Properties

Label 189.2.bd.a.185.15
Level $189$
Weight $2$
Character 189.185
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(47,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([7, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.47");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.bd (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 185.15
Character \(\chi\) \(=\) 189.185
Dual form 189.2.bd.a.47.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.892534 - 0.157378i) q^{2} +(-1.71459 - 0.245341i) q^{3} +(-1.10754 + 0.403110i) q^{4} +(-1.14226 + 0.415747i) q^{5} +(-1.56894 + 0.0508626i) q^{6} +(-1.98483 + 1.74942i) q^{7} +(-2.49483 + 1.44039i) q^{8} +(2.87962 + 0.841317i) q^{9} +O(q^{10})\) \(q+(0.892534 - 0.157378i) q^{2} +(-1.71459 - 0.245341i) q^{3} +(-1.10754 + 0.403110i) q^{4} +(-1.14226 + 0.415747i) q^{5} +(-1.56894 + 0.0508626i) q^{6} +(-1.98483 + 1.74942i) q^{7} +(-2.49483 + 1.44039i) q^{8} +(2.87962 + 0.841317i) q^{9} +(-0.954073 + 0.550834i) q^{10} +(-1.22714 + 3.37155i) q^{11} +(1.99787 - 0.419444i) q^{12} +(-0.206055 - 0.566132i) q^{13} +(-1.49621 + 1.87378i) q^{14} +(2.06050 - 0.432592i) q^{15} +(-0.194293 + 0.163031i) q^{16} +(-3.97470 - 6.88437i) q^{17} +(2.70256 + 0.297716i) q^{18} +(1.22523 + 0.707386i) q^{19} +(1.09750 - 0.920911i) q^{20} +(3.83236 - 2.51257i) q^{21} +(-0.564660 + 3.20235i) q^{22} +(1.00502 + 0.177213i) q^{23} +(4.63100 - 1.85759i) q^{24} +(-2.69832 + 2.26416i) q^{25} +(-0.273008 - 0.472864i) q^{26} +(-4.73094 - 2.14900i) q^{27} +(1.49306 - 2.73765i) q^{28} +(-0.413325 + 1.13560i) q^{29} +(1.77098 - 0.710380i) q^{30} +(2.83760 + 7.79623i) q^{31} +(3.55571 - 4.23753i) q^{32} +(2.93123 - 5.47975i) q^{33} +(-4.63100 - 5.51901i) q^{34} +(1.53987 - 2.82347i) q^{35} +(-3.52842 + 0.229013i) q^{36} +8.45042 q^{37} +(1.20488 + 0.438542i) q^{38} +(0.214404 + 1.02124i) q^{39} +(2.25090 - 2.68252i) q^{40} +(-6.73814 + 2.45248i) q^{41} +(3.02509 - 2.84568i) q^{42} +(1.41438 + 8.02135i) q^{43} -4.22879i q^{44} +(-3.63903 + 0.236192i) q^{45} +0.924908 q^{46} +(-0.296592 - 0.107951i) q^{47} +(0.373131 - 0.231863i) q^{48} +(0.879076 - 6.94458i) q^{49} +(-2.05201 + 2.44549i) q^{50} +(5.12594 + 12.7790i) q^{51} +(0.456428 + 0.543949i) q^{52} +(-5.74259 - 3.31549i) q^{53} +(-4.56073 - 1.17351i) q^{54} -4.36136i q^{55} +(2.43197 - 7.22344i) q^{56} +(-1.92721 - 1.51347i) q^{57} +(-0.190188 + 1.07861i) q^{58} +(-0.763827 - 0.640927i) q^{59} +(-2.10769 + 1.30972i) q^{60} +(-4.19127 + 11.5154i) q^{61} +(3.75960 + 6.51182i) q^{62} +(-7.18735 + 3.36778i) q^{63} +(2.76033 - 4.78103i) q^{64} +(0.470736 + 0.561001i) q^{65} +(1.75383 - 5.35217i) q^{66} +(-1.79273 + 10.1671i) q^{67} +(7.17729 + 6.02246i) q^{68} +(-1.67972 - 0.550421i) q^{69} +(0.930030 - 2.76238i) q^{70} +(-0.952881 - 0.550146i) q^{71} +(-8.39599 + 2.04883i) q^{72} -0.933127i q^{73} +(7.54228 - 1.32991i) q^{74} +(5.18199 - 3.22009i) q^{75} +(-1.64214 - 0.289554i) q^{76} +(-3.46258 - 8.83874i) q^{77} +(0.352083 + 0.877746i) q^{78} +(-2.33590 - 13.2476i) q^{79} +(0.154153 - 0.267000i) q^{80} +(7.58437 + 4.84534i) q^{81} +(-5.62805 + 3.24936i) q^{82} +(5.66119 + 2.06050i) q^{83} +(-3.23164 + 4.32763i) q^{84} +(7.40228 + 6.21125i) q^{85} +(2.52476 + 6.93673i) q^{86} +(0.987292 - 1.84568i) q^{87} +(-1.79484 - 10.1790i) q^{88} +(-2.96167 + 5.12977i) q^{89} +(-3.21079 + 0.783513i) q^{90} +(1.39939 + 0.763198i) q^{91} +(-1.18454 + 0.208866i) q^{92} +(-2.95257 - 14.0635i) q^{93} +(-0.281708 - 0.0496727i) q^{94} +(-1.69362 - 0.298631i) q^{95} +(-7.13622 + 6.39326i) q^{96} +(8.29293 - 1.46227i) q^{97} +(-0.308318 - 6.33662i) q^{98} +(-6.37025 + 8.67636i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} + 18 q^{6} - 6 q^{7} - 18 q^{8} - 15 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} + 18 q^{6} - 6 q^{7} - 18 q^{8} - 15 q^{9} - 9 q^{10} + 9 q^{11} - 9 q^{12} - 42 q^{14} - 24 q^{15} - 15 q^{16} - 9 q^{17} - 3 q^{18} - 9 q^{19} - 18 q^{20} + 15 q^{21} - 12 q^{22} + 30 q^{23} - 36 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} - 3 q^{30} - 9 q^{31} - 51 q^{32} - 9 q^{33} + 18 q^{34} - 9 q^{35} - 6 q^{37} - 9 q^{38} - 9 q^{39} - 9 q^{40} + 27 q^{42} - 12 q^{43} - 63 q^{45} - 6 q^{46} + 45 q^{47} + 30 q^{49} - 9 q^{50} + 33 q^{51} - 9 q^{52} + 45 q^{53} + 117 q^{54} - 51 q^{56} - 3 q^{58} - 9 q^{59} - 15 q^{60} - 63 q^{61} + 99 q^{62} - 33 q^{63} + 18 q^{64} - 102 q^{65} + 63 q^{66} - 3 q^{67} + 144 q^{68} - 108 q^{69} - 15 q^{70} + 18 q^{71} + 15 q^{72} - 33 q^{74} - 9 q^{75} - 36 q^{76} - 57 q^{77} + 66 q^{78} - 21 q^{79} - 72 q^{80} + 57 q^{81} - 18 q^{82} + 90 q^{83} + 51 q^{84} + 9 q^{85} - 33 q^{86} - 9 q^{87} + 45 q^{88} - 9 q^{89} - 81 q^{90} - 21 q^{91} + 150 q^{92} - 87 q^{93} - 9 q^{94} + 27 q^{95} - 9 q^{96} - 180 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.892534 0.157378i 0.631117 0.111283i 0.151066 0.988524i \(-0.451729\pi\)
0.480051 + 0.877241i \(0.340618\pi\)
\(3\) −1.71459 0.245341i −0.989917 0.141648i
\(4\) −1.10754 + 0.403110i −0.553768 + 0.201555i
\(5\) −1.14226 + 0.415747i −0.510832 + 0.185928i −0.584560 0.811351i \(-0.698733\pi\)
0.0737273 + 0.997278i \(0.476511\pi\)
\(6\) −1.56894 + 0.0508626i −0.640516 + 0.0207646i
\(7\) −1.98483 + 1.74942i −0.750194 + 0.661218i
\(8\) −2.49483 + 1.44039i −0.882057 + 0.509256i
\(9\) 2.87962 + 0.841317i 0.959872 + 0.280439i
\(10\) −0.954073 + 0.550834i −0.301704 + 0.174189i
\(11\) −1.22714 + 3.37155i −0.369998 + 1.01656i 0.605364 + 0.795949i \(0.293028\pi\)
−0.975362 + 0.220612i \(0.929195\pi\)
\(12\) 1.99787 0.419444i 0.576735 0.121083i
\(13\) −0.206055 0.566132i −0.0571495 0.157017i 0.907833 0.419333i \(-0.137736\pi\)
−0.964982 + 0.262316i \(0.915514\pi\)
\(14\) −1.49621 + 1.87378i −0.399878 + 0.500789i
\(15\) 2.06050 0.432592i 0.532018 0.111695i
\(16\) −0.194293 + 0.163031i −0.0485733 + 0.0407578i
\(17\) −3.97470 6.88437i −0.964005 1.66971i −0.712264 0.701911i \(-0.752330\pi\)
−0.251741 0.967795i \(-0.581003\pi\)
\(18\) 2.70256 + 0.297716i 0.636999 + 0.0701724i
\(19\) 1.22523 + 0.707386i 0.281087 + 0.162286i 0.633915 0.773402i \(-0.281447\pi\)
−0.352829 + 0.935688i \(0.614780\pi\)
\(20\) 1.09750 0.920911i 0.245408 0.205922i
\(21\) 3.83236 2.51257i 0.836290 0.548287i
\(22\) −0.564660 + 3.20235i −0.120386 + 0.682743i
\(23\) 1.00502 + 0.177213i 0.209562 + 0.0369515i 0.277444 0.960742i \(-0.410513\pi\)
