Properties

Label 189.2.bd.a.185.14
Level $189$
Weight $2$
Character 189.185
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(47,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([7, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.47");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.bd (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 185.14
Character \(\chi\) \(=\) 189.185
Dual form 189.2.bd.a.47.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.882178 - 0.155552i) q^{2} +(1.65967 + 0.495491i) q^{3} +(-1.12534 + 0.409592i) q^{4} +(0.123522 - 0.0449584i) q^{5} +(1.54119 + 0.178947i) q^{6} +(1.69913 + 2.02805i) q^{7} +(-2.48059 + 1.43217i) q^{8} +(2.50898 + 1.64470i) q^{9} +O(q^{10})\) \(q+(0.882178 - 0.155552i) q^{2} +(1.65967 + 0.495491i) q^{3} +(-1.12534 + 0.409592i) q^{4} +(0.123522 - 0.0449584i) q^{5} +(1.54119 + 0.178947i) q^{6} +(1.69913 + 2.02805i) q^{7} +(-2.48059 + 1.43217i) q^{8} +(2.50898 + 1.64470i) q^{9} +(0.101975 - 0.0588754i) q^{10} +(1.37059 - 3.76567i) q^{11} +(-2.07064 + 0.122187i) q^{12} +(-1.02604 - 2.81901i) q^{13} +(1.81440 + 1.52479i) q^{14} +(0.227282 - 0.0134118i) q^{15} +(-0.130766 + 0.109725i) q^{16} +(-0.172311 - 0.298451i) q^{17} +(2.46920 + 1.06064i) q^{18} +(-4.24215 - 2.44921i) q^{19} +(-0.120590 + 0.101187i) q^{20} +(1.81510 + 4.20778i) q^{21} +(0.623349 - 3.53519i) q^{22} +(-6.27733 - 1.10686i) q^{23} +(-4.82657 + 1.14781i) q^{24} +(-3.81699 + 3.20283i) q^{25} +(-1.34365 - 2.32726i) q^{26} +(3.34913 + 3.97282i) q^{27} +(-2.74277 - 1.58630i) q^{28} +(2.29851 - 6.31510i) q^{29} +(0.198417 - 0.0471857i) q^{30} +(2.98538 + 8.20227i) q^{31} +(3.58403 - 4.27128i) q^{32} +(4.14058 - 5.57063i) q^{33} +(-0.198433 - 0.236483i) q^{34} +(0.301058 + 0.174119i) q^{35} +(-3.49712 - 0.823195i) q^{36} -7.28599 q^{37} +(-4.12331 - 1.50076i) q^{38} +(-0.306081 - 5.18700i) q^{39} +(-0.242020 + 0.288428i) q^{40} +(9.04416 - 3.29180i) q^{41} +(2.25577 + 3.42967i) q^{42} +(0.350643 + 1.98860i) q^{43} +4.79906i q^{44} +(0.383858 + 0.0903572i) q^{45} -5.70989 q^{46} +(4.17641 + 1.52009i) q^{47} +(-0.271395 + 0.117314i) q^{48} +(-1.22594 + 6.89181i) q^{49} +(-2.86905 + 3.41920i) q^{50} +(-0.138098 - 0.580706i) q^{51} +(2.30929 + 2.75210i) q^{52} +(-5.49931 - 3.17503i) q^{53} +(3.57251 + 2.98377i) q^{54} -0.526764i q^{55} +(-7.11934 - 2.59731i) q^{56} +(-5.82699 - 6.16681i) q^{57} +(1.04537 - 5.92857i) q^{58} +(0.136314 + 0.114381i) q^{59} +(-0.250277 + 0.108186i) q^{60} +(-1.59759 + 4.38933i) q^{61} +(3.90952 + 6.77148i) q^{62} +(0.927544 + 7.88287i) q^{63} +(2.66805 - 4.62120i) q^{64} +(-0.253476 - 0.302081i) q^{65} +(2.78620 - 5.55836i) q^{66} +(2.00174 - 11.3525i) q^{67} +(0.316152 + 0.265283i) q^{68} +(-9.86983 - 4.94738i) q^{69} +(0.292671 + 0.106774i) q^{70} +(0.373587 + 0.215690i) q^{71} +(-8.57923 - 0.486542i) q^{72} +1.52364i q^{73} +(-6.42754 + 1.13335i) q^{74} +(-7.92189 + 3.42435i) q^{75} +(5.77706 + 1.01865i) q^{76} +(9.96576 - 3.61872i) q^{77} +(-1.07687 - 4.52825i) q^{78} +(0.410757 + 2.32952i) q^{79} +(-0.0112194 + 0.0194325i) q^{80} +(3.58993 + 8.25302i) q^{81} +(7.46651 - 4.31079i) q^{82} +(6.81615 + 2.48087i) q^{83} +(-3.76609 - 3.99175i) q^{84} +(-0.0347021 - 0.0291185i) q^{85} +(0.618659 + 1.69975i) q^{86} +(6.94383 - 9.34206i) q^{87} +(1.99320 + 11.3040i) q^{88} +(-7.70903 + 13.3524i) q^{89} +(0.352686 + 0.0200014i) q^{90} +(3.97372 - 6.87070i) q^{91} +(7.51752 - 1.32554i) q^{92} +(0.890584 + 15.0923i) q^{93} +(3.92079 + 0.691340i) q^{94} +(-0.634113 - 0.111811i) q^{95} +(8.06467 - 5.31304i) q^{96} +(12.2061 - 2.15226i) q^{97} +(-0.00946529 + 6.27050i) q^{98} +(9.63217 - 7.19377i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} + 18 q^{6} - 6 q^{7} - 18 q^{8} - 15 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} + 18 q^{6} - 6 q^{7} - 18 q^{8} - 15 q^{9} - 9 q^{10} + 9 q^{11} - 9 q^{12} - 42 q^{14} - 24 q^{15} - 15 q^{16} - 9 q^{17} - 3 q^{18} - 9 q^{19} - 18 q^{20} + 15 q^{21} - 12 q^{22} + 30 q^{23} - 36 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} - 3 q^{30} - 9 q^{31} - 51 q^{32} - 9 q^{33} + 18 q^{34} - 9 q^{35} - 6 q^{37} - 9 q^{38} - 9 q^{39} - 9 q^{40} + 27 q^{42} - 12 q^{43} - 63 q^{45} - 6 q^{46} + 45 q^{47} + 30 q^{49} - 9 q^{50} + 33 q^{51} - 9 q^{52} + 45 q^{53} + 117 q^{54} - 51 q^{56} - 3 q^{58} - 9 q^{59} - 15 q^{60} - 63 q^{61} + 99 q^{62} - 33 q^{63} + 18 q^{64} - 102 q^{65} + 63 q^{66} - 3 q^{67} + 144 q^{68} - 108 q^{69} - 15 q^{70} + 18 q^{71} + 15 q^{72} - 33 q^{74} - 9 q^{75} - 36 q^{76} - 57 q^{77} + 66 q^{78} - 21 q^{79} - 72 q^{80} + 57 q^{81} - 18 q^{82} + 90 q^{83} + 51 q^{84} + 9 q^{85} - 33 q^{86} - 9 q^{87} + 45 q^{88} - 9 q^{89} - 81 q^{90} - 21 q^{91} + 150 q^{92} - 87 q^{93} - 9 q^{94} + 27 q^{95} - 9 q^{96} - 180 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.882178 0.155552i 0.623794 0.109992i 0.147188 0.989109i \(-0.452978\pi\)
0.476606 + 0.879117i \(0.341867\pi\)
\(3\) 1.65967 + 0.495491i 0.958208 + 0.286072i
\(4\) −1.12534 + 0.409592i −0.562672 + 0.204796i
\(5\) 0.123522 0.0449584i 0.0552408 0.0201060i −0.314252 0.949340i \(-0.601754\pi\)
0.369493 + 0.929234i \(0.379531\pi\)
\(6\) 1.54119 + 0.178947i 0.629190 + 0.0730549i
\(7\) 1.69913 + 2.02805i 0.642209 + 0.766529i
\(8\) −2.48059 + 1.43217i −0.877021 + 0.506348i
\(9\) 2.50898 + 1.64470i 0.836326 + 0.548233i
\(10\) 0.101975 0.0588754i 0.0322474 0.0186180i
\(11\) 1.37059 3.76567i 0.413249 1.13539i −0.542204 0.840247i \(-0.682410\pi\)
0.955453 0.295145i \(-0.0953679\pi\)
\(12\) −2.07064 + 0.122187i −0.597743 + 0.0352724i
\(13\) −1.02604 2.81901i −0.284571 0.781852i −0.996802 0.0799075i \(-0.974538\pi\)
0.712231 0.701945i \(-0.247685\pi\)
\(14\) 1.81440 + 1.52479i 0.484918 + 0.407519i
\(15\) 0.227282 0.0134118i 0.0586840 0.00346290i
\(16\) −0.130766 + 0.109725i −0.0326914 + 0.0274313i
\(17\) −0.172311 0.298451i −0.0417914 0.0723849i 0.844373 0.535756i \(-0.179973\pi\)
−0.886165 + 0.463371i \(0.846640\pi\)
\(18\) 2.46920 + 1.06064i 0.581996 + 0.249995i
\(19\) −4.24215 2.44921i −0.973216 0.561887i −0.0730010 0.997332i \(-0.523258\pi\)
−0.900215 + 0.435445i \(0.856591\pi\)
\(20\) −0.120590 + 0.101187i −0.0269649 + 0.0226262i
\(21\) 1.81510 + 4.20778i 0.396088 + 0.918213i
\(22\) 0.623349 3.53519i 0.132898 0.753704i
\(23\) −6.27733 1.10686i −1.30891 0.230797i −0.524700 0.851287i \(-0.675822\pi\)
−0.784214 + 0.620491i \(0.786934\pi\)
