +11.0135 q^{46} +(11.8044 + 4.29647i) q^{47} +(-7.71390 - 3.87667i) q^{48} +(-6.74529 + 1.87112i) q^{49} +(-3.04613 + 3.63023i) q^{50} +(5.82784 - 7.82375i) q^{51} +(0.511962 + 0.610132i) q^{52} +(-1.26661 - 0.731275i) q^{53} +(-8.67558 - 1.53696i) q^{54} +0.193227i q^{55} +(3.08967 + 3.99009i) q^{56} +(0.0193428 - 0.165103i) q^{57} +(0.205677 - 1.16645i) q^{58} +(4.86491 + 4.08214i) q^{59} +(2.01115 + 1.01071i) q^{60} +(-2.67073 + 7.33778i) q^{61} +(-7.71419 - 13.3614i) q^{62} +(6.45280 + 4.62184i) q^{63} +(1.05325 - 1.82428i) q^{64} +(0.868757 + 1.03534i) q^{65} +(-0.371871 + 0.0880294i) q^{66} +(-2.49984 + 14.1773i) q^{67} +(-3.77586 - 3.16832i) q^{68} +(2.59151 + 10.9476i) q^{69} +(-4.07871 - 5.26736i) q^{70} +(2.38823 + 1.37884i) q^{71} +(1.32262 - 5.56720i) q^{72} -8.02256i q^{73} +(-5.76125 + 1.01586i) q^{74} +(-4.32528 - 2.17370i) q^{75} +(-0.0827118 - 0.0145843i) q^{76} +(0.336429 + 0.0730343i) q^{77} +(-1.59677 + 2.14363i) q^{78} +(0.0703241 + 0.398828i) q^{79} +(-3.70088 + 6.41012i) q^{80} +(-0.513631 - 8.98533i) q^{81} +(3.19626 - 1.84536i) q^{82} +(4.54412 + 1.65393i) q^{83} +(2.51993 - 3.11962i) q^{84} +(-6.40732 - 5.37638i) q^{85} +(4.60787 + 12.6600i) q^{86} +(1.20787 - 0.0700244i) q^{87} +(-0.0430976 - 0.244419i) q^{88} +(7.98594 - 13.8321i) q^{89} +(-1.74600 + 7.34933i) q^{90} +(2.13102 - 1.12127i) q^{91} +(5.59770 - 0.987026i) q^{92} +(11.4663 - 10.8120i) q^{93} +(20.9768 + 3.69877i) q^{94} +(-0.140355 - 0.0247484i) q^{95} +(-7.69325 - 2.30546i) q^{96} +(-10.2887 + 1.81418i) q^{97} +(-10.7127 + 5.11057i) q^{98} +(-0.175006 - 0.348933i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} + 18 q^{6} - 6 q^{7} - 18 q^{8} - 15 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} + 18 q^{6} - 6 q^{7} - 18 q^{8} - 15 q^{9} - 9 q^{10} + 9 q^{11} - 9 q^{12} - 42 q^{14} - 24 q^{15} - 15 q^{16} - 9 q^{17} - 3 q^{18} - 9 q^{19} - 18 q^{20} + 15 q^{21} - 12 q^{22} + 30 q^{23} - 36 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} - 3 q^{30} - 9 q^{31} - 51 q^{32} - 9 q^{33} + 18 q^{34} - 9 q^{35} - 6 q^{37} - 9 q^{38} - 9 q^{39} - 9 q^{40} + 27 q^{42} - 12 q^{43} - 63 q^{45} - 6 q^{46} + 45 q^{47} + 30 q^{49} - 9 q^{50} + 33 q^{51} - 9 q^{52} + 45 q^{53} + 117 q^{54} - 51 q^{56} - 3 q^{58} - 9 q^{59} - 15 q^{60} - 63 q^{61} + 99 q^{62} - 33 q^{63} + 18 q^{64} - 102 q^{65} + 63 q^{66} - 3 q^{67} + 144 q^{68} - 108 q^{69} - 15 q^{70} + 18 q^{71} + 15 q^{72} - 33 q^{74} - 9 q^{75} - 36 q^{76} - 57 q^{77} + 66 q^{78} - 21 q^{79} - 72 q^{80} + 57 q^{81} - 18 q^{82} + 90 q^{83} + 51 q^{84} + 9 q^{85} - 33 q^{86} - 9 q^{87} + 45 q^{88} - 9 q^{89} - 81 q^{90} - 21 q^{91} + 150 q^{92} - 87 q^{93} - 9 q^{94} + 27 q^{95} - 9 q^{96} - 180 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.66985 0.294440i 1.18076 0.208201i 0.451398 0.892323i \(-0.350926\pi\)
0.729367 + 0.684122i \(0.239815\pi\)
\(3\) 0.685602 + 1.59058i 0.395833 + 0.918323i
\(4\) 0.822331 0.299304i 0.411166 0.149652i
\(5\) 1.39543 0.507895i 0.624055 0.227138i −0.0105866 0.999944i \(-0.503370\pi\)
0.634642 + 0.772806i \(0.281148\pi\)
\(6\) 1.61319 + 2.45417i 0.658581 + 1.00191i
\(7\) −0.356869 2.62157i −0.134884 0.990861i
\(8\) −1.65184 + 0.953692i −0.584015 + 0.337181i
\(9\) −2.05990 + 2.18101i −0.686633 + 0.727004i
\(10\) 2.18062 1.25898i 0.689572 0.398125i
\(11\) −0.0445037 + 0.122273i −0.0134184 + 0.0368667i −0.946221 0.323521i \(-0.895133\pi\)
0.932803 + 0.360388i \(0.117356\pi\)
\(12\) 1.03986 + 1.10278i 0.300182 + 0.318346i
\(13\) 0.311287 + 0.855253i 0.0863354 + 0.237205i 0.975346 0.220683i \(-0.0708285\pi\)
−0.889010 + 0.457887i \(0.848606\pi\)
\(14\) −1.36782 4.27257i −0.365564 1.14189i
\(15\) 1.76456 + 1.87133i 0.455607 + 0.483176i
\(16\) −3.81827 + 3.20391i −0.954568 + 0.800978i
\(17\) −2.81624 4.87788i −0.683040 1.18306i −0.974049 0.226339i \(-0.927324\pi\)
0.291009 0.956720i \(-0.406009\pi\)
\(18\) −2.79755 + 4.24849i −0.659389 + 1.00138i
\(19\) −0.0831162 0.0479872i −0.0190682 0.0110090i 0.490436 0.871477i \(-0.336838\pi\)
−0.509504 + 0.860468i \(0.670171\pi\)
\(20\) 0.995491 0.835316i 0.222598 0.186782i
\(21\) 3.92516 2.36499i 0.856539 0.516082i
\(22\) −0.0383126 + 0.217282i −0.00816828 + 0.0463246i
\(23\) 6.39659 + 1.12789i 1.33378 + 0.235182i 0.794664 0.607049i \(-0.207647\pi\)
0.539117 + 0.842231i \(0.318758\pi\)
\(24\) −2.64943 1.97354i −0.540813 0.402847i
\(25\) −2.14095 + 1.79647i −0.428191 + 0.359295i
\(26\) 0.771624 + 1.33649i 0.151328 + 0.262108i
\(27\) −4.88135 1.78113i −0.939416 0.342779i
\(28\) −1.07811 2.04899i −0.203744 0.387223i
\(29\) 0.238914 0.656410i 0.0443651 0.121892i −0.915532 0.402246i \(-0.868230\pi\)
0.959897 + 0.280354i \(0.0904518\pi\)
\(30\) 3.49755 + 2.60529i 0.638562 + 0.475659i
\(31\) −3.11204 8.55026i −0.558939 1.53567i −0.821180 0.570669i \(-0.806684\pi\)
0.262242 0.965002i \(-0.415538\pi\)
\(32\) −2.98051 + 3.55203i −0.526885 + 0.627917i
\(33\) −0.224997 + 0.0130438i −0.0391669 + 0.00227064i
\(34\) −6.13896 7.31613i −1.05282 1.25471i
\(35\) −1.82947 3.47697i −0.309237 0.587715i
\(36\) −1.04113 + 2.41005i −0.173522 + 0.401675i
\(37\) −3.45015 −0.567202 −0.283601 0.958942i \(-0.591529\pi\)
−0.283601 + 0.958942i \(0.591529\pi\)
\(38\) −0.152921 0.0556588i −0.0248071 0.00902905i
\(39\) −1.14693 + 1.08149i −0.183656 + 0.173177i
\(40\) −1.82066 + 2.16977i −0.287871 + 0.343071i
\(41\) 2.04536 0.744450i 0.319432 0.116264i −0.177328 0.984152i \(-0.556745\pi\)
0.496760 + 0.867888i \(0.334523\pi\)
\(42\) 5.85809 5.10490i 0.903923 0.787704i
\(43\) 1.37972 + 7.82480i 0.210406 + 1.19327i 0.888703 + 0.458483i \(0.151607\pi\)
−0.678297 + 0.734788i \(0.737282\pi\)
\(44\) 0.113869i 0.0171664i
\(45\) −1.76672 + 4.08966i −0.263367 + 0.609651i
\(46\) 11.0135 1.62385
\(47\) 11.8044 + 4.29647i 1.72186 + 0.626704i 0.997998 0.0632455i \(-0.0201451\pi\)
0.723857 + 0.689950i \(0.242367\pi\)
\(48\) −7.71390 3.87667i −1.11341 0.559549i
\(49\) −6.74529 + 1.87112i −0.963613 + 0.267302i
\(50\) −3.04613 + 3.63023i −0.430787 + 0.513392i
\(51\) 5.82784 7.82375i 0.816061 1.09554i
\(52\) 0.511962 + 0.610132i 0.0709963 + 0.0846101i