−0.0678814 + 0.997693i \(0.521624\pi\)
\(24\) 4.63100 1.85759i 0.945299 0.379180i
\(25\) −2.69832 + 2.26416i −0.539664 + 0.452832i
\(26\) −0.273008 0.472864i −0.0535413 0.0927362i
\(27\) −4.73094 2.14900i −0.910470 0.413575i
\(28\) 1.49306 2.73765i 0.282162 0.517367i
\(29\) −0.413325 + 1.13560i −0.0767526 + 0.210876i −0.972135 0.234422i \(-0.924680\pi\)
0.895382 + 0.445298i \(0.146902\pi\)
\(30\) 1.77098 0.710380i 0.323336 0.129697i
\(31\) 2.83760 + 7.79623i 0.509647 + 1.40024i 0.881602 + 0.471994i \(0.156466\pi\)
−0.371954 + 0.928251i \(0.621312\pi\)
\(32\) 3.55571 4.23753i 0.628567 0.749097i
\(33\) 2.93123 5.47975i 0.510261 0.953902i
\(34\) −4.63100 5.51901i −0.794209 0.946502i
\(35\) 1.53987 2.82347i 0.260285 0.477253i
\(36\) −3.52842 + 0.229013i −0.588071 + 0.0381689i
\(37\) 8.45042 1.38924 0.694620 0.719377i \(-0.255573\pi\)
0.694620 + 0.719377i \(0.255573\pi\)
\(38\) 1.20488 + 0.438542i 0.195458 + 0.0711409i
\(39\) 0.214404 + 1.02124i 0.0343321 + 0.163529i
\(40\) 2.25090 2.68252i 0.355899 0.424144i
\(41\) −6.73814 + 2.45248i −1.05232 + 0.383013i −0.809538 0.587067i \(-0.800282\pi\)
−0.242782 + 0.970081i \(0.578060\pi\)
\(42\) 3.02509 2.84568i 0.466781 0.439098i
\(43\) 1.41438 + 8.02135i 0.215691 + 1.22324i 0.879703 + 0.475523i \(0.157741\pi\)
−0.664012 + 0.747722i \(0.731148\pi\)
\(44\) 4.22879i 0.637515i
\(45\) −3.63903 + 0.236192i −0.542475 + 0.0352095i
\(46\) 0.924908 0.136370
\(47\) −0.296592 0.107951i −0.0432625 0.0157462i 0.320298 0.947317i \(-0.396217\pi\)
−0.363561 + 0.931570i \(0.618439\pi\)
\(48\) 0.373131 0.231863i 0.0538568 0.0334666i
\(49\) 0.879076 6.94458i 0.125582 0.992083i
\(50\) −2.05201 + 2.44549i −0.290198 + 0.345845i
\(51\) 5.12594 + 12.7790i 0.717775 + 1.78942i
\(52\) 0.456428 + 0.543949i 0.0632951 + 0.0754322i
\(53\) −5.74259 3.31549i −0.788806 0.455417i 0.0507361 0.998712i \(-0.483843\pi\)
−0.839542 + 0.543295i \(0.817177\pi\)
\(54\) −4.56073 1.17351i −0.620636 0.159694i
\(55\) 4.36136i 0.588085i
\(56\) 2.43197 7.22344i 0.324985 0.965273i
\(57\) −1.92721 1.51347i −0.255265 0.200465i
\(58\) −0.190188 + 1.07861i −0.0249729 + 0.141629i
\(59\) −0.763827 0.640927i −0.0994418 0.0834416i 0.591711 0.806150i \(-0.298453\pi\)
−0.691153 + 0.722708i \(0.742897\pi\)
\(60\) −2.10769 + 1.30972i −0.272102 + 0.169084i
\(61\) −4.19127 + 11.5154i −0.536637 + 1.47440i 0.314399 + 0.949291i \(0.398197\pi\)
−0.851036 + 0.525107i \(0.824025\pi\)
\(62\) 3.75960 + 6.51182i 0.477470 + 0.827003i
\(63\) −7.18735 + 3.36778i −0.905521 + 0.424301i
\(64\) 2.76033 4.78103i 0.345041 0.597629i
\(65\) 0.470736 + 0.561001i 0.0583876 + 0.0695836i
\(66\) 1.75383 5.35217i 0.215881 0.658807i
\(67\) −1.79273 + 10.1671i −0.219017 + 1.24211i 0.654781 + 0.755818i \(0.272761\pi\)
−0.873798 + 0.486289i \(0.838350\pi\)
\(68\) 7.17729 + 6.02246i 0.870374 + 0.730330i
\(69\) −1.67972 0.550421i −0.202215 0.0662629i
\(70\) 0.930030 2.76238i 0.111160 0.330168i
\(71\) −0.952881 0.550146i −0.113086 0.0652904i 0.442390 0.896823i \(-0.354131\pi\)
−0.555476 + 0.831532i \(0.687464\pi\)
\(72\) −8.39599 + 2.04883i −0.989477 + 0.241457i
\(73\) 0.933127i 0.109214i −0.998508 0.0546071i \(-0.982609\pi\)
0.998508 0.0546071i \(-0.0173906\pi\)
\(74\) 7.54228 1.32991i 0.876772 0.154599i
\(75\) 5.18199 3.22009i 0.598365 0.371824i
\(76\) −1.64214 0.289554i −0.188366 0.0332141i
\(77\) −3.46258 8.83874i −0.394598 1.00727i
\(78\) 0.352083 + 0.877746i 0.0398655 + 0.0993851i
\(79\) −2.33590 13.2476i −0.262810 1.49047i −0.775200 0.631716i \(-0.782351\pi\)
0.512390 0.858753i \(-0.328760\pi\)
\(80\) 0.154153 0.267000i 0.0172348 0.0298516i
\(81\) 7.58437 + 4.84534i 0.842708 + 0.538371i
\(82\) −5.62805 + 3.24936i −0.621514 + 0.358831i
\(83\) 5.66119 + 2.06050i 0.621396 + 0.226170i 0.633482 0.773757i \(-0.281625\pi\)
−0.0120862 + 0.999927i \(0.503847\pi\)
\(84\) −3.23164 + 4.32763i −0.352601 + 0.472183i
\(85\) 7.40228 + 6.21125i 0.802890 + 0.673705i
\(86\) 2.52476 + 6.93673i 0.272252 + 0.748007i
\(87\) 0.987292 1.84568i 0.105849 0.197878i
\(88\) −1.79484 10.1790i −0.191330 1.08509i
\(89\) −2.96167 + 5.12977i −0.313937 + 0.543754i −0.979211 0.202845i \(-0.934981\pi\)
0.665274 + 0.746599i \(0.268315\pi\)
\(90\) −3.21079 + 0.783513i −0.338447 + 0.0825895i
\(91\) 1.39939 + 0.763198i 0.146696 + 0.0800049i
\(92\) −1.18454 + 0.208866i −0.123497 + 0.0217758i
\(93\) −2.95257 14.0635i −0.306167 1.45832i
\(94\) −0.281708 0.0496727i −0.0290559 0.00512335i
\(95\) −1.69362 0.298631i −0.173762 0.0306389i
\(96\) −7.13622 + 6.39326i −0.728337 + 0.652509i
\(97\) 8.29293 1.46227i 0.842019 0.148471i 0.264029 0.964515i \(-0.414948\pi\)
0.577990 + 0.816044i \(0.303837\pi\)
\(98\) −0.308318 6.33662i −0.0311448 0.640095i
\(99\) −6.37025 + 8.67636i −0.640234 + 0.872007i
\(100\) 2.07578 3.59536i 0.207578 0.359536i
\(101\) 0.430556 + 2.44180i 0.0428419 + 0.242968i 0.998707 0.0508377i \(-0.0161891\pi\)
−0.955865 + 0.293806i \(0.905078\pi\)
\(102\) 6.58621 + 10.5990i 0.652132 + 1.04946i
\(103\) −3.26796 8.97865i −0.322002 0.884693i −0.990068 0.140591i \(-0.955100\pi\)
0.668066 0.744102i \(-0.267122\pi\)
\(104\) 1.32953 + 1.11561i 0.130371 + 0.109394i
\(105\) −3.33295 + 4.46329i −0.325262 + 0.435573i
\(106\) −5.64724 2.05543i −0.548509 0.199641i
\(107\) −10.6429 + 6.14467i −1.02889 + 0.594028i −0.916666 0.399655i \(-0.869130\pi\)
−0.112221 + 0.993683i \(0.535797\pi\)
\(108\) 6.10598 + 0.473004i 0.587548 + 0.0455149i
\(109\) −4.67103 + 8.09046i −0.447404 + 0.774926i −0.998216 0.0597033i \(-0.980985\pi\)
0.550813 + 0.834629i \(0.314318\pi\)
\(110\) −0.686381 3.89266i −0.0654438 0.371150i
\(111\) −14.4890 2.07323i −1.37523 0.196783i
\(112\) 0.100428 0.663489i 0.00948960 0.0626938i
\(113\) 3.90833 + 0.689145i 0.367665 + 0.0648293i 0.354428 0.935083i \(-0.384675\pi\)
0.0132365 + 0.999912i \(0.495787\pi\)
\(114\) −1.95829 1.04753i −0.183410 0.0981098i
\(115\) −1.22167 + 0.215414i −0.113921 + 0.0200874i
\(116\) 1.42434i 0.132246i
\(117\) −0.117063 1.80360i −0.0108225 0.166743i
\(118\) −0.782609 0.451839i −0.0720450 0.0415952i
\(119\) 19.9327 + 6.71089i 1.82723 + 0.615186i
\(120\) −4.51750 + 4.04717i −0.412389 + 0.369455i
\(121\) −1.43499 1.20410i −0.130454 0.109464i
\(122\) −1.92858 + 10.9375i −0.174605 + 0.990236i
\(123\) 12.1548 2.55185i 1.09596 0.230093i
\(124\) −6.28549 7.49075i −0.564453 0.672689i