\(24\) −4.82657 + 1.14781i −0.985220 + 0.234296i
\(25\) −3.81699 + 3.20283i −0.763397 + 0.640566i
\(26\) −1.34365 2.32726i −0.263511 0.456414i
\(27\) 3.34913 + 3.97282i 0.644540 + 0.764570i
\(28\) −2.74277 1.58630i −0.518335 0.299783i
\(29\) 2.29851 6.31510i 0.426822 1.17268i −0.520908 0.853613i \(-0.674407\pi\)
0.947731 0.319072i \(-0.103371\pi\)
\(30\) 0.198417 0.0471857i 0.0362258 0.00861489i
\(31\) 2.98538 + 8.20227i 0.536191 + 1.47317i 0.851588 + 0.524212i \(0.175640\pi\)
−0.315397 + 0.948960i \(0.602138\pi\)
\(32\) 3.58403 4.27128i 0.633573 0.755063i
\(33\) 4.14058 5.57063i 0.720782 0.969723i
\(34\) −0.198433 0.236483i −0.0340310 0.0405565i
\(35\) 0.301058 + 0.174119i 0.0508880 + 0.0294315i
\(36\) −3.49712 0.823195i −0.582853 0.137199i
\(37\) −7.28599 −1.19781 −0.598905 0.800820i \(-0.704397\pi\)
−0.598905 + 0.800820i \(0.704397\pi\)
\(38\) −4.12331 1.50076i −0.668889 0.243456i
\(39\) −0.306081 5.18700i −0.0490123 0.830585i
\(40\) −0.242020 + 0.288428i −0.0382667 + 0.0456045i
\(41\) 9.04416 3.29180i 1.41246 0.514094i 0.480609 0.876935i \(-0.340415\pi\)
0.931851 + 0.362841i \(0.118193\pi\)
\(42\) 2.25577 + 3.42967i 0.348073 + 0.529209i
\(43\) 0.350643 + 1.98860i 0.0534726 + 0.303258i 0.999801 0.0199486i \(-0.00635026\pi\)
−0.946328 + 0.323207i \(0.895239\pi\)
\(44\) 4.79906i 0.723485i
\(45\) 0.383858 + 0.0903572i 0.0572221 + 0.0134697i
\(46\) −5.70989 −0.841878
\(47\) 4.17641 + 1.52009i 0.609192 + 0.221728i 0.628150 0.778093i \(-0.283813\pi\)
−0.0189578 + 0.999820i \(0.506035\pi\)
\(48\) −0.271395 + 0.117314i −0.0391725 + 0.0169328i
\(49\) −1.22594 + 6.89181i −0.175135 + 0.984545i
\(50\) −2.86905 + 3.41920i −0.405745 + 0.483549i
\(51\) −0.138098 0.580706i −0.0193376 0.0813152i
\(52\) 2.30929 + 2.75210i 0.320240 + 0.381648i
\(53\) −5.49931 3.17503i −0.755388 0.436123i 0.0722494 0.997387i \(-0.476982\pi\)
−0.827637 + 0.561263i \(0.810316\pi\)
\(54\) 3.57251 + 2.98377i 0.486157 + 0.406040i
\(55\) 0.526764i 0.0710288i
\(56\) −7.11934 2.59731i −0.951361 0.347081i
\(57\) −5.82699 6.16681i −0.771804 0.816814i
\(58\) 1.04537 5.92857i 0.137263 0.778460i
\(59\) 0.136314 + 0.114381i 0.0177466 + 0.0148912i 0.651618 0.758547i \(-0.274091\pi\)
−0.633871 + 0.773439i \(0.718535\pi\)
\(60\) −0.250277 + 0.108186i −0.0323107 + 0.0139667i
\(61\) −1.59759 + 4.38933i −0.204550 + 0.561996i −0.998970 0.0453721i \(-0.985553\pi\)
0.794420 + 0.607369i \(0.207775\pi\)
\(62\) 3.90952 + 6.77148i 0.496509 + 0.859979i
\(63\) 0.927544 + 7.88287i 0.116860 + 0.993148i
\(64\) 2.66805 4.62120i 0.333506 0.577649i
\(65\) −0.253476 0.302081i −0.0314399 0.0374686i
\(66\) 2.78620 5.55836i 0.342958 0.684187i
\(67\) 2.00174 11.3525i 0.244552 1.38692i −0.576979 0.816759i \(-0.695769\pi\)
0.821531 0.570164i \(-0.193120\pi\)
\(68\) 0.316152 + 0.265283i 0.0383390 + 0.0321702i
\(69\) −9.86983 4.94738i −1.18819 0.595595i
\(70\) 0.292671 + 0.106774i 0.0349809 + 0.0127619i
\(71\) 0.373587 + 0.215690i 0.0443366 + 0.0255977i 0.522004 0.852943i \(-0.325184\pi\)
−0.477668 + 0.878540i \(0.658518\pi\)
\(72\) −8.57923 0.486542i −1.01107 0.0573395i
\(73\) 1.52364i 0.178329i 0.996017 + 0.0891645i \(0.0284197\pi\)
−0.996017 + 0.0891645i \(0.971580\pi\)
\(74\) −6.42754 + 1.13335i −0.747186 + 0.131749i
\(75\) −7.92189 + 3.42435i −0.914741 + 0.395409i
\(76\) 5.77706 + 1.01865i 0.662674 + 0.116847i
\(77\) 9.96576 3.61872i 1.13570 0.412392i
\(78\) −1.07687 4.52825i −0.121931 0.512723i
\(79\) 0.410757 + 2.32952i 0.0462138 + 0.262091i 0.999157 0.0410582i \(-0.0130729\pi\)
−0.952943 + 0.303150i \(0.901962\pi\)
\(80\) −0.0112194 + 0.0194325i −0.00125436 + 0.00217262i
\(81\) 3.58993 + 8.25302i 0.398882 + 0.917002i
\(82\) 7.46651 4.31079i 0.824538 0.476047i
\(83\) 6.81615 + 2.48087i 0.748169 + 0.272311i 0.687835 0.725867i \(-0.258561\pi\)
0.0603341 + 0.998178i \(0.480783\pi\)
\(84\) −3.76609 3.99175i −0.410914 0.435536i
\(85\) −0.0347021 0.0291185i −0.00376397 0.00315834i
\(86\) 0.618659 + 1.69975i 0.0667117 + 0.183289i
\(87\) 6.94383 9.34206i 0.744456 1.00157i
\(88\) 1.99320 + 11.3040i 0.212476 + 1.20501i
\(89\) −7.70903 + 13.3524i −0.817156 + 1.41536i 0.0906137 + 0.995886i \(0.471117\pi\)
−0.907770 + 0.419469i \(0.862216\pi\)
\(90\) 0.352686 + 0.0200014i 0.0371764 + 0.00210833i
\(91\) 3.97372 6.87070i 0.416559 0.720245i
\(92\) 7.51752 1.32554i 0.783756 0.138197i
\(93\) 0.890584 + 15.0923i 0.0923493 + 1.56499i
\(94\) 3.92079 + 0.691340i 0.404398 + 0.0713063i
\(95\) −0.634113 0.111811i −0.0650586 0.0114716i
\(96\) 8.06467 5.31304i 0.823097 0.542260i
\(97\) 12.2061 2.15226i 1.23934 0.218529i 0.484708 0.874676i \(-0.338926\pi\)
0.754634 + 0.656147i \(0.227815\pi\)
\(98\) −0.00946529 + 6.27050i −0.000956138 + 0.633416i
\(99\) 9.63217 7.19377i 0.968070 0.723001i
\(100\) 2.98357 5.16769i 0.298357 0.516769i
\(101\) −0.655418 3.71706i −0.0652165 0.369861i −0.999897 0.0143715i \(-0.995425\pi\)
0.934680 0.355490i \(-0.115686\pi\)
\(102\) −0.212157 0.490805i −0.0210067 0.0485969i
\(103\) 3.42363 + 9.40634i 0.337340 + 0.926835i 0.986146 + 0.165881i \(0.0530466\pi\)
−0.648806 + 0.760954i \(0.724731\pi\)
\(104\) 6.58247 + 5.52335i 0.645464 + 0.541609i
\(105\) 0.413381 + 0.438150i 0.0403418 + 0.0427591i
\(106\) −5.34525 1.94551i −0.519176 0.188965i
\(107\) 4.00378 2.31158i 0.387060 0.223469i −0.293826 0.955859i \(-0.594928\pi\)
0.680885 + 0.732390i \(0.261595\pi\)
\(108\) −5.39616 3.09902i −0.519246 0.298203i
\(109\) −5.95833 + 10.3201i −0.570704 + 0.988489i 0.425789 + 0.904822i \(0.359996\pi\)
−0.996494 + 0.0836667i \(0.973337\pi\)
\(110\) −0.0819390 0.464699i −0.00781258 0.0443073i
\(111\) −12.0923 3.61014i −1.14775 0.342660i
\(112\) −0.444715 0.0787614i −0.0420216 0.00744225i
\(113\) −3.00669 0.530160i −0.282846 0.0498733i 0.0304256 0.999537i \(-0.490314\pi\)
−0.313271 + 0.949664i \(0.601425\pi\)
\(114\) −6.09970 4.53382i −0.571289 0.424632i
\(115\) −0.825153 + 0.145497i −0.0769459 + 0.0135676i
\(116\) 8.04811i 0.747248i
\(117\) 2.06212 8.76035i 0.190643 0.809894i
\(118\) 0.138046 + 0.0797007i 0.0127081 + 0.00733704i
\(119\) 0.312494 0.856559i 0.0286463 0.0785206i
\(120\) −0.544586 + 0.358775i −0.0497136 + 0.0327516i
\(121\) −3.87525 3.25172i −0.352296 0.295611i
\(122\) −0.726587 + 4.12068i −0.0657821 + 0.373069i
\(123\) 16.6413 0.981994i 1.50050 0.0885434i
\(124\) −6.71917 8.00759i −0.603399 0.719103i
\(125\) −0.656113 + 1.13642i −0.0586845 + 0.101645i