\(53\) −1.26661 0.731275i −0.173982 0.100448i 0.410480 0.911869i \(-0.365361\pi\)
−0.584462 + 0.811421i \(0.698694\pi\)
\(54\) −8.67558 1.53696i −1.18060 0.209154i
\(55\) 0.193227i 0.0260547i
\(56\) 3.08967 + 3.99009i 0.412874 + 0.533198i
\(57\) 0.0193428 0.165103i 0.00256202 0.0218685i
\(58\) 0.205677 1.16645i 0.0270068 0.153163i
\(59\) 4.86491 + 4.08214i 0.633357 + 0.531450i 0.901970 0.431798i \(-0.142121\pi\)
−0.268613 + 0.963248i \(0.586565\pi\)
\(60\) 2.01115 + 1.01071i 0.259638 + 0.130483i
\(61\) −2.67073 + 7.33778i −0.341952 + 0.939506i 0.642875 + 0.765971i \(0.277741\pi\)
−0.984828 + 0.173536i \(0.944481\pi\)
\(62\) −7.71419 13.3614i −0.979703 1.69690i
\(63\) 6.45280 + 4.62184i 0.812976 + 0.582297i
\(64\) 1.05325 1.82428i 0.131656 0.228035i
\(65\) 0.868757 + 1.03534i 0.107756 + 0.128419i
\(66\) −0.371871 + 0.0880294i −0.0457742 + 0.0108357i
\(67\) −2.49984 + 14.1773i −0.305404 + 1.73203i 0.316192 + 0.948695i \(0.397596\pi\)
−0.621596 + 0.783338i \(0.713515\pi\)
\(68\) −3.77586 3.16832i −0.457890 0.384215i
\(69\) 2.59151 + 10.9476i 0.311982 + 1.31793i
\(70\) −4.07871 5.26736i −0.487499 0.629570i
\(71\) 2.38823 + 1.37884i 0.283431 + 0.163639i 0.634975 0.772532i \(-0.281010\pi\)
−0.351545 + 0.936171i \(0.614344\pi\)
\(72\) 1.32262 5.56720i 0.155872 0.656101i
\(73\) 8.02256i 0.938969i −0.882941 0.469485i \(-0.844440\pi\)
0.882941 0.469485i \(-0.155560\pi\)
\(74\) −5.76125 + 1.01586i −0.669732 + 0.118092i
\(75\) −4.32528 2.17370i −0.499441 0.250997i
\(76\) −0.0827118 0.0145843i −0.00948770 0.00167294i
\(77\) 0.336429 + 0.0730343i 0.0383397 + 0.00832303i
\(78\) −1.59677 + 2.14363i −0.180799 + 0.242719i
\(79\) 0.0703241 + 0.398828i 0.00791207 + 0.0448716i 0.988508 0.151167i \(-0.0483032\pi\)
−0.980596 + 0.196039i \(0.937192\pi\)
\(80\) −3.70088 + 6.41012i −0.413771 + 0.716673i
\(81\) −0.513631 8.98533i −0.0570701 0.998370i
\(82\) 3.19626 1.84536i 0.352968 0.203786i
\(83\) 4.54412 + 1.65393i 0.498782 + 0.181542i 0.579146 0.815224i \(-0.303386\pi\)
−0.0803638 + 0.996766i \(0.525608\pi\)
\(84\) 2.51993 3.11962i 0.274947 0.340378i
\(85\) −6.40732 5.37638i −0.694972 0.583150i
\(86\) 4.60787 + 12.6600i 0.496880 + 1.36517i
\(87\) 1.20787 0.0700244i 0.129498 0.00750740i
\(88\) −0.0430976 0.244419i −0.00459422 0.0260551i
\(89\) 7.98594 13.8321i 0.846508 1.46619i −0.0377975 0.999285i \(-0.512034\pi\)
0.884305 0.466909i \(-0.154632\pi\)
\(90\) −1.74600 + 7.34933i −0.184045 + 0.774688i
\(91\) 2.13102 1.12127i 0.223392 0.117541i
\(92\) 5.59770 0.987026i 0.583601 0.102905i
\(93\) 11.4663 10.8120i 1.18900 1.12115i
\(94\) 20.9768 + 3.69877i 2.16359 + 0.381499i
\(95\) −0.140355 0.0247484i −0.0144001 0.00253913i
\(96\) −7.69325 2.30546i −0.785189 0.235300i
\(97\) −10.2887 + 1.81418i −1.04466 + 0.184202i −0.669541 0.742775i \(-0.733509\pi\)
−0.375118 + 0.926977i \(0.622398\pi\)
\(98\) −10.7127 + 5.11057i −1.08215 + 0.516246i
\(99\) −0.175006 0.348933i −0.0175887 0.0350691i
\(100\) −1.22288 + 2.11809i −0.122288 + 0.211809i
\(101\) 0.741078 + 4.20286i 0.0737400 + 0.418200i 0.999223 + 0.0394113i \(0.0125482\pi\)
−0.925483 + 0.378789i \(0.876341\pi\)
\(102\) 7.42801 14.7805i 0.735483 1.46348i
\(103\) 1.38685 + 3.81033i 0.136650 + 0.375443i 0.989076 0.147404i \(-0.0470919\pi\)
−0.852426 + 0.522848i \(0.824870\pi\)
\(104\) −1.32985 1.11587i −0.130402 0.109420i
\(105\) 4.27612 5.29374i 0.417306 0.516616i
\(106\) −2.33036 0.848183i −0.226345 0.0823828i
\(107\) 8.99730 5.19460i 0.869802 0.502181i 0.00251969 0.999997i \(-0.499198\pi\)
0.867283 + 0.497816i \(0.165865\pi\)
\(108\) −4.54719 0.00367129i −0.437553 0.000353270i
\(109\) 2.59277 4.49081i 0.248342 0.430142i −0.714724 0.699407i \(-0.753447\pi\)
0.963066 + 0.269265i \(0.0867808\pi\)
\(110\) 0.0568937 + 0.322660i 0.00542460 + 0.0307644i
\(111\) −2.36543 5.48775i −0.224517 0.520874i
\(112\) 9.76191 + 8.86651i 0.922414 + 0.837806i
\(113\) −15.1938 2.67908i −1.42931 0.252026i −0.595181 0.803592i \(-0.702920\pi\)
−0.834132 + 0.551565i \(0.814031\pi\)
\(114\) −0.0163133 0.281394i −0.00152788 0.0263549i
\(115\) 9.49885 1.67490i 0.885772 0.156186i
\(116\) 0.611294i 0.0567572i
\(117\) −2.50654 1.08281i −0.231729 0.100106i
\(118\) 9.32564 + 5.38416i 0.858494 + 0.495652i
\(119\) −11.7827 + 9.12375i −1.08012 + 0.836373i
\(120\) −4.69945 1.40830i −0.428999 0.128560i
\(121\) 8.41352 + 7.05978i 0.764865 + 0.641798i
\(122\) −2.29920 + 13.0394i −0.208159 + 1.18053i
\(123\) 2.58641 + 2.74292i 0.233209 + 0.247320i
\(124\) −5.11825 6.09970i −0.459633 0.547769i
\(125\) −5.78760 + 10.0244i −0.517658 + 0.896611i
\(126\) 12.1361 + 5.81783i 1.08117 + 0.518294i
\(127\) −0.565054 0.978702i −0.0501404 0.0868458i 0.839866 0.542794i \(-0.182634\pi\)
−0.890006 + 0.455948i \(0.849300\pi\)
\(128\) 4.39342 12.0708i 0.388327 1.06692i
\(129\) −11.5000 + 7.55926i −1.01252 + 0.665556i
\(130\) 1.75555 + 1.47308i 0.153971 + 0.129197i
\(131\) 1.13648 6.44529i 0.0992945 0.563127i −0.894052 0.447963i \(-0.852150\pi\)
0.993346 0.115164i \(-0.0367393\pi\)
\(132\) −0.181118 + 0.0780688i −0.0157643 + 0.00679502i
\(133\) −0.0961403 + 0.235020i −0.00833642 + 0.0203788i
\(134\) 24.4101i 2.10871i
\(135\) −7.71621 0.00622987i −0.664105 0.000536182i
\(136\) 9.30399 + 5.37166i 0.797811 + 0.460616i
\(137\) −2.98891 3.56205i −0.255360 0.304326i 0.623100 0.782142i \(-0.285873\pi\)
−0.878460 + 0.477816i \(0.841429\pi\)
\(138\) 7.55086 + 17.5178i 0.642772 + 1.49122i
\(139\) 8.26472 9.84951i 0.701005 0.835425i −0.291635 0.956530i \(-0.594199\pi\)
0.992640 + 0.121105i \(0.0386437\pi\)
\(140\) −2.54510 2.31165i −0.215100 0.195370i
\(141\) 1.25927 + 21.7216i 0.106050 + 1.82929i
\(142\) 4.39398 + 1.59928i 0.368735 + 0.134208i
\(143\) −0.118428 −0.00990342
\(144\) 0.877486 14.9274i 0.0731239 1.24395i
\(145\) 1.03732i 0.0861445i
\(146\) −2.36216 13.3965i −0.195494 1.10870i
\(147\) −7.60075 9.44609i −0.626899 0.779100i
\(148\) −2.83717 + 1.03265i −0.233214 + 0.0848829i
\(149\) −13.1499 + 15.6715i −1.07728 + 1.28386i −0.120608 + 0.992700i \(0.538484\pi\)
−0.956676 + 0.291156i \(0.905960\pi\)
\(150\) −7.86261 2.35622i −0.641980 0.192384i
