Properties

Label 189.2.bd.a.185.16
Level $189$
Weight $2$
Character 189.185
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(47,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([7, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.47");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.bd (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 185.16
Character \(\chi\) \(=\) 189.185
Dual form 189.2.bd.a.47.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.10401 - 0.194666i) q^{2} +(-0.867806 + 1.49897i) q^{3} +(-0.698446 + 0.254214i) q^{4} +(-3.85196 + 1.40200i) q^{5} +(-0.666265 + 1.82381i) q^{6} +(2.61259 - 0.417595i) q^{7} +(-2.66330 + 1.53766i) q^{8} +(-1.49383 - 2.60163i) q^{9} +O(q^{10})\) \(q+(1.10401 - 0.194666i) q^{2} +(-0.867806 + 1.49897i) q^{3} +(-0.698446 + 0.254214i) q^{4} +(-3.85196 + 1.40200i) q^{5} +(-0.666265 + 1.82381i) q^{6} +(2.61259 - 0.417595i) q^{7} +(-2.66330 + 1.53766i) q^{8} +(-1.49383 - 2.60163i) q^{9} +(-3.97967 + 2.29767i) q^{10} +(-0.344594 + 0.946764i) q^{11} +(0.225057 - 1.26756i) q^{12} +(1.20956 + 3.32323i) q^{13} +(2.80303 - 0.969612i) q^{14} +(1.24120 - 6.99064i) q^{15} +(-1.50222 + 1.26051i) q^{16} +(3.07593 + 5.32768i) q^{17} +(-2.15565 - 2.58142i) q^{18} +(-2.08569 - 1.20417i) q^{19} +(2.33398 - 1.95844i) q^{20} +(-1.64126 + 4.27858i) q^{21} +(-0.196131 + 1.11232i) q^{22} +(2.00470 + 0.353483i) q^{23} +(0.00632429 - 5.32660i) q^{24} +(9.04178 - 7.58696i) q^{25} +(1.98228 + 3.43342i) q^{26} +(5.19612 + 0.0185082i) q^{27} +(-1.71859 + 0.955824i) q^{28} +(0.707925 - 1.94501i) q^{29} +(0.00945016 - 7.95934i) q^{30} +(0.284588 + 0.781898i) q^{31} +(2.54047 - 3.02761i) q^{32} +(-1.12013 - 1.33814i) q^{33} +(4.43298 + 5.28302i) q^{34} +(-9.47812 + 5.27141i) q^{35} +(1.70473 + 1.43735i) q^{36} -3.96837 q^{37} +(-2.53703 - 0.923402i) q^{38} +(-6.03109 - 1.07083i) q^{39} +(8.10314 - 9.65694i) q^{40} +(-9.37310 + 3.41153i) q^{41} +(-0.979062 + 5.04309i) q^{42} +(1.78960 + 10.1493i) q^{43} -0.748864i q^{44} +(9.40165 + 7.92704i) q^{45} +2.28202 q^{46} +(-6.83803 - 2.48884i) q^{47} +(-0.585835 - 3.34566i) q^{48} +(6.65123 - 2.18201i) q^{49} +(8.50528 - 10.1362i) q^{50} +(-10.6553 - 0.0126511i) q^{51} +(-1.68962 - 2.01361i) q^{52} +(3.60509 + 2.08140i) q^{53} +(5.74016 - 0.991077i) q^{54} -4.13002i q^{55} +(-6.31599 + 5.12945i) q^{56} +(3.61499 - 2.08140i) q^{57} +(0.402927 - 2.28511i) q^{58} +(2.12626 + 1.78414i) q^{59} +(0.910206 + 5.19812i) q^{60} +(1.28539 - 3.53158i) q^{61} +(0.466396 + 0.807822i) q^{62} +(-4.98918 - 6.17317i) q^{63} +(4.17633 - 7.23361i) q^{64} +(-9.31834 - 11.1052i) q^{65} +(-1.49712 - 1.25927i) q^{66} +(-0.338425 + 1.91930i) q^{67} +(-3.50274 - 2.93915i) q^{68} +(-2.26956 + 2.69824i) q^{69} +(-9.43775 + 7.66475i) q^{70} +(5.21039 + 3.00822i) q^{71} +(7.97892 + 4.63193i) q^{72} -7.26748i q^{73} +(-4.38111 + 0.772507i) q^{74} +(3.52611 + 20.1374i) q^{75} +(1.76286 + 0.310839i) q^{76} +(-0.504917 + 2.61740i) q^{77} +(-6.86683 - 0.00815301i) q^{78} +(1.27547 + 7.23356i) q^{79} +(4.01925 - 6.96154i) q^{80} +(-4.53697 + 7.77277i) q^{81} +(-9.68386 + 5.59098i) q^{82} +(7.39595 + 2.69190i) q^{83} +(0.0586542 - 3.40559i) q^{84} +(-19.3178 - 16.2095i) q^{85} +(3.95147 + 10.8566i) q^{86} +(2.30117 + 2.74905i) q^{87} +(-0.538041 - 3.05138i) q^{88} +(6.56259 - 11.3667i) q^{89} +(11.9226 + 6.92133i) q^{90} +(4.54784 + 8.17713i) q^{91} +(-1.49004 + 0.262734i) q^{92} +(-1.41901 - 0.251947i) q^{93} +(-8.03373 - 1.41656i) q^{94} +(9.72223 + 1.71429i) q^{95} +(2.33367 + 6.43546i) q^{96} +(5.98600 - 1.05549i) q^{97} +(6.91825 - 3.70373i) q^{98} +(2.97789 - 0.517795i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} + 18 q^{6} - 6 q^{7} - 18 q^{8} - 15 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} + 18 q^{6} - 6 q^{7} - 18 q^{8} - 15 q^{9} - 9 q^{10} + 9 q^{11} - 9 q^{12} - 42 q^{14} - 24 q^{15} - 15 q^{16} - 9 q^{17} - 3 q^{18} - 9 q^{19} - 18 q^{20} + 15 q^{21} - 12 q^{22} + 30 q^{23} - 36 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} - 3 q^{30} - 9 q^{31} - 51 q^{32} - 9 q^{33} + 18 q^{34} - 9 q^{35} - 6 q^{37} - 9 q^{38} - 9 q^{39} - 9 q^{40} + 27 q^{42} - 12 q^{43} - 63 q^{45} - 6 q^{46} + 45 q^{47} + 30 q^{49} - 9 q^{50} + 33 q^{51} - 9 q^{52} + 45 q^{53} + 117 q^{54} - 51 q^{56} - 3 q^{58} - 9 q^{59} - 15 q^{60} - 63 q^{61} + 99 q^{62} - 33 q^{63} + 18 q^{64} - 102 q^{65} + 63 q^{66} - 3 q^{67} + 144 q^{68} - 108 q^{69} - 15 q^{70} + 18 q^{71} + 15 q^{72} - 33 q^{74} - 9 q^{75} - 36 q^{76} - 57 q^{77} + 66 q^{78} - 21 q^{79} - 72 q^{80} + 57 q^{81} - 18 q^{82} + 90 q^{83} + 51 q^{84} + 9 q^{85} - 33 q^{86} - 9 q^{87} + 45 q^{88} - 9 q^{89} - 81 q^{90} - 21 q^{91} + 150 q^{92} - 87 q^{93} - 9 q^{94} + 27 q^{95} - 9 q^{96} - 180 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.10401 0.194666i 0.780652 0.137650i 0.230899 0.972978i \(-0.425833\pi\)
0.549752 + 0.835328i \(0.314722\pi\)
\(3\) −0.867806 + 1.49897i −0.501028 + 0.865431i
\(4\) −0.698446 + 0.254214i −0.349223 + 0.127107i
\(5\) −3.85196 + 1.40200i −1.72265 + 0.626993i −0.998064 0.0621920i \(-0.980191\pi\)
−0.724585 + 0.689185i \(0.757969\pi\)
\(6\) −0.666265 + 1.82381i −0.272002 + 0.744567i
\(7\) 2.61259 0.417595i 0.987465 0.157836i
\(8\) −2.66330 + 1.53766i −0.941619 + 0.543644i
\(9\) −1.49383 2.60163i −0.497942 0.867210i
\(10\) −3.97967 + 2.29767i −1.25848 + 0.726586i
\(11\) −0.344594 + 0.946764i −0.103899 + 0.285460i −0.980739 0.195322i \(-0.937425\pi\)
0.876840 + 0.480782i \(0.159647\pi\)
\(12\) 0.225057 1.26756i 0.0649683 0.365913i
\(13\) 1.20956 + 3.32323i 0.335471 + 0.921699i 0.986662 + 0.162785i \(0.0520476\pi\)
−0.651191 + 0.758914i \(0.725730\pi\)
\(14\) 2.80303 0.969612i 0.749140 0.259140i
\(15\) 1.24120 6.99064i 0.320476 1.80498i
\(16\) −1.50222 + 1.26051i −0.375554 + 0.315128i
\(17\) 3.07593 + 5.32768i 0.746024 + 1.29215i 0.949715 + 0.313116i \(0.101373\pi\)
−0.203691 + 0.979035i \(0.565294\pi\)
\(18\) −2.15565 2.58142i −0.508091 0.608447i
\(19\) −2.08569 1.20417i −0.478489 0.276256i 0.241297 0.970451i \(-0.422427\pi\)
−0.719787 + 0.694195i \(0.755760\pi\)
\(20\) 2.33398 1.95844i 0.521894 0.437921i
\(21\) −1.64126 + 4.27858i −0.358151 + 0.933664i
\(22\) −0.196131 + 1.11232i −0.0418153 + 0.237147i
\(23\) 2.00470 + 0.353483i 0.418010 + 0.0737064i 0.378697 0.925521i \(-0.376372\pi\)
