# Properties

 Label 189.2.bd.a.185.11 Level $189$ Weight $2$ Character 189.185 Analytic conductor $1.509$ Analytic rank $0$ Dimension $132$ Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [189,2,Mod(47,189)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(189, base_ring=CyclotomicField(18))

chi = DirichletCharacter(H, H._module([7, 15]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("189.47");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$189 = 3^{3} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 189.bd (of order $$18$$, degree $$6$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$1.50917259820$$ Analytic rank: $$0$$ Dimension: $$132$$ Relative dimension: $$22$$ over $$\Q(\zeta_{18})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

## Embedding invariants

 Embedding label 185.11 Character $$\chi$$ $$=$$ 189.185 Dual form 189.2.bd.a.47.11

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(-0.0147002 + 0.00259205i) q^{2} +(-1.71867 - 0.214901i) q^{3} +(-1.87918 + 0.683964i) q^{4} +(1.54651 - 0.562885i) q^{5} +(0.0258218 - 0.00129578i) q^{6} +(2.21011 - 1.45445i) q^{7} +(0.0517058 - 0.0298524i) q^{8} +(2.90764 + 0.738686i) q^{9} +O(q^{10})$$ $$q+(-0.0147002 + 0.00259205i) q^{2} +(-1.71867 - 0.214901i) q^{3} +(-1.87918 + 0.683964i) q^{4} +(1.54651 - 0.562885i) q^{5} +(0.0258218 - 0.00129578i) q^{6} +(2.21011 - 1.45445i) q^{7} +(0.0517058 - 0.0298524i) q^{8} +(2.90764 + 0.738686i) q^{9} +(-0.0212751 + 0.0122832i) q^{10} +(1.57083 - 4.31582i) q^{11} +(3.37666 - 0.771671i) q^{12} +(-1.52751 - 4.19679i) q^{13} +(-0.0287191 + 0.0271094i) q^{14} +(-2.77891 + 0.635065i) q^{15} +(3.06315 - 2.57029i) q^{16} +(1.88705 + 3.26847i) q^{17} +(-0.0446576 - 0.00332212i) q^{18} +(-1.27160 - 0.734160i) q^{19} +(-2.52118 + 2.11552i) q^{20} +(-4.11100 + 2.02476i) q^{21} +(-0.0119048 + 0.0675152i) q^{22} +(7.31736 + 1.29025i) q^{23} +(-0.0952804 + 0.0401947i) q^{24} +(-1.75536 + 1.47292i) q^{25} +(0.0333330 + 0.0577345i) q^{26} +(-4.83851 - 1.89441i) q^{27} +(-3.15839 + 4.24480i) q^{28} +(-2.83246 + 7.78213i) q^{29} +(0.0392044 - 0.0165387i) q^{30} +(-2.87381 - 7.89573i) q^{31} +(-0.115122 + 0.137197i) q^{32} +(-3.62721 + 7.07988i) q^{33} +(-0.0362121 - 0.0431559i) q^{34} +(2.59927 - 3.49336i) q^{35} +(-5.96919 + 0.600598i) q^{36} -0.794639 q^{37} +(0.0205958 + 0.00749627i) q^{38} +(1.72338 + 7.54116i) q^{39} +(0.0631602 - 0.0752714i) q^{40} +(3.97658 - 1.44736i) q^{41} +(0.0551844 - 0.0404204i) q^{42} +(-0.303215 - 1.71962i) q^{43} +9.18457i q^{44} +(4.91249 - 0.494277i) q^{45} -0.110911 q^{46} +(-1.54917 - 0.563852i) q^{47} +(-5.81690 + 3.75920i) q^{48} +(2.76916 - 6.42898i) q^{49} +(0.0219863 - 0.0262023i) q^{50} +(-2.54082 - 6.02294i) q^{51} +(5.74091 + 6.84175i) q^{52} +(3.66888 + 2.11823i) q^{53} +(0.0760377 + 0.0153066i) q^{54} -7.55866i q^{55} +(0.0708567 - 0.141180i) q^{56} +(2.02769 + 1.53505i) q^{57} +(0.0214662 - 0.121741i) q^{58} +(-8.85828 - 7.43298i) q^{59} +(4.78769 - 3.09407i) q^{60} +(1.02900 - 2.82714i) q^{61} +(0.0627118 + 0.108620i) q^{62} +(7.50057 - 2.59643i) q^{63} +(-3.99733 + 6.92357i) q^{64} +(-4.72462 - 5.63058i) q^{65} +(0.0349694 - 0.113478i) q^{66} +(-1.88292 + 10.6785i) q^{67} +(-5.78162 - 4.85135i) q^{68} +(-12.2988 - 3.79001i) q^{69} +(-0.0291550 + 0.0580906i) q^{70} +(6.66808 + 3.84982i) q^{71} +(0.172393 - 0.0486054i) q^{72} +15.8281i q^{73} +(0.0116814 - 0.00205974i) q^{74} +(3.33341 - 2.15423i) q^{75} +(2.89171 + 0.509886i) q^{76} +(-2.80543 - 11.8231i) q^{77} +(-0.0448812 - 0.106390i) q^{78} +(0.276799 + 1.56981i) q^{79} +(3.29043 - 5.69919i) q^{80} +(7.90869 + 4.29566i) q^{81} +(-0.0547050 + 0.0315840i) q^{82} +(4.61667 + 1.68033i) q^{83} +(6.34044 - 6.61666i) q^{84} +(4.75812 + 3.99254i) q^{85} +(0.00891467 + 0.0244929i) q^{86} +(6.54045 - 12.7662i) q^{87} +(-0.0476164 - 0.270046i) q^{88} +(-3.59252 + 6.22243i) q^{89} +(-0.0709336 + 0.0199994i) q^{90} +(-9.47998 - 7.05369i) q^{91} +(-14.6331 + 2.58021i) q^{92} +(3.24233 + 14.1877i) q^{93} +(0.0242347 + 0.00427323i) q^{94} +(-2.37980 - 0.419623i) q^{95} +(0.227340 - 0.211056i) q^{96} +(-1.56544 + 0.276029i) q^{97} +(-0.0240431 + 0.101685i) q^{98} +(7.75543 - 11.3885i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} + 18 q^{6} - 6 q^{7} - 18 q^{8} - 15 q^{9}+O(q^{10})$$ 132 * q - 3 * q^2 - 9 * q^3 - 3 * q^4 - 9 * q^5 + 18 * q^6 - 6 * q^7 - 18 * q^8 - 15 * q^9 $$132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} + 18 q^{6} - 6 q^{7} - 18 q^{8} - 15 q^{9} - 9 q^{10} + 9 q^{11} - 9 q^{12} - 42 q^{14} - 24 q^{15} - 15 q^{16} - 9 q^{17} - 3 q^{18} - 9 q^{19} - 18 q^{20} + 15 q^{21} - 12 q^{22} + 30 q^{23} - 36 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} - 3 q^{30} - 9 q^{31} - 51 q^{32} - 9 q^{33} + 18 q^{34} - 9 q^{35} - 6 q^{37} - 9 q^{38} - 9 q^{39} - 9 q^{40} + 27 q^{42} - 12 q^{43} - 63 q^{45} - 6 q^{46} + 45 q^{47} + 30 q^{49} - 9 q^{50} + 33 q^{51} - 9 q^{52} + 45 q^{53} + 117 q^{54} - 51 q^{56} - 3 q^{58} - 9 q^{59} - 15 q^{60} - 63 q^{61} + 99 q^{62} - 33 q^{63} + 18 q^{64} - 102 q^{65} + 63 q^{66} - 3 q^{67} + 144 q^{68} - 108 q^{69} - 15 q^{70} + 18 q^{71} + 15 q^{72} - 33 q^{74} - 9 q^{75} - 36 q^{76} - 57 q^{77} + 66 q^{78} - 21 q^{79} - 72 q^{80} + 57 q^{81} - 18 q^{82} + 90 q^{83} + 51 q^{84} + 9 q^{85} - 33 q^{86} - 9 q^{87} + 45 q^{88} - 9 q^{89} - 81 q^{90} - 21 q^{91} + 150 q^{92} - 87 q^{93} - 9 q^{94} + 27 q^{95} - 9 q^{96} - 180 q^{98} + 96 q^{99}+O(q^{100})$$ 132 * q - 3 * q^2 - 9 * q^3 - 3 * q^4 - 9 * q^5 + 18 * q^6 - 6 * q^7 - 18 * q^8 - 15 * q^9 - 9 * q^10 + 9 * q^11 - 9 * q^12 - 42 * q^14 - 24 * q^15 - 15 * q^16 - 9 * q^17 - 3 * q^18 - 9 * q^19 - 18 * q^20 + 15 * q^21 - 12 * q^22 + 30 * q^23 - 36 * q^24 - 3 * q^25 - 12 * q^28 + 6 * q^29 - 3 * q^30 - 9 * q^31 - 51 * q^32 - 9 * q^33 + 18 * q^34 - 9 * q^35 - 6 * q^37 - 9 * q^38 - 9 * q^39 - 9 * q^40 + 27 * q^42 - 12 * q^43 - 63 * q^45 - 6 * q^46 + 45 * q^47 + 30 * q^49 - 9 * q^50 + 33 * q^51 - 9 * q^52 + 45 * q^53 + 117 * q^54 - 51 * q^56 - 3 * q^58 - 9 * q^59 - 15 * q^60 - 63 * q^61 + 99 * q^62 - 33 * q^63 + 18 * q^64 - 102 * q^65 + 63 * q^66 - 3 * q^67 + 144 * q^68 - 108 * q^69 - 15 * q^70 + 18 * q^71 + 15 * q^72 - 33 * q^74 - 9 * q^75 - 36 * q^76 - 57 * q^77 + 66 * q^78 - 21 * q^79 - 72 * q^80 + 57 * q^81 - 18 * q^82 + 90 * q^83 + 51 * q^84 + 9 * q^85 - 33 * q^86 - 9 * q^87 + 45 * q^88 - 9 * q^89 - 81 * q^90 - 21 * q^91 + 150 * q^92 - 87 * q^93 - 9 * q^94 + 27 * q^95 - 9 * q^96 - 180 * q^98 + 96 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/189\mathbb{Z}\right)^\times$$.

 $$n$$ $$29$$ $$136$$ $$\chi(n)$$ $$e\left(\frac{11}{18}\right)$$ $$e\left(\frac{1}{6}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.0147002 + 0.00259205i −0.0103946 + 0.00183285i −0.178843 0.983878i $$-0.557235\pi$$
0.168448 + 0.985710i $$0.446124\pi$$
$$3$$ −1.71867 0.214901i −0.992273 0.124073i
$$4$$ −1.87918 + 0.683964i −0.939588 + 0.341982i
$$5$$ 1.54651 0.562885i 0.691622 0.251730i 0.0277922 0.999614i $$-0.491152\pi$$
0.663829 + 0.747884i $$0.268930\pi$$
$$6$$ 0.0258218 0.00129578i 0.0105417 0.000528999i
$$7$$ 2.21011 1.45445i 0.835342 0.549730i
$$8$$ 0.0517058 0.0298524i 0.0182808 0.0105544i
$$9$$ 2.90764 + 0.738686i 0.969212 + 0.246229i
$$10$$ −0.0212751 + 0.0122832i −0.00672777 + 0.00388428i
$$11$$ 1.57083 4.31582i 0.473623 1.30127i −0.441199 0.897409i $$-0.645447\pi$$
0.914821 0.403859i $$-0.132331\pi$$
$$12$$ 3.37666 0.771671i 0.974759 0.222762i
$$13$$ −1.52751 4.19679i −0.423654 1.16398i −0.949600 0.313463i $$-0.898511\pi$$
0.525946 0.850518i $$-0.323711\pi$$
$$14$$ −0.0287191 + 0.0271094i −0.00767551 + 0.00724530i
$$15$$ −2.77891 + 0.635065i −0.717510 + 0.163973i
$$16$$ 3.06315 2.57029i 0.765788 0.642573i
$$17$$ 1.88705 + 3.26847i 0.457677 + 0.792720i 0.998838 0.0481990i $$-0.0153482\pi$$
−0.541160 + 0.840919i $$0.682015\pi$$
$$18$$ −0.0446576 0.00332212i −0.0105259 0.000783031i
$$19$$ −1.27160 0.734160i −0.291726 0.168428i 0.346994 0.937867i $$-0.387202\pi$$
−0.638720 + 0.769439i $$0.720536\pi$$
$$20$$ −2.52118 + 2.11552i −0.563752 + 0.473044i
$$21$$ −4.11100 + 2.02476i −0.897094 + 0.441839i
$$22$$ −0.0119048 + 0.0675152i −0.00253810 + 0.0143943i
$$23$$ 7.31736 + 1.29025i 1.52578 + 0.269035i 0.872700 0.488257i $$-0.162367\pi$$
0.653076 + 0.757293i $$0.273478\pi$$
$$24$$ −0.0952804 + 0.0401947i −0.0194490 + 0.00820470i
$$25$$ −1.75536 + 1.47292i −0.351072 + 0.294584i
$$26$$ 0.0333330 + 0.0577345i 0.00653714 + 0.0113227i
$$27$$ −4.83851 1.89441i −0.931172 0.364579i
$$28$$ −3.15839 + 4.24480i −0.596880 + 0.802192i
$$29$$ −2.83246 + 7.78213i −0.525975 + 1.44511i 0.337795 + 0.941220i $$0.390319\pi$$