\(151\) 12.8057 + 4.66088i 1.04211 + 0.379297i 0.805679 0.592352i \(-0.201800\pi\)
0.236430 + 0.971649i \(0.424023\pi\)
\(152\) 0.183060 0.0148481
\(153\) 16.4399 + 3.90567i 1.32909 + 0.315755i
\(154\) 0.583292 + 0.0228982i 0.0470030 + 0.00184519i
\(155\) −8.68526 10.3507i −0.697617 0.831388i
\(156\) −0.619463 + 1.23262i −0.0495967 + 0.0986889i
\(157\) −2.56097 + 3.05204i −0.204387 + 0.243579i −0.858495 0.512822i \(-0.828600\pi\)
0.654107 + 0.756402i \(0.273044\pi\)
\(158\) 0.234862 + 0.645277i 0.0186846 + 0.0513355i
\(159\) 0.294765 2.51600i 0.0233764 0.199532i
\(160\) −2.35503 + 6.47040i −0.186182 + 0.511530i
\(161\) 0.674106 17.1716i 0.0531270 1.35332i
\(162\) −3.50333 14.8530i −0.275248 1.16696i
\(163\) −12.3022 21.3081i −0.963584 1.66898i −0.713372 0.700785i \(-0.752833\pi\)
−0.250212 0.968191i \(-0.580500\pi\)
\(164\) 1.45915 1.22437i 0.113940 0.0956072i
\(165\) −0.307343 + 0.132477i −0.0239266 + 0.0103133i
\(166\) 8.07501 + 1.42384i 0.626742 + 0.110512i
\(167\) 3.18840 18.0823i 0.246726 1.39925i −0.569724 0.821836i \(-0.692950\pi\)
0.816450 0.577417i \(-0.195939\pi\)
\(168\) −4.22827 + 7.64998i −0.326218 + 0.590209i
\(169\) 9.32402 7.82378i 0.717232 0.601829i
\(170\) −12.2823 7.09120i −0.942010 0.543870i
\(171\) 0.275872 0.0824288i 0.0210964 0.00630349i
\(172\) 3.47659 + 6.02162i 0.265087 + 0.459144i
\(173\) −2.48370 + 2.08407i −0.188832 + 0.158449i −0.732303 0.680979i \(-0.761554\pi\)
0.543470 + 0.839428i \(0.317110\pi\)
\(174\) 1.99635 0.472577i 0.151343 0.0358260i
\(175\) 5.47363 + 4.97156i 0.413767 + 0.375815i
\(176\) −0.221824 0.609457i −0.0167206 0.0459396i
\(177\) −3.15759 + 10.5368i −0.237339 + 0.791992i
\(178\) 9.26264 25.4489i 0.694264 1.90747i
\(179\) −17.0391 + 9.83754i −1.27356 + 0.735292i −0.975657 0.219303i \(-0.929622\pi\)
−0.297907 + 0.954595i \(0.596288\pi\)
\(180\) −0.228776 + 3.89184i −0.0170520 + 0.290081i
\(181\) −14.9844 + 8.65126i −1.11378 + 0.643043i −0.939806 0.341707i \(-0.888995\pi\)
−0.173976 + 0.984750i \(0.555662\pi\)
\(182\) 3.22834 2.49982i 0.239301 0.185299i
\(183\) −13.5024 + 0.782779i −0.998126 + 0.0578647i
\(184\) −11.6418 + 4.23728i −0.858247 + 0.312376i
\(185\) −4.81445 + 1.75232i −0.353965 + 0.128833i
\(186\) 15.9635 21.4306i 1.17050 1.57137i
\(187\) 0.721766 0.127267i 0.0527807 0.00930667i
\(188\) 10.9931 0.801755
\(189\) −2.92736 + 13.4324i −0.212934 + 0.977067i
\(190\) −0.241660 −0.0175318
\(191\) −5.21186 + 0.918991i −0.377117 + 0.0664959i −0.358994 0.933340i \(-0.616880\pi\)
−0.0181229 + 0.999836i \(0.505769\pi\)
\(192\) 3.62377 + 0.424546i 0.261523 + 0.0306390i
\(193\) −16.6028 + 6.04294i −1.19510 + 0.434980i −0.861511 0.507739i \(-0.830481\pi\)
−0.333587 + 0.942719i \(0.608259\pi\)
\(194\) −16.6465 + 6.05881i −1.19515 + 0.434998i
\(195\) −1.05118 + 2.09166i −0.0752764 + 0.149787i
\(196\) −4.98683 + 3.55757i −0.356202 + 0.254112i
\(197\) 17.9168 10.3443i 1.27652 0.736997i 0.300311 0.953841i \(-0.402910\pi\)
0.976206 + 0.216844i \(0.0695763\pi\)
\(198\) −0.394974 0.531138i −0.0280696 0.0377464i
\(199\) −11.0639 + 6.38777i −0.784302 + 0.452817i −0.837953 0.545743i \(-0.816247\pi\)
0.0536510 + 0.998560i \(0.482914\pi\)
\(200\) 1.82324 5.00931i 0.128922 0.354211i
\(201\) −24.2641 + 5.74379i −1.71145 + 0.405136i
\(202\) 2.47498 + 6.79996i 0.174139 + 0.478443i
\(203\) −1.80609 0.392077i −0.126762 0.0275184i
\(204\) 2.45073 8.17801i 0.171586 0.572575i
\(205\) 2.47605 2.07766i 0.172935 0.145110i
\(206\) 3.43775 + 5.95436i 0.239519 + 0.414860i
\(207\) −15.6363 + 11.6277i −1.08680 + 0.808181i
\(208\) −3.92873 2.26825i −0.272409 0.157275i
\(209\) 0.00956651 0.00802726i 0.000661729 0.000555257i
\(210\) 5.58180 10.0988i 0.385181 0.696885i
\(211\) 3.56749 20.2322i 0.245596 1.39284i −0.573508 0.819200i \(-0.694418\pi\)
0.819104 0.573645i \(-0.194471\pi\)
\(212\) −1.26044 0.222250i −0.0865676 0.0152642i
\(213\) −0.555790 + 4.74401i −0.0380821 + 0.325054i
\(214\) 13.4947 11.3234i 0.922478 0.774051i
\(215\) 5.89948 + 10.2182i 0.402341 + 0.696876i
\(216\) 9.76188 1.71316i 0.664212 0.116566i
\(217\) −21.3045 + 11.2098i −1.44625 + 0.760968i
\(218\) 3.00727 8.26242i 0.203678 0.559601i
\(219\) 12.7605 5.50028i 0.862277 0.371675i
\(220\) 0.0578335 + 0.158896i 0.00389913 + 0.0107128i
\(221\) 3.29516 3.92702i 0.221657 0.264160i
\(222\) −5.56574 8.46726i −0.373548 0.568285i
\(223\) −12.6494 15.0750i −0.847070 1.00950i −0.999775 0.0212263i \(-0.993243\pi\)
0.152705 0.988272i \(-0.451202\pi\)
\(224\) 10.3756 + 6.54602i 0.693247 + 0.437374i
\(225\) 0.492018 8.37001i 0.0328012 0.558000i
\(226\) −26.1603 −1.74015
\(227\) −0.299457 0.108994i −0.0198757 0.00723416i 0.332063 0.943257i \(-0.392255\pi\)
−0.351939 + 0.936023i \(0.614478\pi\)
\(228\) −0.0335099 0.141559i −0.00221924 0.00937497i
\(229\) 5.56696 6.63444i 0.367875 0.438416i −0.550073 0.835116i \(-0.685400\pi\)
0.917948 + 0.396700i \(0.129845\pi\)
\(230\) 15.3685 5.59369i 1.01337 0.368837i
\(231\) 0.114490 + 0.585191i 0.00753287 + 0.0385027i
\(232\) 0.231365 + 1.31214i 0.0151899 + 0.0861460i
\(233\) 7.34274i 0.481039i −0.970644 0.240520i \(-0.922682\pi\)
0.970644 0.240520i \(-0.0773178\pi\)
\(234\) −4.50437 1.07012i −0.294460 0.0699558i
\(235\) 18.6544 1.21688
\(236\) 5.22237 + 1.90079i 0.339947 + 0.123731i
\(237\) −0.586153 + 0.385293i −0.0380748 + 0.0250275i
\(238\) −16.9890 + 18.7046i −1.10123 + 1.21244i
\(239\) −3.02456 + 3.60453i −0.195642 + 0.233157i −0.854943 0.518722i \(-0.826408\pi\)
0.659301 + 0.751879i \(0.270852\pi\)
\(240\) −12.7331 1.49176i −0.821921 0.0962930i
\(241\) −4.26262 5.07999i −0.274579 0.327231i 0.611078 0.791571i \(-0.290736\pi\)
−0.885657 + 0.464339i \(0.846292\pi\)
\(242\) 16.1280 + 9.31152i 1.03675 + 0.598567i
\(243\) 13.9398 6.97734i 0.894236 0.447596i
\(244\) 6.83345i 0.437467i
\(245\) −8.46225 + 6.03691i −0.540633 + 0.385684i
\(246\) 5.12656 + 3.81872i 0.326857 + 0.243473i
\(247\) 0.0151682 0.0860232i 0.000965130 0.00547352i
\(248\) 13.2949 + 11.1558i 0.844228 + 0.708391i
\(249\) 0.484758 + 8.36174i 0.0307203 + 0.529903i
\(250\) −6.71285 + 18.4434i −0.424558 + 1.16646i
\(251\) 7.34905 + 12.7289i 0.463868 + 0.803443i 0.999150 0.0412308i \(-0.0131279\pi\)