0.0393124 + 0.999227i \(0.487483\pi\)
\(24\) 0.00632429 5.32660i 0.00129094 1.08729i
\(25\) 9.04178 7.58696i 1.80836 1.51739i
\(26\) 1.98228 + 3.43342i 0.388758 + 0.673348i
\(27\) 5.19612 + 0.0185082i 0.999994 + 0.00356190i
\(28\) −1.71859 + 0.955824i −0.324784 + 0.180634i
\(29\) 0.707925 1.94501i 0.131458 0.361179i −0.856447 0.516234i \(-0.827333\pi\)
0.987906 + 0.155055i \(0.0495556\pi\)
\(30\) 0.00945016 7.95934i 0.00172536 1.45317i
\(31\) 0.284588 + 0.781898i 0.0511134 + 0.140433i 0.962622 0.270847i \(-0.0873039\pi\)
−0.911509 + 0.411280i \(0.865082\pi\)
\(32\) 2.54047 3.02761i 0.449095 0.535211i
\(33\) −1.12013 1.33814i −0.194990 0.232941i
\(34\) 4.43298 + 5.28302i 0.760249 + 0.906030i
\(35\) −9.47812 + 5.27141i −1.60209 + 0.891030i
\(36\) 1.70473 + 1.43735i 0.284121 + 0.239558i
\(37\) −3.96837 −0.652395 −0.326198 0.945302i \(-0.605767\pi\)
−0.326198 + 0.945302i \(0.605767\pi\)
\(38\) −2.53703 0.923402i −0.411560 0.149796i
\(39\) −6.03109 1.07083i −0.965747 0.171470i
\(40\) 8.10314 9.65694i 1.28122 1.52690i
\(41\) −9.37310 + 3.41153i −1.46383 + 0.532791i −0.946418 0.322944i \(-0.895327\pi\)
−0.517414 + 0.855735i \(0.673105\pi\)
\(42\) −0.979062 + 5.04309i −0.151073 + 0.778165i
\(43\) 1.78960 + 10.1493i 0.272912 + 1.54776i 0.745518 + 0.666485i \(0.232202\pi\)
−0.472607 + 0.881273i \(0.656687\pi\)
\(44\) 0.748864i 0.112896i
\(45\) 9.40165 + 7.92704i 1.40151 + 1.18169i
\(46\) 2.28202 0.336466
\(47\) −6.83803 2.48884i −0.997429 0.363034i −0.208836 0.977951i \(-0.566968\pi\)
−0.788592 + 0.614916i \(0.789190\pi\)
\(48\) −0.585835 3.34566i −0.0845580 0.482904i
\(49\) 6.65123 2.18201i 0.950175 0.311716i
\(50\) 8.50528 10.1362i 1.20283 1.43347i
\(51\) −10.6553 0.0126511i −1.49205 0.00177151i
\(52\) −1.68962 2.01361i −0.234309 0.279238i
\(53\) 3.60509 + 2.08140i 0.495197 + 0.285902i 0.726728 0.686925i \(-0.241040\pi\)
−0.231531 + 0.972828i \(0.574373\pi\)
\(54\) 5.74016 0.991077i 0.781137 0.134868i
\(55\) 4.13002i 0.556892i
\(56\) −6.31599 + 5.12945i −0.844009 + 0.685451i
\(57\) 3.61499 2.08140i 0.478817 0.275688i
\(58\) 0.402927 2.28511i 0.0529069 0.300050i
\(59\) 2.12626 + 1.78414i 0.276815 + 0.232276i 0.770616 0.637299i \(-0.219948\pi\)
−0.493801 + 0.869575i \(0.664393\pi\)
\(60\) 0.910206 + 5.19812i 0.117507 + 0.671074i
\(61\) 1.28539 3.53158i 0.164577 0.452173i −0.829801 0.558060i \(-0.811546\pi\)
0.994378 + 0.105887i \(0.0337682\pi\)
\(62\) 0.466396 + 0.807822i 0.0592324 + 0.102593i
\(63\) −4.98918 6.17317i −0.628578 0.777747i
\(64\) 4.17633 7.23361i 0.522041 0.904201i
\(65\) −9.31834 11.1052i −1.15580 1.37743i
\(66\) −1.49712 1.25927i −0.184283 0.155005i
\(67\) −0.338425 + 1.91930i −0.0413452 + 0.234480i −0.998477 0.0551731i \(-0.982429\pi\)
0.957132 + 0.289653i \(0.0935400\pi\)
\(68\) −3.50274 2.93915i −0.424770 0.356424i
\(69\) −2.26956 + 2.69824i −0.273222 + 0.324830i
\(70\) −9.43775 + 7.66475i −1.12803 + 0.916113i
\(71\) 5.21039 + 3.00822i 0.618360 + 0.357010i 0.776230 0.630450i \(-0.217129\pi\)
−0.157870 + 0.987460i \(0.550463\pi\)
\(72\) 7.97892 + 4.63193i 0.940325 + 0.545878i
\(73\) 7.26748i 0.850594i −0.905054 0.425297i \(-0.860170\pi\)
0.905054 0.425297i \(-0.139830\pi\)
\(74\) −4.38111 + 0.772507i −0.509293 + 0.0898022i
\(75\) 3.52611 + 20.1374i 0.407161 + 2.32526i
\(76\) 1.76286 + 0.310839i 0.202214 + 0.0356557i
\(77\) −0.504917 + 2.61740i −0.0575407 + 0.298281i
\(78\) −6.86683 0.00815301i −0.777515 0.000923147i
\(79\) 1.27547 + 7.23356i 0.143502 + 0.813839i 0.968558 + 0.248788i \(0.0800323\pi\)
−0.825056 + 0.565051i \(0.808857\pi\)
\(80\) 4.01925 6.96154i 0.449366 0.778324i
\(81\) −4.53697 + 7.77277i −0.504107 + 0.863641i
\(82\) −9.68386 + 5.59098i −1.06940 + 0.617421i
\(83\) 7.39595 + 2.69190i 0.811811 + 0.295475i 0.714372 0.699767i \(-0.246713\pi\)
0.0974392 + 0.995241i \(0.468935\pi\)
\(84\) 0.0586542 3.40559i 0.00639969 0.371580i
\(85\) −19.3178 16.2095i −2.09531 1.75817i
\(86\) 3.95147 + 10.8566i 0.426098 + 1.17069i
\(87\) 2.30117 + 2.74905i 0.246711 + 0.294729i
\(88\) −0.538041 3.05138i −0.0573554 0.325279i
\(89\) 6.56259 11.3667i 0.695633 1.20487i −0.274334 0.961634i \(-0.588457\pi\)
0.969967 0.243237i \(-0.0782093\pi\)
\(90\) 11.9226 + 6.92133i 1.25675 + 0.729572i
\(91\) 4.54784 + 8.17713i 0.476743 + 0.857196i
\(92\) −1.49004 + 0.262734i −0.155347 + 0.0273919i
\(93\) −1.41901 0.251947i −0.147144 0.0261257i
\(94\) −8.03373 1.41656i −0.828616 0.146107i
\(95\) 9.72223 + 1.71429i 0.997480 + 0.175883i
\(96\) 2.33367 + 6.43546i 0.238179 + 0.656817i
\(97\) 5.98600 1.05549i 0.607786 0.107169i 0.138719 0.990332i \(-0.455701\pi\)
0.469067 + 0.883163i \(0.344590\pi\)
\(98\) 6.91825 3.70373i 0.698848 0.374133i
\(99\) 2.97789 0.517795i 0.299290 0.0520403i
\(100\) −4.38649 + 7.59763i −0.438649 + 0.759763i
\(101\) −0.654061 3.70937i −0.0650815 0.369096i −0.999902 0.0139759i \(-0.995551\pi\)
0.934821 0.355120i \(-0.115560\pi\)
\(102\) −11.7660 + 2.06027i −1.16501 + 0.203997i
\(103\) 2.99201 + 8.22048i 0.294812 + 0.809988i 0.995346 + 0.0963692i \(0.0307230\pi\)
−0.700534 + 0.713619i \(0.747055\pi\)
\(104\) −8.33141 6.99088i −0.816962 0.685512i
\(105\) 0.323480 18.7820i 0.0315684 1.83293i
\(106\) 4.38523 + 1.59609i 0.425931 + 0.155026i
\(107\) −1.78505 + 1.03060i −0.172568 + 0.0996319i −0.583796 0.811900i \(-0.698433\pi\)
0.411228 + 0.911532i \(0.365100\pi\)
\(108\) −3.63392 + 1.30800i −0.349674 + 0.125862i
\(109\) −0.225918 + 0.391301i −0.0216390 + 0.0374798i −0.876642 0.481143i \(-0.840222\pi\)
0.855003 + 0.518623i \(0.173555\pi\)
\(110\) −0.803976 4.55957i −0.0766561 0.434738i
\(111\) 3.44377 5.94846i 0.326868 0.564603i
\(112\) −3.39829 + 3.92051i −0.321108 + 0.370454i
\(113\) 5.67858 + 1.00129i 0.534196 + 0.0941931i 0.434237 0.900798i \(-0.357018\pi\)
0.0999585 + 0.994992i \(0.468129\pi\)
\(114\) 3.58580 3.00159i 0.335841 0.281125i
\(115\) −8.21763 + 1.44899i −0.766298 + 0.135119i
\(116\) 1.53845i 0.142841i
\(117\) 6.83896 8.11116i 0.632262 0.749877i
\(118\) 2.69472 + 1.55580i 0.248069 + 0.143223i
\(119\) 10.2610 + 12.6345i 0.940621 + 1.15820i
\(120\) 7.44352 + 20.5267i 0.679498 + 1.87382i
\(121\) 7.64887 + 6.41817i 0.695352 + 0.583470i
\(122\) 0.731601 4.14912i 0.0662361 0.375643i
\(123\) 3.02025 17.0105i 0.272326 1.53379i
\(124\) −0.397538 0.473768i −0.0357000 0.0425456i