−0.863771 + 0.503885i $$0.831903\pi$$
$$30$$ 0.0392044 0.0165387i 0.00715772 0.00301953i
$$31$$ −2.87381 7.89573i −0.516152 1.41812i −0.874728 0.484615i $$-0.838960\pi$$
0.358576 0.933501i $$-0.383262\pi$$
$$32$$ −0.115122 + 0.137197i −0.0203508 + 0.0242532i
$$33$$ −3.62721 + 7.07988i −0.631415 + 1.23245i
$$34$$ −0.0362121 0.0431559i −0.00621033 0.00740118i
$$35$$ 2.59927 3.49336i 0.439358 0.590485i
$$36$$ −5.96919 + 0.600598i −0.994865 + 0.100100i
$$37$$ −0.794639 −0.130638 −0.0653190 0.997864i $$-0.520806\pi$$
−0.0653190 + 0.997864i $$0.520806\pi$$
$$38$$ 0.0205958 + 0.00749627i 0.00334109 + 0.00121606i
$$39$$ 1.72338 + 7.54116i 0.275962 + 1.20755i
$$40$$ 0.0631602 0.0752714i 0.00998651 0.0119015i
$$41$$ 3.97658 1.44736i 0.621037 0.226039i −0.0122884 0.999924i $$-0.503912\pi$$
0.633326 + 0.773885i $$0.281689\pi$$
$$42$$ 0.0551844 0.0404204i 0.00851514 0.00623700i
$$43$$ −0.303215 1.71962i −0.0462399 0.262239i 0.952920 0.303222i $$-0.0980623\pi$$
−0.999160 + 0.0409825i $$0.986951\pi$$
$$44$$ 9.18457i 1.38463i
$$45$$ 4.91249 0.494277i 0.732311 0.0736824i
$$46$$ −0.110911 −0.0163530
$$47$$ −1.54917 0.563852i −0.225970 0.0822463i 0.226554 0.973999i $$-0.427254\pi$$
−0.452524 + 0.891752i $$0.649476\pi$$
$$48$$ −5.81690 + 3.75920i −0.839597 + 0.542594i
$$49$$ 2.76916 6.42898i 0.395594 0.918425i
$$50$$ 0.0219863 0.0262023i 0.00310933 0.00370556i
$$51$$ −2.54082 6.02294i −0.355786 0.843380i
$$52$$ 5.74091 + 6.84175i 0.796121 + 0.948780i
$$53$$ 3.66888 + 2.11823i 0.503959 + 0.290961i 0.730347 0.683076i $$-0.239358\pi$$
−0.226388 + 0.974037i $$0.572692\pi$$
$$54$$ 0.0760377 + 0.0153066i 0.0103474 + 0.00208296i
$$55$$ 7.55866i 1.01921i
$$56$$ 0.0708567 0.141180i 0.00946863 0.0188660i
$$57$$ 2.02769 + 1.53505i 0.268574 + 0.203322i
$$58$$ 0.0214662 0.121741i 0.00281865 0.0159854i
$$59$$ −8.85828 7.43298i −1.15325 0.967691i −0.153459 0.988155i $$-0.549041\pi$$
−0.999791 + 0.0204636i $$0.993486\pi$$
$$60$$ 4.78769 3.09407i 0.618088 0.399443i
$$61$$ 1.02900 2.82714i 0.131749 0.361978i −0.856224 0.516605i $$-0.827195\pi$$
0.987973 + 0.154627i $$0.0494176\pi$$
$$62$$ 0.0627118 + 0.108620i 0.00796441 + 0.0137948i
$$63$$ 7.50057 2.59643i 0.944983 0.327120i
$$64$$ −3.99733 + 6.92357i −0.499666 + 0.865447i
$$65$$ −4.72462 5.63058i −0.586017 0.698388i
$$66$$ 0.0349694 0.113478i 0.00430443 0.0139682i
$$67$$ −1.88292 + 10.6785i −0.230035 + 1.30459i 0.622788 + 0.782391i $$0.286000\pi$$
−0.852823 + 0.522201i $$0.825111\pi$$
$$68$$ −5.78162 4.85135i −0.701124 0.588313i
$$69$$ −12.2988 3.79001i −1.48061 0.456264i
$$70$$ −0.0291550 + 0.0580906i −0.00348469 + 0.00694316i
$$71$$ 6.66808 + 3.84982i 0.791355 + 0.456889i 0.840439 0.541906i $$-0.182297\pi$$
−0.0490844 + 0.998795i $$0.515630\pi$$
$$72$$ 0.172393 0.0486054i 0.0203167 0.00572821i
$$73$$ 15.8281i 1.85254i 0.376858 + 0.926271i $$0.377005\pi$$
−0.376858 + 0.926271i $$0.622995\pi$$
$$74$$ 0.0116814 0.00205974i 0.00135793 0.000239440i
$$75$$ 3.33341 2.15423i 0.384909 0.248750i
$$76$$ 2.89171 + 0.509886i 0.331701 + 0.0584879i
$$77$$ −2.80543 11.8231i −0.319709 1.34737i
$$78$$ −0.0448812 0.106390i −0.00508179 0.0120463i
$$79$$ 0.276799 + 1.56981i 0.0311423 + 0.176617i 0.996412 0.0846402i $$-0.0269741\pi$$
−0.965269 + 0.261257i $$0.915863\pi$$
$$80$$ 3.29043 5.69919i 0.367881 0.637189i
$$81$$ 7.90869 + 4.29566i 0.878743 + 0.477295i
$$82$$ −0.0547050 + 0.0315840i −0.00604116 + 0.00348787i
$$83$$ 4.61667 + 1.68033i 0.506745 + 0.184440i 0.582725 0.812669i $$-0.301986\pi$$
−0.0759804 + 0.997109i $$0.524209\pi$$
$$84$$ 6.34044 6.61666i 0.691798 0.721937i
$$85$$ 4.75812 + 3.99254i 0.516091 + 0.433051i
$$86$$ 0.00891467 + 0.0244929i 0.000961293 + 0.00264113i
$$87$$ 6.54045 12.7662i 0.701210 1.36868i
$$88$$ −0.0476164 0.270046i −0.00507592 0.0287870i
$$89$$ −3.59252 + 6.22243i −0.380807 + 0.659577i −0.991178 0.132539i $$-0.957687\pi$$
0.610371 + 0.792116i $$0.291020\pi$$
$$90$$ −0.0709336 + 0.0199994i −0.00747705 + 0.00210812i
$$91$$ −9.47998 7.05369i −0.993772 0.739427i
$$92$$ −14.6331 + 2.58021i −1.52561 + 0.269005i
$$93$$ 3.24233 + 14.1877i 0.336214 + 1.47120i
$$94$$ 0.0242347 + 0.00427323i 0.00249962 + 0.000440750i
$$95$$ −2.37980 0.419623i −0.244162 0.0430524i
$$96$$ 0.227340 0.211056i 0.0232027 0.0215408i