\(125\) 5.17976 8.97161i 0.463292 0.802445i
\(126\) −5.88494 + 4.13699i −0.524272 + 0.368552i
\(127\) −7.34765 12.7265i −0.651998 1.12929i −0.982637 0.185537i \(-0.940598\pi\)
0.330639 0.943757i \(-0.392736\pi\)
\(128\) −2.07265 + 5.69456i −0.183198 + 0.503333i
\(129\) −0.457111 14.1003i −0.0402464 1.24146i
\(130\) 0.508437 + 0.426629i 0.0445928 + 0.0374178i
\(131\) −3.07983 + 17.4666i −0.269086 + 1.52606i 0.488055 + 0.872813i \(0.337706\pi\)
−0.757141 + 0.653251i \(0.773405\pi\)
\(132\) −1.03750 + 7.25063i −0.0903025 + 0.631087i
\(133\) −3.66938 + 0.739398i −0.318176 + 0.0641139i
\(134\) 9.35660i 0.808287i
\(135\) 6.29739 + 0.487832i 0.541993 + 0.0419859i
\(136\) 19.8324 + 11.4503i 1.70062 + 0.981851i
\(137\) −2.14849 2.56047i −0.183558 0.218756i 0.666417 0.745580i \(-0.267827\pi\)
−0.849975 + 0.526824i \(0.823383\pi\)
\(138\) −1.58583 0.226918i −0.134995 0.0193165i
\(139\) −2.56143 + 3.05259i −0.217257 + 0.258917i −0.863655 0.504084i \(-0.831830\pi\)
0.646397 + 0.763001i \(0.276275\pi\)
\(140\) −0.567288 + 3.74783i −0.0479446 + 0.316750i
\(141\) 0.482049 + 0.257857i 0.0405958 + 0.0217155i
\(142\) −0.937059 0.341062i −0.0786363 0.0286213i
\(143\) 2.16160 0.180762
\(144\) −0.696651 + 0.306005i −0.0580542 + 0.0255005i
\(145\) 1.46899i 0.121993i
\(146\) −0.146853 0.832847i −0.0121537 0.0689269i
\(147\) −3.21104 + 11.6914i −0.264842 + 0.964292i
\(148\) −9.35915 + 3.40645i −0.769317 + 0.280009i
\(149\) 9.04723 10.7821i 0.741178 0.883302i −0.255325 0.966855i \(-0.582183\pi\)
0.996503 + 0.0835536i \(0.0266270\pi\)
\(150\) 4.11833 3.68957i 0.336260 0.301252i
\(151\) −12.4056 4.51528i −1.00956 0.367449i −0.216294 0.976328i \(-0.569397\pi\)
−0.793263 + 0.608880i \(0.791619\pi\)
\(152\) −4.07566 −0.330580
\(153\) −5.65365 23.1683i −0.457071 1.87305i
\(154\) −4.48149 7.34393i −0.361129 0.591791i
\(155\) −6.48252 7.72557i −0.520689 0.620533i
\(156\) −0.649132 1.04463i −0.0519721 0.0836372i
\(157\) 3.21248 3.82848i 0.256384 0.305546i −0.622464 0.782648i \(-0.713868\pi\)
0.878848 + 0.477102i \(0.158313\pi\)
\(158\) −4.16975 11.4563i −0.331727 0.911413i
\(159\) 9.03275 + 7.09359i 0.716344 + 0.562558i
\(160\) −2.29979 + 6.31863i −0.181815 + 0.499531i
\(161\) −2.30482 + 1.40647i −0.181645 + 0.110845i
\(162\) 7.53185 + 3.13102i 0.591758 + 0.245996i
\(163\) −1.07224 1.85718i −0.0839847 0.145466i 0.820973 0.570966i \(-0.193431\pi\)
−0.904958 + 0.425501i \(0.860098\pi\)
\(164\) 6.47412 5.43243i 0.505543 0.424201i
\(165\) −1.07002 + 7.47793i −0.0833010 + 0.582156i
\(166\) 5.37708 + 0.948123i 0.417342 + 0.0735886i
\(167\) −2.40447 + 13.6365i −0.186064 + 1.05522i 0.738517 + 0.674235i \(0.235526\pi\)
−0.924581 + 0.380986i \(0.875585\pi\)
\(168\) −5.94202 + 11.7886i −0.458437 + 0.909507i
\(169\) 9.68053 8.12293i 0.744656 0.624841i
\(170\) 7.58430 + 4.37880i 0.581689 + 0.335838i
\(171\) 2.93305 + 3.06781i 0.224296 + 0.234601i
\(172\) −4.79997 8.31379i −0.365994 0.633921i
\(173\) −2.77181 + 2.32582i −0.210737 + 0.176829i −0.742046 0.670349i \(-0.766145\pi\)
0.531310 + 0.847178i \(0.321700\pi\)
\(174\) 0.590722 1.80271i 0.0447825 0.136663i
\(175\) 1.39474 9.21445i 0.105432 0.696547i
\(176\) −0.311243 0.855133i −0.0234608 0.0644581i
\(177\) 1.15240 + 1.28632i 0.0866198 + 0.0966860i
\(178\) −1.83608 + 5.04459i −0.137620 + 0.378108i
\(179\) 21.1818 12.2293i 1.58320 0.914063i 0.588815 0.808268i \(-0.299595\pi\)
0.994388 0.105795i \(-0.0337387\pi\)
\(180\) 3.93515 1.72852i 0.293309 0.128837i
\(181\) 13.8640 8.00438i 1.03050 0.594961i 0.113374 0.993552i \(-0.463834\pi\)
0.917129 + 0.398591i \(0.130501\pi\)
\(182\) 1.36911 + 0.460948i 0.101485 + 0.0341677i
\(183\) 10.0115 18.7159i 0.740071 1.38352i
\(184\) −2.76263 + 1.00551i −0.203664 + 0.0741275i
\(185\) −9.65254 + 3.51324i −0.709669 + 0.258298i
\(186\) −4.84855 12.0875i −0.355513 0.886297i
\(187\) 28.0886 4.95277i 2.05404 0.362182i
\(188\) 0.372003 0.0271311
\(189\) 13.1496 4.01100i 0.956492 0.291757i
\(190\) −1.55861 −0.113073
\(191\) −6.32951 + 1.11606i −0.457987 + 0.0807555i −0.397882 0.917437i \(-0.630255\pi\)
−0.0601052 + 0.998192i \(0.519144\pi\)
\(192\) −5.90581 + 7.52027i −0.426215 + 0.542729i
\(193\) 1.28770 0.468686i 0.0926910 0.0337368i −0.295258 0.955417i \(-0.595406\pi\)
0.387949 + 0.921681i \(0.373184\pi\)
\(194\) 7.17159 2.61024i 0.514890 0.187405i
\(195\) −0.669481 1.07738i −0.0479425 0.0771525i
\(196\) 1.82582 + 8.04575i 0.130416 + 0.574696i
\(197\) 19.2475 11.1125i 1.37132 0.791734i 0.380229 0.924892i \(-0.375845\pi\)
0.991095 + 0.133158i \(0.0425118\pi\)
\(198\) −4.32020 + 8.74647i −0.307023 + 0.621585i
\(199\) −11.5230 + 6.65279i −0.816841 + 0.471603i −0.849326 0.527869i \(-0.822991\pi\)
0.0324848 + 0.999472i \(0.489658\pi\)
\(200\) 3.47058 9.53534i 0.245407 0.674251i
\(201\) 5.56820 16.9925i 0.392750 1.19856i
\(202\) 0.768571 + 2.11163i 0.0540765 + 0.148574i
\(203\) −1.16626 2.97705i −0.0818556 0.208948i
\(204\) −10.8285 12.0869i −0.758148 0.846253i
\(205\) 6.67707 5.60272i 0.466347 0.391311i
\(206\) −4.32981 7.49944i −0.301672 0.522511i
\(207\) 2.74499 + 1.35585i 0.190790 + 0.0942381i
\(208\) 0.132332 + 0.0764022i 0.00917561 + 0.00529754i
\(209\) −3.88852 + 3.26286i −0.268975 + 0.225697i
\(210\) −2.27234 + 4.50817i −0.156807 + 0.311093i
\(211\) −2.63818 + 14.9619i −0.181620 + 1.03002i 0.748602 + 0.663019i \(0.230725\pi\)
−0.930222 + 0.366997i \(0.880386\pi\)
\(212\) 7.69664 + 1.35713i 0.528608 + 0.0932078i
\(213\) 1.49882 + 1.17705i 0.102698 + 0.0806505i
\(214\) −8.53210 + 7.15928i −0.583242 + 0.489398i
\(215\) −4.95044 8.57441i −0.337617 0.584770i
\(216\) 14.8983 1.45302i 1.01370 0.0988654i
\(217\) −19.2710 10.5100i −1.30820 0.713467i
\(218\) −2.89579 + 7.95612i −0.196128 + 0.538857i
\(219\) −0.228934 + 1.59993i −0.0154700 + 0.108113i
\(220\) 1.75811 + 4.83036i 0.118532 + 0.325663i
\(221\) −3.07846 + 3.66877i −0.207080 + 0.246788i
\(222\) −13.2582 + 0.429810i −0.889830 + 0.0288470i
\(223\) 4.53645 + 5.40633i 0.303783 + 0.362035i 0.896242 0.443566i \(-0.146287\pi\)
−0.592458 + 0.805601i \(0.701842\pi\)
\(224\) 0.355741 + 14.6312i 0.0237689 + 0.977588i
\(225\) −9.67500 + 4.24976i −0.645000 + 0.283318i
\(226\) 3.59677 0.239254
\(227\) −16.1249 5.86897i −1.07024 0.389537i −0.253976 0.967210i \(-0.581739\pi\)
−0.816268 + 0.577673i \(0.803961\pi\)
\(228\) 2.74455 + 0.899350i 0.181763 + 0.0595609i