\(125\) −13.9438 + 24.1513i −1.24717 + 2.16016i
\(126\) −6.70981 5.84401i −0.597757 0.520626i
\(127\) −0.738713 1.27949i −0.0655502 0.113536i 0.831388 0.555693i \(-0.187547\pi\)
−0.896938 + 0.442157i \(0.854214\pi\)
\(128\) 0.499050 1.37113i 0.0441102 0.121192i
\(129\) −16.7666 6.12509i −1.47621 0.539284i
\(130\) −12.4493 10.4462i −1.09188 0.916195i
\(131\) −0.739169 + 4.19204i −0.0645815 + 0.366260i 0.935340 + 0.353749i \(0.115093\pi\)
−0.999922 + 0.0125106i \(0.996018\pi\)
\(132\) 1.12253 + 0.649869i 0.0977033 + 0.0565638i
\(133\) −5.95189 2.27503i −0.516095 0.197270i
\(134\) 2.18481i 0.188739i
\(135\) −20.0412 + 7.21366i −1.72487 + 0.620853i
\(136\) −16.3843 9.45947i −1.40494 0.811143i
\(137\) −3.63320 4.32988i −0.310405 0.369927i 0.588177 0.808733i \(-0.299846\pi\)
−0.898582 + 0.438806i \(0.855402\pi\)
\(138\) −1.98035 + 3.42068i −0.168579 + 0.291188i
\(139\) −10.0379 + 11.9627i −0.851405 + 1.01466i 0.148265 + 0.988948i \(0.452631\pi\)
−0.999669 + 0.0257167i \(0.991813\pi\)
\(140\) 5.27989 6.09126i 0.446232 0.514806i
\(141\) 9.66477 8.09017i 0.813921 0.681315i
\(142\) 6.33792 + 2.30681i 0.531866 + 0.193583i
\(143\) −3.56312 −0.297963
\(144\) 5.52343 + 2.02523i 0.460286 + 0.168769i
\(145\) 8.48460i 0.704608i
\(146\) −1.41473 8.02335i −0.117084 0.664017i
\(147\) −2.50121 + 11.8636i −0.206296 + 0.978490i
\(148\) 2.77169 1.00881i 0.227832 0.0829239i
\(149\) 5.50919 6.56559i 0.451330 0.537874i −0.491619 0.870810i \(-0.663595\pi\)
0.942949 + 0.332936i \(0.108039\pi\)
\(150\) 7.81293 + 21.5454i 0.637923 + 1.75917i
\(151\) −12.3177 4.48326i −1.00240 0.364842i −0.211888 0.977294i \(-0.567961\pi\)
−0.790508 + 0.612451i \(0.790183\pi\)
\(152\) 7.40641 0.600739
\(153\) 9.26573 15.9611i 0.749090 1.29038i
\(154\) −0.0479122 + 2.98793i −0.00386087 + 0.240774i
\(155\) −2.19244 2.61285i −0.176101 0.209869i
\(156\) 4.48461 0.785269i 0.359056 0.0628719i
\(157\) 9.08333 10.8251i 0.724929 0.863936i −0.270171 0.962812i \(-0.587080\pi\)
0.995100 + 0.0988761i \(0.0315248\pi\)
\(158\) 2.81626 + 7.73762i 0.224050 + 0.615572i
\(159\) −6.24848 + 3.59768i −0.495537 + 0.285314i
\(160\) −5.54107 + 15.2240i −0.438060 + 1.20356i
\(161\) 5.38508 + 0.0863512i 0.424404 + 0.00680543i
\(162\) −3.49575 + 9.46439i −0.274652 + 0.743593i
\(163\) 1.36219 + 2.35938i 0.106695 + 0.184801i 0.914429 0.404745i \(-0.132640\pi\)
−0.807734 + 0.589546i \(0.799307\pi\)
\(164\) 5.67935 4.76554i 0.443483 0.372126i
\(165\) 6.19078 + 3.58405i 0.481951 + 0.279018i
\(166\) 8.68921 + 1.53214i 0.674413 + 0.118917i
\(167\) 3.82643 21.7008i 0.296098 1.67926i −0.366608 0.930376i \(-0.619481\pi\)
0.662706 0.748880i \(-0.269408\pi\)
\(168\) −2.20784 13.9188i −0.170339 1.07386i
\(169\) 0.377731 0.316954i 0.0290562 0.0243811i
\(170\) −24.4824 14.1349i −1.87772 1.08410i
\(171\) −0.0171566 + 7.22501i −0.00131200 + 0.552510i
\(172\) −3.83004 6.63382i −0.292038 0.505824i
\(173\) 8.49254 7.12609i 0.645676 0.541786i −0.260080 0.965587i \(-0.583749\pi\)
0.905755 + 0.423801i \(0.139304\pi\)
\(174\) 3.07566 + 2.58701i 0.233165 + 0.196121i
\(175\) 20.4542 23.5974i 1.54619 1.78380i
\(176\) −0.675750 1.85661i −0.0509366 0.139947i
\(177\) −4.51956 + 1.63891i −0.339711 + 0.123188i
\(178\) 5.03243 13.8265i 0.377196 1.03634i
\(179\) 10.9696 6.33328i 0.819904 0.473372i −0.0304796 0.999535i \(-0.509703\pi\)
0.850383 + 0.526164i \(0.176370\pi\)
\(180\) −8.58171 3.14658i −0.639643 0.234533i
\(181\) −1.39406 + 0.804863i −0.103620 + 0.0598250i −0.550914 0.834562i \(-0.685721\pi\)
0.447294 + 0.894387i \(0.352388\pi\)
\(182\) 6.61267 + 8.14231i 0.490164 + 0.603548i
\(183\) 4.17827 + 4.99149i 0.308866 + 0.368981i
\(184\) −5.88267 + 2.14112i −0.433676 + 0.157845i
\(185\) 15.2860 5.56365i 1.12385 0.409047i
\(186\) −1.61564 0.00191826i −0.118465 0.000140654i
\(187\) −6.10400 + 1.07630i −0.446369 + 0.0787068i
\(188\) 5.40869 0.394469
\(189\) 13.5830 2.12152i 0.988021 0.154318i
\(190\) 11.0671 0.802894
\(191\) 12.7926 2.25568i 0.925639 0.163215i 0.309542 0.950886i \(-0.399824\pi\)
0.616097 + 0.787671i \(0.288713\pi\)
\(192\) 7.21873 + 12.5376i 0.520967 + 0.904821i
\(193\) 13.1923 4.80161i 0.949603 0.345627i 0.179652 0.983730i \(-0.442503\pi\)
0.769951 + 0.638103i \(0.220281\pi\)
\(194\) 6.40312 2.33055i 0.459717 0.167323i
\(195\) 24.7328 4.33079i 1.77115 0.310135i
\(196\) −4.09083 + 3.21485i −0.292202 + 0.229632i
\(197\) −15.2141 + 8.78387i −1.08396 + 0.625825i −0.931962 0.362556i \(-0.881904\pi\)
−0.151998 + 0.988381i \(0.548571\pi\)
\(198\) 3.18682 1.15135i 0.226477 0.0818226i
\(199\) −19.2914 + 11.1379i −1.36753 + 0.789546i −0.990613 0.136700i \(-0.956350\pi\)
−0.376921 + 0.926245i \(0.623017\pi\)
\(200\) −12.4148 + 34.1095i −0.877862 + 2.41191i
\(201\) −2.58329 2.17287i −0.182211 0.153263i
\(202\) −1.44418 3.96785i −0.101612 0.279177i
\(203\) 1.03729 5.37713i 0.0728034 0.377400i
\(204\) 7.44540 2.69990i 0.521282 0.189031i
\(205\) 31.3218 26.2822i 2.18761 1.83563i
\(206\) 4.90346 + 8.49304i 0.341640 + 0.591738i
\(207\) −2.07505 5.74354i −0.144226 0.399204i
\(208\) −6.00599 3.46756i −0.416440 0.240432i
\(209\) 1.85878 1.55970i 0.128575 0.107887i
\(210\) −3.29910 20.7984i −0.227659 1.43523i
\(211\) −3.52016 + 19.9638i −0.242338 + 1.37437i 0.584257 + 0.811569i \(0.301386\pi\)
−0.826595 + 0.562798i \(0.809725\pi\)
\(212\) −3.04708 0.537283i −0.209275 0.0369008i
\(213\) −9.03085 + 5.19968i −0.618784 + 0.356276i
\(214\) −1.77009 + 1.48528i −0.121001 + 0.101532i
\(215\) −21.1228 36.5858i −1.44056 2.49513i
\(216\) −13.8673 + 7.94056i −0.943549 + 0.540287i
\(217\) 1.07003 + 1.92393i 0.0726381 + 0.130605i
\(218\) −0.173242 + 0.475978i −0.0117334 + 0.0322373i
\(219\) 10.8937 + 6.30676i 0.736130 + 0.426171i
\(220\) 1.04991 + 2.88460i 0.0707847 + 0.194479i
\(221\) −13.9846 + 16.6662i −0.940705 + 1.12109i
\(222\) 2.64398 7.23754i 0.177453 0.485752i
\(223\) −15.6660 18.6700i −1.04907 1.25024i −0.967313 0.253585i \(-0.918390\pi\)
−0.0817602 0.996652i \(-0.526054\pi\)
\(224\) 5.37288 8.97078i 0.358990 0.599386i
\(225\) −33.2453 12.1898i −2.21635 0.812652i
\(226\) 6.46412 0.429987
\(227\) 1.21002 + 0.440412i 0.0803119 + 0.0292312i 0.381864 0.924219i \(-0.375282\pi\)
−0.301552 + 0.953450i \(0.597505\pi\)
\(228\) −1.99576 + 2.37272i −0.132172 + 0.157137i
\(229\) −0.512393 + 0.610646i −0.0338599 + 0.0403526i −0.782709 0.622388i \(-0.786162\pi\)