\(126\) 2.04445 + 6.80981i 0.182134 + 0.606666i
\(127\) 4.57273 + 7.92020i 0.405764 + 0.702804i 0.994410 0.105587i \(-0.0336720\pi\)
−0.588646 + 0.808391i \(0.700339\pi\)
\(128\) −2.17919 + 5.98727i −0.192615 + 0.529205i
\(129\) −0.403381 + 3.47414i −0.0355157 + 0.305881i
\(130\) −0.270600 0.227061i −0.0237332 0.0199145i
\(131\) −0.968114 + 5.49045i −0.0845845 + 0.479703i 0.912861 + 0.408271i \(0.133868\pi\)
−0.997445 + 0.0714321i \(0.977243\pi\)
\(132\) −2.37789 + 7.96483i −0.206969 + 0.693249i
\(133\) −2.24084 12.7648i −0.194306 1.10685i
\(134\) 10.3263i 0.892052i
\(135\) 0.592304 + 0.340161i 0.0509774 + 0.0292764i
\(136\) 0.854863 + 0.493555i 0.0733039 + 0.0423220i
\(137\) −9.29828 11.0813i −0.794406 0.946736i 0.205082 0.978745i \(-0.434254\pi\)
−0.999488 + 0.0320091i \(0.989809\pi\)
\(138\) −9.47651 2.82920i −0.806694 0.240838i
\(139\) 8.80185 10.4896i 0.746563 0.889720i −0.250356 0.968154i \(-0.580548\pi\)
0.996919 + 0.0784343i \(0.0249921\pi\)
\(140\) −0.410111 0.0726329i −0.0346607 0.00613860i
\(141\) 6.17825 + 4.59221i 0.520302 + 0.386734i
\(142\) 0.363121 + 0.132165i 0.0304724 + 0.0110911i
\(143\) −12.0217 −1.00531
\(144\) −0.508553 + 0.0602285i −0.0423794 + 0.00501904i
\(145\) 0.883393i 0.0733618i
\(146\) 0.237005 + 1.34412i 0.0196147 + 0.111241i
\(147\) −5.44948 + 10.8307i −0.449466 + 0.893298i
\(148\) 8.19925 2.98428i 0.673974 0.245306i
\(149\) −10.4655 + 12.4723i −0.857370 + 1.02177i 0.142120 + 0.989849i \(0.454608\pi\)
−0.999490 + 0.0319247i \(0.989836\pi\)
\(150\) −6.45585 + 4.25314i −0.527118 + 0.347268i
\(151\) 3.98643 + 1.45094i 0.324411 + 0.118076i 0.499092 0.866549i \(-0.333667\pi\)
−0.174681 + 0.984625i \(0.555889\pi\)
\(152\) 14.0307 1.13804
\(153\) 0.0585380 1.03220i 0.00473252 0.0834488i
\(154\) 8.22867 4.74255i 0.663085 0.382165i
\(155\) 0.737523 + 0.878945i 0.0592393 + 0.0705986i
\(156\) 2.46900 + 5.71179i 0.197678 + 0.457310i
\(157\) 2.94110 3.50506i 0.234725 0.279734i −0.635805 0.771850i \(-0.719332\pi\)
0.870530 + 0.492115i \(0.163776\pi\)
\(158\) 0.724721 + 1.99116i 0.0576557 + 0.158408i
\(159\) −7.55381 7.99434i −0.599056 0.633992i
\(160\) 0.250677 0.688731i 0.0198178 0.0544489i
\(161\) −8.42121 14.6114i −0.663684 1.15154i
\(162\) 4.45073 + 6.72221i 0.349682 + 0.528147i
\(163\) −4.14531 7.17988i −0.324686 0.562372i 0.656763 0.754097i \(-0.271925\pi\)
−0.981449 + 0.191725i \(0.938592\pi\)
\(164\) −8.82950 + 7.40883i −0.689468 + 0.578532i
\(165\) 0.261007 0.874251i 0.0203193 0.0680604i
\(166\) 6.39896 + 1.12831i 0.496655 + 0.0875737i
\(167\) −0.761050 + 4.31613i −0.0588919 + 0.333992i −0.999991 0.00413722i \(-0.998683\pi\)
0.941100 + 0.338130i \(0.109794\pi\)
\(168\) −10.5288 7.83824i −0.812312 0.604733i
\(169\) 3.06452 2.57143i 0.235732 0.197803i
\(170\) −0.0351428 0.0202897i −0.00269533 0.00155615i
\(171\) −6.61525 13.1221i −0.505881 1.00347i
\(172\) −1.20911 2.09423i −0.0921935 0.159684i
\(173\) −12.7106 + 10.6655i −0.966373 + 0.810883i −0.981978 0.188995i \(-0.939477\pi\)
0.0156052 + 0.999878i \(0.495032\pi\)
\(174\) 4.67252 9.32148i 0.354223 0.706659i
\(175\) −12.9810 2.29901i −0.981274 0.173789i
\(176\) 0.233963 + 0.642808i 0.0176356 + 0.0484535i
\(177\) 0.169561 + 0.257377i 0.0127450 + 0.0193457i
\(178\) −4.72374 + 12.9784i −0.354059 + 0.972770i
\(179\) 9.01384 5.20414i 0.673726 0.388976i −0.123761 0.992312i \(-0.539496\pi\)
0.797487 + 0.603336i \(0.206162\pi\)
\(180\) −0.468982 + 0.0555420i −0.0349558 + 0.00413985i
\(181\) −14.3465 + 8.28296i −1.06637 + 0.615668i −0.927187 0.374599i \(-0.877780\pi\)
−0.139181 + 0.990267i \(0.544447\pi\)
\(182\) 2.43677 6.67929i 0.180626 0.495102i
\(183\) −4.82633 + 6.49323i −0.356773 + 0.479994i
\(184\) 17.1567 6.24452i 1.26481 0.460352i
\(185\) −0.899982 + 0.327567i −0.0661680 + 0.0240832i
\(186\) 3.13328 + 13.1755i 0.229743 + 0.966076i
\(187\) −1.36003 + 0.239811i −0.0994555 + 0.0175367i
\(188\) −5.32251 −0.388184
\(189\) −2.36648 + 13.5425i −0.172136 + 0.985073i
\(190\) −0.576792 −0.0418449
\(191\) 10.2170 1.80153i 0.739274 0.130354i 0.208685 0.977983i \(-0.433082\pi\)
0.530589 + 0.847629i \(0.321971\pi\)
\(192\) 6.71783 6.34764i 0.484818 0.458102i
\(193\) −17.1323 + 6.23566i −1.23321 + 0.448853i −0.874696 0.484671i \(-0.838939\pi\)
−0.358516 + 0.933524i \(0.616717\pi\)
\(194\) 10.4332 3.79736i 0.749057 0.272635i
\(195\) −0.271007 0.626949i −0.0194072 0.0448968i
\(196\) −1.44322 8.25780i −0.103087 0.589843i
\(197\) −18.9850 + 10.9610i −1.35263 + 0.780941i −0.988617 0.150454i \(-0.951927\pi\)
−0.364012 + 0.931394i \(0.618593\pi\)
\(198\) 7.37828 7.84448i 0.524352 0.557483i
\(199\) 6.28334 3.62769i 0.445414 0.257160i −0.260477 0.965480i \(-0.583880\pi\)
0.705891 + 0.708320i \(0.250547\pi\)
\(200\) 4.88138 13.4115i 0.345166 0.948334i
\(201\) 8.94726 17.8494i 0.631091 1.25900i
\(202\) −1.15639 3.17715i −0.0813633 0.223544i
\(203\) 16.7128 6.06867i 1.17301 0.425937i
\(204\) 0.393261 + 0.596931i 0.0275337 + 0.0417935i
\(205\) 0.969161 0.813222i 0.0676891 0.0567979i
\(206\) 4.48342 + 7.76552i 0.312375 + 0.541049i
\(207\) −13.9292 13.1014i −0.968148 0.910611i
\(208\) 0.443487 + 0.256047i 0.0307503 + 0.0177537i
\(209\) −15.0372 + 12.6177i −1.04014 + 0.872783i
\(210\) 0.432830 + 0.322224i 0.0298681 + 0.0222356i
\(211\) 0.796078 4.51478i 0.0548043 0.310810i −0.945067 0.326878i \(-0.894003\pi\)
0.999871 + 0.0160673i \(0.00511459\pi\)
\(212\) 7.48908 + 1.32053i 0.514352 + 0.0906942i
\(213\) 0.513156 + 0.543082i 0.0351609 + 0.0372114i
\(214\) 3.17247 2.66202i 0.216866 0.181972i
\(215\) 0.132716 + 0.229871i 0.00905118 + 0.0156771i
\(216\) −13.9976 5.05843i −0.952414 0.344182i
\(217\) −11.5620 + 19.9912i −0.784883 + 1.35709i
\(218\) −3.65099 + 10.0310i −0.247276 + 0.679386i
\(219\) −0.754952 + 2.52874i −0.0510149 + 0.170876i
\(220\) 0.215758 + 0.592790i 0.0145464 + 0.0399659i
\(221\) −0.664538 + 0.791966i −0.0447017 + 0.0532734i
\(222\) −11.2291 1.30381i −0.753650 0.0875059i
\(223\) −15.1586 18.0653i −1.01510 1.20974i −0.977605 0.210447i \(-0.932508\pi\)
−0.0374904 0.999297i \(-0.511936\pi\)
\(224\) 14.7521 + 0.0111341i 0.985664 + 0.000743927i
\(225\) −14.8444 + 1.75804i −0.989628 + 0.117203i
\(226\) −2.73490 −0.181923
\(227\) −2.30126 0.837591i −0.152740 0.0555929i 0.264519 0.964381i \(-0.414787\pi\)
−0.417259 + 0.908788i \(0.637009\pi\)
\(228\) 9.08325 + 4.55310i 0.601553 + 0.301536i
\(229\) 0.168408 0.200701i 0.0111287 0.0132627i −0.760451 0.649395i \(-0.775022\pi\)