$$97$$ −1.56544 + 0.276029i −0.158946 + 0.0280265i −0.252555 0.967583i $$-0.581271\pi$$
0.0936086 + 0.995609i $$0.470160\pi$$
$$98$$ −0.0240431 + 0.101685i −0.00242872 + 0.0102718i
$$99$$ 7.75543 11.3885i 0.779450 1.14458i
$$100$$ 2.29120 3.96848i 0.229120 0.396848i
$$101$$ 0.401328 + 2.27604i 0.0399336 + 0.226475i 0.998243 0.0592590i $$-0.0188738\pi$$
−0.958309 + 0.285734i $$0.907763\pi$$
$$102$$ 0.0529624 + 0.0819527i 0.00524406 + 0.00811453i
$$103$$ 0.187058 + 0.513937i 0.0184313 + 0.0506397i 0.948567 0.316576i $$-0.102533\pi$$
−0.930136 + 0.367216i $$0.880311\pi$$
$$104$$ −0.204265 0.171399i −0.0200299 0.0168070i
$$105$$ −5.21801 + 5.44534i −0.509226 + 0.531410i
$$106$$ −0.0594239 0.0216285i −0.00577176 0.00210075i
$$107$$ 2.89299 1.67027i 0.279676 0.161471i −0.353601 0.935397i $$-0.615043\pi$$
0.633277 + 0.773925i $$0.281709\pi$$
$$108$$ 10.3881 + 0.250555i 0.999598 + 0.0241097i
$$109$$ 1.92585 3.33567i 0.184463 0.319499i −0.758932 0.651169i $$-0.774279\pi$$
0.943395 + 0.331670i $$0.107612\pi$$
$$110$$ 0.0195924 + 0.111114i 0.00186806 + 0.0105943i
$$111$$ 1.36572 + 0.170769i 0.129628 + 0.0162086i
$$112$$ 3.03155 10.1358i 0.286454 0.957745i
$$113$$ 4.52691 + 0.798216i 0.425856 + 0.0750899i 0.382469 0.923968i $$-0.375074\pi$$
0.0433872 + 0.999058i $$0.486185\pi$$
$$114$$ −0.0337864 0.0173097i −0.00316439 0.00162120i
$$115$$ 12.0427 2.12344i 1.12298 0.198012i
$$116$$ 16.5613i 1.53768i
$$117$$ −1.34133 13.3311i −0.124006 1.23246i
$$118$$ 0.149485 + 0.0863054i 0.0137612 + 0.00794506i
$$119$$ 8.92441 + 4.47905i 0.818099 + 0.410594i
$$120$$ −0.124727 + 0.115793i −0.0113860 + 0.0105704i
$$121$$ −7.73229 6.48816i −0.702935 0.589833i
$$122$$ −0.00779839 + 0.0442268i −0.000706033 + 0.00400411i
$$123$$ −7.14545 + 1.63295i −0.644284 + 0.147239i
$$124$$ 10.8008 + 12.8719i 0.969940 + 1.15593i
$$125$$ −6.00001 + 10.3923i −0.536657 + 0.929518i
$$126$$ −0.103530 + 0.0576100i −0.00922319 + 0.00513230i
$$127$$ 2.63202 + 4.55879i 0.233554 + 0.404527i 0.958851 0.283908i $$-0.0916312\pi$$
−0.725298 + 0.688435i $$0.758298\pi$$
$$128$$ 0.163325 0.448733i 0.0144361 0.0396627i
$$129$$ 0.151579 + 3.02061i 0.0133458 + 0.265950i
$$130$$ 0.0840478 + 0.0705245i 0.00737148 + 0.00618540i
$$131$$ −2.62848 + 14.9069i −0.229652 + 1.30242i 0.623938 + 0.781474i $$0.285532\pi$$
−0.853590 + 0.520946i $$0.825579\pi$$
$$132$$ 1.97377 15.7852i 0.171795 1.37393i
$$133$$ −3.87818 + 0.226907i −0.336281 + 0.0196753i
$$134$$ 0.161858i 0.0139824i
$$135$$ −8.54916 0.206200i −0.735794 0.0177469i
$$136$$ 0.195143 + 0.112666i 0.0167334 + 0.00966102i
$$137$$ −2.29638 2.73672i −0.196193 0.233814i 0.658975 0.752165i $$-0.270990\pi$$
−0.855168 + 0.518351i $$0.826546\pi$$
$$138$$ 0.190620 + 0.0238349i 0.0162266 + 0.00202896i
$$139$$ 3.91305 4.66340i 0.331901 0.395544i −0.574124 0.818768i $$-0.694657\pi$$
0.906025 + 0.423224i $$0.139102\pi$$
$$140$$ −2.49516 + 8.34245i −0.210880 + 0.705065i
$$141$$ 2.54134 + 1.30199i 0.214019 + 0.109648i
$$142$$ −0.108001 0.0393092i −0.00906326 0.00329876i
$$143$$ −20.5121 −1.71530
$$144$$ 10.8052 5.21076i 0.900431 0.434230i
$$145$$ 13.6295i 1.13187i
$$146$$ −0.0410273 0.232677i −0.00339544 0.0192565i
$$147$$ −6.14086 + 10.4542i −0.506489 + 0.862246i
$$148$$ 1.49327 0.543505i 0.122746 0.0446758i
$$149$$ 12.9982 15.4906i 1.06485 1.26904i 0.103231 0.994657i $$-0.467082\pi$$
0.961620 0.274383i $$-0.0884738\pi$$
$$150$$ −0.0434180 + 0.0403081i −0.00354507 + 0.00329114i
$$151$$ −17.9723 6.54137i −1.46256 0.532329i −0.516492 0.856292i $$-0.672762\pi$$
−0.946070 + 0.323963i $$0.894985\pi$$
$$152$$ −0.0876657 −0.00711062
$$153$$ 3.07249 + 10.8975i 0.248396 + 0.881007i
$$154$$ 0.0718866 + 0.166531i 0.00579279 + 0.0134194i
$$155$$ −8.88877 10.5932i −0.713963 0.850868i
$$156$$ −8.39642 12.9924i −0.672252 1.04023i
$$157$$ −10.2114 + 12.1695i −0.814957 + 0.971228i −0.999934 0.0115149i $$-0.996335\pi$$
0.184977 + 0.982743i $$0.440779\pi$$
$$158$$ −0.00813802 0.0223590i −0.000647426 0.00177879i
$$159$$ −5.85037 4.42897i −0.463965 0.351240i
$$160$$ −0.100811 + 0.276977i −0.00796983 + 0.0218969i
$$161$$ 18.0488 7.79114i 1.42244 0.614028i
$$162$$ −0.127394 0.0426475i −0.0100090 0.00335070i
$$163$$ 8.71884 + 15.1015i 0.682912 + 1.18284i 0.974088 + 0.226169i $$0.0726202\pi$$
−0.291176 + 0.956670i $$0.594046\pi$$
$$164$$ −6.48275 + 5.43967i −0.506218 + 0.424767i