−0.535282 + 0.844674i \(0.679795\pi\)
\(252\) 6.68967 + 1.86934i 0.421410 + 0.117757i
\(253\) −0.422583 + 0.731935i −0.0265675 + 0.0460163i
\(254\) −1.23173 1.46792i −0.0772854 0.0921052i
\(255\) 4.15870 13.8774i 0.260428 0.869038i
\(256\) 3.05066 17.3011i 0.190666 1.08132i
\(257\) 10.8180 + 9.07738i 0.674808 + 0.566231i 0.914484 0.404621i \(-0.132597\pi\)
−0.239676 + 0.970853i \(0.577041\pi\)
\(258\) −16.9776 + 16.0089i −1.05698 + 0.996673i
\(259\) 1.23125 + 9.04483i 0.0765063 + 0.562018i
\(260\) 1.02429 + 0.591374i 0.0635237 + 0.0366754i
\(261\) 0.939500 + 1.87321i 0.0581536 + 0.115949i
\(262\) 11.0973i 0.685594i
\(263\) −15.4018 + 2.71576i −0.949718 + 0.167461i −0.626987 0.779030i \(-0.715712\pi\)
−0.322731 + 0.946491i \(0.604601\pi\)
\(264\) 0.359220 0.236124i 0.0221085 0.0145324i
\(265\) −2.13887 0.377141i −0.131390 0.0231676i
\(266\) −0.0913407 + 0.420757i −0.00560046 + 0.0257983i
\(267\) 27.4762 + 3.21900i 1.68152 + 0.197000i
\(268\) 2.18763 + 12.4067i 0.133631 + 0.757857i
\(269\) 2.15558 3.73358i 0.131428 0.227640i −0.792799 0.609483i \(-0.791377\pi\)
0.924227 + 0.381843i \(0.124710\pi\)
\(270\) −12.8868 + 2.26156i −0.784264 + 0.137634i
\(271\) 16.1867 9.34540i 0.983272 0.567692i 0.0800157 0.996794i \(-0.474503\pi\)
0.903256 + 0.429101i \(0.141170\pi\)
\(272\) 26.3815 + 9.60207i 1.59961 + 0.582211i
\(273\) 3.24451 + 2.62081i 0.196367 + 0.158619i
\(274\) −6.03986 5.06804i −0.364881 0.306172i
\(275\) −0.124380 0.341731i −0.00750038 0.0206071i
\(276\) 5.40774 + 8.22689i 0.325508 + 0.495201i
\(277\) 1.63206 + 9.25587i 0.0980609 + 0.556131i 0.993766 + 0.111483i \(0.0355601\pi\)
−0.895705 + 0.444648i \(0.853329\pi\)
\(278\) 10.9008 18.8807i 0.653786 1.13239i
\(279\) 25.0587 + 10.8253i 1.50023 + 0.648092i
\(280\) 6.33796 + 3.99866i 0.378765 + 0.238966i
\(281\) 27.0442 4.76862i 1.61332 0.284472i 0.707048 0.707166i \(-0.250027\pi\)
0.906272 + 0.422694i \(0.138916\pi\)
\(282\) 8.49852 + 35.9011i 0.506079 + 2.13788i
\(283\) −21.3585 3.76609i −1.26963 0.223871i −0.502060 0.864833i \(-0.667424\pi\)
−0.767573 + 0.640962i \(0.778536\pi\)
\(284\) 2.37661 + 0.419060i 0.141026 + 0.0248667i
\(285\) −0.0568635 0.240214i −0.00336830 0.0142291i
\(286\) −0.197757 + 0.0348699i −0.0116936 + 0.00206190i
\(287\) −2.68156 5.09639i −0.158287 0.300830i
\(288\) −1.60748 13.8174i −0.0947217 0.814196i
\(289\) −7.36246 + 12.7522i −0.433086 + 0.750127i
\(290\) −0.305428 1.73217i −0.0179353 0.101716i
\(291\) −9.93955 15.1212i −0.582667 0.886421i
\(292\) −2.40118 6.59720i −0.140519 0.386072i
\(293\) −7.22978 6.06651i −0.422368 0.354409i 0.406695 0.913564i \(-0.366681\pi\)
−0.829063 + 0.559155i \(0.811126\pi\)
\(294\) −15.4734 13.5356i −0.902430 0.789414i
\(295\) 8.86194 + 3.22548i 0.515962 + 0.187795i
\(296\) 5.69911 3.29038i 0.331254 0.191250i
\(297\) 0.435022 0.517590i 0.0252425 0.0300336i
\(298\) −17.3441 + 30.0409i −1.00472 + 1.74022i
\(299\) 1.02654 + 5.82180i 0.0593664 + 0.336684i
\(300\) −4.20741 0.492924i −0.242915 0.0284590i
\(301\) 20.0209 6.40947i 1.15399 0.369436i
\(302\) 22.7559 + 4.01248i 1.30946 + 0.230892i
\(303\) −6.17691 + 4.06023i −0.354854 + 0.233254i
\(304\) 0.471107 0.0830689i 0.0270198 0.00476433i
\(305\) 11.5958i 0.663974i
\(306\) 28.6022 + 1.68134i 1.63508 + 0.0961156i
\(307\) 4.86656 + 2.80971i 0.277749 + 0.160358i 0.632404 0.774639i \(-0.282068\pi\)
−0.354655 + 0.934997i \(0.615402\pi\)
\(308\) 0.298516 0.0406363i 0.0170095 0.00231547i
\(309\) −5.10982 + 4.81827i −0.290687 + 0.274102i
\(310\) −17.5508 14.7269i −0.996817 0.836429i
\(311\) 3.03101 17.1897i 0.171873 0.974740i −0.769819 0.638263i \(-0.779653\pi\)
0.941692 0.336477i \(-0.109236\pi\)
\(312\) 0.863141 2.88027i 0.0488658 0.163063i
\(313\) −0.321001 0.382554i −0.0181440 0.0216232i 0.756896 0.653535i \(-0.226715\pi\)
−0.775040 + 0.631912i \(0.782270\pi\)
\(314\) −3.37779 + 5.85051i −0.190620 + 0.330163i
\(315\) 11.3518 + 3.17211i 0.639603 + 0.178728i
\(316\) 0.177200 + 0.306920i 0.00996830 + 0.0172656i
\(317\) −2.67158 + 7.34010i −0.150051 + 0.412261i −0.991831 0.127559i \(-0.959286\pi\)
0.841780 + 0.539820i \(0.181508\pi\)
\(318\) −0.248598 4.28815i −0.0139407 0.240467i
\(319\) 0.0696286 + 0.0584253i 0.00389845 + 0.00327119i
\(320\) 0.543191 3.08059i 0.0303653 0.172210i
\(321\) 14.4310 + 10.7495i 0.805460 + 0.599980i
\(322\) −3.93037 28.8726i −0.219031 1.60901i
\(323\) 0.540574i 0.0300784i
\(324\) −3.11172 7.23519i −0.172873 0.401955i
\(325\) −2.20289 1.27184i −0.122194 0.0705490i
\(326\) −26.8169 31.9591i −1.48525 1.77005i
\(327\) 8.92061 + 1.04510i 0.493311 + 0.0577944i
\(328\) −2.66864 + 3.18036i −0.147351 + 0.175606i
\(329\) 7.05086 32.4795i 0.388727 1.79065i
\(330\) −0.474211 + 0.311710i −0.0261044 + 0.0171591i
\(331\) 29.7049 + 10.8117i 1.63273 + 0.594265i 0.985746 0.168238i \(-0.0538077\pi\)
0.646984 + 0.762503i \(0.276030\pi\)
\(332\) 4.23180 0.232250
\(333\) 7.10697 7.52483i 0.389459 0.412358i
\(334\) 31.1336i 1.70356i
\(335\) 3.71223 + 21.0531i 0.202821 + 1.15025i
\(336\) −7.41011 + 21.6060i −0.404255 + 1.17870i
\(337\) −6.59007 + 2.39859i −0.358984 + 0.130659i −0.515215 0.857061i \(-0.672288\pi\)
0.156231 + 0.987721i \(0.450066\pi\)
\(338\) 13.2661 15.8099i 0.721581 0.859947i
\(339\) −6.15561 26.0038i −0.334327 1.41233i
\(340\) −6.87811 2.50343i −0.373018 0.135767i
\(341\) 1.18396 0.0641151
\(342\) 0.436395 0.218872i 0.0235975 0.0118352i
\(343\) 7.31245 + 17.0155i 0.394835 + 0.918752i
\(344\) −9.74154 11.6095i −0.525229 0.625943i
\(345\) 9.17650 + 13.9604i 0.494046 + 0.751601i
\(346\) −3.53378 + 4.21140i −0.189977 + 0.226406i
\(347\) 3.63535 + 9.98804i 0.195156 + 0.536186i 0.998216 0.0597122i \(-0.0190183\pi\)
−0.803060 + 0.595898i \(0.796796\pi\)
\(348\) 0.972313 0.419105i 0.0521215 0.0224664i
\(349\) 2.52401 6.93467i 0.135107 0.371204i −0.853627 0.520885i \(-0.825602\pi\)
0.988734 + 0.149680i \(0.0478244\pi\)
\(350\) 10.6040 + 6.69013i 0.566807 + 0.357602i
\(351\) 0.00381826 4.72923i 0.000203804 0.252428i
\(352\) −0.301674 0.522514i −0.0160793 0.0278501i
\(353\) −12.7574 + 10.7047i −0.679007 + 0.569754i −0.915716 0.401826i \(-0.868376\pi\)