0.771580 + 0.636132i \(0.219467\pi\)
\(230\) −0.705299 + 0.256708i −0.0465060 + 0.0169268i
\(231\) 18.3329 1.06793i 1.20621 0.0702644i
\(232\) 3.34263 + 18.9570i 0.219455 + 1.24459i
\(233\) 29.0321i 1.90195i −0.309260 0.950977i \(-0.600081\pi\)
0.309260 0.950977i \(-0.399919\pi\)
\(234\) 0.456469 8.04895i 0.0298403 0.526176i
\(235\) 0.584220 0.0381103
\(236\) −0.200250 0.0728851i −0.0130352 0.00474442i
\(237\) −0.472537 + 4.06975i −0.0306945 + 0.264359i
\(238\) 0.142436 0.804246i 0.00923277 0.0521315i
\(239\) 1.21344 1.44612i 0.0784911 0.0935420i −0.725370 0.688359i \(-0.758331\pi\)
0.803861 + 0.594817i \(0.202776\pi\)
\(240\) −0.0282491 + 0.0266924i −0.00182347 + 0.00172299i
\(241\) 11.7834 + 14.0430i 0.759038 + 0.904586i 0.997787 0.0664953i \(-0.0211818\pi\)
−0.238749 + 0.971081i \(0.576737\pi\)
\(242\) −3.92447 2.26580i −0.252275 0.145651i
\(243\) 1.86879 + 15.4760i 0.119883 + 0.992788i
\(244\) 5.59387i 0.358111i
\(245\) 0.158414 + 0.906409i 0.0101207 + 0.0579083i
\(246\) 14.5279 3.45488i 0.926263 0.220275i
\(247\) −2.55174 + 14.4716i −0.162363 + 0.920808i
\(248\) −19.1525 16.0709i −1.21619 1.02050i
\(249\) 10.0833 + 7.49476i 0.639001 + 0.474961i
\(250\) −0.402036 + 1.10458i −0.0254270 + 0.0698600i
\(251\) −3.29266 5.70305i −0.207831 0.359973i 0.743200 0.669069i \(-0.233307\pi\)
−0.951031 + 0.309096i \(0.899974\pi\)
\(252\) −4.27257 8.49103i −0.269146 0.534885i
\(253\) −12.7717 + 22.1213i −0.802952 + 1.39075i
\(254\) 5.26596 + 6.27573i 0.330416 + 0.393774i
\(255\) −0.0431659 0.0655215i −0.00270315 0.00410312i
\(256\) −2.84431 + 16.1309i −0.177769 + 1.00818i
\(257\) −22.1780 18.6096i −1.38343 1.16083i −0.967924 0.251242i \(-0.919161\pi\)
−0.415503 0.909592i \(-0.636394\pi\)
\(258\) 0.184555 + 3.12756i 0.0114899 + 0.194713i
\(259\) −12.3798 14.7763i −0.769244 0.918156i
\(260\) 0.408978 + 0.236124i 0.0253638 + 0.0146438i
\(261\) 16.1533 12.0641i 0.999866 0.746748i
\(262\) 4.99414i 0.308539i
\(263\) 22.8663 4.03194i 1.41000 0.248620i 0.583751 0.811932i \(-0.301584\pi\)
0.826244 + 0.563312i \(0.190473\pi\)
\(264\) −2.29298 + 19.7485i −0.141123 + 1.21543i
\(265\) −0.822031 0.144946i −0.0504970 0.00890398i
\(266\) −3.96241 10.9122i −0.242951 0.669073i
\(267\) −19.4104 + 18.3408i −1.18790 + 1.12244i
\(268\) 2.39722 + 13.5953i 0.146434 + 0.830466i
\(269\) 4.60903 7.98308i 0.281018 0.486737i −0.690618 0.723220i \(-0.742661\pi\)
0.971636 + 0.236483i \(0.0759947\pi\)
\(270\) 0.575430 + 0.207948i 0.0350196 + 0.0126553i
\(271\) 25.5138 14.7304i 1.54985 0.894807i 0.551700 0.834043i \(-0.313980\pi\)
0.998152 0.0607643i \(-0.0193538\pi\)
\(272\) 0.0552799 + 0.0201202i 0.00335183 + 0.00121997i
\(273\) 9.99941 9.43412i 0.605192 0.570979i
\(274\) −9.92644 8.32927i −0.599678 0.503190i
\(275\) 6.82927 + 18.7633i 0.411821 + 1.13147i
\(276\) 13.1334 + 1.52491i 0.790535 + 0.0917887i
\(277\) 0.528964 + 2.99991i 0.0317824 + 0.180247i 0.996567 0.0827961i \(-0.0263850\pi\)
−0.964784 + 0.263043i \(0.915274\pi\)
\(278\) 6.13312 10.6229i 0.367840 0.637117i
\(279\) −6.00001 + 25.4894i −0.359211 + 1.52601i
\(280\) −0.996168 0.000751855i −0.0595324 4.49319e-5i
\(281\) 24.6845 4.35255i 1.47256 0.259651i 0.620956 0.783845i \(-0.286744\pi\)
0.851599 + 0.524194i \(0.175633\pi\)
\(282\) 6.16464 + 3.09011i 0.367099 + 0.184013i
\(283\) 10.9985 + 1.93934i 0.653794 + 0.115282i 0.490700 0.871329i \(-0.336741\pi\)
0.163095 + 0.986610i \(0.447852\pi\)
\(284\) −0.508758 0.0897078i −0.0301893 0.00532318i
\(285\) −0.997013 0.499766i −0.0590580 0.0296036i
\(286\) −10.6053 + 1.87000i −0.627105 + 0.110575i
\(287\) 22.0431 + 12.7488i 1.30116 + 0.752537i
\(288\) 16.0172 4.82190i 0.943824 0.284133i
\(289\) 8.44062 14.6196i 0.496507 0.859975i
\(290\) −0.137413 0.779309i −0.00806918 0.0457626i
\(291\) 21.3245 + 2.47597i 1.25006 + 0.145144i
\(292\) −0.624072 1.71462i −0.0365211 0.100341i
\(293\) −3.69754 3.10260i −0.216012 0.181256i 0.528360 0.849020i \(-0.322807\pi\)
−0.744373 + 0.667764i \(0.767251\pi\)
\(294\) −3.12269 + 10.4022i −0.182119 + 0.606671i
\(295\) 0.0219803 + 0.00800016i 0.00127974 + 0.000465787i
\(296\) 18.0735 10.4348i 1.05050 0.606508i
\(297\) 19.5506 7.16659i 1.13444 0.415848i
\(298\) −7.29237 + 12.6308i −0.422436 + 0.731680i
\(299\) 3.32051 + 18.8315i 0.192030 + 1.08906i
\(300\) 7.51227 7.09831i 0.433721 0.409821i
\(301\) −3.43718 + 4.08999i −0.198116 + 0.235743i
\(302\) 3.74243 + 0.659892i 0.215353 + 0.0379725i
\(303\) 0.753995 6.49383i 0.0433159 0.373061i
\(304\) 0.823467 0.145200i 0.0472291 0.00832776i
\(305\) 0.614005i 0.0351578i
\(306\) −0.108920 0.919693i −0.00622656 0.0525754i
\(307\) 17.7257 + 10.2339i 1.01166 + 0.584082i 0.911677 0.410907i \(-0.134788\pi\)
0.0999825 + 0.994989i \(0.468121\pi\)
\(308\) −9.73271 + 8.15420i −0.554573 + 0.464629i
\(309\) 1.02132 + 17.3078i 0.0581008 + 0.984604i
\(310\) 0.787347 + 0.660663i 0.0447183 + 0.0375231i
\(311\) −2.56159 + 14.5275i −0.145255 + 0.823780i 0.821908 + 0.569621i \(0.192910\pi\)
−0.967162 + 0.254160i \(0.918201\pi\)
\(312\) 8.18792 + 12.4285i 0.463550 + 0.703623i
\(313\) −7.62965 9.09266i −0.431253 0.513947i 0.506030 0.862516i \(-0.331112\pi\)
−0.937283 + 0.348568i \(0.886668\pi\)
\(314\) 2.04935 3.54958i 0.115652 0.200314i
\(315\) 0.468974 + 0.932009i 0.0264237 + 0.0525128i
\(316\) −1.41639 2.45327i −0.0796784 0.138007i
\(317\) 7.00153 19.2365i 0.393245 1.08043i −0.572265 0.820068i \(-0.693935\pi\)
0.965511 0.260364i \(-0.0838425\pi\)
\(318\) −7.90734 5.87742i −0.443421 0.329589i
\(319\) −20.6303 17.3108i −1.15507 0.969221i
\(320\) 0.121802 0.690772i 0.00680892 0.0386153i
\(321\) 7.79030 1.85262i 0.434812 0.103403i
\(322\) −9.70183 11.5799i −0.540662 0.645324i
\(323\) 1.68810i 0.0939282i
\(324\) −7.42028 7.81708i −0.412238 0.434282i
\(325\) 12.9452 + 7.47390i 0.718069 + 0.414577i
\(326\) −4.77374 5.68912i −0.264393 0.315091i
\(327\) −15.0024 + 14.1757i −0.829632 + 0.783916i
\(328\) −17.7204 + 21.1184i −0.978447 + 1.16607i
\(329\) 4.01343 + 11.0528i 0.221268 + 0.609359i
\(330\) 0.0942630 0.811845i 0.00518900 0.0446906i
\(331\) 12.9346 + 4.70781i 0.710950 + 0.258765i 0.672079 0.740480i \(-0.265402\pi\)
0.0388711 + 0.999244i \(0.487624\pi\)
\(332\) −8.68666 −0.476742
\(333\) −18.2804 11.9833i −1.00176 0.656678i
\(334\) 3.92598i 0.214820i
\(335\) −0.263129 1.49228i −0.0143762 0.0815317i
\(336\) −0.699053 0.351070i −0.0381365 0.0191524i