$$165$$ −1.62436 + 12.9908i −0.126456 + 1.01133i
$$166$$ −0.0722216 0.0127346i −0.00560548 0.000988397i
$$167$$ −1.64317 + 9.31890i −0.127153 + 0.721118i 0.852853 + 0.522150i $$0.174870\pi$$
−0.980006 + 0.198968i $$0.936241\pi$$
$$168$$ −0.152119 + 0.227415i −0.0117362 + 0.0175454i
$$169$$ −5.32122 + 4.46503i −0.409325 + 0.343464i
$$170$$ −0.0802943 0.0463580i −0.00615829 0.00355549i
$$171$$ −3.15504 3.07399i −0.241272 0.235074i
$$172$$ 1.74595 + 3.02408i 0.133128 + 0.230584i
$$173$$ 1.16427 0.976939i 0.0885179 0.0742753i −0.597455 0.801902i $$-0.703821\pi$$
0.685973 + 0.727627i $$0.259377\pi$$
$$174$$ −0.0630555 + 0.204619i −0.00478023 + 0.0155121i
$$175$$ −1.73725 + 5.80840i −0.131323 + 0.439074i
$$176$$ −6.28122 17.2575i −0.473465 1.30083i
$$177$$ 13.6271 + 14.6785i 1.02427 + 1.10330i
$$178$$ 0.0366821 0.100783i 0.00274944 0.00755402i
$$179$$ −7.44216 + 4.29673i −0.556253 + 0.321153i −0.751640 0.659573i $$-0.770737\pi$$
0.195387 + 0.980726i $$0.437404\pi$$
$$180$$ −8.89337 + 4.28880i −0.662872 + 0.319668i
$$181$$ 9.18805 5.30472i 0.682942 0.394297i −0.118021 0.993011i $$-0.537655\pi$$
0.800963 + 0.598714i $$0.204322\pi$$
$$182$$ 0.157641 + 0.0791183i 0.0116852 + 0.00586464i
$$183$$ −2.37605 + 4.63778i −0.175643 + 0.342835i
$$184$$ 0.416867 0.151727i 0.0307318 0.0111855i
$$185$$ −1.22892 + 0.447290i −0.0903520 + 0.0328854i
$$186$$ −0.0844382 0.200159i −0.00619131 0.0146763i
$$187$$ 17.0704 3.00996i 1.24831 0.220110i
$$188$$ 3.29682 0.240445
$$189$$ −13.4490 + 2.85052i −0.978268 + 0.207345i
$$190$$ 0.0360713 0.00261688
$$191$$ −9.68268 + 1.70732i −0.700614 + 0.123537i −0.512598 0.858629i $$-0.671317\pi$$
−0.188016 + 0.982166i $$0.560206\pi$$
$$192$$ 8.35796 11.0403i 0.603183 0.796764i
$$193$$ −18.3352 + 6.67347i −1.31980 + 0.480367i −0.903393 0.428813i $$-0.858932\pi$$
−0.416404 + 0.909180i $$0.636710\pi$$
$$194$$ 0.0222969 0.00811539i 0.00160082 0.000582651i
$$195$$ 6.91004 + 10.6924i 0.494838 + 0.765701i
$$196$$ −0.806547 + 13.9752i −0.0576105 + 0.998228i
$$197$$ −3.74738 + 2.16355i −0.266990 + 0.154147i −0.627519 0.778601i $$-0.715930\pi$$
0.360529 + 0.932748i $$0.382596\pi$$
$$198$$ −0.0844872 + 0.187516i −0.00600424 + 0.0133262i
$$199$$ 1.46886 0.848046i 0.104125 0.0601164i −0.447033 0.894517i $$-0.647519\pi$$
0.551158 + 0.834401i $$0.314186\pi$$
$$200$$ −0.0467921 + 0.128560i −0.00330870 + 0.00909058i
$$201$$ 5.53093 17.9482i 0.390122 1.26597i
$$202$$ −0.0117992 0.0324181i −0.000830191 0.00228093i
$$203$$ 5.05865 + 21.3190i 0.355048 + 1.49630i
$$204$$ 8.89412 + 9.58034i 0.622713 + 0.670758i
$$205$$ 5.33514 4.47671i 0.372622 0.312667i
$$206$$ −0.00408194 0.00707013i −0.000284402 0.000492599i
$$207$$ 20.3231 + 9.15680i 1.41256 + 0.636442i
$$208$$ −15.4660 8.92928i −1.07237 0.619134i
$$209$$ −5.16597 + 4.33477i −0.357338 + 0.299842i
$$210$$ 0.0625914 0.0935731i 0.00431922 0.00645716i
$$211$$ 1.04647 5.93483i 0.0720420 0.408570i −0.927366 0.374156i $$-0.877932\pi$$
0.999408 0.0344141i $$-0.0109565\pi$$
$$212$$ −8.34326 1.47114i −0.573017 0.101038i
$$213$$ −10.6329 8.04953i −0.728553 0.551544i
$$214$$ −0.0381983 + 0.0320521i −0.00261118 + 0.00219104i
$$215$$ −1.43687 2.48874i −0.0979939 0.169730i
$$216$$ −0.306732 + 0.0464892i −0.0208705 + 0.00316319i
$$217$$ −17.8354 13.2706i −1.21074 0.900868i
$$218$$ −0.0196642 + 0.0540270i −0.00133183 + 0.00365917i
$$219$$ 3.40148 27.2033i 0.229850 1.83823i
$$220$$ 5.16985 + 14.2041i 0.348551 + 0.957637i
$$221$$ 10.8346 12.9122i 0.728814 0.868567i
$$222$$ −0.0205191 + 0.00102968i −0.00137715 + 6.91074e-5i
$$223$$ 0.590154 + 0.703318i 0.0395196 + 0.0470976i 0.785442 0.618935i $$-0.212436\pi$$
−0.745923 + 0.666033i $$0.767991\pi$$
$$224$$ −0.0548859 + 0.470658i −0.00366722 + 0.0314472i
$$225$$ −6.19197 + 2.98606i −0.412798 + 0.199071i
$$226$$ −0.0686157 −0.00456425
$$227$$ −12.5247 4.55861i −0.831293 0.302566i −0.108903 0.994052i $$-0.534734\pi$$
−0.722389 + 0.691487i $$0.756956\pi$$
$$228$$ −4.86030 1.49775i −0.321882 0.0991911i
$$229$$ 7.91645 9.43446i 0.523134 0.623447i −0.438185 0.898885i $$-0.644378\pi$$
0.961319 + 0.275438i $$0.0888229\pi$$
$$230$$ −0.171526 + 0.0624303i −0.0113101 + 0.00411653i
$$231$$ 2.28081 + 20.9229i 0.150066 + 1.37663i
$$232$$ 0.0858601 + 0.486937i 0.00563699 + 0.0319690i
$$233$$ 24.9355i 1.63358i 0.576937 + 0.816788i $$0.304248\pi$$