0.748849 + 0.662741i \(0.230607\pi\)
\(230\) −8.79026 + 3.19939i −0.579612 + 0.210962i
\(231\) −3.48524 3.02825i −0.229312 0.199245i
\(232\) 1.10534 + 6.26868i 0.0725690 + 0.411559i
\(233\) 13.4284i 0.879724i 0.898065 + 0.439862i \(0.144973\pi\)
−0.898065 + 0.439862i \(0.855027\pi\)
\(234\) 5.97129 10.2861i 0.390356 0.672423i
\(235\) 29.8292 1.94584
\(236\) −1.93863 0.705604i −0.126194 0.0459309i
\(237\) −11.9498 4.36543i −0.776220 0.283565i
\(238\) 13.7877 + 11.9511i 0.893724 + 0.774678i
\(239\) −11.8688 + 14.1447i −0.767728 + 0.914942i −0.998310 0.0581107i \(-0.981492\pi\)
0.230583 + 0.973053i \(0.425937\pi\)
\(240\) 6.94722 + 12.0660i 0.448441 + 0.778857i
\(241\) 8.79492 + 10.4814i 0.566531 + 0.675165i 0.970915 0.239424i \(-0.0769586\pi\)
−0.404384 + 0.914589i \(0.632514\pi\)
\(242\) 9.69382 + 5.59673i 0.623142 + 0.359771i
\(243\) −7.71395 13.5460i −0.494850 0.868978i
\(244\) 2.79338i 0.178828i
\(245\) −22.5611 + 17.7300i −1.44138 + 1.13273i
\(246\) 0.0229954 19.3677i 0.00146613 1.23484i
\(247\) 1.47898 8.38774i 0.0941055 0.533699i
\(248\) −1.96023 1.64483i −0.124475 0.104447i
\(249\) −10.4533 + 8.75026i −0.662453 + 0.554525i
\(250\) −10.6926 + 29.3776i −0.676258 + 1.85800i
\(251\) −2.59174 4.48902i −0.163589 0.283345i 0.772564 0.634937i \(-0.218974\pi\)
−0.936153 + 0.351592i \(0.885640\pi\)
\(252\) 5.05398 + 3.04331i 0.318371 + 0.191711i
\(253\) −1.02547 + 1.77617i −0.0644710 + 0.111667i
\(254\) −1.06462 1.26876i −0.0668001 0.0796093i
\(255\) 41.0617 14.8901i 2.57138 0.932451i
\(256\) −2.61680 + 14.8406i −0.163550 + 0.927540i
\(257\) 10.0228 + 8.41016i 0.625207 + 0.524611i 0.899436 0.437053i \(-0.143978\pi\)
−0.274228 + 0.961665i \(0.588422\pi\)
\(258\) −19.7028 3.49826i −1.22664 0.217792i
\(259\) −10.3677 + 1.65717i −0.644218 + 0.102972i
\(260\) 9.33145 + 5.38751i 0.578712 + 0.334119i
\(261\) −6.11771 + 1.06374i −0.378677 + 0.0658441i
\(262\) 4.77194i 0.294811i
\(263\) 13.8717 2.44596i 0.855367 0.150824i 0.271265 0.962505i \(-0.412558\pi\)
0.584102 + 0.811680i \(0.301447\pi\)
\(264\) 5.04085 + 1.84150i 0.310243 + 0.113337i
\(265\) −16.8048 2.96314i −1.03231 0.182024i
\(266\) −7.01381 1.35302i −0.430044 0.0829589i
\(267\) 11.3434 + 19.7012i 0.694202 + 1.20570i
\(268\) −0.251542 1.42656i −0.0153653 0.0871412i
\(269\) 7.46330 12.9268i 0.455045 0.788161i −0.543646 0.839315i \(-0.682956\pi\)
0.998691 + 0.0511535i \(0.0162898\pi\)
\(270\) −20.7214 + 11.8653i −1.26106 + 0.722099i
\(271\) 8.04155 4.64279i 0.488489 0.282029i −0.235458 0.971884i \(-0.575659\pi\)
0.723948 + 0.689855i \(0.242326\pi\)
\(272\) −11.3363 4.12608i −0.687365 0.250180i
\(273\) −16.2039 0.279079i −0.980706 0.0168906i
\(274\) −4.85396 4.07296i −0.293239 0.246057i
\(275\) 4.06731 + 11.1749i 0.245268 + 0.673869i
\(276\) 0.899234 2.46153i 0.0541275 0.148166i
\(277\) −4.23755 24.0323i −0.254609 1.44396i −0.797073 0.603883i \(-0.793620\pi\)
0.542464 0.840079i \(-0.317492\pi\)
\(278\) −8.75320 + 15.1610i −0.524982 + 0.909295i
\(279\) 1.60908 1.90841i 0.0963334 0.114254i
\(280\) 17.1375 28.6134i 1.02416 1.70998i
\(281\) 0.562949 0.0992630i 0.0335827 0.00592154i −0.156832 0.987625i \(-0.550128\pi\)
0.190414 + 0.981704i \(0.439017\pi\)
\(282\) 9.09510 10.8130i 0.541605 0.643906i
\(283\) −22.9488 4.04649i −1.36417 0.240539i −0.556827 0.830628i \(-0.687981\pi\)
−0.807338 + 0.590089i \(0.799093\pi\)
\(284\) −4.40391 0.776529i −0.261324 0.0460785i
\(285\) −11.0067 + 13.0857i −0.651979 + 0.775128i
\(286\) −3.93372 + 0.693620i −0.232606 + 0.0410146i
\(287\) −23.0634 + 12.8271i −1.36139 + 0.757159i
\(288\) −11.6717 2.08663i −0.687764 0.122956i
\(289\) −10.4227 + 18.0527i −0.613103 + 1.06193i
\(290\) 1.65167 + 9.36707i 0.0969892 + 0.550053i
\(291\) −3.61253 + 9.88880i −0.211770 + 0.579692i
\(292\) 1.84749 + 5.07594i 0.108116 + 0.297047i
\(293\) −12.0512 10.1122i −0.704041 0.590760i 0.218879 0.975752i \(-0.429760\pi\)
−0.922920 + 0.384992i \(0.874204\pi\)
\(294\) −0.451916 + 13.5844i −0.0263563 + 0.792256i
\(295\) −10.6916 3.89144i −0.622491 0.226568i
\(296\) 10.5689 6.10199i 0.614308 0.354671i
\(297\) −1.80807 + 4.91312i −0.104915 + 0.285088i
\(298\) 4.80409 8.32092i 0.278293 0.482018i
\(299\) 1.25010 + 7.08966i 0.0722950 + 0.410006i
\(300\) −7.58200 13.1685i −0.437747 0.760283i
\(301\) 8.91380 + 25.7687i 0.513783 + 1.48528i
\(302\) −14.4715 2.55172i −0.832743 0.146835i
\(303\) 6.12783 + 2.23859i 0.352035 + 0.128604i
\(304\) 4.65102 0.820101i 0.266755 0.0470360i
\(305\) 15.4056i 0.882124i
\(306\) 7.12236 19.4249i 0.407158 1.11045i
\(307\) 30.0731 + 17.3627i 1.71636 + 0.990942i 0.925327 + 0.379170i \(0.123790\pi\)
0.791034 + 0.611772i \(0.209543\pi\)
\(308\) −0.312722 1.95647i −0.0178190 0.111480i
\(309\) −14.9187 2.64885i −0.848698 0.150688i
\(310\) −2.92911 2.45781i −0.166362 0.139594i
\(311\) −1.69468 + 9.61099i −0.0960963 + 0.544989i 0.898310 + 0.439363i \(0.144796\pi\)
−0.994406 + 0.105626i \(0.966315\pi\)
\(312\) 17.7092 6.42181i 1.00258 0.363563i
\(313\) 6.33689 + 7.55201i 0.358182 + 0.426865i 0.914802 0.403903i \(-0.132347\pi\)
−0.556620 + 0.830767i \(0.687902\pi\)
\(314\) 7.92079 13.7192i 0.446996 0.774220i
\(315\) 27.8729 + 16.7840i 1.57046 + 0.945671i
\(316\) −2.72972 4.72801i −0.153559 0.265971i
\(317\) −3.87202 + 10.6383i −0.217474 + 0.597506i −0.999674 0.0255216i \(-0.991875\pi\)
0.782200 + 0.623028i \(0.214098\pi\)
\(318\) −6.19802 + 5.18823i −0.347568 + 0.290942i
\(319\) 1.59752 + 1.34048i 0.0894437 + 0.0750522i
\(320\) −5.94553 + 33.7188i −0.332365 + 1.88494i
\(321\) 0.00423880 3.57010i 0.000236587 0.199264i
\(322\) 5.96198 0.952962i 0.332248 0.0531065i
\(323\) 14.8158i 0.824374i
\(324\) 1.19288 6.58222i 0.0662713 0.365679i
\(325\) 36.1498 + 20.8711i 2.00523 + 1.15772i
\(326\) 1.96316 + 2.33960i 0.108729 + 0.129579i
\(327\) −0.390496 0.678217i −0.0215945 0.0375055i
\(328\) 19.7176 23.4985i 1.08872 1.29749i
\(329\) −18.9043 3.64678i −1.04223 0.201053i
\(330\) 7.53236 + 2.75169i 0.414643 + 0.151475i
\(331\) 3.88443 + 1.41382i 0.213508 + 0.0777104i 0.446560 0.894754i \(-0.352649\pi\)
−0.233052 + 0.972464i \(0.574871\pi\)
\(332\) −5.84999 −0.321060
\(333\) 5.92805 + 10.3242i 0.324855 + 0.565764i
\(334\) 24.7027i 1.35167i
\(335\) −1.38726 7.86756i −0.0757942 0.429851i
\(336\) −2.92768 8.49618i −0.159718 0.463505i