\(337\) −11.8712 + 4.32077i −0.646667 + 0.235367i −0.644469 0.764630i \(-0.722922\pi\)
−0.00219742 + 0.999998i \(0.500699\pi\)
\(338\) 2.30346 2.74515i 0.125292 0.149317i
\(339\) −4.72741 2.36968i −0.256758 0.128703i
\(340\) 0.0509785 + 0.0185546i 0.00276469 + 0.00100627i
\(341\) 34.9788 1.89421
\(342\) −7.87699 10.5470i −0.425939 0.570315i
\(343\) −16.0599 + 9.22379i −0.867155 + 0.498038i
\(344\) −3.71780 4.43071i −0.200451 0.238888i
\(345\) −1.44157 0.167380i −0.0776115 0.00901144i
\(346\) −9.55401 + 11.3860i −0.513627 + 0.612117i
\(347\) −6.19856 17.0304i −0.332756 0.914240i −0.987392 0.158296i \(-0.949400\pi\)
0.654635 0.755945i \(-0.272822\pi\)
\(348\) −3.98777 + 13.3572i −0.213767 + 0.716019i
\(349\) 6.17471 16.9649i 0.330525 0.908109i −0.657450 0.753498i \(-0.728365\pi\)
0.987975 0.154612i \(-0.0494127\pi\)
\(350\) −11.8092 0.00891295i −0.631228 0.000476417i
\(351\) 7.76310 13.5175i 0.414364 0.721510i
\(352\) −11.1720 19.3505i −0.595469 1.03138i
\(353\) 11.9752 10.0484i 0.637378 0.534824i −0.265834 0.964019i \(-0.585647\pi\)
0.903212 + 0.429195i \(0.141203\pi\)
\(354\) 0.189619 + 0.200677i 0.0100781 + 0.0106659i
\(355\) 0.0558434 + 0.00984669i 0.00296386 + 0.000522608i
\(356\) 3.20627 18.1836i 0.169932 0.963731i
\(357\) 0.943053 1.26676i 0.0499117 0.0670442i
\(358\) 7.14229 5.99309i 0.377482 0.316745i
\(359\) −8.75879 5.05689i −0.462271 0.266892i 0.250728 0.968058i \(-0.419330\pi\)
−0.712999 + 0.701165i \(0.752663\pi\)
\(360\) −1.08160 + 0.325610i −0.0570053 + 0.0171611i
\(361\) 2.49723 + 4.32533i 0.131433 + 0.227649i
\(362\) −11.3677 + 9.53867i −0.597475 + 0.501341i
\(363\) −4.82042 7.31693i −0.253007 0.384039i
\(364\) −1.65762 + 9.35950i −0.0868828 + 0.490571i
\(365\) 0.0685006 + 0.188204i 0.00358549 + 0.00985105i
\(366\) −3.24765 + 6.47893i −0.169757 + 0.338659i
\(367\) 9.52935 26.1817i 0.497428 1.36667i −0.396324 0.918111i \(-0.629714\pi\)
0.893752 0.448561i \(-0.148063\pi\)
\(368\) 0.942309 0.544043i 0.0491213 0.0283602i
\(369\) 28.1056 + 6.61585i 1.46312 + 0.344407i
\(370\) −0.742991 + 0.428966i −0.0386262 + 0.0223009i
\(371\) −2.90492 16.5476i −0.150816 0.859110i
\(372\) −7.18388 16.6192i −0.372467 0.861666i
\(373\) −18.5415 + 6.74854i −0.960040 + 0.349426i −0.774049 0.633126i \(-0.781772\pi\)
−0.185991 + 0.982551i \(0.559549\pi\)
\(374\) −1.16249 + 0.423111i −0.0601108 + 0.0218786i
\(375\) −1.65201 + 1.56098i −0.0853096 + 0.0806086i
\(376\) −12.5370 + 2.21061i −0.646545 + 0.114003i
\(377\) −20.1607 −1.03833
\(378\) 0.0189068 + 12.3150i 0.000972463 + 0.633416i
\(379\) 3.29633 0.169321 0.0846605 0.996410i \(-0.473019\pi\)
0.0846605 + 0.996410i \(0.473019\pi\)
\(380\) 0.759392 0.133901i 0.0389560 0.00686899i
\(381\) 3.66481 + 15.4106i 0.187754 + 0.789511i
\(382\) 8.73295 3.17853i 0.446817 0.162628i
\(383\) −28.9959 + 10.5537i −1.48162 + 0.539267i −0.951229 0.308485i \(-0.900178\pi\)
−0.530393 + 0.847752i \(0.677956\pi\)
\(384\) −6.58336 + 8.85709i −0.335956 + 0.451987i
\(385\) 1.06830 0.895038i 0.0544457 0.0456154i
\(386\) −14.1438 + 8.16592i −0.719900 + 0.415635i
\(387\) −2.39088 + 5.56604i −0.121535 + 0.282938i
\(388\) −12.8545 + 7.42156i −0.652589 + 0.376773i
\(389\) −4.59734 + 12.6311i −0.233094 + 0.640421i −0.999999 0.00133967i \(-0.999574\pi\)
0.766905 + 0.641761i \(0.221796\pi\)
\(390\) −0.336600 0.510925i −0.0170444 0.0258717i
\(391\) 0.751306 + 2.06420i 0.0379952 + 0.104391i
\(392\) −6.82918 18.8515i −0.344926 0.952145i
\(393\) −4.32721 + 8.63262i −0.218279 + 0.435458i
\(394\) −15.0432 + 12.6227i −0.757864 + 0.635924i
\(395\) 0.155469 + 0.269280i 0.00782250 + 0.0135490i
\(396\) −7.89300 + 12.0407i −0.396638 + 0.605069i
\(397\) 28.0188 + 16.1766i 1.40622 + 0.811882i 0.995021 0.0996625i \(-0.0317763\pi\)
0.411200 + 0.911545i \(0.365110\pi\)
\(398\) 4.97873 4.17765i 0.249561 0.209407i
\(399\) 2.60579 22.2956i 0.130453 1.11618i
\(400\) 0.147699 0.837640i 0.00738493 0.0418820i
\(401\) −37.5651 6.62375i −1.87591 0.330774i −0.885034 0.465527i \(-0.845865\pi\)
−0.990879 + 0.134753i \(0.956976\pi\)
\(402\) 5.11657 17.1381i 0.255191 0.854772i
\(403\) 20.0592 16.8316i 0.999218 0.838444i
\(404\) 2.26005 + 3.91452i 0.112442 + 0.194754i
\(405\) 0.814480 + 0.858034i 0.0404718 + 0.0426361i
\(406\) 13.7996 7.95334i 0.684864 0.394718i
\(407\) −9.98612 + 27.4366i −0.494993 + 1.35998i
\(408\) 1.17423 + 1.24271i 0.0581333 + 0.0615235i
\(409\) −7.75021 21.2935i −0.383223 1.05290i −0.969991 0.243142i \(-0.921822\pi\)
0.586768 0.809755i \(-0.300400\pi\)
\(410\) 0.728474 0.868161i 0.0359768 0.0428754i
\(411\) −9.94137 22.9984i −0.490371 1.13443i
\(412\) −7.70552 9.18309i −0.379624 0.452418i
\(413\) −0.000355335 0.470800i −1.74849e−5 0.0231666i
\(414\) −14.3260 9.39105i −0.704084 0.461545i
\(415\) 0.953482 0.0468046
\(416\) −15.7181 5.72093i −0.770644 0.280492i
\(417\) 19.8057 13.0481i 0.969887 0.638966i
\(418\) −11.3027 + 13.4701i −0.552835 + 0.658843i
\(419\) −1.24840 + 0.454379i −0.0609881 + 0.0221979i −0.372334 0.928099i \(-0.621442\pi\)
0.311346 + 0.950297i \(0.399220\pi\)
\(420\) −0.644658 0.323753i −0.0314561 0.0157975i
\(421\) −0.798906 4.53082i −0.0389363 0.220819i 0.959131 0.282963i \(-0.0913173\pi\)
−0.998067 + 0.0621441i \(0.980206\pi\)
\(422\) 4.10667i 0.199910i
\(423\) 7.97843 + 10.6828i 0.387924 + 0.519415i
\(424\) 18.1887 0.883321
\(425\) 1.61359 + 0.587300i 0.0782708 + 0.0284882i
\(426\) 0.537172 + 0.399273i 0.0260261 + 0.0193448i
\(427\) −11.6163 + 4.21805i −0.562151 + 0.204126i
\(428\) −3.55882 + 4.24124i −0.172022 + 0.205008i
\(429\) −19.9520 5.95666i −0.963294 0.287590i
\(430\) 0.152836 + 0.182143i 0.00737042 + 0.00878373i
\(431\) −15.3689 8.87327i −0.740296 0.427410i 0.0818808 0.996642i \(-0.473907\pi\)
−0.822177 + 0.569232i \(0.807241\pi\)
\(432\) −0.873870 0.152024i −0.0420441 0.00731427i
\(433\) 1.22234i 0.0587418i −0.999569 0.0293709i \(-0.990650\pi\)
0.999569 0.0293709i \(-0.00935038\pi\)
\(434\) −7.09011 + 19.4343i −0.340336 + 0.932875i
\(435\) 0.437713 1.46614i 0.0209867 0.0702958i
\(436\) 2.47813 14.0542i 0.118681 0.673073i
\(437\) 23.9184 + 20.0700i 1.14417 + 0.960076i
\(438\) −0.272652 + 2.34823i −0.0130278 + 0.112203i
\(439\) 1.66599 4.57728i 0.0795135 0.218461i −0.893566 0.448932i \(-0.851804\pi\)
0.973079 + 0.230471i \(0.0740266\pi\)
\(440\) 0.754414 + 1.30668i 0.0359653 + 0.0622937i
\(441\) −14.4108 + 15.2751i −0.686229 + 0.727385i