\(229\) 5.74182 6.84283i 0.379430 0.452187i −0.542204 0.840247i \(-0.682410\pi\)
0.921634 + 0.388060i \(0.126855\pi\)
\(230\) −1.05648 + 0.384528i −0.0696623 + 0.0253550i
\(231\) 3.76839 + 16.0043i 0.247942 + 1.05301i
\(232\) −0.604535 3.42849i −0.0396897 0.225091i
\(233\) 8.54612i 0.559875i 0.960018 + 0.279937i \(0.0903137\pi\)
−0.960018 + 0.279937i \(0.909686\pi\)
\(234\) −0.388330 1.59135i −0.0253859 0.104030i
\(235\) 0.383665 0.0250275
\(236\) 1.10433 + 0.401944i 0.0718858 + 0.0261643i
\(237\) 0.754937 + 23.2872i 0.0490384 + 1.51267i
\(238\) 18.8468 + 2.85273i 1.22165 + 0.184915i
\(239\) 8.54791 10.1870i 0.552919 0.658943i −0.415113 0.909770i \(-0.636258\pi\)
0.968032 + 0.250827i \(0.0807025\pi\)
\(240\) −0.329814 + 0.419975i −0.0212894 + 0.0271093i
\(241\) 8.98273 + 10.7052i 0.578629 + 0.689583i 0.973378 0.229206i \(-0.0736130\pi\)
−0.394749 + 0.918789i \(0.629169\pi\)
\(242\) −1.47027 0.848864i −0.0945128 0.0545670i
\(243\) −11.8153 10.1685i −0.757952 0.652310i
\(244\) 14.4433i 0.924637i
\(245\) 1.88306 + 8.29797i 0.120304 + 0.530138i
\(246\) 10.4470 4.19051i 0.666075 0.267177i
\(247\) 0.148009 0.839402i 0.00941761 0.0534099i
\(248\) −18.3090 15.3631i −1.16262 0.975555i
\(249\) −9.20107 4.92183i −0.583094 0.311908i
\(250\) 3.21118 8.82264i 0.203093 0.557993i
\(251\) 12.8062 + 22.1810i 0.808322 + 1.40005i 0.914025 + 0.405657i \(0.132957\pi\)
−0.105704 + 0.994398i \(0.533709\pi\)
\(252\) 6.60267 6.62724i 0.415929 0.417477i
\(253\) −1.83079 + 3.17103i −0.115101 + 0.199361i
\(254\) −8.56089 10.2025i −0.537158 0.640160i
\(255\) −11.1680 12.4658i −0.699366 0.780639i
\(256\) −2.87102 + 16.2824i −0.179439 + 1.01765i
\(257\) −9.14993 7.67771i −0.570757 0.478922i 0.311140 0.950364i \(-0.399289\pi\)
−0.881897 + 0.471442i \(0.843734\pi\)
\(258\) −2.62706 12.5131i −0.163554 0.779029i
\(259\) −16.7726 + 14.7833i −1.04220 + 0.918590i
\(260\) −0.747503 0.431571i −0.0463582 0.0267649i
\(261\) −2.14562 + 2.92236i −0.132810 + 0.180889i
\(262\) 16.0742i 0.993069i
\(263\) −14.0094 + 2.47023i −0.863854 + 0.152321i −0.587982 0.808874i \(-0.700078\pi\)
−0.275872 + 0.961195i \(0.588966\pi\)
\(264\) 0.580071 + 17.8932i 0.0357009 + 1.10125i
\(265\) 7.93792 + 1.39967i 0.487622 + 0.0859810i
\(266\) −3.15868 + 1.23742i −0.193671 + 0.0758709i
\(267\) 6.33659 8.06881i 0.387793 0.493803i
\(268\) −2.11294 11.9831i −0.129068 0.731984i
\(269\) −15.2108 + 26.3459i −0.927421 + 1.60634i −0.139801 + 0.990180i \(0.544646\pi\)
−0.787620 + 0.616161i \(0.788687\pi\)
\(270\) 5.69740 0.555662i 0.346733 0.0338165i
\(271\) −11.2849 + 6.51534i −0.685509 + 0.395779i −0.801927 0.597421i \(-0.796192\pi\)
0.116418 + 0.993200i \(0.462859\pi\)
\(272\) 1.89463 + 0.689587i 0.114879 + 0.0418124i
\(273\) −2.21212 1.65190i −0.133884 0.0999773i
\(274\) −2.32056 1.94718i −0.140190 0.117634i
\(275\) −4.32250 11.8760i −0.260657 0.716148i
\(276\) 2.08224 0.0675030i 0.125336 0.00406321i
\(277\) 3.11459 + 17.6637i 0.187138 + 1.06131i 0.923178 + 0.384373i \(0.125582\pi\)
−0.736040 + 0.676938i \(0.763307\pi\)
\(278\) −1.80575 + 3.12765i −0.108302 + 0.187584i
\(279\) 1.61208 + 24.8375i 0.0965129 + 1.48698i
\(280\) 0.225197 + 9.26210i 0.0134581 + 0.553516i
\(281\) −9.46609 + 1.66913i −0.564700 + 0.0995718i −0.448708 0.893678i \(-0.648116\pi\)
−0.115992 + 0.993250i \(0.537005\pi\)
\(282\) 0.470826 + 0.154283i 0.0280373 + 0.00918740i
\(283\) −13.1374 2.31648i −0.780939 0.137701i −0.231054 0.972941i \(-0.574217\pi\)
−0.549885 + 0.835240i \(0.685328\pi\)
\(284\) 1.27712 + 0.225191i 0.0757832 + 0.0133626i
\(285\) 2.83059 + 0.927543i 0.167670 + 0.0549429i
\(286\) 1.92930 0.340188i 0.114082 0.0201158i
\(287\) 9.08362 16.6556i 0.536189 0.983147i
\(288\) 13.8042 9.21098i 0.813420 0.542762i
\(289\) −23.0964 + 40.0042i −1.35861 + 2.35319i
\(290\) −0.231186 1.31112i −0.0135757 0.0769916i
\(291\) −14.5777 + 0.472588i −0.854560 + 0.0277036i
\(292\) 0.376153 + 1.03347i 0.0220127 + 0.0604794i
\(293\) −1.25235 1.05085i −0.0731631 0.0613911i 0.605473 0.795866i \(-0.292984\pi\)
−0.678636 + 0.734475i \(0.737429\pi\)
\(294\) −1.02600 + 10.9403i −0.0598373 + 0.638053i
\(295\) 1.13895 + 0.414544i 0.0663122 + 0.0241357i
\(296\) −21.0824 + 12.1719i −1.22539 + 0.707479i
\(297\) 13.0510 13.3135i 0.757296 0.772526i
\(298\) 6.37810 11.0472i 0.369473 0.639947i
\(299\) −0.106765 0.605493i −0.00617436 0.0350165i
\(300\) −4.44120 + 5.65528i −0.256413 + 0.326508i
\(301\) −16.8400 13.4467i −0.970641 0.775052i
\(302\) −11.7831 2.07767i −0.678039 0.119556i
\(303\) −0.139151 4.29232i −0.00799399 0.246587i
\(304\) −0.353380 + 0.0623104i −0.0202677 + 0.00357375i
\(305\) 14.8961i 0.852946i
\(306\) −8.69225 19.7888i −0.496903 1.13125i
\(307\) 9.99990 + 5.77344i 0.570724 + 0.329508i 0.757439 0.652906i \(-0.226451\pi\)
−0.186714 + 0.982414i \(0.559784\pi\)
\(308\) 7.39792 + 8.39342i 0.421536 + 0.478260i
\(309\) 3.40037 + 16.1964i 0.193440 + 0.921384i
\(310\) −7.00170 5.87513i −0.397670 0.333685i
\(311\) 4.17791 23.6941i 0.236908 1.34357i −0.601651 0.798759i \(-0.705490\pi\)
0.838559 0.544811i \(-0.183399\pi\)
\(312\) −2.00589 2.23899i −0.113561 0.126758i
\(313\) 20.8975 + 24.9047i 1.18120 + 1.40770i 0.892960 + 0.450136i \(0.148624\pi\)
0.288236 + 0.957559i \(0.406931\pi\)
\(314\) 2.26473 3.92262i 0.127806 0.221366i
\(315\) 6.80965 6.83499i 0.383680 0.385108i
\(316\) 7.92734 + 13.7305i 0.445947 + 0.772404i
\(317\) 1.72725 4.74558i 0.0970120 0.266538i −0.881688 0.471832i \(-0.843593\pi\)
0.978700 + 0.205294i \(0.0658150\pi\)
\(318\) 9.17840 + 4.90971i 0.514699 + 0.275323i
\(319\) −3.32153 2.78709i −0.185970 0.156047i
\(320\) −1.16530 + 6.60877i −0.0651425 + 0.369441i
\(321\) 19.7557 7.92444i 1.10266 0.442299i
\(322\) −1.83578 + 1.61805i −0.102304 + 0.0901704i
\(323\) 11.2466i 0.625776i
\(324\) −10.3532 2.30905i −0.575177 0.128281i
\(325\) 1.83782 + 1.06106i 0.101944 + 0.0588572i
\(326\) −1.24929 1.48885i −0.0691920 0.0824598i
\(327\) 9.99381 12.7258i 0.552659 0.703738i
\(328\) 13.2780 15.8241i 0.733155 0.873740i
\(329\) 0.777536 0.304600i 0.0428669 0.0167932i
\(330\) 0.221830 + 6.84270i 0.0122113 + 0.376678i
\(331\) −11.5066 4.18808i −0.632463 0.230198i 0.00584016 0.999983i \(-0.498141\pi\)
−0.638303 + 0.769785i \(0.720363\pi\)
\(332\) −7.10058 −0.389695
\(333\) 24.3339 + 7.10948i 1.33349 + 0.389597i
\(334\) 12.5494i 0.686673i
\(335\) −2.17918 12.3587i −0.119061 0.675230i