\(337\) −13.3670 + 4.86521i −0.728149 + 0.265025i −0.679381 0.733785i \(-0.737752\pi\)
−0.0487681 + 0.998810i \(0.515530\pi\)
\(338\) 0.355318 0.423451i 0.0193267 0.0230327i
\(339\) −6.42880 + 7.64310i −0.349165 + 0.415116i
\(340\) 17.6131 + 6.41065i 0.955206 + 0.347666i
\(341\) −0.838340 −0.0453986
\(342\) 1.38753 + 7.97981i 0.0750288 + 0.431499i
\(343\) 16.4657 8.47821i 0.889065 0.457780i
\(344\) −20.3724 24.2789i −1.09841 1.30903i
\(345\) 4.95931 13.5754i 0.267000 0.730876i
\(346\) 7.98862 9.52047i 0.429471 0.511824i
\(347\) −2.73573 7.51635i −0.146862 0.403499i 0.844349 0.535794i \(-0.179988\pi\)
−0.991210 + 0.132295i \(0.957765\pi\)
\(348\) −2.30609 1.33507i −0.123619 0.0715675i
\(349\) −4.85476 + 13.3383i −0.259869 + 0.713985i 0.739306 + 0.673370i \(0.235154\pi\)
−0.999175 + 0.0406147i \(0.987068\pi\)
\(350\) 17.9879 30.0335i 0.961496 1.60536i
\(351\) 6.22350 + 17.2903i 0.332186 + 0.922888i
\(352\) 1.99100 + 3.44852i 0.106121 + 0.183807i
\(353\) 12.2139 10.2486i 0.650078 0.545480i −0.257017 0.966407i \(-0.582740\pi\)
0.907095 + 0.420927i \(0.138295\pi\)
\(354\) −4.67059 + 2.68918i −0.248239 + 0.142928i
\(355\) −24.2878 4.28259i −1.28906 0.227296i
\(356\) −1.69404 + 9.60735i −0.0897837 + 0.509189i
\(357\) −27.8433 + 4.41657i −1.47362 + 0.233750i
\(358\) 10.8776 9.12740i 0.574900 0.482398i
\(359\) −12.6803 7.32099i −0.669242 0.386387i 0.126547 0.991961i \(-0.459610\pi\)
−0.795789 + 0.605574i \(0.792944\pi\)
\(360\) −37.2285 6.65557i −1.96211 0.350780i
\(361\) −6.59994 11.4314i −0.347365 0.601654i
\(362\) −1.38238 + 1.15995i −0.0726562 + 0.0609658i
\(363\) −16.2584 + 5.89571i −0.853344 + 0.309445i
\(364\) −5.25516 4.55516i −0.275445 0.238755i
\(365\) 10.1890 + 27.9940i 0.533317 + 1.46528i
\(366\) 5.58452 + 4.69728i 0.291907 + 0.245531i
\(367\) −3.31307 + 9.10257i −0.172941 + 0.475150i −0.995635 0.0933336i \(-0.970248\pi\)
0.822694 + 0.568484i \(0.192470\pi\)
\(368\) −3.45707 + 1.99594i −0.180212 + 0.104046i
\(369\) 22.8773 + 19.2891i 1.19095 + 1.00415i
\(370\) 15.7928 9.11798i 0.821029 0.474021i
\(371\) 10.2878 + 3.93237i 0.534116 + 0.204159i
\(372\) 1.05515 0.184760i 0.0547070 0.00957935i
\(373\) −12.2834 + 4.47080i −0.636012 + 0.231489i −0.639846 0.768503i \(-0.721002\pi\)
0.00383399 + 0.999993i \(0.498780\pi\)
\(374\) −6.52934 + 2.37649i −0.337624 + 0.122885i
\(375\) −24.1016 41.8599i −1.24460 2.16164i
\(376\) 22.0387 3.88602i 1.13656 0.200406i
\(377\) 7.31999 0.376999
\(378\) 14.5828 4.98634i 0.750058 0.256470i
\(379\) 5.86445 0.301236 0.150618 0.988592i \(-0.451874\pi\)
0.150618 + 0.988592i \(0.451874\pi\)
\(380\) −7.22625 + 1.27418i −0.370699 + 0.0653642i
\(381\) 2.55897 + 0.00303828i 0.131100 + 0.000155656i
\(382\) 13.6840 4.98057i 0.700135 0.254828i
\(383\) −27.2375 + 9.91365i −1.39177 + 0.506564i −0.925726 0.378196i \(-0.876545\pi\)
−0.466048 + 0.884760i \(0.654322\pi\)
\(384\) 1.62220 + 1.93793i 0.0827827 + 0.0988948i
\(385\) −1.72468 10.7900i −0.0878977 0.549911i
\(386\) 13.6297 7.86911i 0.693733 0.400527i
\(387\) 23.7315 19.8172i 1.20634 1.00737i
\(388\) −3.91258 + 2.25893i −0.198631 + 0.114680i
\(389\) 12.5930 34.5989i 0.638489 1.75423i −0.0179312 0.999839i \(-0.505708\pi\)
0.656420 0.754395i \(-0.272070\pi\)
\(390\) 26.4622 9.59588i 1.33996 0.485906i
\(391\) 4.28309 + 11.7677i 0.216605 + 0.595118i
\(392\) −14.3590 + 16.0387i −0.725241 + 0.810074i
\(393\) −5.64229 4.74587i −0.284616 0.239397i
\(394\) −15.0866 + 12.6591i −0.760051 + 0.637758i
\(395\) −15.0545 26.0752i −0.757475 1.31198i
\(396\) −1.94827 + 1.11867i −0.0979042 + 0.0562154i
\(397\) −30.2038 17.4381i −1.51588 0.875195i −0.999826 0.0186410i \(-0.994066\pi\)
−0.516057 0.856554i \(-0.672601\pi\)
\(398\) −19.1297 + 16.0517i −0.958886 + 0.804601i
\(399\) 8.57529 6.94743i 0.429302 0.347807i
\(400\) −4.01929 + 22.7945i −0.200964 + 1.13973i
\(401\) 36.0392 + 6.35469i 1.79971 + 0.317338i 0.970411 0.241461i \(-0.0776265\pi\)
0.829303 + 0.558799i \(0.188738\pi\)
\(402\) −3.27496 1.89599i −0.163340 0.0945633i
\(403\) −2.25420 + 1.89150i −0.112290 + 0.0942224i
\(404\) 1.39980 + 2.42452i 0.0696426 + 0.120624i
\(405\) 6.57880 36.3012i 0.326903 1.80382i
\(406\) 0.0984296 6.13832i 0.00488498 0.304640i
\(407\) 1.36747 3.75710i 0.0677832 0.186233i
\(408\) 28.3978 16.3506i 1.40590 0.809474i
\(409\) 12.9837 + 35.6726i 0.642005 + 1.76389i 0.645335 + 0.763900i \(0.276718\pi\)
−0.00332951 + 0.999994i \(0.501060\pi\)
\(410\) 29.4633 35.1130i 1.45509 1.73411i
\(411\) 9.64328 1.68857i 0.475668 0.0832908i
\(412\) −4.17952 4.98096i −0.205910 0.245394i
\(413\) 6.30009 + 3.77331i 0.310007 + 0.185673i
\(414\) −3.40894 5.93698i −0.167540 0.291786i
\(415\) −32.2630 −1.58373
\(416\) 13.1343 + 4.78049i 0.643962 + 0.234383i
\(417\) −9.22081 25.4278i −0.451545 1.24521i
\(418\) 1.74849 2.08377i 0.0855213 0.101920i
\(419\) 20.3827 7.41869i 0.995759 0.362427i 0.207811 0.978169i \(-0.433366\pi\)
0.787948 + 0.615742i \(0.211144\pi\)
\(420\) 4.54870 + 13.2004i 0.221954 + 0.644115i
\(421\) −4.52904 25.6854i −0.220732 1.25183i −0.870679 0.491852i \(-0.836320\pi\)
0.649947 0.759980i \(-0.274791\pi\)
\(422\) 22.7255i 1.10626i
\(423\) 3.73979 + 21.5079i 0.181835 + 1.04575i
\(424\) −12.8019 −0.621716
\(425\) 68.2328 + 24.8347i 3.30978 + 1.20466i
\(426\) −8.95793 + 7.49849i −0.434013 + 0.363303i
\(427\) 1.88342 9.76334i 0.0911452 0.472481i
\(428\) 0.984771 1.17360i 0.0476007 0.0567283i
\(429\) 3.09210 5.34102i 0.149288 0.257867i
\(430\) −30.4418 36.2791i −1.46803 1.74953i
\(431\) 20.8304 + 12.0264i 1.00336 + 0.579293i 0.909242 0.416268i \(-0.136662\pi\)
0.0941228 + 0.995561i \(0.469995\pi\)
\(432\) −7.82903 + 6.52196i −0.376674 + 0.313788i
\(433\) 3.41498i 0.164114i 0.996628 + 0.0820568i \(0.0261489\pi\)
−0.996628 + 0.0820568i \(0.973851\pi\)
\(434\) 1.55584 + 1.91574i 0.0746829 + 0.0919585i
\(435\) −12.7182 7.36299i −0.609790 0.353028i
\(436\) 0.0583173 0.330734i 0.00279289 0.0158393i
\(437\) −3.75553 3.15126i −0.179651 0.150745i
\(438\) 13.2545 + 4.84207i 0.633324 + 0.231363i
\(439\) −9.31208 + 25.5847i −0.444441 + 1.22109i 0.492101 + 0.870538i \(0.336229\pi\)
−0.936542 + 0.350554i \(0.885993\pi\)
\(440\) 6.35055 + 10.9995i 0.302751 + 0.524380i
\(441\) −15.6126 14.0445i −0.743455 0.668786i
\(442\) −12.1947 + 21.1219i −0.580045 + 1.00467i
\(443\) 9.61251 + 11.4557i 0.456704 + 0.544279i 0.944428 0.328719i \(-0.106617\pi\)