0.236709 + 0.971581i \(0.423931\pi\)
\(354\) −2.17027 + 18.5246i −0.115348 + 0.984570i
\(355\) 4.03291 + 0.711112i 0.214045 + 0.0377419i
\(356\) 2.42710 13.7648i 0.128636 0.729531i
\(357\) −22.5903 12.4861i −1.19561 0.660832i
\(358\) −25.5563 + 21.4443i −1.35069 + 1.13336i
\(359\) −15.0167 8.66990i −0.792552 0.457580i 0.0483084 0.998832i \(-0.484617\pi\)
−0.840860 + 0.541253i \(0.817950\pi\)
\(360\) −0.981935 8.44039i −0.0517525 0.444848i
\(361\) −9.49539 16.4465i −0.499758 0.865606i
\(362\) −22.4745 + 18.8583i −1.18123 + 0.991173i
\(363\) −5.46083 + 18.2226i −0.286619 + 0.956438i
\(364\) 1.41680 1.55988i 0.0742606 0.0817600i
\(365\) −4.07462 11.1949i −0.213275 0.585969i
\(366\) −22.3165 + 5.28278i −1.16650 + 0.276135i
\(367\) −9.14036 + 25.1129i −0.477123 + 1.31088i 0.434801 + 0.900526i \(0.356819\pi\)
−0.911924 + 0.410358i \(0.865404\pi\)
\(368\) −28.0376 + 16.1875i −1.46156 + 0.843833i
\(369\) −2.58958 + 5.99445i −0.134808 + 0.312059i
\(370\) −7.52347 + 4.34368i −0.391127 + 0.225817i
\(371\) −1.46508 + 3.58147i −0.0760631 + 0.185941i
\(372\) 6.19298 12.3230i 0.321091 0.638916i
\(373\) 17.3964 6.33178i 0.900752 0.327847i 0.150198 0.988656i \(-0.452009\pi\)
0.750554 + 0.660809i \(0.229787\pi\)
\(374\) 1.16777 0.425034i 0.0603840 0.0219780i
\(375\) −19.9126 2.33289i −1.02828 0.120470i
\(376\) −23.5966 + 4.16072i −1.21690 + 0.214573i
\(377\) 0.635767 0.0327437
\(378\) −0.933213 + 23.2922i −0.0479993 + 1.19802i
\(379\) 35.2309 1.80969 0.904846 0.425739i \(-0.139986\pi\)
0.904846 + 0.425739i \(0.139986\pi\)
\(380\) −0.122826 + 0.0216575i −0.00630083 + 0.00111101i
\(381\) 1.16930 1.56977i 0.0599052 0.0804215i
\(382\) −8.43245 + 3.06916i −0.431442 + 0.157032i
\(383\) −15.7009 + 5.71465i −0.802277 + 0.292005i −0.710430 0.703768i \(-0.751499\pi\)
−0.0918471 + 0.995773i \(0.529277\pi\)
\(384\) 22.2118 1.28769i 1.13349 0.0657122i
\(385\) 0.506557 0.0689565i 0.0258166 0.00351435i
\(386\) −25.9450 + 14.9794i −1.32057 + 0.762429i
\(387\) −19.9081 13.1091i −1.01198 0.666373i
\(388\) −7.91773 + 4.57130i −0.401962 + 0.232073i
\(389\) 3.24562 8.91727i 0.164560 0.452124i −0.829816 0.558037i \(-0.811555\pi\)
0.994375 + 0.105914i \(0.0337767\pi\)
\(390\) −1.13944 + 3.80228i −0.0576980 + 0.192536i
\(391\) −12.5126 34.3782i −0.632792 1.73858i
\(392\) 9.35769 9.52372i 0.472635 0.481021i
\(393\) 11.0309 2.61124i 0.556436 0.131720i
\(394\) 26.8726 22.5488i 1.35382 1.13599i
\(395\) 0.300695 + 0.520819i 0.0151296 + 0.0262052i
\(396\) −0.248350 0.234559i −0.0124800 0.0117870i
\(397\) −32.9549 19.0265i −1.65396 0.954913i −0.975422 0.220346i \(-0.929281\pi\)
−0.678536 0.734567i \(-0.737385\pi\)
\(398\) −16.5943 + 13.9243i −0.831799 + 0.697962i
\(399\) −0.439733 + 0.00821154i −0.0220142 + 0.000411091i
\(400\) 2.41901 13.7189i 0.120950 0.685943i
\(401\) 5.53925 + 0.976719i 0.276617 + 0.0487750i 0.310236 0.950660i \(-0.399592\pi\)
−0.0336187 + 0.999435i \(0.510703\pi\)
\(402\) −38.8262 + 16.7356i −1.93648 + 0.834696i
\(403\) 6.34390 5.32316i 0.316012 0.265166i
\(404\) 1.86734 + 3.23434i 0.0929039 + 0.160914i
\(405\) −5.28034 12.2775i −0.262382 0.610075i
\(406\) −3.13134 0.122927i −0.155406 0.00610076i
\(407\) 0.153545 0.421860i 0.00761092 0.0209108i
\(408\) −2.16523 + 18.4816i −0.107195 + 0.914974i
\(409\) −0.754389 2.07267i −0.0373022 0.102487i 0.919643 0.392755i \(-0.128478\pi\)
−0.956945 + 0.290268i \(0.906256\pi\)
\(410\) 3.52290 4.19843i 0.173984 0.207346i
\(411\) 3.61652 7.19626i 0.178390 0.354965i
\(412\) 2.28090 + 2.71827i 0.112372 + 0.133919i
\(413\) 8.96550 14.2105i 0.441164 0.699253i
\(414\) −22.6866 + 24.0205i −1.11499 + 1.18054i
\(415\) 7.18103 0.352503
\(416\) −3.96568 1.44339i −0.194434 0.0707680i
\(417\) 21.3328 + 6.39287i 1.04467 + 0.313060i
\(418\) 0.0136111 0.0162211i 0.000665742 0.000793400i
\(419\) 11.5894 4.21819i 0.566178 0.206072i −0.0430419 0.999073i \(-0.513705\pi\)
0.609220 + 0.793001i \(0.291483\pi\)
\(420\) 1.93195 5.63307i 0.0942693 0.274865i
\(421\) 3.05146 + 17.3057i 0.148719 + 0.843427i 0.964306 + 0.264792i \(0.0853034\pi\)
−0.815587 + 0.578635i \(0.803586\pi\)
\(422\) 34.8353i 1.69576i
\(423\) −33.6866 + 16.8954i −1.63790 + 0.821480i
\(424\) 2.78965 0.135477
\(425\) 14.7924 + 5.38401i 0.717538 + 0.261163i
\(426\) 0.468741 + 8.08545i 0.0227106 + 0.391742i
\(427\) 20.1896 + 4.38290i 0.977045 + 0.212103i
\(428\) 5.84400 6.96461i 0.282480 0.336647i
\(429\) −0.0811943 0.188369i −0.00392010 0.00909454i
\(430\) 12.8599 + 15.3259i 0.620161 + 0.739079i
\(431\) 30.8867 + 17.8324i 1.48776 + 0.858957i 0.999902 0.0139669i \(-0.00444595\pi\)
0.487856 + 0.872924i \(0.337779\pi\)
\(432\) 24.3449 8.83857i 1.17130 0.425246i
\(433\) 7.92231i 0.380722i 0.981714 + 0.190361i \(0.0609659\pi\)
−0.981714 + 0.190361i \(0.939034\pi\)
\(434\) −32.2748 + 24.9916i −1.54924 + 1.19963i
\(435\) 1.64994 0.711187i 0.0791084 0.0340988i
\(436\) 0.787999 4.46896i 0.0377383 0.214025i
\(437\) −0.477536 0.400700i −0.0228437 0.0191681i
\(438\) 19.6887 12.9419i 0.940763 0.618387i
\(439\) 5.74325 15.7794i 0.274110 0.753111i −0.723891 0.689914i \(-0.757648\pi\)
0.998001 0.0631970i \(-0.0201297\pi\)
\(440\) −0.184279 0.319180i −0.00878514 0.0152163i
\(441\) 9.81369 18.5659i 0.467318 0.884089i
\(442\) 4.34616 7.52778i 0.206726 0.358060i
\(443\) −11.1554 13.2945i −0.530011 0.631642i 0.432907 0.901439i \(-0.357488\pi\)
−0.962917 + 0.269797i \(0.913044\pi\)
\(444\) −3.58768 3.80477i −0.170264 0.180566i
\(445\) 4.11859 23.3577i 0.195240 1.10726i
\(446\) −25.5614 21.4486i −1.21037 1.01562i
\(447\) −33.9424 10.1716i −1.60542 0.481101i
\(448\) −5.15834 2.11013i −0.243709 0.0996945i
\(449\) −6.63080 3.82829i −0.312927 0.180668i 0.335309 0.942108i \(-0.391159\pi\)
−0.648235 + 0.761440i \(0.724493\pi\)
\(450\) −1.64287 14.1216i −0.0774456 0.665696i
\(451\) 0.283223i 0.0133365i
\(452\) −13.2962 + 2.34448i −0.625401 + 0.110275i
\(453\) 1.36608 + 23.5639i 0.0641841 + 1.10713i
\(454\) −0.532142 0.0938310i −0.0249747 0.00440371i
\(455\) 2.40420 2.64699i 0.112711 0.124093i
\(456\) 0.125506 + 0.291172i 0.00587737 + 0.0136354i