\(336\) −0.334974 + 1.11297i −0.0182744 + 0.0607175i
\(337\) 16.9278 6.16122i 0.922116 0.335623i 0.163036 0.986620i \(-0.447871\pi\)
0.759080 + 0.650997i \(0.225649\pi\)
\(338\) 7.36183 8.77349i 0.400431 0.477215i
\(339\) −6.53210 2.14047i −0.354775 0.116255i
\(340\) −10.7021 3.89525i −0.580404 0.211250i
\(341\) −29.7675 −1.61200
\(342\) 3.10065 + 2.27652i 0.167664 + 0.123100i
\(343\) 10.4042 + 15.3217i 0.561772 + 0.827292i
\(344\) −15.0825 17.9747i −0.813196 0.969130i
\(345\) 2.14751 0.0696191i 0.115618 0.00374817i
\(346\) −2.10790 + 2.51210i −0.113321 + 0.135051i
\(347\) 3.91300 + 10.7509i 0.210061 + 0.577137i 0.999318 0.0369254i \(-0.0117564\pi\)
−0.789257 + 0.614063i \(0.789534\pi\)
\(348\) −0.349448 + 2.44215i −0.0187324 + 0.130913i
\(349\) −2.98735 + 8.20768i −0.159909 + 0.439347i −0.993610 0.112870i \(-0.963996\pi\)
0.833701 + 0.552217i \(0.186218\pi\)
\(350\) −0.205299 8.44371i −0.0109737 0.451335i
\(351\) −0.241782 + 3.12115i −0.0129054 + 0.166595i
\(352\) 9.92369 + 17.1883i 0.528934 + 0.916141i
\(353\) −17.0490 + 14.3058i −0.907428 + 0.761422i −0.971628 0.236515i \(-0.923995\pi\)
0.0642000 + 0.997937i \(0.479550\pi\)
\(354\) 1.23100 + 0.966724i 0.0654267 + 0.0513808i
\(355\) 1.31716 + 0.232250i 0.0699074 + 0.0123266i
\(356\) 1.21230 6.87529i 0.0642517 0.364389i
\(357\) −32.5299 16.3967i −1.72167 0.867807i
\(358\) 16.9809 14.2486i 0.897466 0.753063i
\(359\) 22.7063 + 13.1095i 1.19839 + 0.691891i 0.960196 0.279326i \(-0.0901110\pi\)
0.238195 + 0.971217i \(0.423444\pi\)
\(360\) 8.73858 5.83090i 0.460564 0.307316i
\(361\) −8.49921 14.7211i −0.447327 0.774793i
\(362\) 11.1144 9.32606i 0.584158 0.490167i
\(363\) 2.16500 + 2.41659i 0.113633 + 0.126838i
\(364\) −1.85752 0.281163i −0.0973607 0.0147369i
\(365\) 0.387945 + 1.06587i 0.0203060 + 0.0557902i
\(366\) 5.99014 18.2801i 0.313109 0.955519i
\(367\) 6.11382 16.7976i 0.319139 0.876827i −0.671584 0.740929i \(-0.734386\pi\)
0.990723 0.135898i \(-0.0433921\pi\)
\(368\) −0.224161 + 0.129419i −0.0116852 + 0.00674644i
\(369\) −21.4666 + 1.39329i −1.11750 + 0.0725319i
\(370\) −8.06231 + 4.65478i −0.419140 + 0.241990i
\(371\) 17.1982 3.46552i 0.892887 0.179921i
\(372\) 8.93922 + 14.3856i 0.463477 + 0.745860i
\(373\) −10.0649 + 3.66333i −0.521141 + 0.189680i −0.589179 0.808003i \(-0.700549\pi\)
0.0680373 + 0.997683i \(0.478326\pi\)
\(374\) 24.2905 8.84103i 1.25603 0.457159i
\(375\) −11.0823 + 14.1118i −0.572285 + 0.728730i
\(376\) 0.895441 0.157890i 0.0461788 0.00814258i
\(377\) 0.728069 0.0374974
\(378\) 11.1052 5.64941i 0.571191 0.290574i
\(379\) 13.1823 0.677127 0.338564 0.940944i \(-0.390059\pi\)
0.338564 + 0.940944i \(0.390059\pi\)
\(380\) 1.99613 0.351971i 0.102399 0.0180557i
\(381\) 9.47584 + 23.6234i 0.485462 + 1.21026i
\(382\) −5.47366 + 1.99225i −0.280057 + 0.101932i
\(383\) 14.9561 5.44356i 0.764219 0.278153i 0.0696426 0.997572i \(-0.477814\pi\)
0.694576 + 0.719419i \(0.255592\pi\)
\(384\) 4.95085 9.25531i 0.252647 0.472308i
\(385\) 7.62984 + 8.65654i 0.388852 + 0.441178i
\(386\) 1.07556 0.620974i 0.0547445 0.0316067i
\(387\) −2.67563 + 24.2883i −0.136010 + 1.23465i
\(388\) −8.59527 + 4.96248i −0.436359 + 0.251932i
\(389\) −8.53902 + 23.4608i −0.432945 + 1.18951i 0.511051 + 0.859551i \(0.329257\pi\)
−0.943996 + 0.329957i \(0.892966\pi\)
\(390\) −0.767089 0.856233i −0.0388431 0.0433570i
\(391\) −2.77467 7.62333i −0.140321 0.385529i
\(392\) 7.80978 + 18.5918i 0.394454 + 0.939028i
\(393\) 9.56591 29.1924i 0.482537 1.47256i
\(394\) 15.4301 12.9474i 0.777359 0.652281i
\(395\) 8.17584 + 14.1610i 0.411371 + 0.712516i
\(396\) 3.55776 12.1773i 0.178784 0.611932i
\(397\) −18.6785 10.7840i −0.937446 0.541235i −0.0482875 0.998833i \(-0.515376\pi\)
−0.889159 + 0.457599i \(0.848710\pi\)
\(398\) −9.23763 + 7.75129i −0.463041 + 0.388537i
\(399\) 6.47288 0.367511i 0.324049 0.0183986i
\(400\) 0.155136 0.879821i 0.00775681 0.0439911i
\(401\) 9.32277 + 1.64386i 0.465557 + 0.0820903i 0.401506 0.915856i \(-0.368487\pi\)
0.0640509 + 0.997947i \(0.479598\pi\)
\(402\) 2.29556 16.0427i 0.114492 0.800137i
\(403\) 3.82900 3.21291i 0.190736 0.160046i
\(404\) −1.46117 2.53083i −0.0726961 0.125913i
\(405\) −10.6777 2.38144i −0.530581 0.118335i
\(406\) −1.50945 2.47357i −0.0749128 0.122761i
\(407\) −10.3699 + 28.4910i −0.514016 + 1.41225i
\(408\) −31.1952 24.4982i −1.54439 1.21284i
\(409\) −4.45219 12.2323i −0.220146 0.604847i 0.779625 0.626247i \(-0.215410\pi\)
−0.999771 + 0.0213999i \(0.993188\pi\)
\(410\) 5.07776 6.05144i 0.250773 0.298859i
\(411\) 3.05559 + 4.91726i 0.150721 + 0.242551i
\(412\) 7.23878 + 8.62684i 0.356629 + 0.425014i
\(413\) 2.63731 0.0641233i 0.129774 0.00315530i
\(414\) 2.66338 + 0.778141i 0.130898 + 0.0382435i
\(415\) −7.32317 −0.359480
\(416\) −3.13168 1.13984i −0.153543 0.0558851i
\(417\) 5.14071 4.60551i 0.251742 0.225533i
\(418\) −2.95714 + 3.52418i −0.144638 + 0.172373i
\(419\) −11.0177 + 4.01012i −0.538251 + 0.195907i −0.596819 0.802376i \(-0.703569\pi\)
0.0585680 + 0.998283i \(0.481347\pi\)
\(420\) 1.89216 6.28680i 0.0923280 0.306765i
\(421\) −2.93922 16.6692i −0.143249 0.812405i −0.968756 0.248014i \(-0.920222\pi\)
0.825508 0.564391i \(-0.190889\pi\)
\(422\) 13.7691i 0.670272i
\(423\) −0.763251 0.560385i −0.0371106 0.0272469i
\(424\) 19.1024 0.927696
\(425\) 26.3123 + 9.57690i 1.27633 + 0.464548i
\(426\) 1.52299 + 0.814679i 0.0737893 + 0.0394713i
\(427\) −11.8263 30.1884i −0.572316 1.46092i
\(428\) 9.31041 11.0957i 0.450036 0.536332i
\(429\) −3.70626 0.530330i −0.178940 0.0256046i
\(430\) −5.76785 6.87386i −0.278151 0.331487i
\(431\) −1.64280 0.948469i −0.0791307 0.0456861i 0.459913 0.887964i \(-0.347881\pi\)
−0.539043 + 0.842278i \(0.681214\pi\)
\(432\) 1.26954 0.353756i 0.0610810 0.0170201i
\(433\) 8.59518i 0.413058i −0.978440 0.206529i \(-0.933783\pi\)
0.978440 0.206529i \(-0.0662168\pi\)
\(434\) −18.8541 6.34773i −0.905024 0.304701i
\(435\) −0.360403 + 2.51871i −0.0172800 + 0.120763i
\(436\) 1.91199 10.8434i 0.0915676 0.519306i
\(437\) 1.10603 + 0.928067i 0.0529085 + 0.0443955i
\(438\) 0.0474613 + 1.46402i 0.00226779 + 0.0699535i
\(439\) 5.95017 16.3480i 0.283986 0.780246i −0.712891 0.701275i \(-0.752614\pi\)
0.996877 0.0789705i \(-0.0251633\pi\)
\(440\) 6.28207 + 10.8809i 0.299486 + 0.518725i
\(441\) 8.37400 19.2581i 0.398762 0.917055i
\(442\) −2.17025 + 3.75898i −0.103228 + 0.178796i