−0.487724 + 0.872998i \(0.662173\pi\)
\(444\) −0.893108 + 5.03014i −0.0423850 + 0.238720i
\(445\) −9.34268 + 52.9850i −0.442885 + 2.51173i
\(446\) −20.9298 17.5622i −0.991056 0.831595i
\(447\) 5.06073 + 13.9558i 0.239364 + 0.660085i
\(448\) 7.89030 20.6425i 0.372782 0.975265i
\(449\) 16.1509 + 9.32474i 0.762209 + 0.440062i 0.830088 0.557632i \(-0.188290\pi\)
−0.0678793 + 0.997694i \(0.521623\pi\)
\(450\) −39.0760 6.98587i −1.84206 0.329317i
\(451\) 10.0497i 0.473222i
\(452\) −4.22072 + 0.744228i −0.198526 + 0.0350055i
\(453\) 17.4096 14.5732i 0.817975 0.684709i
\(454\) 1.42161 + 0.250668i 0.0667193 + 0.0117644i
\(455\) −28.9824 25.1219i −1.35872 1.17773i
\(456\) −6.42733 + 11.1020i −0.300987 + 0.519899i
\(457\) −5.59634 31.7384i −0.261786 1.48466i −0.778034 0.628222i \(-0.783783\pi\)
0.516248 0.856439i \(-0.327328\pi\)
\(458\) −0.446814 + 0.773904i −0.0208782 + 0.0361622i
\(459\) 15.8843 + 27.7402i 0.741417 + 1.29480i
\(460\) 5.37122 3.10107i 0.250434 0.144588i
\(461\) 14.8218 + 5.39468i 0.690318 + 0.251255i 0.663271 0.748379i \(-0.269168\pi\)
0.0270466 + 0.999634i \(0.491390\pi\)
\(462\) −4.43723 2.66476i −0.206439 0.123976i
\(463\) 5.32062 + 4.46453i 0.247270 + 0.207484i 0.757996 0.652260i \(-0.226179\pi\)
−0.510726 + 0.859744i \(0.670623\pi\)
\(464\) 1.38824 + 3.81417i 0.0644476 + 0.177068i
\(465\) 5.81920 1.01896i 0.269859 0.0472531i
\(466\) 2.61406 + 14.8251i 0.121094 + 0.686758i
\(467\) 7.13229 12.3535i 0.330043 0.571652i −0.652477 0.757809i \(-0.726270\pi\)
0.982520 + 0.186157i \(0.0596033\pi\)
\(468\) −2.71468 + 7.40376i −0.125486 + 0.342239i
\(469\) −0.0826726 + 5.15567i −0.00381747 + 0.238067i
\(470\) 32.9316 5.80674i 1.51902 0.267845i
\(471\) 8.34393 + 23.0097i 0.384468 + 1.06023i
\(472\) −8.40627 1.48225i −0.386930 0.0682262i
\(473\) −10.2257 1.80307i −0.470178 0.0829051i
\(474\) −14.0424 2.49325i −0.644990 0.114519i
\(475\) −27.9943 + 4.93615i −1.28447 + 0.226486i
\(476\) −10.3786 6.21606i −0.475702 0.284913i
\(477\) 0.0296550 12.4884i 0.00135781 0.571803i
\(478\) −10.3497 + 17.9263i −0.473386 + 0.819929i
\(479\) 1.64157 + 9.30983i 0.0750055 + 0.425377i 0.999069 + 0.0431385i \(0.0137357\pi\)
−0.924064 + 0.382239i \(0.875153\pi\)
\(480\) −18.0117 21.5174i −0.822118 0.982128i
\(481\) −4.79997 13.1878i −0.218860 0.601312i
\(482\) 11.7500 + 9.85945i 0.535199 + 0.449086i
\(483\) −4.80264 + 7.99714i −0.218528 + 0.363882i
\(484\) −6.97391 2.53830i −0.316996 0.115377i
\(485\) −21.5780 + 12.4581i −0.979808 + 0.565692i
\(486\) −11.1532 13.4533i −0.505920 0.610253i
\(487\) −6.47468 + 11.2145i −0.293396 + 0.508177i −0.974610 0.223907i \(-0.928119\pi\)
0.681215 + 0.732084i \(0.261452\pi\)
\(488\) 2.00698 + 11.3822i 0.0908517 + 0.515246i
\(489\) −4.71876 0.00560261i −0.213390 0.000253359i
\(490\) −21.4562 + 23.9660i −0.969292 + 1.08267i
\(491\) −23.2766 4.10430i −1.05046 0.185224i −0.378340 0.925667i \(-0.623505\pi\)
−0.672120 + 0.740442i \(0.734616\pi\)
\(492\) 2.21483 + 12.6487i 0.0998524 + 0.570249i
\(493\) 12.5399 2.21112i 0.564769 0.0995839i
\(494\) 9.54804i 0.429586i
\(495\) −10.7448 + 6.16953i −0.482942 + 0.277300i
\(496\) −1.41310 0.815855i −0.0634502 0.0366330i
\(497\) 14.8688 + 5.68341i 0.666958 + 0.254936i
\(498\) −9.83718 + 11.6953i −0.440815 + 0.524078i
\(499\) −10.1185 8.49044i −0.452967 0.380084i 0.387568 0.921841i \(-0.373315\pi\)
−0.840536 + 0.541756i \(0.817760\pi\)
\(500\) 3.59938 20.4131i 0.160969 0.912901i
\(501\) 29.2082 + 24.5677i 1.30493 + 1.09761i
\(502\) −3.73516 4.45139i −0.166708 0.198675i
\(503\) 12.0725 20.9102i 0.538286 0.932339i −0.460710 0.887551i \(-0.652405\pi\)
0.998996 0.0447884i \(-0.0142614\pi\)
\(504\) 22.7799 + 8.76936i 1.01470 + 0.390619i
\(505\) 7.71995 + 13.3713i 0.343533 + 0.595017i
\(506\) −0.786370 + 2.16053i −0.0349584 + 0.0960475i
\(507\) 0.147307 + 0.841262i 0.00654215 + 0.0373617i
\(508\) 0.841215 + 0.705863i 0.0373229 + 0.0313176i
\(509\) 2.78964 15.8208i 0.123649 0.701246i −0.858453 0.512893i \(-0.828574\pi\)
0.982101 0.188354i \(-0.0603151\pi\)
\(510\) 42.4339 24.4321i 1.87900 1.08187i
\(511\) −3.03487 18.9869i −0.134255 0.839932i
\(512\) 19.8118i 0.875568i
\(513\) −10.8152 6.29562i −0.477502 0.277958i
\(514\) 12.7025 + 7.33377i 0.560282 + 0.323479i
\(515\) −23.0502 27.4702i −1.01571 1.21048i
\(516\) 13.2676 + 0.0157527i 0.584075 + 0.000693475i
\(517\) 4.71268 5.61636i 0.207264 0.247007i
\(518\) −11.1234 + 3.84777i −0.488736 + 0.169061i
\(519\) 3.31192 + 18.9141i 0.145377 + 0.830238i
\(520\) 41.8935 + 15.2480i 1.83715 + 0.668668i
\(521\) −9.58786 −0.420052 −0.210026 0.977696i \(-0.567355\pi\)
−0.210026 + 0.977696i \(0.567355\pi\)
\(522\) −6.54692 + 2.36529i −0.286551 + 0.103526i
\(523\) 26.2588i 1.14822i −0.818780 0.574108i \(-0.805349\pi\)
0.818780 0.574108i \(-0.194651\pi\)
\(524\) −0.549403 3.11582i −0.0240008 0.136115i
\(525\) 17.6216 + 51.1382i 0.769068 + 2.23185i
\(526\) 14.8383 5.40072i 0.646983 0.235482i
\(527\) −3.29032 + 3.92126i −0.143329 + 0.170813i
\(528\) 3.36942 + 0.598246i 0.146635 + 0.0260353i
\(529\) −17.7190 6.44920i −0.770393 0.280400i
\(530\) −19.1295 −0.830931
\(531\) 1.46542 8.19694i 0.0635938 0.355717i
\(532\) 4.73542 + 0.0759338i 0.205307 + 0.00329215i
\(533\) −22.6746 27.0225i −0.982146 1.17048i
\(534\) 16.3583 + 19.5422i 0.707894 + 0.845672i
\(535\) 5.43105 6.47248i 0.234805 0.279830i
\(536\) −2.04990 5.63206i −0.0885424 0.243268i
\(537\) −0.0260484 + 21.9391i −0.00112407 + 0.946743i
\(538\) 5.72312 15.7242i 0.246741 0.677916i
\(539\) −0.226125 + 7.04905i −0.00973989 + 0.303624i
\(540\) 12.1639 10.1331i 0.523451 0.436059i
\(541\) −12.0613 20.8908i −0.518556 0.898166i −0.999768 0.0215613i \(-0.993136\pi\)
0.481211 0.876605i \(-0.340197\pi\)
\(542\) 7.97414 6.69110i 0.342519 0.287407i
\(543\) 0.00331036 2.78813i 0.000142061 0.119650i
\(544\) 23.9444 + 4.22205i 1.02661 + 0.181019i
\(545\) 0.321622 1.82401i 0.0137768 0.0781321i
\(546\) −17.9436 + 2.84625i −0.767915 + 0.121808i
\(547\) 21.4421 17.9921i 0.916799 0.769286i −0.0566010 0.998397i \(-0.518026\pi\)
0.973400 + 0.229111i \(0.0735818\pi\)
\(548\) 3.63831 + 2.10058i 0.155421 + 0.0897323i
\(549\) −11.1080 + 1.93146i −0.474079 + 0.0824326i
\(550\) 6.66571 + 11.5454i 0.284227 + 0.492296i
\(551\) −3.81863 + 3.20421i −0.162679 + 0.136504i
\(552\) 1.89554 10.6760i 0.0806796 0.454401i