\(442\) −0.463049 + 0.802024i −0.0220250 + 0.0381484i
\(443\) 14.9512 + 17.8181i 0.710353 + 0.846565i 0.993656 0.112465i \(-0.0358747\pi\)
−0.283303 + 0.959030i \(0.591430\pi\)
\(444\) 15.0867 0.890255i 0.715983 0.0422497i
\(445\) −0.351933 + 1.99591i −0.0166832 + 0.0946152i
\(446\) −16.1827 13.5789i −0.766272 0.642979i
\(447\) −23.5492 + 15.5143i −1.11384 + 0.733803i
\(448\) 13.9053 2.44107i 0.656966 0.115330i
\(449\) 19.9333 + 11.5085i 0.940710 + 0.543119i 0.890183 0.455603i \(-0.150576\pi\)
0.0505273 + 0.998723i \(0.483910\pi\)
\(450\) −12.8220 + 3.85998i −0.604433 + 0.181961i
\(451\) 38.5690i 1.81614i
\(452\) 3.60071 0.634902i 0.169363 0.0298633i
\(453\) 5.89721 + 4.38332i 0.277075 + 0.205946i
\(454\) −2.16041 0.380939i −0.101393 0.0178783i
\(455\) 0.181947 1.02734i 0.00852979 0.0481623i
\(456\) 23.2863 + 6.95209i 1.09048 + 0.325561i
\(457\) 4.61926 + 26.1971i 0.216080 + 1.22545i 0.879023 + 0.476780i \(0.158196\pi\)
−0.662943 + 0.748670i \(0.730693\pi\)
\(458\) 0.117346 0.203250i 0.00548323 0.00949724i
\(459\) 0.608602 1.68411i 0.0284071 0.0786075i
\(460\) 0.868987 0.501710i 0.0405167 0.0233923i
\(461\) 25.7975 + 9.38952i 1.20151 + 0.437314i 0.863751 0.503919i \(-0.168109\pi\)
0.337758 + 0.941233i \(0.390331\pi\)
\(462\) 16.0067 3.79381i 0.744700 0.176504i
\(463\) 2.44473 + 2.05137i 0.113616 + 0.0953355i 0.697826 0.716267i \(-0.254151\pi\)
−0.584210 + 0.811603i \(0.698595\pi\)
\(464\) 0.392361 + 1.07800i 0.0182149 + 0.0500450i
\(465\) 0.788531 + 1.82419i 0.0365673 + 0.0845948i
\(466\) −4.51599 25.6115i −0.209199 1.18643i
\(467\) 8.45133 14.6381i 0.391081 0.677372i −0.601512 0.798864i \(-0.705435\pi\)
0.992592 + 0.121492i \(0.0387679\pi\)
\(468\) 1.26757 + 10.7030i 0.0585935 + 0.494748i
\(469\) 26.4245 15.2296i 1.22017 0.703238i
\(470\) 0.515386 0.0908765i 0.0237730 0.00419182i
\(471\) 6.61796 4.35994i 0.304940 0.200896i
\(472\) −0.501953 0.0885079i −0.0231043 0.00407391i
\(473\) 7.96898 + 1.40515i 0.366414 + 0.0646087i
\(474\) 0.216195 + 3.66374i 0.00993017 + 0.168281i
\(475\) 24.0366 4.23831i 1.10288 0.194467i
\(476\) −0.000824122 1.09192i −3.77736e−5 0.0500480i
\(477\) −8.57568 17.0108i −0.392653 0.778870i
\(478\) 0.845525 1.46449i 0.0386734 0.0669843i
\(479\) 6.55126 + 37.1540i 0.299335 + 1.69761i 0.649042 + 0.760753i \(0.275170\pi\)
−0.349707 + 0.936859i \(0.613719\pi\)
\(480\) 0.757301 1.01885i 0.0345659 0.0465041i
\(481\) 7.47568 + 20.5393i 0.340862 + 0.936510i
\(482\) 12.5795 + 10.5554i 0.572980 + 0.480787i
\(483\) −6.73656 28.4227i −0.306524 1.29328i
\(484\) 5.69287 + 2.07204i 0.258767 + 0.0941835i
\(485\) 1.41096 0.814620i 0.0640685 0.0369900i
\(486\) 4.05593 + 13.3619i 0.183981 + 0.606109i
\(487\) −9.18231 + 15.9042i −0.416090 + 0.720689i −0.995542 0.0943172i \(-0.969933\pi\)
0.579452 + 0.815006i \(0.303267\pi\)
\(488\) −2.32331 13.1761i −0.105171 0.596456i
\(489\) −3.32225 13.9702i −0.150238 0.631753i
\(490\) 0.280743 + 0.774972i 0.0126827 + 0.0350097i
\(491\) −17.9717 3.16890i −0.811053 0.143011i −0.247284 0.968943i \(-0.579538\pi\)
−0.563769 + 0.825933i \(0.690649\pi\)
\(492\) −18.3250 + 7.92124i −0.826155 + 0.357117i
\(493\) −2.28080 + 0.402167i −0.102722 + 0.0181127i
\(494\) 13.1635i 0.592253i
\(495\) 0.866367 1.32164i 0.0389403 0.0594032i
\(496\) −1.29038 0.745003i −0.0579399 0.0334516i
\(497\) 0.197341 + 1.12414i 0.00885194 + 0.0504244i
\(498\) 10.0611 + 5.04324i 0.450847 + 0.225993i
\(499\) 28.6729 + 24.0594i 1.28358 + 1.07705i 0.992741 + 0.120276i \(0.0383778\pi\)
0.290836 + 0.956773i \(0.406067\pi\)
\(500\) 0.272884 1.54760i 0.0122037 0.0692109i
\(501\) −3.40169 + 6.78624i −0.151976 + 0.303187i
\(502\) −3.79183 4.51892i −0.169238 0.201689i
\(503\) −8.72136 + 15.1058i −0.388866 + 0.673536i −0.992297 0.123879i \(-0.960466\pi\)
0.603431 + 0.797415i \(0.293800\pi\)
\(504\) −13.5905 18.2258i −0.605367 0.811840i
\(505\) −0.248072 0.429673i −0.0110391 0.0191202i
\(506\) −7.82593 + 21.5016i −0.347905 + 0.955861i
\(507\) 6.36019 2.74928i 0.282466 0.122100i
\(508\) −8.38995 7.04000i −0.372244 0.312350i
\(509\) 4.84714 27.4895i 0.214846 1.21845i −0.666328 0.745659i \(-0.732135\pi\)
0.881174 0.472792i \(-0.156754\pi\)
\(510\) −0.0482719 0.0510871i −0.00213752 0.00226217i
\(511\) −3.09002 + 2.58886i −0.136694 + 0.114525i
\(512\) 1.92969i 0.0852812i
\(513\) −4.47724 25.0560i −0.197675 1.10625i
\(514\) −22.4597 12.9671i −0.990655 0.571955i
\(515\) 0.845789 + 1.00797i 0.0372699 + 0.0444166i
\(516\) −0.969038 4.07483i −0.0426595 0.179384i
\(517\) 11.4483 13.6436i 0.503496 0.600043i
\(518\) −13.2197 11.1096i −0.580839 0.488130i
\(519\) −26.3801 + 11.4031i −1.15796 + 0.500543i
\(520\) 1.06140 + 0.386319i 0.0465456 + 0.0169412i
\(521\) 6.26889 0.274645 0.137323 0.990526i \(-0.456150\pi\)
0.137323 + 0.990526i \(0.456150\pi\)
\(522\) 12.3735 13.1553i 0.541574 0.575794i
\(523\) 6.16606i 0.269623i −0.990871 0.134811i \(-0.956957\pi\)
0.990871 0.134811i \(-0.0430429\pi\)
\(524\) −1.15938 6.57518i −0.0506478 0.287238i
\(525\) −20.4050 10.2476i −0.890548 0.447241i
\(526\) 19.5450 7.11378i 0.852200 0.310176i
\(527\) 1.93356 2.30433i 0.0842272 0.100378i
\(528\) 0.0697947 + 1.18277i 0.00303742 + 0.0514736i
\(529\) 16.5668 + 6.02982i 0.720295 + 0.262166i
\(530\) −0.747724 −0.0324791
\(531\) 0.153887 + 0.511176i 0.00667812 + 0.0221832i
\(532\) 7.75007 + 13.4470i 0.336008 + 0.582999i
\(533\) −18.5593 22.1181i −0.803890 0.958039i
\(534\) −14.2705 + 19.1992i −0.617545 + 0.830830i
\(535\) 0.390631 0.465536i 0.0168884 0.0201269i
\(536\) 11.2931 + 31.0276i 0.487789 + 1.34019i
\(537\) 17.5386 4.17086i 0.756845 0.179986i
\(538\) 2.82420 7.75944i 0.121760 0.334533i
\(539\) 24.2720 + 14.0623i 1.04547 + 0.605708i
\(540\) −0.805873 0.140195i −0.0346792 0.00603304i
\(541\) −10.3506 17.9278i −0.445008 0.770777i 0.553045 0.833152i \(-0.313466\pi\)
−0.998053 + 0.0623747i \(0.980133\pi\)
\(542\) 20.2163 16.9635i 0.868366 0.728646i
\(543\) −27.9145 + 6.63838i −1.19793 + 0.284880i
\(544\) −1.89233 0.333669i −0.0811331 0.0143060i
\(545\) −0.272010 + 1.54264i −0.0116516 + 0.0660796i
\(546\) 7.35376 9.87799i 0.314712 0.422739i
\(547\) −12.9704 + 10.8834i −0.554573 + 0.465342i −0.876486 0.481427i \(-0.840118\pi\)
0.321913 + 0.946769i \(0.395674\pi\)
\(548\) 15.0026 + 8.66173i 0.640877 + 0.370011i
\(549\) −11.2274 + 8.38519i −0.479175 + 0.357871i
\(550\) 8.94329 + 15.4902i 0.381343 + 0.660506i
\(551\) −25.2176 + 21.1601i −1.07431 + 0.901450i