\(443\) −19.6774 23.4506i −0.934901 1.11417i −0.993264 0.115876i \(-0.963032\pi\)
0.0583624 0.998295i \(-0.481412\pi\)
\(444\) 16.8828 3.54447i 0.801223 0.168213i
\(445\) 1.25030 7.09081i 0.0592700 0.336137i
\(446\) 4.89977 + 4.11140i 0.232011 + 0.194680i
\(447\) −18.1575 + 16.2671i −0.858823 + 0.769409i
\(448\) 2.88524 + 14.3185i 0.136315 + 0.676485i
\(449\) 23.7529 + 13.7137i 1.12097 + 0.647191i 0.941648 0.336600i \(-0.109277\pi\)
0.179320 + 0.983791i \(0.442610\pi\)
\(450\) −7.96644 + 5.31569i −0.375542 + 0.250584i
\(451\) 25.7275i 1.21146i
\(452\) −4.60642 + 0.812237i −0.216668 + 0.0382044i
\(453\) 20.1628 + 10.7855i 0.947329 + 0.506745i
\(454\) −15.3156 2.70056i −0.718798 0.126743i
\(455\) −1.91575 0.289977i −0.0898120 0.0135943i
\(456\) 6.98807 + 0.999926i 0.327246 + 0.0468258i
\(457\) 3.98175 + 22.5816i 0.186259 + 1.05632i 0.924328 + 0.381600i \(0.124627\pi\)
−0.738069 + 0.674725i \(0.764262\pi\)
\(458\) 4.04785 7.01109i 0.189144 0.327607i
\(459\) 4.00953 + 41.1112i 0.187149 + 1.91891i
\(460\) 1.26621 0.731047i 0.0590374 0.0340852i
\(461\) 28.3324 + 10.3121i 1.31957 + 0.480284i 0.903321 0.428966i \(-0.141122\pi\)
0.416250 + 0.909250i \(0.363344\pi\)
\(462\) 5.88214 + 13.6913i 0.273662 + 0.636977i
\(463\) −22.9581 19.2641i −1.06695 0.895279i −0.0721787 0.997392i \(-0.522995\pi\)
−0.994773 + 0.102113i \(0.967440\pi\)
\(464\) −0.104832 0.288025i −0.00486672 0.0133712i
\(465\) 9.21945 + 14.8366i 0.427542 + 0.688031i
\(466\) 1.34497 + 7.62769i 0.0623045 + 0.353346i
\(467\) −1.17552 + 2.03607i −0.0543967 + 0.0942179i −0.891942 0.452151i \(-0.850657\pi\)
0.837545 + 0.546369i \(0.183990\pi\)
\(468\) 0.856702 + 1.95037i 0.0396011 + 0.0901557i
\(469\) −14.2282 23.3161i −0.656998 1.07664i
\(470\) 0.342434 0.0603803i 0.0157953 0.00278514i
\(471\) −6.44736 + 5.77612i −0.297079 + 0.266149i
\(472\) 2.82881 + 0.498795i 0.130207 + 0.0229589i
\(473\) −28.7800 5.07470i −1.32331 0.233335i
\(474\) 4.33869 + 20.6658i 0.199283 + 0.949212i
\(475\) −4.90769 + 0.865359i −0.225180 + 0.0397054i
\(476\) −24.7815 + 0.602533i −1.13586 + 0.0276171i
\(477\) −13.7471 14.3787i −0.629436 0.658354i
\(478\) 6.02609 10.4375i 0.275627 0.477400i
\(479\) 3.25239 + 18.4452i 0.148606 + 0.842784i 0.964401 + 0.264444i \(0.0851883\pi\)
−0.815796 + 0.578340i \(0.803701\pi\)
\(480\) 5.49341 10.2696i 0.250739 0.468741i
\(481\) −1.74125 4.78405i −0.0793943 0.218134i
\(482\) 9.70215 + 8.14107i 0.441921 + 0.370816i
\(483\) 4.29688 1.84605i 0.195515 0.0839981i
\(484\) 2.07469 + 0.755125i 0.0943040 + 0.0343239i
\(485\) −8.86472 + 5.11805i −0.402526 + 0.232398i
\(486\) −12.1458 7.21627i −0.550947 0.327337i
\(487\) 0.370050 0.640946i 0.0167686 0.0290440i −0.857519 0.514452i \(-0.827995\pi\)
0.874288 + 0.485408i \(0.161329\pi\)
\(488\) −6.13021 34.7661i −0.277502 1.57379i
\(489\) 1.38281 + 3.44737i 0.0625330 + 0.155895i
\(490\) 2.98661 + 7.10986i 0.134921 + 0.321191i
\(491\) 13.6257 + 2.40259i 0.614921 + 0.108427i 0.472429 0.881369i \(-0.343377\pi\)
0.142492 + 0.989796i \(0.454488\pi\)
\(492\) −12.4332 + 7.72600i −0.560533 + 0.348315i
\(493\) 9.46075 1.66819i 0.426091 0.0751313i
\(494\) 0.772488i 0.0347559i
\(495\) 3.66929 12.5590i 0.164922 0.564487i
\(496\) −1.82236 1.05214i −0.0818262 0.0472424i
\(497\) 2.85374 0.575042i 0.128008 0.0257942i
\(498\) −8.98685 2.94486i −0.402710 0.131962i
\(499\) 1.83412 + 1.53901i 0.0821066 + 0.0688956i 0.682917 0.730496i \(-0.260711\pi\)
−0.600811 + 0.799391i \(0.705155\pi\)
\(500\) −2.12023 + 12.0244i −0.0948195 + 0.537748i
\(501\) 7.46826 22.7910i 0.333657 1.01823i
\(502\) 14.9208 + 17.7819i 0.665947 + 0.793645i
\(503\) −0.926534 + 1.60480i −0.0413121 + 0.0715547i −0.885942 0.463796i \(-0.846487\pi\)
0.844630 + 0.535350i \(0.179820\pi\)
\(504\) 13.0803 18.7547i 0.582644 0.835400i
\(505\) −1.50698 2.61016i −0.0670596 0.116151i
\(506\) −1.13500 + 3.11837i −0.0504567 + 0.138629i
\(507\) −18.5910 + 11.5524i −0.825655 + 0.513062i
\(508\) 13.2680 + 11.1332i 0.588671 + 0.493954i
\(509\) −0.923884 + 5.23961i −0.0409505 + 0.232242i −0.998413 0.0563160i \(-0.982065\pi\)
0.957463 + 0.288558i \(0.0931757\pi\)
\(510\) −11.9296 9.36856i −0.528253 0.414847i
\(511\) 1.63243 + 1.85210i 0.0722144 + 0.0819319i
\(512\) 2.86433i 0.126587i
\(513\) −4.27631 5.97962i −0.188804 0.264007i
\(514\) −9.37492 5.41261i −0.413510 0.238740i
\(515\) 7.46570 + 8.89728i 0.328978 + 0.392061i
\(516\) 6.19025 + 15.4323i 0.272510 + 0.679371i
\(517\) 0.727924 0.867506i 0.0320140 0.0381529i
\(518\) −12.6436 + 15.8342i −0.555526 + 0.695716i
\(519\) 5.32313 3.30779i 0.233659 0.145196i
\(520\) −1.98247 0.721560i −0.0869371 0.0316425i
\(521\) 24.4240 1.07004 0.535018 0.844841i \(-0.320305\pi\)
0.535018 + 0.844841i \(0.320305\pi\)
\(522\) −1.45512 + 2.94598i −0.0636890 + 0.128942i
\(523\) 30.7392i 1.34413i 0.740492 + 0.672065i \(0.234593\pi\)
−0.740492 + 0.672065i \(0.765407\pi\)
\(524\) −3.62994 20.5864i −0.158575 0.899322i
\(525\) −4.65208 + 15.4568i −0.203033 + 0.674589i
\(526\) −12.1151 + 4.40952i −0.528242 + 0.192264i
\(527\) 42.3936 50.5227i 1.84669 2.20080i
\(528\) 0.323854 + 1.54256i 0.0140939 + 0.0671313i
\(529\) −20.6343 7.51026i −0.897142 0.326533i
\(530\) 7.30513 0.317315
\(531\) −1.66031 2.48824i −0.0720511 0.107981i
\(532\) 3.76592 2.29808i 0.163273 0.0996342i
\(533\) 2.77686 + 3.30933i 0.120279 + 0.143343i
\(534\) 4.38576 8.19892i 0.189791 0.354802i
\(535\) 9.60227 11.4435i 0.415142 0.494747i
\(536\) −10.1720 27.9474i −0.439365 1.20715i
\(537\) −39.3184 + 15.7715i −1.69671 + 0.680589i
\(538\) −9.42992 + 25.9085i −0.406553 + 1.11699i
\(539\) 22.3353 + 11.4859i 0.962048 + 0.494731i
\(540\) −7.17124 + 1.99825i −0.308601 + 0.0859910i
\(541\) 14.3316 + 24.8231i 0.616166 + 1.06723i 0.990179 + 0.139807i \(0.0446481\pi\)
−0.374013 + 0.927423i \(0.622019\pi\)
\(542\) −9.04679 + 7.59115i −0.388593 + 0.326068i
\(543\) −25.7348 + 10.3228i −1.10439 + 0.442994i
\(544\) −43.3056 7.63595i −1.85671 0.327389i
\(545\) 1.97193 11.1833i 0.0844680 0.479042i
\(546\) −2.23437 1.12623i −0.0956221 0.0481983i
\(547\) −28.4534 + 23.8752i −1.21658 + 1.02083i −0.217582 + 0.976042i \(0.569817\pi\)
−0.998996 + 0.0447884i \(0.985739\pi\)
\(548\) 3.41169 + 1.96974i 0.145740 + 0.0841430i
\(549\) −21.7574 + 29.6338i −0.928582 + 1.26474i
\(550\) −5.72699 9.91944i −0.244200 0.422966i