\(457\) 5.16588 + 29.2972i 0.241650 + 1.37046i 0.828146 + 0.560512i \(0.189396\pi\)
−0.586496 + 0.809952i \(0.699493\pi\)
\(458\) 7.34256 12.7177i 0.343095 0.594258i
\(459\) 5.05894 + 28.8267i 0.236131 + 1.34552i
\(460\) 7.30989 4.22037i 0.340826 0.196776i
\(461\) −0.444066 0.161627i −0.0206822 0.00752772i 0.331658 0.943400i \(-0.392392\pi\)
−0.352341 + 0.935872i \(0.614614\pi\)
\(462\) 0.363485 + 0.943473i 0.0169108 + 0.0438943i
\(463\) 1.97532 + 1.65749i 0.0918008 + 0.0770300i 0.687533 0.726153i \(-0.258694\pi\)
−0.595732 + 0.803183i \(0.703138\pi\)
\(464\) 1.19084 + 3.27181i 0.0552834 + 0.151890i
\(465\) 10.5090 20.9111i 0.487343 0.969728i
\(466\) −2.16200 12.2613i −0.100153 0.567994i
\(467\) −2.65563 + 4.59968i −0.122888 + 0.212848i −0.920905 0.389786i \(-0.872549\pi\)
0.798018 + 0.602634i \(0.205882\pi\)
\(468\) −2.38529 0.140216i −0.110260 0.00648148i
\(469\) 38.0589 + 1.49408i 1.75740 + 0.0689900i
\(470\) 31.1502 5.49262i 1.43685 0.253355i
\(471\) −6.61032 1.98094i −0.304588 0.0912768i
\(472\) −11.9292 2.10344i −0.549085 0.0968185i
\(473\) −1.01816 0.179530i −0.0468152 0.00825479i
\(474\) −0.865345 + 0.815970i −0.0397466 + 0.0374788i
\(475\) 0.264156 0.0465778i 0.0121203 0.00213714i
\(476\) −6.95849 + 11.0294i −0.318942 + 0.505530i
\(477\) 4.20400 1.25613i 0.192488 0.0575142i
\(478\) −3.98925 + 6.90958i −0.182464 + 0.316037i
\(479\) 5.71953 + 32.4371i 0.261332 + 1.48209i 0.779280 + 0.626675i \(0.215585\pi\)
−0.517948 + 0.855412i \(0.673304\pi\)
\(480\) −11.9063 + 0.690249i −0.543447 + 0.0315054i
\(481\) −1.07399 2.95075i −0.0489696 0.134543i
\(482\) −8.61371 7.22776i −0.392344 0.329215i
\(483\) 27.7751 10.7007i 1.26381 0.486899i
\(484\) 9.03172 + 3.28728i 0.410533 + 0.149422i
\(485\) −13.4357 + 7.75713i −0.610086 + 0.352233i
\(486\) 21.2229 15.7556i 0.962692 0.714687i
\(487\) −12.1204 + 20.9931i −0.549226 + 0.951288i 0.449101 + 0.893481i \(0.351744\pi\)
−0.998328 + 0.0578073i \(0.981589\pi\)
\(488\) −2.58635 14.6679i −0.117079 0.663986i
\(489\) 25.4578 34.1765i 1.15124 1.54552i
\(490\) −12.3532 + 12.5724i −0.558061 + 0.567962i
\(491\) −11.3569 2.00253i −0.512529 0.0903727i −0.0885987 0.996067i \(-0.528239\pi\)
−0.423931 + 0.905695i \(0.639350\pi\)
\(492\) 2.94785 + 1.48146i 0.132900 + 0.0667895i
\(493\) −3.87473 + 0.683219i −0.174509 + 0.0307706i
\(494\) 0.148112i 0.00666388i
\(495\) −0.421429 0.398027i −0.0189418 0.0178900i
\(496\) 39.2769 + 22.6765i 1.76358 + 1.01821i
\(497\) 2.76246 6.75298i 0.123913 0.302913i
\(498\) 3.27151 + 13.8201i 0.146600 + 0.619295i
\(499\) 3.90881 + 3.27988i 0.174983 + 0.146828i 0.726073 0.687618i \(-0.241344\pi\)
−0.551090 + 0.834446i \(0.685788\pi\)
\(500\) −1.75897 + 9.97564i −0.0786637 + 0.446124i
\(501\) 30.9474 7.32587i 1.38263 0.327296i
\(502\) 16.0197 + 19.0916i 0.714996 + 0.852099i
\(503\) −12.9688 + 22.4626i −0.578251 + 1.00156i 0.417429 + 0.908709i \(0.362931\pi\)
−0.995680 + 0.0928501i \(0.970402\pi\)
\(504\) −15.0668 1.48057i −0.671130 0.0659500i
\(505\) 3.16873 + 5.48841i 0.141007 + 0.244231i
\(506\) −0.490140 + 1.34665i −0.0217894 + 0.0598659i
\(507\) 18.8369 + 9.46661i 0.836577 + 0.420427i
\(508\) −0.757591 0.635695i −0.0336127 0.0282044i
\(509\) −4.78794 + 27.1537i −0.212222 + 1.20357i 0.673442 + 0.739240i \(0.264815\pi\)
−0.885663 + 0.464328i \(0.846296\pi\)
\(510\) 2.85835 24.3978i 0.126570 1.08035i
\(511\) −21.0317 + 2.86300i −0.930388 + 0.126652i
\(512\) 4.09759i 0.181090i
\(513\) 0.320248 + 0.382283i 0.0141393 + 0.0168782i
\(514\) 20.7372 + 11.9726i 0.914680 + 0.528091i
\(515\) 3.87050 + 4.61268i 0.170555 + 0.203259i
\(516\) −7.19433 + 9.65823i −0.316713 + 0.425180i
\(517\) −1.05068 + 1.25216i −0.0462090 + 0.0550697i
\(518\) 4.71917 + 14.7410i 0.207349 + 0.647683i
\(519\) −5.01772 2.52168i −0.220253 0.110690i
\(520\) −2.42245 0.881700i −0.106232 0.0386651i
\(521\) −12.5739 −0.550874 −0.275437 0.961319i \(-0.588823\pi\)
−0.275437 + 0.961319i \(0.588823\pi\)
\(522\) 2.12038 + 2.85136i 0.0928063 + 0.124801i
\(523\) 3.41897i 0.149501i −0.997202 0.0747507i \(-0.976184\pi\)
0.997202 0.0747507i \(-0.0238161\pi\)
\(524\) −0.994539 5.64031i −0.0434467 0.246398i
\(525\) −4.15494 + 12.1148i −0.181337 + 0.528732i
\(526\) −24.9192 + 9.06984i −1.08653 + 0.395464i
\(527\) −32.9428 + 39.2598i −1.43501 + 1.71018i
\(528\) 0.817308 0.770675i 0.0355688 0.0335393i
\(529\) 18.0313 + 6.56287i 0.783971 + 0.285342i
\(530\) −3.68265 −0.159964
\(531\) −18.9244 + 2.20162i −0.821250 + 0.0955423i
\(532\) −0.00871659 + 0.222040i −0.000377912 + 0.00962664i
\(533\) 1.27339 + 1.51756i 0.0551565 + 0.0657330i
\(534\) 46.8290 2.71483i 2.02649 0.117482i
\(535\) 9.91680 11.8184i 0.428741 0.510953i
\(536\) −9.39144 25.8028i −0.405648 1.11451i
\(537\) −27.3295 20.3575i −1.17935 0.878490i
\(538\) 2.50019 6.86922i 0.107791 0.296153i
\(539\) 0.0714035 0.908038i 0.00307557 0.0391120i
\(540\) −6.34714 + 2.30437i −0.273138 + 0.0991643i
\(541\) −1.35102 2.34004i −0.0580850 0.100606i 0.835521 0.549459i \(-0.185166\pi\)
−0.893606 + 0.448853i \(0.851833\pi\)
\(542\) 24.2778 20.3715i 1.04282 0.875029i
\(543\) −24.0339 17.9026i −1.03139 0.768275i
\(544\) 25.7202 + 4.53517i 1.10275 + 0.194444i
\(545\) 1.33717 7.58347i 0.0572781 0.324840i
\(546\) 6.18953 + 3.42106i 0.264887 + 0.146408i
\(547\) 23.8134 19.9818i 1.01819 0.854362i 0.0287897 0.999585i \(-0.490835\pi\)
0.989399 + 0.145224i \(0.0463903\pi\)
\(548\) −3.52401 2.03459i −0.150538 0.0869134i
\(549\) −10.5023 20.9400i −0.448229 0.893697i
\(550\) −0.308315 0.534018i −0.0131466 0.0227706i
\(551\) −0.0513568 + 0.0430935i −0.00218787 + 0.00183584i
\(552\) −14.7214 15.6122i −0.626585 0.664499i
\(553\) 1.02046 0.326689i 0.0433943 0.0138922i
\(554\) 5.45060 + 14.9754i 0.231574 + 0.636244i
\(555\) −6.08800 6.45638i −0.258421 0.274058i
\(556\) 3.84834 10.5732i 0.163206 0.448405i
\(557\) 27.0000 15.5885i 1.14403 0.660504i 0.196602 0.980483i \(-0.437009\pi\)
0.947425 + 0.319979i \(0.103676\pi\)
\(558\) 45.0318 + 10.6983i 1.90635 + 0.452896i
\(559\) −6.26269 + 3.61577i −0.264884 + 0.152931i
\(560\) 18.1253 + 7.41456i 0.765934 + 0.313322i
\(561\) 0.697272 + 1.06077i 0.0294389 + 0.0447859i