\(553\) 6.35298 + 18.3657i 0.270156 + 0.780988i
\(554\) −9.35657 25.7070i −0.397522 1.09218i
\(555\) −4.92553 + 27.7414i −0.209077 + 1.17756i
\(556\) 3.96986 10.9071i 0.168359 0.462564i
\(557\) −5.13701 + 2.96585i −0.217662 + 0.125667i −0.604867 0.796326i \(-0.706774\pi\)
0.387205 + 0.921994i \(0.373440\pi\)
\(558\) 1.40494 2.42014i 0.0594758 0.102453i
\(559\) −31.5640 + 18.2235i −1.33501 + 0.770770i
\(560\) 7.59353 19.8661i 0.320885 0.839494i
\(561\) 3.68374 10.0837i 0.155528 0.425736i
\(562\) 0.602177 0.219174i 0.0254013 0.00924531i
\(563\) 9.90720 3.60593i 0.417539 0.151972i −0.124703 0.992194i \(-0.539798\pi\)
0.542242 + 0.840222i \(0.317576\pi\)
\(564\) −4.69369 + 8.10747i −0.197640 + 0.341386i
\(565\) −23.2775 + 4.10445i −0.979291 + 0.172675i
\(566\) −26.1234 −1.09805
\(567\) −8.60735 + 22.2017i −0.361475 + 0.932382i
\(568\) −18.5025 −0.776346
\(569\) −13.9351 + 2.45714i −0.584191 + 0.103009i −0.457930 0.888988i \(-0.651409\pi\)
−0.126261 + 0.991997i \(0.540298\pi\)
\(570\) −9.60412 + 16.5893i −0.402272 + 0.694850i
\(571\) −22.2263 + 8.08973i −0.930144 + 0.338545i −0.762266 0.647263i \(-0.775913\pi\)
−0.167877 + 0.985808i \(0.553691\pi\)
\(572\) 2.48865 0.905795i 0.104056 0.0378732i
\(573\) −7.72028 + 21.1332i −0.322519 + 0.882852i
\(574\) −22.9652 + 18.6509i −0.958548 + 0.778472i
\(575\) 20.8080 12.0135i 0.867752 0.500997i
\(576\) −25.0579 0.0595028i −1.04408 0.00247928i
\(577\) 38.7060 22.3469i 1.61135 0.930313i 0.622292 0.782785i \(-0.286202\pi\)
0.989058 0.147529i \(-0.0471318\pi\)
\(578\) −7.99254 + 21.9593i −0.332446 + 0.913387i
\(579\) −4.25089 + 23.9417i −0.176661 + 0.994985i
\(580\) −2.15690 5.92604i −0.0895605 0.246065i
\(581\) 20.4467 + 3.94432i 0.848272 + 0.163638i
\(582\) −2.06325 + 11.6206i −0.0855243 + 0.481687i
\(583\) −3.21289 + 2.69593i −0.133064 + 0.111654i
\(584\) 11.1749 + 19.3555i 0.462420 + 0.800935i
\(585\) −14.9716 + 40.8321i −0.618998 + 1.68820i
\(586\) −15.2732 8.81797i −0.630929 0.364267i
\(587\) −21.3980 + 17.9551i −0.883191 + 0.741085i −0.966833 0.255411i \(-0.917789\pi\)
0.0836420 + 0.996496i \(0.473345\pi\)
\(588\) −1.26892 8.92190i −0.0523294 0.367933i
\(589\) 0.347979 1.97349i 0.0143382 0.0813161i
\(590\) −12.5612 2.21488i −0.517136 0.0911850i
\(591\) 0.0361275 30.4282i 0.00148609 1.25165i
\(592\) 5.96135 5.00216i 0.245010 0.205588i
\(593\) −2.10565 3.64710i −0.0864689 0.149768i 0.819547 0.573012i \(-0.194225\pi\)
−0.906016 + 0.423243i \(0.860892\pi\)
\(594\) −1.03971 + 5.77610i −0.0426598 + 0.236996i
\(595\) −57.2384 34.2818i −2.34655 1.40542i
\(596\) −2.17881 + 5.98622i −0.0892474 + 0.245205i
\(597\) 0.0458096 38.5828i 0.00187486 1.57909i
\(598\) 2.76024 + 7.58369i 0.112874 + 0.310120i
\(599\) 4.93164 5.87730i 0.201501 0.240140i −0.655825 0.754913i \(-0.727679\pi\)
0.857327 + 0.514773i \(0.172124\pi\)
\(600\) −40.3555 48.2099i −1.64751 1.96816i
\(601\) 17.3311 + 20.6544i 0.706949 + 0.842509i 0.993294 0.115617i \(-0.0368846\pi\)
−0.286344 + 0.958127i \(0.592440\pi\)
\(602\) 14.8572 + 26.7136i 0.605535 + 1.08877i
\(603\) 5.49887 1.98665i 0.223931 0.0809026i
\(604\) 9.74293 0.396434
\(605\) −38.4614 13.9988i −1.56368 0.569133i
\(606\) 7.20095 + 1.27854i 0.292519 + 0.0519371i
\(607\) 1.87297 2.23212i 0.0760216 0.0905991i −0.726693 0.686962i \(-0.758944\pi\)
0.802715 + 0.596363i \(0.203388\pi\)
\(608\) −8.94438 + 3.25549i −0.362742 + 0.132027i
\(609\) 7.15999 + 6.22117i 0.290138 + 0.252095i
\(610\) 2.99896 + 17.0079i 0.121424 + 0.688631i
\(611\) 25.7347i 1.04112i
\(612\) −2.41409 + 13.5034i −0.0975840 + 0.545844i
\(613\) 34.5619 1.39594 0.697971 0.716126i \(-0.254087\pi\)
0.697971 + 0.716126i \(0.254087\pi\)
\(614\) 36.5809 + 13.3143i 1.47628 + 0.537323i
\(615\) 12.2149 + 69.7583i 0.492552 + 2.81293i
\(616\) −2.67992 7.74732i −0.107977 0.312149i
\(617\) −16.2205 + 19.3308i −0.653011 + 0.778228i −0.986365 0.164574i \(-0.947375\pi\)
0.333354 + 0.942802i \(0.391820\pi\)
\(618\) −16.9861 0.0201676i −0.683279 0.000811261i
\(619\) 25.3657 + 30.2297i 1.01953 + 1.21503i 0.976401 + 0.215965i \(0.0692896\pi\)
0.0431333 + 0.999069i \(0.486266\pi\)
\(620\) 2.19552 + 1.26759i 0.0881744 + 0.0509075i
\(621\) 10.4101 + 1.87385i 0.417745 + 0.0751948i
\(622\) 10.9405i 0.438674i
\(623\) 12.3986 32.4371i 0.496741 1.29956i
\(624\) 10.4098 5.99363i 0.416726 0.239937i
\(625\) 9.60269 54.4596i 0.384108 2.17838i
\(626\) 8.46609 + 7.10390i 0.338373 + 0.283929i
\(627\) 0.724887 + 4.13978i 0.0289492 + 0.165327i
\(628\) −3.59233 + 9.86985i −0.143350 + 0.393850i
\(629\) −12.2064 21.1422i −0.486702 0.842993i
\(630\) 34.0392 + 13.1037i 1.35615 + 0.522066i
\(631\) 9.73033 16.8534i 0.387358 0.670924i −0.604735 0.796427i \(-0.706721\pi\)
0.992093 + 0.125503i \(0.0400544\pi\)
\(632\) −14.5197 17.3039i −0.577563 0.688312i
\(633\) −26.8704 22.6013i −1.06800 0.898323i
\(634\) −2.20382 + 12.4985i −0.0875251 + 0.496379i
\(635\) 4.63934 + 3.89286i 0.184106 + 0.154484i
\(636\) 3.44965 4.10123i 0.136787 0.162624i
\(637\) 15.2964 + 19.4643i 0.606064 + 0.771204i
\(638\) 2.02462 + 1.16891i 0.0801553 + 0.0462777i
\(639\) 0.0428601 18.0493i 0.00169552 0.714019i
\(640\) 5.98120i 0.236428i
\(641\) −47.4700 + 8.37025i −1.87495 + 0.330605i −0.990663 0.136331i \(-0.956469\pi\)
−0.884291 + 0.466936i \(0.845358\pi\)
\(642\) −0.690299 3.94225i −0.0272439 0.155588i
\(643\) 16.8028 + 2.96278i 0.662636 + 0.116841i 0.494844 0.868982i \(-0.335225\pi\)
0.167792 + 0.985822i \(0.446336\pi\)
\(644\) −3.78314 + 1.30865i −0.149077 + 0.0515680i
\(645\) 73.1716 + 0.0868769i 2.88113 + 0.00342078i
\(646\) −2.88414 16.3568i −0.113475 0.643549i
\(647\) −6.85799 + 11.8784i −0.269616 + 0.466988i −0.968763 0.247990i \(-0.920230\pi\)
0.699147 + 0.714978i \(0.253563\pi\)
\(648\) 0.131448 27.6775i 0.00516375 1.08728i
\(649\) −2.42186 + 1.39826i −0.0950662 + 0.0548865i
\(650\) 43.9726 + 16.0047i 1.72475 + 0.627756i
\(651\) −3.81250 0.0656622i −0.149423 0.00257351i
\(652\) −1.55120 1.30161i −0.0607498 0.0509752i
\(653\) 11.3641 + 31.2227i 0.444713 + 1.22184i 0.936359 + 0.351044i \(0.114173\pi\)
−0.491646 + 0.870795i \(0.663604\pi\)
\(654\) −0.563137 0.672741i −0.0220204 0.0263062i
\(655\) −3.02998 17.1839i −0.118391 0.671430i
\(656\) 9.78016 16.9397i 0.381851 0.661386i
\(657\) −18.9073 + 10.8563i −0.737644 + 0.423547i
\(658\) −21.5804 0.346047i −0.841290 0.0134903i