\(551\) −1.30973 + 1.09899i −0.0557962 + 0.0468186i
\(552\) 4.98346 1.04625i 0.212110 0.0445316i
\(553\) 27.8119 + 22.2077i 1.18268 + 0.944366i
\(554\) 5.55975 + 15.2753i 0.236211 + 0.648985i
\(555\) 17.4121 3.65559i 0.739101 0.155171i
\(556\) 1.60634 4.41339i 0.0681242 0.187170i
\(557\) 20.8533 12.0396i 0.883581 0.510136i 0.0117433 0.999931i \(-0.496262\pi\)
0.871837 + 0.489795i \(0.162929\pi\)
\(558\) 5.34770 + 21.9146i 0.226386 + 0.927718i
\(559\) 4.24971 2.45357i 0.179743 0.103775i
\(560\) 0.161129 + 0.799627i 0.00680893 + 0.0337904i
\(561\) −49.3754 + 1.60068i −2.08463 + 0.0675806i
\(562\) −8.18612 + 2.97950i −0.345311 + 0.125683i
\(563\) 5.49200 1.99893i 0.231460 0.0842447i −0.223686 0.974661i \(-0.571809\pi\)
0.455147 + 0.890417i \(0.349587\pi\)
\(564\) −0.637832 0.0912677i −0.0268576 0.00384306i
\(565\) −4.75083 + 0.837699i −0.199869 + 0.0352423i
\(566\) −12.0902 −0.508187
\(567\) −23.5302 + 3.65107i −0.988175 + 0.153331i
\(568\) 3.16971 0.132998
\(569\) −14.3012 + 2.52168i −0.599536 + 0.105714i −0.465176 0.885218i \(-0.654009\pi\)
−0.134360 + 0.990933i \(0.542898\pi\)
\(570\) 2.67237 + 0.382391i 0.111933 + 0.0160166i
\(571\) 37.5999 13.6852i 1.57351 0.572710i 0.599728 0.800204i \(-0.295276\pi\)
0.973779 + 0.227494i \(0.0730533\pi\)
\(572\) −2.39406 + 0.871365i −0.100101 + 0.0364336i
\(573\) 11.1263 0.360699i 0.464808 0.0150684i
\(574\) 5.48622 16.2952i 0.228991 0.680149i
\(575\) −3.11312 + 1.79736i −0.129826 + 0.0749550i
\(576\) 11.9711 11.4452i 0.498794 0.476884i
\(577\) 10.4145 6.01282i 0.433561 0.250317i −0.267301 0.963613i \(-0.586132\pi\)
0.700863 + 0.713296i \(0.252799\pi\)
\(578\) −14.3186 + 39.3399i −0.595573 + 1.63632i
\(579\) −2.32287 + 0.487676i −0.0965351 + 0.0202671i
\(580\) 0.592164 + 1.62696i 0.0245883 + 0.0675557i
\(581\) −14.8412 + 5.81404i −0.615715 + 0.241207i
\(582\) −12.9367 + 2.71601i −0.536244 + 0.112582i
\(583\) 18.2253 15.2929i 0.754816 0.633366i
\(584\) 1.34407 + 2.32800i 0.0556180 + 0.0963332i
\(585\) 0.883558 + 2.01151i 0.0365306 + 0.0831655i
\(586\) −1.28314 0.740824i −0.0530062 0.0306032i
\(587\) −13.0785 + 10.9742i −0.539807 + 0.452952i −0.871472 0.490445i \(-0.836834\pi\)
0.331665 + 0.943397i \(0.392390\pi\)
\(588\) −1.15658 14.2431i −0.0476966 0.587375i
\(589\) −2.03824 + 11.5594i −0.0839843 + 0.476299i
\(590\) 1.08179 + 0.190749i 0.0445366 + 0.00785301i
\(591\) −35.7278 + 14.3312i −1.46964 + 0.589506i
\(592\) −1.64186 + 1.37768i −0.0674800 + 0.0566224i
\(593\) −8.82192 15.2800i −0.362273 0.627475i 0.626062 0.779774i \(-0.284666\pi\)
−0.988335 + 0.152299i \(0.951332\pi\)
\(594\) 9.55322 13.9367i 0.391973 0.571828i
\(595\) −25.5583 + 0.621421i −1.04779 + 0.0254758i
\(596\) −5.67378 + 15.5886i −0.232407 + 0.638533i
\(597\) 21.3893 8.57972i 0.875407 0.351145i
\(598\) −0.190582 0.523620i −0.00779348 0.0214124i
\(599\) 9.65598 11.5076i 0.394533 0.470186i −0.531812 0.846862i \(-0.678489\pi\)
0.926345 + 0.376677i \(0.122933\pi\)
\(600\) −8.29002 + 15.4977i −0.338439 + 0.632691i
\(601\) −4.19281 4.99680i −0.171028 0.203824i 0.673721 0.738986i \(-0.264695\pi\)
−0.844749 + 0.535162i \(0.820251\pi\)
\(602\) −17.1465 9.35135i −0.698838 0.381132i
\(603\) −13.7161 + 27.7690i −0.558564 + 1.13084i
\(604\) 15.5599 0.633122
\(605\) 2.13973 + 0.778797i 0.0869923 + 0.0316626i
\(606\) −0.799711 3.80914i −0.0324861 0.154736i
\(607\) 20.8219 24.8146i 0.845136 1.00719i −0.154679 0.987965i \(-0.549434\pi\)
0.999815 0.0192294i \(-0.00612128\pi\)
\(608\) 7.35413 2.67669i 0.298250 0.108554i
\(609\) 1.26927 + 5.39055i 0.0514332 + 0.218436i
\(610\) −2.34431 13.2952i −0.0949183 0.538308i
\(611\) 0.190154i 0.00769283i
\(612\) 15.6010 + 23.3807i 0.630634 + 0.945110i
\(613\) 3.85405 0.155663 0.0778317 0.996967i \(-0.475200\pi\)
0.0778317 + 0.996967i \(0.475200\pi\)
\(614\) 9.83386 + 3.57923i 0.396862 + 0.144446i
\(615\) −12.8230 + 7.96820i −0.517073 + 0.321309i
\(616\) 21.3698 + 17.0637i 0.861015 + 0.687516i
\(617\) −20.8477 + 24.8453i −0.839295 + 1.00023i 0.160617 + 0.987017i \(0.448652\pi\)
−0.999913 + 0.0132165i \(0.995793\pi\)
\(618\) 5.58391 + 13.9207i 0.224618 + 0.559974i
\(619\) −12.0752 14.3907i −0.485344 0.578410i 0.466683 0.884425i \(-0.345449\pi\)
−0.952027 + 0.306015i \(0.901004\pi\)
\(620\) 10.2939 + 5.94318i 0.413413 + 0.238684i
\(621\) −4.37388 2.99818i −0.175518 0.120313i
\(622\) 21.8053i 0.874313i
\(623\) −3.09570 15.3629i −0.124026 0.615502i
\(624\) −0.208151 0.163465i −0.00833271 0.00654383i
\(625\) 0.871603 4.94311i 0.0348641 0.197724i
\(626\) 22.5712 + 18.9395i 0.902125 + 0.756973i
\(627\) 7.46772 4.64044i 0.298232 0.185321i
\(628\) −2.01464 + 5.53517i −0.0803928 + 0.220877i
\(629\) −33.5878 58.1758i −1.33923 2.31962i
\(630\) 5.00217 7.17215i 0.199291 0.285745i
\(631\) 3.17557 5.50025i 0.126417 0.218961i −0.795869 0.605469i \(-0.792985\pi\)
0.922286 + 0.386508i \(0.126319\pi\)
\(632\) 24.9094 + 29.6859i 0.990843 + 1.18084i
\(633\) 8.19415 25.0061i 0.325688 0.993905i
\(634\) 0.794779 4.50742i 0.0315647 0.179012i
\(635\) 13.6839 + 11.4822i 0.543029 + 0.455655i
\(636\) −12.8636 4.21521i −0.510075 0.167144i
\(637\) −4.11269 + 0.933295i −0.162951 + 0.0369785i
\(638\) −3.40320 1.96484i −0.134734 0.0777888i
\(639\) −2.28108 2.38589i −0.0902383 0.0943842i
\(640\) 7.36635i 0.291180i
\(641\) 29.8979 5.27182i 1.18090 0.208224i 0.451473 0.892285i \(-0.350899\pi\)
0.729425 + 0.684061i \(0.239788\pi\)
\(642\) 16.3855 10.1819i 0.646684 0.401849i
\(643\) 3.55310 + 0.626507i 0.140121 + 0.0247070i 0.243268 0.969959i \(-0.421780\pi\)
−0.103148 + 0.994666i \(0.532892\pi\)
\(644\) 1.98571 2.48681i 0.0782479 0.0979942i
\(645\) 6.38430 + 15.9161i 0.251382 + 0.626697i
\(646\) −1.76996 10.0379i −0.0696382 0.394938i
\(647\) 4.12557 7.14569i 0.162193 0.280926i −0.773462 0.633843i \(-0.781477\pi\)
0.935655 + 0.352917i \(0.114810\pi\)
\(648\) −25.9009 1.16384i −1.01749 0.0457201i
\(649\) 3.09824 1.78877i 0.121617 0.0702155i
\(650\) 1.80730 + 0.657804i 0.0708882 + 0.0258012i
\(651\) 30.4633 + 22.7483i 1.19395 + 0.891577i
\(652\) 1.93620 + 1.62466i 0.0758274 + 0.0636268i
\(653\) 13.5899 + 37.3379i 0.531814 + 1.46115i 0.856910 + 0.515466i \(0.172381\pi\)
−0.325096 + 0.945681i \(0.605397\pi\)
\(654\) 6.91705 12.9310i 0.270478 0.505642i
\(655\) −3.74373 21.2318i −0.146280 0.829594i
\(656\) 0.909343 1.57503i 0.0355039 0.0614945i
\(657\) 0.785056 2.68705i 0.0306279 0.104832i