−0.576937 + 0.816788i $$0.695752\pi$$
$$234$$ 0.0542726 + 0.192493i 0.00354791 + 0.0125837i
$$235$$ −2.71320 −0.176989
$$236$$ 21.7302 + 7.90913i 1.41451 + 0.514840i
$$237$$ −0.138373 2.75746i −0.00898831 0.179116i
$$238$$ −0.142801 0.0427106i −0.00925640 0.00276852i
$$239$$ 7.34853 8.75764i 0.475337 0.566485i −0.474088 0.880477i $$-0.657222\pi$$
0.949425 + 0.313993i $$0.101667\pi$$
$$240$$ −6.87991 + 9.08790i −0.444096 + 0.586621i
$$241$$ −3.95464 4.71296i −0.254741 0.303588i 0.623484 0.781836i $$-0.285717\pi$$
−0.878225 + 0.478248i $$0.841272\pi$$
$$242$$ 0.130484 + 0.0753350i 0.00838784 + 0.00484272i
$$243$$ −12.6693 9.08239i −0.812734 0.582635i
$$244$$ 6.01649i 0.385166i
$$245$$ 0.663767 11.5012i 0.0424065 0.734786i
$$246$$ 0.100807 0.0425262i 0.00642723 0.00271137i
$$247$$ −1.13874 + 6.45809i −0.0724560 + 0.410919i
$$248$$ −0.384299 0.322465i −0.0244030 0.0204766i
$$249$$ −7.57341 3.88005i −0.479945 0.245888i
$$250$$ 0.0612642 0.168322i 0.00387469 0.0106456i
$$251$$ −6.31801 10.9431i −0.398789 0.690724i 0.594787 0.803883i $$-0.297236\pi$$
−0.993577 + 0.113160i $$0.963903\pi$$
$$252$$ −12.3190 + 10.0093i −0.776026 + 0.630525i
$$253$$ 17.0628 29.5536i 1.07273 1.85802i
$$254$$ −0.0505079 0.0601929i −0.00316915 0.00377684i
$$255$$ −7.31963 7.88437i −0.458373 0.493738i
$$256$$ 2.77528 15.7394i 0.173455 0.983711i
$$257$$ 11.4631 + 9.61867i 0.715048 + 0.599996i 0.926010 0.377498i $$-0.123215\pi$$
−0.210963 + 0.977494i $$0.567660\pi$$
$$258$$ −0.0100578 0.0440108i −0.000626173 0.00273999i
$$259$$ −1.75624 + 1.15576i −0.109127 + 0.0718156i
$$260$$ 12.7295 + 7.34939i 0.789451 + 0.455790i
$$261$$ −13.9843 + 20.5353i −0.865607 + 1.27110i
$$262$$ 0.225948i 0.0139591i
$$263$$ 15.6917 2.76688i 0.967594 0.170613i 0.332547 0.943087i $$-0.392092\pi$$
0.635047 + 0.772474i $$0.280981\pi$$
$$264$$ 0.0238037 + 0.474352i 0.00146501 + 0.0291943i
$$265$$ 6.86628 + 1.21071i 0.421792 + 0.0743734i
$$266$$ 0.0564220 0.0133880i 0.00345945 0.000820872i
$$267$$ 7.51156 9.92226i 0.459700 0.607232i
$$268$$ −3.76541 21.3547i −0.230009 1.30445i
$$269$$ 4.94336 8.56215i 0.301402 0.522044i −0.675052 0.737770i $$-0.735879\pi$$
0.976454 + 0.215727i $$0.0692121\pi$$
$$270$$ 0.126209 0.0191286i 0.00768084 0.00116413i
$$271$$ 1.92889 1.11364i 0.117171 0.0676490i −0.440269 0.897866i $$-0.645117\pi$$
0.557440 + 0.830217i $$0.311784\pi$$
$$272$$ 14.1812 + 5.16155i 0.859864 + 0.312965i
$$273$$ 14.7771 + 14.1602i 0.894350 + 0.857014i
$$274$$ 0.0408511 + 0.0342782i 0.00246791 + 0.00207082i
$$275$$ 3.59949 + 9.88952i 0.217057 + 0.596361i
$$276$$ 25.7039 1.28986i 1.54719 0.0776404i
$$277$$ −1.50230 8.51996i −0.0902644 0.511915i −0.996096 0.0882769i $$-0.971864\pi$$
0.905832 0.423638i $$-0.139247\pi$$
$$278$$ −0.0454351 + 0.0786958i −0.00272501 + 0.00471986i
$$279$$ −2.52353 25.0808i −0.151080 1.50155i
$$280$$ 0.0301125 0.258221i 0.00179957 0.0154317i
$$281$$ 29.4759 5.19740i 1.75839 0.310051i 0.800958 0.598721i $$-0.204324\pi$$
0.957429 + 0.288670i $$0.0932130\pi$$
$$282$$ −0.0407331 0.0125523i −0.00242562 0.000747480i
$$283$$ 9.64374 + 1.70045i 0.573261 + 0.101081i 0.452761 0.891632i $$-0.350439\pi$$
0.120500 + 0.992713i $$0.461550\pi$$
$$284$$ −15.1636 2.67376i −0.899795 0.158658i
$$285$$ 3.99990 + 1.23261i 0.236934 + 0.0730136i
$$286$$ 0.301532 0.0531682i 0.0178300 0.00314390i
$$287$$ 6.68357 8.98254i 0.394518 0.530223i
$$288$$ −0.436077 + 0.313879i −0.0256961 + 0.0184955i
$$289$$ 1.37807 2.38689i 0.0810630 0.140405i
$$290$$ −0.0353283 0.200357i −0.00207455 0.0117654i
$$291$$ 2.74979 0.137989i 0.161196 0.00808903i
$$292$$ −10.8259 29.7438i −0.633536 1.74063i
$$293$$ 7.96197 + 6.68088i 0.465143 + 0.390301i 0.845019 0.534736i $$-0.179589\pi$$
−0.379876 + 0.925037i $$0.624033\pi$$
$$294$$ 0.0631743 0.169596i 0.00368440 0.00989106i
$$295$$ −17.8834 6.50901i −1.04121 0.378969i
$$296$$ −0.0410875 + 0.0237219i −0.00238816 + 0.00137881i
$$297$$ −15.7764 + 17.9064i −0.915439 + 1.03903i
$$298$$ −0.150924 + 0.261408i −0.00874278 + 0.0151429i
$$299$$ −5.76242 32.6803i −0.333249 1.88995i
$$300$$ −4.79065 + 6.32812i −0.276588 + 0.365354i
$$301$$ −3.17124 3.35953i −0.182787 0.193640i
$$302$$ 0.281152 + 0.0495747i 0.0161785 + 0.00285270i
$$303$$ −0.200626 3.99801i −0.0115257 0.229680i
$$304$$ −5.78212 + 1.01954i −0.331627 + 0.0584749i