\(659\) −1.85923 + 0.327832i −0.0724252 + 0.0127705i −0.209743 0.977756i \(-0.567263\pi\)
0.137318 + 0.990527i \(0.456152\pi\)
\(660\) −5.23504 0.929489i −0.203774 0.0361803i
\(661\) −46.0812 8.12535i −1.79235 0.316040i −0.824179 0.566330i \(-0.808363\pi\)
−0.968171 + 0.250290i \(0.919474\pi\)
\(662\) 4.56366 + 0.804697i 0.177372 + 0.0312754i
\(663\) −12.8462 35.4255i −0.498906 1.37581i
\(664\) −23.8369 + 4.20308i −0.925050 + 0.163111i
\(665\) 26.1161 + 0.418778i 1.01274 + 0.0162395i
\(666\) 8.55439 + 10.2440i 0.331476 + 0.396948i
\(667\) 2.10671 3.64892i 0.0815721 0.141287i
\(668\) 2.84407 + 16.1295i 0.110041 + 0.624071i
\(669\) 41.5809 7.28093i 1.60761 0.281497i
\(670\) −3.06310 8.41579i −0.118338 0.325130i
\(671\) 2.90064 + 2.43392i 0.111978 + 0.0939605i
\(672\) 8.78433 + 15.8387i 0.338863 + 0.610990i
\(673\) 19.5365 + 7.11069i 0.753075 + 0.274097i 0.689899 0.723905i \(-0.257655\pi\)
0.0631762 + 0.998002i \(0.479877\pi\)
\(674\) −13.8102 + 7.97334i −0.531950 + 0.307122i
\(675\) 47.1226 39.2554i 1.81375 1.51094i
\(676\) −0.183251 + 0.317400i −0.00704810 + 0.0122077i
\(677\) −6.66336 37.7898i −0.256094 1.45238i −0.793250 0.608896i \(-0.791612\pi\)
0.537156 0.843483i \(-0.319499\pi\)
\(678\) −5.60960 + 9.68952i −0.215435 + 0.372124i
\(679\) 15.1982 5.25729i 0.583252 0.201756i
\(680\) 76.3738 + 13.4668i 2.92880 + 0.516427i
\(681\) −1.71023 + 1.43159i −0.0655361 + 0.0548588i
\(682\) −0.925534 + 0.163197i −0.0354405 + 0.00624912i
\(683\) 13.9973i 0.535592i 0.963476 + 0.267796i \(0.0862953\pi\)
−0.963476 + 0.267796i \(0.913705\pi\)
\(684\) −1.82471 5.05064i −0.0697697 0.193116i
\(685\) 20.0654 + 11.5848i 0.766661 + 0.442632i
\(686\) 16.5279 12.5653i 0.631037 0.479747i
\(687\) −0.470683 1.29798i −0.0179577 0.0495212i
\(688\) −15.4817 12.9907i −0.590234 0.495265i
\(689\) −2.55641 + 14.4981i −0.0973916 + 0.552335i
\(690\) 2.83244 15.9528i 0.107829 0.607312i
\(691\) 29.8357 + 35.5568i 1.13500 + 1.35264i 0.927242 + 0.374463i \(0.122173\pi\)
0.207760 + 0.978180i \(0.433383\pi\)
\(692\) −4.12003 + 7.13611i −0.156620 + 0.271274i
\(693\) 7.56378 2.59634i 0.287324 0.0986268i
\(694\) −4.48345 7.76556i −0.170189 0.294777i
\(695\) 21.8939 60.1531i 0.830484 2.28174i
\(696\) −10.3558 3.78313i −0.392535 0.143399i
\(697\) −47.0065 39.4432i −1.78050 1.49402i
\(698\) −2.76316 + 15.6707i −0.104587 + 0.593144i
\(699\) −20.1288 11.6532i −0.761341 0.440766i
\(700\) −8.28736 + 21.6812i −0.313233 + 0.819474i
\(701\) 25.1102i 0.948399i −0.880417 0.474199i \(-0.842738\pi\)
0.880417 0.474199i \(-0.157262\pi\)
\(702\) 10.2366 + 17.8771i 0.386357 + 0.674729i
\(703\) 8.27676 + 4.77859i 0.312164 + 0.180228i
\(704\) 5.40938 + 6.44665i 0.203874 + 0.242967i
\(705\) −25.8859 + 44.7130i −0.974920 + 1.68399i
\(706\) 11.4891 13.6922i 0.432399 0.515313i
\(707\) −3.25781 9.41791i −0.122522 0.354197i
\(708\) 2.74004 2.29362i 0.102977 0.0861997i
\(709\) −20.9639 7.63024i −0.787316 0.286560i −0.0830964 0.996542i \(-0.526481\pi\)
−0.704220 + 0.709982i \(0.748703\pi\)
\(710\) −27.6476 −1.03759
\(711\) 16.9137 14.1240i 0.634314 0.529691i
\(712\) 40.3640i 1.51271i
\(713\) 0.294126 + 1.66807i 0.0110151 + 0.0624697i
\(714\) −29.8795 + 10.2961i −1.11821 + 0.385321i
\(715\) 13.7250 4.99550i 0.513286 0.186821i
\(716\) −6.05165 + 7.21207i −0.226161 + 0.269528i
\(717\) −10.9026 30.0658i −0.407166 1.12283i
\(718\) −15.4243 5.61400i −0.575631 0.209513i
\(719\) −3.15546 −0.117679 −0.0588395 0.998267i \(-0.518740\pi\)
−0.0588395 + 0.998267i \(0.518740\pi\)
\(720\) −24.1154 0.0572648i −0.898729 0.00213413i
\(721\) 11.2497 + 20.2273i 0.418962 + 0.753303i
\(722\) −9.51171 11.3356i −0.353989 0.421868i
\(723\) −23.3436 + 4.08753i −0.868156 + 0.152017i
\(724\) 0.769072 0.916544i 0.0285823 0.0340631i
\(725\) −8.35578 22.9573i −0.310326 0.852614i
\(726\) −16.8017 + 9.67388i −0.623569 + 0.359031i
\(727\) 2.93771 8.07129i 0.108954 0.299348i −0.873219 0.487328i \(-0.837972\pi\)
0.982173 + 0.187980i \(0.0601940\pi\)
\(728\) −24.6859 14.7851i −0.914920 0.547974i
\(729\) 26.9993 + 0.192342i 0.999975 + 0.00712376i
\(730\) 16.6982 + 28.9222i 0.618029 + 1.07046i
\(731\) −48.5676 + 40.7531i −1.79634 + 1.50731i
\(732\) −4.18720 2.42411i −0.154763 0.0895979i
\(733\) 27.5716 + 4.86162i 1.01838 + 0.179568i 0.657826 0.753170i \(-0.271476\pi\)
0.360555 + 0.932738i \(0.382587\pi\)
\(734\) −1.88569 + 10.6943i −0.0696019 + 0.394732i
\(735\) −6.99815 49.2047i −0.258131 1.81494i
\(736\) 6.16309 5.17145i 0.227175 0.190622i
\(737\) −1.70051 0.981789i −0.0626390 0.0361647i
\(738\) 29.0117 + 16.8419i 1.06793 + 0.619958i
\(739\) −10.3104 17.8581i −0.379273 0.656921i 0.611683 0.791103i \(-0.290493\pi\)
−0.990957 + 0.134182i \(0.957159\pi\)
\(740\) −9.26209 + 7.77182i −0.340481 + 0.285698i
\(741\) 11.2895 + 9.49588i 0.414730 + 0.348840i
\(742\) 12.1233 + 2.33868i 0.445061 + 0.0858557i
\(743\) 2.11075 + 5.79924i 0.0774359 + 0.212753i 0.972370 0.233445i \(-0.0749998\pi\)
−0.894934 + 0.446198i \(0.852778\pi\)
\(744\) 4.16665 1.51094i 0.152757 0.0553937i
\(745\) −12.0162 + 33.0143i −0.440240 + 1.20955i
\(746\) −12.6907 + 7.32697i −0.464639 + 0.268260i
\(747\) −4.04492 23.2628i −0.147996 0.851140i
\(748\) 3.98971 2.30346i 0.145878 0.0842227i
\(749\) −4.23323 + 3.43796i −0.154679 + 0.125620i
\(750\) −34.7571 41.5219i −1.26915 1.51617i
\(751\) 18.7355 6.81915i 0.683667 0.248834i 0.0232457 0.999730i \(-0.492600\pi\)
0.660421 + 0.750895i \(0.270378\pi\)
\(752\) 13.4094 4.88063i 0.488991 0.177978i
\(753\) 8.97804 + 0.0106597i 0.327178 + 0.000388460i
\(754\) 8.08133 1.42496i 0.294305 0.0518938i
\(755\) 53.7326 1.95553
\(756\) −8.94771 + 4.93477i −0.325425 + 0.179476i
\(757\) 14.8634 0.540221 0.270110 0.962829i \(-0.412940\pi\)
0.270110 + 0.962829i \(0.412940\pi\)
\(758\) 6.47440 1.14161i 0.235161 0.0414652i
\(759\) −1.77252 3.07853i −0.0643384 0.111744i
\(760\) −28.5292 + 10.3838i −1.03486 + 0.376659i
\(761\) 14.4510 5.25972i 0.523847 0.190665i −0.0665417 0.997784i \(-0.521197\pi\)
0.590389 + 0.807119i \(0.298974\pi\)
\(762\) 2.82572 0.494792i 0.102365 0.0179244i
\(763\) −0.426824 + 1.11665i −0.0154521 + 0.0404254i
\(764\) −8.36151 + 4.82752i −0.302509 + 0.174654i
\(765\) −13.3138 + 74.4720i −0.481363 + 2.69254i
\(766\) −28.1406 + 16.2470i −1.01676 + 0.587028i
\(767\) −3.35729 + 9.22408i −0.121225 + 0.