\(552\) 31.5685 1.86283i 1.34364 0.0792875i
\(553\) −4.02644 + 4.79118i −0.171222 + 0.203742i
\(554\) 0.933281 + 2.56417i 0.0396513 + 0.108941i
\(555\) −1.65598 + 0.0977180i −0.0702922 + 0.00414790i
\(556\) −5.60864 + 15.4096i −0.237859 + 0.653514i
\(557\) −37.1778 + 21.4646i −1.57528 + 0.909486i −0.579770 + 0.814780i \(0.696858\pi\)
−0.995505 + 0.0947060i \(0.969809\pi\)
\(558\) −1.32816 + 23.4195i −0.0562253 + 0.991425i
\(559\) 5.24610 3.02883i 0.221886 0.128106i
\(560\) −0.0584732 + 0.0102649i −0.00247094 + 0.000433772i
\(561\) −2.37602 0.275879i −0.100316 0.0116476i
\(562\) 21.0991 7.67944i 0.890011 0.323938i
\(563\) 2.55016 0.928183i 0.107477 0.0391183i −0.287722 0.957714i \(-0.592898\pi\)
0.395199 + 0.918596i \(0.370676\pi\)
\(564\) −8.83359 2.63726i −0.371961 0.111049i
\(565\) −0.395228 + 0.0696894i −0.0166274 + 0.00293186i
\(566\) 10.0043 0.420513
\(567\) −10.6378 + 21.3035i −0.446744 + 0.894662i
\(568\) −1.23562 −0.0518454
\(569\) 32.7153 5.76860i 1.37150 0.241832i 0.561118 0.827736i \(-0.310371\pi\)
0.810381 + 0.585904i \(0.199260\pi\)
\(570\) −0.957282 0.285795i −0.0400961 0.0119707i
\(571\) −2.04644 + 0.744844i −0.0856409 + 0.0311708i −0.384485 0.923131i \(-0.625621\pi\)
0.298844 + 0.954302i \(0.403399\pi\)
\(572\) 13.5286 4.92400i 0.565658 0.205883i
\(573\) 17.8494 + 2.07248i 0.745669 + 0.0865793i
\(574\) 21.4290 + 7.81785i 0.894430 + 0.326311i
\(575\) 27.5056 15.8803i 1.14706 0.662256i
\(576\) 14.2945 7.20634i 0.595606 0.300264i
\(577\) −29.6400 + 17.1127i −1.23393 + 0.712410i −0.967847 0.251541i \(-0.919063\pi\)
−0.266083 + 0.963950i \(0.585729\pi\)
\(578\) 5.17202 14.2100i 0.215128 0.591059i
\(579\) −31.5236 + 1.86019i −1.31008 + 0.0773068i
\(580\) 0.361830 + 0.994121i 0.0150242 + 0.0412786i
\(581\) 6.55016 + 18.0388i 0.271747 + 0.748375i
\(582\) 19.1971 1.13281i 0.795746 0.0469564i
\(583\) −19.4934 + 16.3569i −0.807334 + 0.677434i
\(584\) −2.18212 3.77953i −0.0902966 0.156398i
\(585\) −0.139134 1.17481i −0.00575247 0.0485723i
\(586\) −3.74450 2.16189i −0.154684 0.0893067i
\(587\) −10.2925 + 8.63644i −0.424817 + 0.356464i −0.829992 0.557775i \(-0.811655\pi\)
0.405175 + 0.914239i \(0.367211\pi\)
\(588\) 1.69640 14.4203i 0.0699582 0.594682i
\(589\) 7.42462 42.1071i 0.305926 1.73499i
\(590\) 0.0206349 + 0.00363850i 0.000849527 + 0.000149794i
\(591\) −36.9399 + 8.78471i −1.51951 + 0.361355i
\(592\) 0.952757 0.799458i 0.0391581 0.0328575i
\(593\) −1.95066 3.37864i −0.0801039 0.138744i 0.823190 0.567765i \(-0.192192\pi\)
−0.903294 + 0.429021i \(0.858859\pi\)
\(594\) 16.1324 9.36334i 0.661918 0.384183i
\(595\) 9.04589e−5 0.119853i 3.70846e−6 0.00491351i
\(596\) 6.66876 18.3223i 0.273163 0.750510i
\(597\) 12.2257 2.90741i 0.500365 0.118992i
\(598\) 5.85855 + 16.0962i 0.239574 + 0.658224i
\(599\) −5.98259 + 7.12977i −0.244442 + 0.291315i −0.874290 0.485404i \(-0.838673\pi\)
0.629848 + 0.776718i \(0.283117\pi\)
\(600\) 14.7467 19.8399i 0.602032 0.809960i
\(601\) 20.1709 + 24.0388i 0.822789 + 0.980561i 0.999993 0.00361252i \(-0.00114990\pi\)
−0.177205 + 0.984174i \(0.556705\pi\)
\(602\) −2.39599 + 4.14276i −0.0976534 + 0.168846i
\(603\) 23.6937 25.1908i 0.964882 1.02585i
\(604\) −5.08040 −0.206718
\(605\) −0.624873 0.227435i −0.0254047 0.00924655i
\(606\) −0.344968 5.84599i −0.0140134 0.237477i
\(607\) −4.60295 + 5.48559i −0.186828 + 0.222653i −0.851326 0.524637i \(-0.824201\pi\)
0.664498 + 0.747290i \(0.268645\pi\)
\(608\) −25.6653 + 9.34139i −1.04086 + 0.378843i
\(609\) 30.7446 1.79093i 1.24583 0.0725722i
\(610\) 0.0955096 + 0.541662i 0.00386707 + 0.0219312i
\(611\) 13.3330i 0.539395i
\(612\) 0.356907 + 1.18556i 0.0144271 + 0.0479235i
\(613\) 34.8506 1.40760 0.703801 0.710397i \(-0.251485\pi\)
0.703801 + 0.710397i \(0.251485\pi\)
\(614\) 17.2291 + 6.27089i 0.695311 + 0.253073i
\(615\) 2.01143 0.869467i 0.0811086 0.0350603i
\(616\) −19.5383 + 23.2492i −0.787222 + 0.936737i
\(617\) 4.32090 5.14944i 0.173953 0.207309i −0.672023 0.740530i \(-0.734574\pi\)
0.845976 + 0.533222i \(0.179019\pi\)
\(618\) 3.59324 + 15.1097i 0.144541 + 0.607799i
\(619\) −22.1515 26.3991i −0.890343 1.06107i −0.997763 0.0668555i \(-0.978703\pi\)
0.107420 0.994214i \(-0.465741\pi\)
\(620\) −1.18998 0.687033i −0.0477906 0.0275919i
\(621\) −16.6262 28.6458i −0.667187 1.14951i
\(622\) 13.2143i 0.529846i
\(623\) −40.1780 + 7.05320i −1.60970 + 0.282580i
\(624\) 0.609170 + 0.644696i 0.0243863 + 0.0258085i
\(625\) 4.29625 24.3652i 0.171850 0.974610i
\(626\) −8.14508 6.83454i −0.325543 0.273163i
\(627\) −31.2086 + 13.4903i −1.24635 + 0.538752i
\(628\) −1.87410 + 5.14905i −0.0747848 + 0.205469i
\(629\) 1.25545 + 2.17451i 0.0500582 + 0.0867033i
\(630\) 0.558694 + 0.749248i 0.0222589 + 0.0298508i
\(631\) 13.2483 22.9468i 0.527407 0.913496i −0.472083 0.881554i \(-0.656498\pi\)
0.999490 0.0319417i \(-0.0101691\pi\)
\(632\) −4.35518 5.19031i −0.173240 0.206459i
\(633\) 3.55826 7.09858i 0.141428 0.282143i
\(634\) 3.18432 18.0592i 0.126465 0.717221i
\(635\) 0.920914 + 0.772739i 0.0365454 + 0.0306652i
\(636\) 11.7751 + 5.90240i 0.466911 + 0.234046i
\(637\) 20.6859 3.61530i 0.819607 0.143243i
\(638\) −20.8923 12.0622i −0.827133 0.477546i
\(639\) 0.582575 + 1.15560i 0.0230463 + 0.0457148i
\(640\) 0.837534i 0.0331064i
\(641\) −2.34586 + 0.413639i −0.0926561 + 0.0163378i −0.219784 0.975549i \(-0.570535\pi\)
0.127128 + 0.991886i \(0.459424\pi\)
\(642\) 6.58425 2.84613i 0.259860 0.112328i
\(643\) −9.49012 1.67336i −0.374254 0.0659911i −0.0166424 0.999862i \(-0.505298\pi\)
−0.357612 + 0.933870i \(0.616409\pi\)
\(644\) 15.4615 + 12.9936i 0.609267 + 0.512020i
\(645\) 0.106365 + 0.447269i 0.00418814 + 0.0176112i
\(646\) 0.262586 + 1.48920i 0.0103313 + 0.0585918i
\(647\) 1.16581 2.01925i 0.0458328 0.0793847i −0.842199 0.539167i \(-0.818739\pi\)
0.888032 + 0.459782i \(0.152073\pi\)
\(648\) −20.7249 15.3310i −0.814150 0.602257i
\(649\) 0.617553 0.356545i 0.0242411 0.0139956i
\(650\) 12.5825 + 4.57966i 0.493527 + 0.179629i
\(651\) −29.0946 + 27.4498i −1.14031 + 1.07584i
\(652\) 7.60572 + 6.38196i 0.297863 + 0.249937i
\(653\) 6.57680 + 18.0696i 0.257370 + 0.707119i 0.999327 + 0.0366714i \(0.0116755\pi\)
−0.741957 + 0.670447i \(0.766102\pi\)
\(654\) −11.0297 + 14.8391i −0.431295 + 0.580254i
\(655\) 0.127258 + 0.721718i 0.00497239 + 0.0281998i
\(656\) −0.821470 + 1.42283i −0.0320730 + 0.0555521i
\(657\) −2.50594 + 3.82279i −0.0977658 + 0.149141i