\(562\) 43.7557 15.9258i 1.84572 0.671789i
\(563\) 25.5339 9.29359i 1.07613 0.391678i 0.257662 0.966235i \(-0.417048\pi\)
0.818465 + 0.574557i \(0.194826\pi\)
\(564\) 7.53691 + 17.4854i 0.317361 + 0.736270i
\(565\) −22.5626 + 3.97839i −0.949215 + 0.167372i
\(566\) −36.7745 −1.54575
\(567\) −23.3724 + 4.55311i −0.981549 + 0.191213i
\(568\) −5.25997 −0.220704
\(569\) 15.9607 2.81430i 0.669107 0.117982i 0.171233 0.985231i \(-0.445225\pi\)
0.497875 + 0.867249i \(0.334114\pi\)
\(570\) −0.165682 0.384380i −0.00693967 0.0160999i
\(571\) −34.7802 + 12.6590i −1.45551 + 0.529761i −0.944123 0.329592i \(-0.893089\pi\)
−0.511383 + 0.859353i \(0.670867\pi\)
\(572\) −0.0973868 + 0.0354459i −0.00407195 + 0.00148207i
\(573\) −5.03499 7.65982i −0.210340 0.319994i
\(574\) −5.97839 7.72067i −0.249533 0.322255i
\(575\) −15.7210 + 9.07655i −0.655613 + 0.378518i
\(576\) 1.80919 + 6.05497i 0.0753828 + 0.252290i
\(577\) −37.5446 + 21.6764i −1.56300 + 0.902400i −0.566052 + 0.824370i \(0.691530\pi\)
−0.996951 + 0.0780301i \(0.975137\pi\)
\(578\) −8.53949 + 23.4621i −0.355196 + 0.975893i
\(579\) −20.9947 22.2651i −0.872511 0.925306i
\(580\) −0.310473 0.853018i −0.0128917 0.0354196i
\(581\) 2.71423 12.5030i 0.112605 0.518711i
\(582\) −21.0499 22.3236i −0.872546 0.925343i
\(583\) 0.145784 0.122327i 0.00603775 0.00506627i
\(584\) 7.65105 + 13.2520i 0.316603 + 0.548372i
\(585\) −4.04765 0.237935i −0.167350 0.00983740i
\(586\) −13.8589 8.00144i −0.572506 0.330536i
\(587\) −26.0768 + 21.8811i −1.07631 + 0.903128i −0.995609 0.0936106i \(-0.970159\pi\)
−0.0806972 + 0.996739i \(0.525715\pi\)
\(588\) −9.07759 5.49288i −0.374353 0.226523i
\(589\) −0.151642 + 0.860003i −0.00624829 + 0.0354358i
\(590\) 15.7479 + 2.77677i 0.648329 + 0.114318i
\(591\) 28.7372 + 21.4060i 1.18209 + 0.880527i
\(592\) 13.1736 11.0540i 0.541433 0.454316i
\(593\) −1.09399 1.89484i −0.0449246 0.0778118i 0.842689 0.538401i \(-0.180971\pi\)
−0.887613 + 0.460589i \(0.847638\pi\)
\(594\) 0.574024 0.992388i 0.0235525 0.0407182i
\(595\) −11.8080 + 18.7159i −0.484081 + 0.767278i
\(596\) −6.12306 + 16.8230i −0.250810 + 0.689095i
\(597\) −17.7457 13.2186i −0.726284 0.541002i
\(598\) 3.42835 + 9.41930i 0.140196 + 0.385184i
\(599\) 1.54058 1.83600i 0.0629466 0.0750168i −0.733652 0.679525i \(-0.762186\pi\)
0.796599 + 0.604508i \(0.206630\pi\)
\(600\) 9.21773 0.534382i 0.376312 0.0218161i
\(601\) 9.51673 + 11.3416i 0.388196 + 0.462634i 0.924383 0.381465i \(-0.124580\pi\)
−0.536187 + 0.844099i \(0.680136\pi\)
\(602\) 31.5448 16.5978i 1.28567 0.676478i
\(603\) −25.7715 34.6560i −1.04949 1.41130i
\(604\) 11.9255 0.485242
\(605\) 15.3261 + 5.57825i 0.623095 + 0.226788i
\(606\) −9.11903 + 8.59873i −0.370435 + 0.349299i
\(607\) 0.668099 0.796209i 0.0271173 0.0323171i −0.752315 0.658803i \(-0.771063\pi\)
0.779433 + 0.626486i \(0.215507\pi\)
\(608\) 0.418181 0.152205i 0.0169595 0.00617274i
\(609\) −0.614626 3.14154i −0.0249059 0.127302i
\(610\) 3.41427 + 19.3633i 0.138240 + 0.783997i
\(611\) 11.4332i 0.462539i
\(612\) 14.6880 1.70877i 0.593728 0.0690729i
\(613\) 24.0367 0.970835 0.485417 0.874282i \(-0.338668\pi\)
0.485417 + 0.874282i \(0.338668\pi\)
\(614\) 8.95373 + 3.25889i 0.361343 + 0.131518i
\(615\) 5.00227 + 2.51392i 0.201711 + 0.101371i
\(616\) −0.625381 + 0.200209i −0.0251973 + 0.00806665i
\(617\) −10.4252 + 12.4243i −0.419702 + 0.500182i −0.933922 0.357477i \(-0.883637\pi\)
0.514220 + 0.857659i \(0.328082\pi\)
\(618\) −7.11396 + 9.55034i −0.286165 + 0.384171i
\(619\) 1.86551 + 2.22322i 0.0749810 + 0.0893589i 0.802231 0.597014i \(-0.203646\pi\)
−0.727250 + 0.686373i \(0.759202\pi\)
\(620\) −10.2402 5.91216i −0.411255 0.237438i
\(621\) −29.2151 16.8988i −1.17236 0.678125i
\(622\) 29.5968i 1.18672i
\(623\) −39.1117 15.9995i −1.56698 0.641006i
\(624\) 0.914296 7.80409i 0.0366011 0.312414i
\(625\) −0.558262 + 3.16606i −0.0223305 + 0.126642i
\(626\) −0.648663 0.544293i −0.0259258 0.0217543i
\(627\) 0.0193268 + 0.00971281i 0.000771839 + 0.000387892i
\(628\) −1.19247 + 3.27630i −0.0475849 + 0.130738i
\(629\) 9.71647 + 16.8294i 0.387421 + 0.671033i
\(630\) 19.8899 + 1.95452i 0.792433 + 0.0778701i
\(631\) −23.7928 + 41.2104i −0.947177 + 1.64056i −0.195844 + 0.980635i \(0.562745\pi\)
−0.751333 + 0.659923i \(0.770589\pi\)
\(632\) −0.496523 0.591733i −0.0197506 0.0235379i
\(633\) 34.6269 8.19689i 1.37630 0.325797i
\(634\) −2.29992 + 13.0435i −0.0913416 + 0.518024i
\(635\) −1.28557 1.07872i −0.0510163 0.0428078i
\(636\) −0.510656 2.15721i −0.0202488 0.0855391i
\(637\) −3.70000 5.18648i −0.146599 0.205496i
\(638\) 0.133472 + 0.0770603i 0.00528422 + 0.00305085i
\(639\) −7.92679 + 2.36848i −0.313579 + 0.0936955i
\(640\) 19.0754i 0.754021i
\(641\) 38.3227 6.75732i 1.51365 0.266898i 0.645719 0.763575i \(-0.276558\pi\)
0.867935 + 0.496677i \(0.165447\pi\)
\(642\) 27.2628 + 13.7011i 1.07597 + 0.540738i
\(643\) 11.9667 + 2.11005i 0.471919 + 0.0832121i 0.404550 0.914516i \(-0.367428\pi\)
0.0673696 + 0.997728i \(0.478539\pi\)
\(644\) −4.58521 14.3225i −0.180682 0.564387i
\(645\) −12.2082 + 16.3892i −0.480697 + 0.645326i
\(646\) 0.159167 + 0.902680i 0.00626234 + 0.0355155i
\(647\) −1.58605 + 2.74713i −0.0623542 + 0.108001i −0.895517 0.445027i \(-0.853194\pi\)
0.833163 + 0.553027i \(0.186528\pi\)
\(648\) 9.41768 + 14.3525i 0.369961 + 0.563820i
\(649\) −0.715642 + 0.413176i −0.0280914 + 0.0162186i
\(650\) −4.05299 1.47517i −0.158971 0.0578608i
\(651\) −32.4365 26.2012i −1.27129 1.02690i
\(652\) −16.4941 13.8402i −0.645958 0.542023i
\(653\) −0.519398 1.42703i −0.0203256 0.0558441i 0.929115 0.369791i \(-0.120571\pi\)
−0.949440 + 0.313947i \(0.898349\pi\)
\(654\) 15.2038 0.881417i 0.594517 0.0344661i
\(655\) −1.68765 9.57116i −0.0659421 0.373976i
\(656\) −5.42459 + 9.39567i −0.211795 + 0.366839i
\(657\) 17.4973 + 16.5257i 0.682635 + 0.644727i
\(658\) 2.21064 56.3121i 0.0861796 2.19527i
\(659\) −37.4050 + 6.59551i −1.45709 + 0.256925i −0.845384 0.534159i \(-0.820628\pi\)
−0.611708 + 0.791083i \(0.709517\pi\)
\(660\) −0.213087 + 0.200928i −0.00829439 + 0.00782113i
\(661\) 25.5835 + 4.51107i 0.995085 + 0.175460i 0.647399 0.762151i \(-0.275857\pi\)