$$305$$ 4.95142i 0.283517i
$$306$$ −0.0734130 0.152231i −0.00419674 0.00870247i
$$307$$ 14.7821 + 8.53446i 0.843660 + 0.487087i 0.858507 0.512802i $$-0.171393\pi$$
−0.0148465 + 0.999890i $$0.504726\pi$$
$$308$$ 13.3585 + 20.2989i 0.761170 + 1.15664i
$$309$$ −0.211045 0.923485i −0.0120059 0.0525352i
$$310$$ 0.158125 + 0.132683i 0.00898091 + 0.00753588i
$$311$$ −5.77607 + 32.7577i −0.327531 + 1.85752i 0.163729 + 0.986505i $$0.447648\pi$$
−0.491260 + 0.871013i $$0.663463\pi$$
$$312$$ 0.314230 + 0.338474i 0.0177898 + 0.0191623i
$$313$$ −0.628153 0.748603i −0.0355053 0.0423135i 0.748000 0.663699i $$-0.231014\pi$$
−0.783505 + 0.621386i $$0.786570\pi$$
$$314$$ 0.118566 0.205362i 0.00669106 0.0115893i
$$315$$ 10.1382 8.23737i 0.571225 0.464123i
$$316$$ −1.59384 2.76062i −0.0896608 0.155297i
$$317$$ 1.15835 3.18255i 0.0650597 0.178750i −0.902903 0.429845i $$-0.858568\pi$$
0.967963 + 0.251095i $$0.0807905\pi$$
$$318$$ 0.0974820 + 0.0499425i 0.00546652 + 0.00280064i
$$319$$ 29.1369 + 24.4488i 1.63136 + 1.36887i
$$320$$ −2.28474 + 12.9574i −0.127721 + 0.724342i
$$321$$ −5.33104 + 2.24893i −0.297549 + 0.125523i
$$322$$ −0.245126 + 0.161315i −0.0136603 + 0.00898972i
$$323$$ 5.54159i 0.308343i
$$324$$ −17.7999 2.66304i −0.988883 0.147946i
$$325$$ 8.86287 + 5.11698i 0.491624 + 0.283839i
$$326$$ −0.167313 0.199396i −0.00926660 0.0110435i
$$327$$ −4.02673 + 5.31904i −0.222679 + 0.294144i
$$328$$ 0.162405 0.193547i 0.00896733 0.0106868i
$$329$$ −4.24393 + 1.00702i −0.233975 + 0.0555185i
$$330$$ −0.00979435 0.195179i −0.000539161 0.0107442i
$$331$$ −5.71144 2.07879i −0.313929 0.114261i 0.180250 0.983621i $$-0.442309\pi$$
−0.494179 + 0.869360i $$0.664531\pi$$
$$332$$ −9.82481 −0.539206
$$333$$ −2.31052 0.586989i −0.126616 0.0321668i
$$334$$ 0.141249i 0.00772881i
$$335$$ 3.09883 + 17.5744i 0.169307 + 0.960190i
$$336$$ −7.38841 + 16.7686i −0.403071 + 0.914803i
$$337$$ −16.0696 + 5.84885i −0.875366 + 0.318607i −0.740338 0.672235i $$-0.765335\pi$$
−0.135028 + 0.990842i $$0.543112\pi$$
$$338$$ 0.0666496 0.0794299i 0.00362526 0.00432042i
$$339$$ −7.60872 2.34470i −0.413249 0.127347i
$$340$$ −11.6721 4.24830i −0.633008 0.230396i
$$341$$ −38.5908 −2.08981
$$342$$ 0.0543478 + 0.0370103i 0.00293879 + 0.00200129i
$$343$$ −3.23048 18.2363i −0.174429 0.984670i
$$344$$ −0.0670127 0.0798626i −0.00361308 0.00430590i
$$345$$ −21.1536 + 1.06152i −1.13887 + 0.0571504i
$$346$$ −0.0145828 + 0.0173791i −0.000783975 + 0.000934305i
$$347$$ −7.20872 19.8058i −0.386984 1.06323i −0.968352 0.249590i $$-0.919704\pi$$
0.581367 0.813641i $$-0.302518\pi$$
$$348$$ −3.55903 + 28.4634i −0.190784 + 1.52580i
$$349$$ 2.22508 6.11336i 0.119106 0.327240i −0.865785 0.500416i $$-0.833181\pi$$
0.984891 + 0.173175i $$0.0554027\pi$$
$$350$$ 0.0104823 0.0898878i 0.000560302 0.00480471i
$$351$$ −0.559569 + 23.2000i −0.0298676 + 1.23832i
$$352$$ 0.411279 + 0.712357i 0.0219213 + 0.0379687i
$$353$$ 14.6259 12.2726i 0.778459 0.653204i −0.164401 0.986394i $$-0.552569\pi$$
0.942860 + 0.333189i $$0.108125\pi$$
$$354$$ −0.238369 0.180455i −0.0126691 0.00959107i
$$355$$ 12.4793 + 2.20043i 0.662331 + 0.116787i
$$356$$ 2.49506 14.1502i 0.132238 0.749959i
$$357$$ −14.3755 9.61586i −0.760834 0.508925i
$$358$$ 0.0982642 0.0824534i 0.00519342 0.00435780i
$$359$$ −17.4085 10.0508i −0.918784 0.530460i −0.0355371 0.999368i $$-0.511314\pi$$
−0.883247 + 0.468908i $$0.844648\pi$$
$$360$$ 0.239249 0.172206i 0.0126095 0.00907607i
$$361$$ −8.42202 14.5874i −0.443264 0.767756i
$$362$$ −0.121316 + 0.101797i −0.00637625 + 0.00535031i
$$363$$ 11.8949 + 12.8127i 0.624322 + 0.672491i
$$364$$ 22.6390 + 6.77115i 1.18661 + 0.354905i
$$365$$ 8.90941 + 24.4784i 0.466340 + 1.28126i
$$366$$ 0.0229072 0.0743354i 0.00119738 0.00388557i
$$367$$ −0.211500 + 0.581091i −0.0110402 + 0.0303327i −0.945090 0.326809i $$-0.894027\pi$$
0.934050 + 0.357142i $$0.116249\pi$$
$$368$$ 25.7305 14.8555i 1.34130 0.774398i
$$369$$ 12.6316 1.27094i 0.657574 0.0661627i
$$370$$ 0.0169060 0.00976069i 0.000878902 0.000507434i
$$371$$ 11.1895 0.654681i 0.580928 0.0339894i
$$372$$ −15.7968 24.4436i −0.819026 1.26734i
$$373$$ −30.2831 + 11.0222i −1.56800 + 0.570706i −0.972552 0.232686i $$-0.925248\pi$$
−0.595450 + 0.803392i $$0.703026\pi$$
$$374$$ −0.243136 + 0.0884944i −0.0125723 + 0.00457593i