\(658\) 5.25984 + 9.12621i 0.205050 + 0.355777i
\(659\) 38.6246 6.81055i 1.50460 0.265301i 0.640239 0.768176i \(-0.278835\pi\)
0.864360 + 0.502874i \(0.167724\pi\)
\(660\) 0.0643638 + 1.09074i 0.00250536 + 0.0424570i
\(661\) −34.0284 6.00013i −1.32355 0.233378i −0.533179 0.846003i \(-0.679003\pi\)
−0.790374 + 0.612624i \(0.790114\pi\)
\(662\) 12.1429 + 2.14112i 0.471948 + 0.0832172i
\(663\) −1.49532 + 0.985125i −0.0580735 + 0.0382591i
\(664\) −20.4611 + 3.60784i −0.794044 + 0.140011i
\(665\) −0.850679 1.47599i −0.0329879 0.0572365i
\(666\) −17.9906 7.72782i −0.697120 0.299447i
\(667\) −21.4184 + 37.0978i −0.829325 + 1.43643i
\(668\) −0.911408 5.16885i −0.0352634 0.199989i
\(669\) −16.2070 37.4934i −0.626599 1.44958i
\(670\) −0.464252 1.27552i −0.0179356 0.0492777i
\(671\) 14.3391 + 12.0320i 0.553556 + 0.464489i
\(672\) 24.4780 + 7.32800i 0.944259 + 0.282684i
\(673\) 13.9024 + 5.06006i 0.535898 + 0.195051i 0.595770 0.803155i \(-0.296847\pi\)
−0.0598720 + 0.998206i \(0.519069\pi\)
\(674\) −9.80042 + 5.65828i −0.377498 + 0.217949i
\(675\) −25.5079 4.43752i −0.981798 0.170800i
\(676\) −2.39540 + 4.14895i −0.0921307 + 0.159575i
\(677\) −3.25288 18.4480i −0.125018 0.709015i −0.981297 0.192500i \(-0.938340\pi\)
0.856278 0.516514i \(-0.172771\pi\)
\(678\) −4.53902 1.35512i −0.174320 0.0520430i
\(679\) 25.1046 + 21.0976i 0.963426 + 0.809650i
\(680\) 0.127784 + 0.0225318i 0.00490030 + 0.000864055i
\(681\) −3.40431 2.53038i −0.130453 0.0969642i
\(682\) 30.8575 5.44101i 1.18159 0.208347i
\(683\) 22.2418i 0.851057i 0.904945 + 0.425529i \(0.139912\pi\)
−0.904945 + 0.425529i \(0.860088\pi\)
\(684\) 12.8191 + 12.0573i 0.490152 + 0.461022i
\(685\) −1.64674 0.950746i −0.0629187 0.0363261i
\(686\) −12.7329 + 10.6352i −0.486146 + 0.406053i
\(687\) 0.378946 0.249651i 0.0144577 0.00952479i
\(688\) −0.264051 0.221565i −0.0100669 0.00844710i
\(689\) −3.30794 + 18.7603i −0.126023 + 0.714710i
\(690\) −1.29776 + 0.0765798i −0.0494048 + 0.00291534i
\(691\) −1.75750 2.09450i −0.0668583 0.0796786i 0.731579 0.681757i \(-0.238784\pi\)
−0.798437 + 0.602078i \(0.794339\pi\)
\(692\) 9.93535 17.2085i 0.377685 0.654170i
\(693\) 30.9556 + 7.31137i 1.17590 + 0.277736i
\(694\) −8.11734 14.0597i −0.308130 0.533697i
\(695\) 0.615627 1.69142i 0.0233521 0.0641593i
\(696\) −3.84538 + 33.1185i −0.145759 + 1.25535i
\(697\) −2.54084 2.13202i −0.0962414 0.0807561i
\(698\) 2.80828 15.9265i 0.106295 0.602828i
\(699\) 14.3851 48.1835i 0.544096 1.82247i
\(700\) 15.5498 2.72975i 0.587726 0.103175i
\(701\) 7.89910i 0.298345i 0.988811 + 0.149173i \(0.0476610\pi\)
−0.988811 + 0.149173i \(0.952339\pi\)
\(702\) 4.74577 13.1324i 0.179117 0.495650i
\(703\) 30.9083 + 17.8449i 1.16573 + 0.673033i
\(704\) −13.7451 16.3808i −0.518038 0.617373i
\(705\) 0.969610 + 0.289476i 0.0365176 + 0.0109023i
\(706\) 9.00125 10.7273i 0.338766 0.403726i
\(707\) 6.42473 7.64497i 0.241627 0.287519i
\(708\) −0.296234 0.220187i −0.0111332 0.00827514i
\(709\) −32.6400 11.8800i −1.22582 0.446163i −0.353657 0.935375i \(-0.615062\pi\)
−0.872165 + 0.489212i \(0.837284\pi\)
\(710\) 0.0507954 0.00190632
\(711\) −2.80078 + 6.52028i −0.105037 + 0.244530i
\(712\) 44.1625i 1.65506i
\(713\) −9.66145 54.7928i −0.361824 2.05201i
\(714\) 0.634893 1.26420i 0.0237603 0.0473116i
\(715\) −1.48495 + 0.540478i −0.0555340 + 0.0202127i
\(716\) −8.01209 + 9.54844i −0.299426 + 0.356842i
\(717\) 2.73045 1.79883i 0.101971 0.0671787i
\(718\) −8.51341 3.09863i −0.317718 0.115640i
\(719\) −2.89130 −0.107827 −0.0539137 0.998546i \(-0.517170\pi\)
−0.0539137 + 0.998546i \(0.517170\pi\)
\(720\) −0.0601098 + 0.0303033i −0.00224016 + 0.00112934i
\(721\) −13.2593 + 22.9258i −0.493803 + 0.853803i
\(722\) 2.87581 + 3.42726i 0.107027 + 0.127549i
\(723\) 12.5984 + 29.1452i 0.468540 + 1.08392i
\(724\) 12.7521 15.1974i 0.473929 0.564807i
\(725\) 11.4528 + 31.4664i 0.425347 + 1.16863i
\(726\) −5.39063 5.70500i −0.200065 0.211733i
\(727\) −8.56203 + 23.5240i −0.317548 + 0.872456i 0.673528 + 0.739161i \(0.264778\pi\)
−0.991076 + 0.133295i \(0.957444\pi\)
\(728\) −0.0171587 + 22.7344i −0.000635945 + 0.842593i
\(729\) −4.56667 + 26.6110i −0.169136 + 0.985593i
\(730\) 0.0897052 + 0.155374i 0.00332014 + 0.00575065i
\(731\) 0.533078 0.447306i 0.0197166 0.0165442i
\(732\) 2.77171 9.28395i 0.102445 0.343145i
\(733\) 17.9624 + 3.16725i 0.663455 + 0.116985i 0.495228 0.868763i \(-0.335085\pi\)
0.168228 + 0.985748i \(0.446196\pi\)
\(734\) 4.33397 24.5792i 0.159970 0.907234i
\(735\) −0.186203 + 1.58283i −0.00686821 + 0.0583835i
\(736\) −27.2259 + 22.8452i −1.00356 + 0.842086i
\(737\) −40.0060 23.0975i −1.47364 0.850806i
\(738\) 25.8233 + 1.46448i 0.950567 + 0.0539082i
\(739\) −11.8748 20.5677i −0.436821 0.756595i 0.560622 0.828072i \(-0.310562\pi\)
−0.997442 + 0.0714767i \(0.977229\pi\)
\(740\) 0.878621 0.737251i 0.0322988 0.0271019i
\(741\) −11.4056 + 22.7537i −0.418995 + 0.835878i
\(742\) −5.13666 14.1461i −0.188573 0.519319i
\(743\) 3.47920 + 9.55903i 0.127640 + 0.350687i 0.987008 0.160670i \(-0.0513654\pi\)
−0.859369 + 0.511357i \(0.829143\pi\)
\(744\) −23.8238 36.1622i −0.873424 1.32577i
\(745\) −0.731990 + 2.01113i −0.0268180 + 0.0736820i
\(746\) −15.3071 + 8.83756i −0.560433 + 0.323566i
\(747\) 13.0213 + 17.4350i 0.476423 + 0.637912i
\(748\) 1.43228 0.826928i 0.0523694 0.0302355i
\(749\) 11.4909 + 4.19218i 0.419869 + 0.153179i
\(750\) −1.21456 + 1.63403i −0.0443493 + 0.0596665i
\(751\) 13.1156 4.77368i 0.478594 0.174194i −0.0914474 0.995810i \(-0.529149\pi\)
0.570041 + 0.821616i \(0.306927\pi\)
\(752\) −0.712923 + 0.259483i −0.0259976 + 0.00946236i
\(753\) −2.63890 11.0966i −0.0961668 0.404384i
\(754\) −17.7853 + 3.13603i −0.647702 + 0.114207i
\(755\) 0.557645 0.0202948
\(756\) −2.88380 16.2093i −0.104883 0.589526i
\(757\) −23.1271 −0.840570 −0.420285 0.907392i \(-0.638070\pi\)
−0.420285 + 0.907392i \(0.638070\pi\)
\(758\) 2.90795 0.512750i 0.105621 0.0186239i
\(759\) −32.1577 + 30.3857i −1.16725 + 1.10293i
\(760\) 1.73311 0.630799i 0.0628663 0.0228815i
\(761\) 15.7985 5.75019i 0.572696 0.208444i −0.0394059 0.999223i \(-0.512547\pi\)
0.612102 + 0.790779i \(0.290324\pi\)
\(762\) 5.63017 + 13.0248i 0.203959 + 0.471841i
\(763\) −31.0536 + 5.45143i −1.12422 + 0.197355i
\(764\) −10.7597 + 6.21212i −0.389273 + 0.224747i
\(765\) −0.0391756 0.130132i −0.00141640 0.00470493i
\(766\) −23.9379 + 13.8206i −0.864912 + 0.499357i