0.347685 + 0.937611i \(0.386968\pi\)
\(662\) 52.7863 + 9.30765i 2.05160 + 0.361752i
\(663\) 8.50541 + 2.54885i 0.330323 + 0.0989891i
\(664\) −9.08352 + 1.60167i −0.352509 + 0.0621568i
\(665\) −0.0147914 + 0.376784i −0.000573584 + 0.0146110i
\(666\) 9.65198 14.6579i 0.374007 0.567984i
\(667\) 2.26859 3.92932i 0.0878402 0.152144i
\(668\) −2.79019 15.8240i −0.107956 0.612248i
\(669\) 15.3056 30.4554i 0.591747 1.17748i
\(670\) 12.3978 + 34.0626i 0.478967 + 1.31595i
\(671\) −0.778354 0.653117i −0.0300480 0.0252133i
\(672\) −3.29846 + 20.9912i −0.127241 + 0.809751i
\(673\) −27.9585 10.1760i −1.07772 0.392258i −0.258661 0.965968i \(-0.583281\pi\)
−0.819058 + 0.573710i \(0.805503\pi\)
\(674\) −10.2982 + 5.94568i −0.396672 + 0.229019i
\(675\) 13.6505 4.95590i 0.525408 0.190753i
\(676\) 5.32574 9.22446i 0.204836 0.354787i
\(677\) 3.13508 + 17.7799i 0.120491 + 0.683339i 0.983884 + 0.178807i \(0.0572237\pi\)
−0.863393 + 0.504532i \(0.831665\pi\)
\(678\) −17.9355 41.6100i −0.688810 1.59802i
\(679\) 8.42771 + 26.3252i 0.323426 + 1.01027i
\(680\) 15.7113 + 2.77033i 0.602501 + 0.106237i
\(681\) −0.0319455 0.551038i −0.00122415 0.0211158i
\(682\) 1.97704 0.348606i 0.0757049 0.0133488i
\(683\) 6.39465i 0.244684i −0.992488 0.122342i \(-0.960959\pi\)
0.992488 0.122342i \(-0.0390406\pi\)
\(684\) 0.202187 0.150353i 0.00773080 0.00574890i
\(685\) −5.97996 3.45253i −0.228483 0.131915i
\(686\) 17.2208 + 26.2604i 0.657492 + 1.00263i
\(687\) 14.3693 + 4.30611i 0.548224 + 0.164288i
\(688\) −30.3381 25.4567i −1.15663 0.970528i
\(689\) 0.231148 1.31090i 0.00880603 0.0499415i
\(690\) 19.4339 + 20.6099i 0.739836 + 0.784604i
\(691\) −15.3397 18.2811i −0.583548 0.695446i 0.390804 0.920474i \(-0.372197\pi\)
−0.974352 + 0.225028i \(0.927753\pi\)
\(692\) −1.41865 + 2.45718i −0.0539291 + 0.0934080i
\(693\) −0.852299 + 0.583313i −0.0323762 + 0.0221582i
\(694\) 9.01139 + 15.6082i 0.342068 + 0.592478i
\(695\) 6.53032 17.9419i 0.247709 0.680576i
\(696\) −1.92844 + 1.26761i −0.0730971 + 0.0480486i
\(697\) −9.39157 7.88047i −0.355731 0.298494i
\(698\) 2.17289 12.3231i 0.0822450 0.466434i
\(699\) 11.6792 5.03420i 0.441749 0.190411i
\(700\) 5.98915 + 2.44999i 0.226368 + 0.0926010i
\(701\) 7.66638i 0.289555i 0.989464 + 0.144778i \(0.0462467\pi\)
−0.989464 + 0.144778i \(0.953753\pi\)
\(702\) −1.38610 7.89825i −0.0523150 0.298100i
\(703\) 0.286764 + 0.165563i 0.0108155 + 0.00624433i
\(704\) 0.176186 + 0.209971i 0.00664027 + 0.00791356i
\(705\) 12.7895 + 29.6714i 0.481681 + 1.11749i
\(706\) −18.1511 + 21.6316i −0.683124 + 0.814116i
\(707\) 10.7536 3.44266i 0.404432 0.129475i
\(708\) 0.557112 + 9.60979i 0.0209375 + 0.361158i
\(709\) 15.4611 + 5.62740i 0.580656 + 0.211341i 0.615615 0.788047i \(-0.288908\pi\)
−0.0349590 + 0.999389i \(0.511130\pi\)
\(710\) 6.94376 0.260595
\(711\) −1.01471 0.668167i −0.0380545 0.0250582i
\(712\) 30.4645i 1.14171i
\(713\) −10.2627 58.2025i −0.384340 2.17970i
\(714\) −41.3989 14.1984i −1.54932 0.531361i
\(715\) −0.165258 + 0.0601488i −0.00618028 + 0.00224944i
\(716\) −11.0674 + 13.1896i −0.413608 + 0.492918i
\(717\) −7.80693 2.33953i −0.291555 0.0873714i
\(718\) −27.6285 10.0559i −1.03109 0.375284i
\(719\) 46.7348 1.74291 0.871457 0.490472i \(-0.163176\pi\)
0.871457 + 0.490472i \(0.163176\pi\)
\(720\) −6.35710 21.2759i −0.236915 0.792905i
\(721\) 9.49414 4.99551i 0.353580 0.186043i
\(722\) −20.6984 24.6674i −0.770316 0.918027i
\(723\) 5.15768 10.2629i 0.191816 0.381681i
\(724\) −9.73280 + 11.5991i −0.361717 + 0.431077i
\(725\) 0.667720 + 1.83455i 0.0247985 + 0.0681333i
\(726\) −3.75332 + 32.0369i −0.139299 + 1.18900i
\(727\) 2.15305 5.91545i 0.0798522 0.219392i −0.893342 0.449378i \(-0.851646\pi\)
0.973194 + 0.229986i \(0.0738679\pi\)
\(728\) −2.45076 + 3.88451i −0.0908312 + 0.143969i
\(729\) 20.6551 + 17.3886i 0.765006 + 0.644024i
\(730\) −10.1002 17.4941i −0.373827 0.647487i
\(731\) 34.2828 28.7667i 1.26799 1.06397i
\(732\) −10.8692 + 4.68503i −0.401736 + 0.173164i
\(733\) 13.4040 + 2.36349i 0.495090 + 0.0872977i 0.415618 0.909539i \(-0.363565\pi\)
0.0794720 + 0.996837i \(0.474677\pi\)
\(734\) −7.86881 + 44.6262i −0.290443 + 1.64718i
\(735\) −15.4039 9.32098i −0.568183 0.343809i
\(736\) −23.0714 + 19.3592i −0.850424 + 0.713590i
\(737\) −1.62225 0.936605i −0.0597563 0.0345003i
\(738\) −2.55921 + 10.7723i −0.0942060 + 0.396535i
\(739\) −12.6640 21.9347i −0.465852 0.806880i 0.533387 0.845871i \(-0.320919\pi\)
−0.999240 + 0.0389914i \(0.987586\pi\)
\(740\) −3.43460 + 2.88197i −0.126258 + 0.105943i
\(741\) 0.147226 0.0348514i 0.00540849 0.00128030i
\(742\) −1.39194 + 6.41191i −0.0510997 + 0.235389i
\(743\) 7.84457 + 21.5528i 0.287789 + 0.790695i 0.996375 + 0.0850699i \(0.0271114\pi\)
−0.708586 + 0.705625i \(0.750666\pi\)
\(744\) −8.62912 + 28.7951i −0.316359 + 1.05568i
\(745\) −10.3903 + 28.5472i −0.380672 + 1.04589i
\(746\) 27.1851 15.6954i 0.995319 0.574648i
\(747\) −12.9677 + 6.50387i −0.474462 + 0.237964i
\(748\) 0.555439 0.320683i 0.0203089 0.0117253i
\(749\) −16.8289 21.7333i −0.614914 0.794117i
\(750\) −33.9381 + 1.96750i −1.23924 + 0.0718431i
\(751\) −0.189300 + 0.0688994i −0.00690764 + 0.00251417i −0.345472 0.938429i \(-0.612281\pi\)
0.338564 + 0.940943i \(0.390059\pi\)
\(752\) −58.8381 + 21.4153i −2.14560 + 0.780936i
\(753\) −15.2079 + 20.4162i −0.554206 + 0.744009i
\(754\) 1.06164 0.187195i 0.0386626 0.00681725i
\(755\) 20.2366 0.736486
\(756\) 1.61313 + 11.9221i 0.0586688 + 0.433602i
\(757\) −32.2011 −1.17037 −0.585184 0.810901i \(-0.698978\pi\)
−0.585184 + 0.810901i \(0.698978\pi\)
\(758\) 58.8305 10.3734i 2.13682 0.376779i
\(759\) −1.45393 0.170336i −0.0527742 0.00618281i
\(760\) 0.255447 0.0929752i 0.00926605 0.00337257i
\(761\) −49.9235 + 18.1707i −1.80973 + 0.658686i −0.812608 + 0.582811i \(0.801953\pi\)
−0.997117 + 0.0758754i \(0.975825\pi\)
\(762\) 1.49036 2.96557i 0.0539902 0.107431i
\(763\) −12.6983 5.19451i −0.459708 0.188054i
\(764\) −4.01082 + 2.31565i −0.145106 + 0.0837772i
\(765\) 24.9244 2.89965i 0.901143 0.104837i
\(766\) −24.5355 + 14.1656i −0.886505 + 0.511824i
\(767\)