\(658\) 0.646040 0.394233i 0.0251852 0.0153688i
\(659\) 28.1991 4.97227i 1.09848 0.193692i 0.405107 0.914269i \(-0.367234\pi\)
0.693375 + 0.720577i \(0.256123\pi\)
\(660\) −1.82934 8.71342i −0.0712071 0.339169i
\(661\) −0.279751 0.0493277i −0.0108811 0.00191862i 0.168205 0.985752i \(-0.446203\pi\)
−0.179086 + 0.983833i \(0.557314\pi\)
\(662\) −10.9292 1.92711i −0.424775 0.0748992i
\(663\) 6.17839 5.53514i 0.239949 0.214967i
\(664\) −17.0917 + 3.01372i −0.663285 + 0.116955i
\(665\) 3.88397 2.37012i 0.150614 0.0919092i
\(666\) 22.8377 + 2.51583i 0.884944 + 0.0974863i
\(667\) −0.616645 + 1.06806i −0.0238766 + 0.0413555i
\(668\) −2.83395 16.0721i −0.109649 0.621850i
\(669\) −6.45175 10.3826i −0.249439 0.401415i
\(670\) −3.88998 10.6876i −0.150283 0.412899i
\(671\) −33.6815 28.2622i −1.30026 1.09105i
\(672\) 2.97969 25.1737i 0.114944 0.971098i
\(673\) −4.12151 1.50011i −0.158873 0.0578249i 0.261360 0.965241i \(-0.415829\pi\)
−0.420232 + 0.907417i \(0.638051\pi\)
\(674\) 14.1390 8.16315i 0.544614 0.314433i
\(675\) 17.6313 4.91291i 0.678628 0.189098i
\(676\) −7.44711 + 12.8988i −0.286427 + 0.496106i
\(677\) −8.81436 49.9887i −0.338763 1.92122i −0.386345 0.922354i \(-0.626263\pi\)
0.0475818 0.998867i \(-0.484849\pi\)
\(678\) −6.16698 0.882437i −0.236841 0.0338898i
\(679\) −13.9019 + 17.4101i −0.533506 + 0.668140i
\(680\) −27.4141 4.83385i −1.05128 0.185370i
\(681\) 26.2076 + 14.0189i 1.00428 + 0.537207i
\(682\) −26.5685 + 4.68475i −1.01736 + 0.179388i
\(683\) 40.5678i 1.55229i 0.630557 + 0.776143i \(0.282826\pi\)
−0.630557 + 0.776143i \(0.717174\pi\)
\(684\) −4.48513 2.21536i −0.171493 0.0847066i
\(685\) 3.51864 + 2.03149i 0.134440 + 0.0776191i
\(686\) 11.6974 + 12.0377i 0.446607 + 0.459602i
\(687\) −11.5237 + 10.3239i −0.439655 + 0.393882i
\(688\) −1.58254 1.32791i −0.0603336 0.0506259i
\(689\) −0.693713 + 3.93424i −0.0264284 + 0.149883i
\(690\) 1.90577 0.400108i 0.0725514 0.0152318i
\(691\) 2.07608 + 2.47418i 0.0789780 + 0.0941223i 0.804086 0.594512i \(-0.202655\pi\)
−0.725109 + 0.688635i \(0.758210\pi\)
\(692\) 2.13232 3.69328i 0.0810585 0.140397i
\(693\) −2.53473 28.3653i −0.0962863 1.07751i
\(694\) 5.18443 + 8.97970i 0.196798 + 0.340865i
\(695\) 1.65670 4.55175i 0.0628422 0.172658i
\(696\) 0.195379 + 6.02676i 0.00740581 + 0.228444i
\(697\) 43.6658 + 36.6400i 1.65396 + 1.38784i
\(698\) −1.37460 + 7.79577i −0.0520296 + 0.295074i
\(699\) 2.09671 14.6531i 0.0793050 0.554230i
\(700\) 2.16972 + 10.7676i 0.0820076 + 0.406976i
\(701\) 6.55534i 0.247592i 0.992308 + 0.123796i \(0.0395068\pi\)
−0.992308 + 0.123796i \(0.960493\pi\)
\(702\) 0.275401 + 2.82378i 0.0103943 + 0.106577i
\(703\) 10.3537 + 5.97771i 0.390497 + 0.225454i
\(704\) 12.7322 + 15.1736i 0.479862 + 0.571877i
\(705\) −0.657827 0.0941288i −0.0247752 0.00354509i
\(706\) −12.9654 + 15.4516i −0.487959 + 0.581527i
\(707\) −5.12631 4.09333i −0.192795 0.153946i
\(708\) −1.79486 0.960105i −0.0674549 0.0360830i
\(709\) 9.22465 + 3.35750i 0.346439 + 0.126094i 0.509379 0.860543i \(-0.329875\pi\)
−0.162939 + 0.986636i \(0.552098\pi\)
\(710\) 1.21216 0.0454915
\(711\) 4.41890 40.1132i 0.165722 1.50436i
\(712\) 17.0639i 0.639496i
\(713\) 1.47026 + 8.33826i 0.0550617 + 0.312270i
\(714\) −31.6145 9.51514i −1.18314 0.356095i
\(715\) −2.46911 + 0.898681i −0.0923393 + 0.0336088i
\(716\) −18.5299 + 22.0830i −0.692494 + 0.825282i
\(717\) −17.1554 + 15.3694i −0.640681 + 0.573979i
\(718\) 22.3292 + 8.12718i 0.833320 + 0.303304i
\(719\) −11.8461 −0.441784 −0.220892 0.975298i \(-0.570897\pi\)
−0.220892 + 0.975298i \(0.570897\pi\)
\(720\) 0.668533 0.639167i 0.0249147 0.0238204i
\(721\) 22.1938 + 12.1040i 0.826539 + 0.450778i
\(722\) −9.90260 11.8015i −0.368537 0.439205i
\(723\) −12.7752 20.5588i −0.475116 0.764591i
\(724\) −12.1282 + 14.4539i −0.450742 + 0.537174i
\(725\) −1.45590 4.00005i −0.0540707 0.148558i
\(726\) 2.31265 + 1.81617i 0.0858306 + 0.0674044i
\(727\) 15.4099 42.3383i 0.571521 1.57024i −0.230580 0.973053i \(-0.574062\pi\)
0.802101 0.597188i \(-0.203716\pi\)
\(728\) −4.59054 + 0.111614i −0.170137 + 0.00413668i
\(729\) 17.7636 + 20.3336i 0.657911 + 0.753095i
\(730\) 0.513998 + 0.890271i 0.0190239 + 0.0329504i
\(731\) 49.6002 41.6196i 1.83453 1.53935i
\(732\) −3.54353 + 24.7643i −0.130973 + 0.915314i
\(733\) 4.22098 + 0.744273i 0.155906 + 0.0274904i 0.251056 0.967973i \(-0.419222\pi\)
−0.0951505 + 0.995463i \(0.530333\pi\)
\(734\) 2.81322 15.9546i 0.103838 0.588895i
\(735\) −1.19284 14.6896i −0.0439985 0.541833i
\(736\) 4.32452 3.62871i 0.159404 0.133756i
\(737\) −32.0789 18.5208i −1.18164 0.682221i
\(738\) −18.9404 + 4.62192i −0.697204 + 0.170135i
\(739\) −6.26410 10.8497i −0.230429 0.399114i 0.727506 0.686102i \(-0.240679\pi\)
−0.957934 + 0.286988i \(0.907346\pi\)
\(740\) 9.27432 7.78208i 0.340931 0.286075i
\(741\) −0.459715 + 1.40292i −0.0168880 + 0.0515374i
\(742\) 14.8046 5.79971i 0.543494 0.212914i
\(743\) −5.70379 15.6710i −0.209252 0.574914i 0.790020 0.613081i \(-0.210070\pi\)
−0.999271 + 0.0381673i \(0.987848\pi\)
\(744\) 27.6231 + 30.8332i 1.01271 + 1.13040i
\(745\) −5.85164 + 16.0772i −0.214387 + 0.589025i
\(746\) −8.40674 + 4.85363i −0.307793 + 0.177704i
\(747\) 14.5685 + 10.6963i 0.533034 + 0.391357i
\(748\) −29.1126 + 16.8082i −1.06446 + 0.614567i
\(749\) 10.3747 30.8150i 0.379083 1.12595i
\(750\) −7.67040 + 14.3394i −0.280084 + 0.523599i
\(751\) −47.2397 + 17.1939i −1.72380 + 0.627413i −0.998159 0.0606582i \(-0.980680\pi\)
−0.725644 + 0.688071i \(0.758458\pi\)
\(752\) 0.0752253 0.0273798i 0.00274318 0.000998437i
\(753\) −16.5155 41.1732i −0.601857 1.50043i
\(754\) 0.649826 0.114582i 0.0236653 0.00417282i
\(755\) 16.0476 0.584033
\(756\) −12.9468 + 9.74307i −0.470870 + 0.354352i
\(757\) 8.96036 0.325670 0.162835 0.986653i \(-0.447936\pi\)
0.162835 + 0.986653i \(0.447936\pi\)
\(758\) 11.7656 2.07459i 0.427346 0.0753527i
\(759\) 3.91704 4.98783i 0.142179 0.181047i
\(760\) 4.65545 1.69444i 0.168871 0.0614639i
\(761\) −26.8181 + 9.76100i −0.972156 + 0.353836i −0.778786 0.627290i \(-0.784164\pi\)
−0.193370 + 0.981126i \(0.561942\pi\)
\(762\) 12.1753 + 19.5934i 0.441065 + 0.709792i
\(763\) −4.88241 24.2297i −0.176755 0.877176i
\(764\) 6.56027 3.78757i 0.237342 0.137030i
\(765\) 16.0901 + 24.1137i 0.581738 + 0.871832i
\(766\) 12.4921 7.21231i 0.451358 0.260591i
\(767\) −0.205459 + 0.564494i