$$375$$ 12.5453 16.5715i 0.647839 0.855751i
$$376$$ −0.0969334 + 0.0170920i −0.00499896 + 0.000881452i
$$377$$ 36.9866 1.90491
$$378$$ 0.190314 0.0767637i 0.00978870 0.00394830i
$$379$$ 8.60323 0.441918 0.220959 0.975283i $$-0.429081\pi$$
0.220959 + 0.975283i $$0.429081\pi$$
$$380$$ 4.75907 0.839152i 0.244135 0.0430476i
$$381$$ −3.54388 8.40066i −0.181558 0.430379i
$$382$$ 0.137912 0.0501960i 0.00705621 0.00256825i
$$383$$ 11.4138 4.15427i 0.583216 0.212273i −0.0335270 0.999438i $$-0.510674\pi$$
0.616743 + 0.787164i $$0.288452\pi$$
$$384$$ −0.377135 + 0.736123i −0.0192456 + 0.0375651i
$$385$$ −10.9937 16.7055i −0.560290 0.851389i
$$386$$ 0.252234 0.145627i 0.0128384 0.00741224i
$$387$$ 0.388618 5.22400i 0.0197546 0.265551i
$$388$$ 2.75294 1.58941i 0.139760 0.0806902i
$$389$$ −11.0030 + 30.2306i −0.557876 + 1.53275i 0.264836 + 0.964294i $$0.414682\pi$$
−0.822712 + 0.568459i $$0.807540\pi$$
$$390$$ −0.129294 0.139270i −0.00654708 0.00705221i
$$391$$ 9.59110 + 26.3513i 0.485043 + 1.33264i
$$392$$ −0.0487386 0.415081i −0.00246167 0.0209648i
$$393$$ 7.72099 25.0551i 0.389472 1.26386i
$$394$$ 0.0494794 0.0415181i 0.00249274 0.00209165i
$$395$$ 1.31169 + 2.27192i 0.0659984 + 0.114313i
$$396$$ −6.78451 + 26.7054i −0.340934 + 1.34200i
$$397$$ 10.0122 + 5.78053i 0.502496 + 0.290116i 0.729744 0.683721i $$-0.239639\pi$$
−0.227247 + 0.973837i $$0.572973\pi$$
$$398$$ −0.0193944 + 0.0162738i −0.000972153 + 0.000815733i
$$399$$ 6.71406 + 0.443445i 0.336124 + 0.0222000i
$$400$$ −1.59110 + 9.02357i −0.0795549 + 0.451179i
$$401$$ 0.101869 + 0.0179623i 0.00508710 + 0.000896994i 0.176191 0.984356i $$-0.443622\pi$$
−0.171104 + 0.985253i $$0.554733\pi$$
$$402$$ −0.0347833 + 0.278180i −0.00173483 + 0.0138743i
$$403$$ −28.7470 + 24.1216i −1.43199 + 1.20158i
$$404$$ −2.31090 4.00259i −0.114971 0.199136i
$$405$$ 14.6488 + 2.19161i 0.727907 + 0.108902i
$$406$$ −0.129623 0.300282i −0.00643310 0.0149028i
$$407$$ −1.24824 + 3.42952i −0.0618731 + 0.169995i
$$408$$ −0.311174 0.235572i −0.0154054 0.0116625i
$$409$$ −1.24227 3.41310i −0.0614262 0.168767i 0.905183 0.425022i $$-0.139734\pi$$
−0.966609 + 0.256255i $$0.917511\pi$$
$$410$$ −0.0668239 + 0.0796376i −0.00330020 + 0.00393302i
$$411$$ 3.35860 + 5.19701i 0.165667 + 0.256350i
$$412$$ −0.703029 0.837837i −0.0346357 0.0412773i
$$413$$ −30.3886 3.54378i −1.49533 0.174378i
$$414$$ −0.322490 0.0819286i −0.0158495 0.00402657i
$$415$$ 8.08556 0.396905
$$416$$ 0.751635 + 0.273573i 0.0368520 + 0.0134130i
$$417$$ −7.72741 + 7.17391i −0.378413 + 0.351308i
$$418$$ 0.0647051 0.0771125i 0.00316483 0.00377170i
$$419$$ −37.3388 + 13.5902i −1.82412 + 0.663926i −0.829730 + 0.558165i $$0.811506\pi$$
−0.994392 + 0.105761i $$0.966272\pi$$
$$420$$ 6.08115 13.8017i 0.296730 0.673453i
$$421$$ −1.45892 8.27397i −0.0711036 0.403249i −0.999499 0.0316544i $$-0.989922\pi$$
0.928395 0.371594i $$-0.121189\pi$$
$$422$$ 0.0899558i 0.00437898i
$$423$$ −4.08792 2.78383i −0.198761 0.135354i
$$424$$ 0.252936 0.0122837
$$425$$ −8.12665 2.95786i −0.394201 0.143477i
$$426$$ 0.177171 + 0.0907690i 0.00858394 + 0.00439777i
$$427$$ −1.83774 7.74491i −0.0889345 0.374802i
$$428$$ −4.29404 + 5.11744i −0.207560 + 0.247361i
$$429$$ 35.2534 + 4.40805i 1.70205 + 0.212823i
$$430$$ 0.0275733 + 0.0328606i 0.00132970 + 0.00158468i
$$431$$ 4.45253 + 2.57067i 0.214471 + 0.123825i 0.603387 0.797448i $$-0.293817\pi$$
−0.388917 + 0.921273i $$0.627151\pi$$
$$432$$ −19.6903 + 6.63353i −0.947350 + 0.319156i
$$433$$ 19.5889i 0.941384i −0.882298 0.470692i $$-0.844004\pi$$
0.882298 0.470692i $$-0.155996\pi$$
$$434$$ 0.296582 + 0.148851i 0.0142364 + 0.00714508i
$$435$$ 2.92899 23.4246i 0.140434 1.12312i
$$436$$ −1.33753 + 7.58552i −0.0640562 + 0.363281i
$$437$$ −8.35753 7.01280i −0.399795 0.335468i
$$438$$ 0.0205097 + 0.408712i 0.000979993 + 0.0195290i
$$439$$ −11.0039 + 30.2330i −0.525189 + 1.44294i 0.339485 + 0.940611i $$0.389747\pi$$
−0.864674 + 0.502333i $$0.832475\pi$$
$$440$$ −0.225644 0.390827i −0.0107572 0.0186319i
$$441$$ 12.8007 16.6476i 0.609557 0.792742i
$$442$$ −0.125802 + 0.217896i −0.00598380 + 0.0103643i
$$443$$ −14.9004 17.7576i −0.707939 0.843689i 0.285461 0.958390i $$-0.407853\pi$$
−0.993400 + 0.114701i $$0.963409\pi$$
$$444$$ −2.68323 + 0.613200i −0.127340 + 0.0291012i
$$445$$ −2.05337 + 11.6453i −0.0973392 + 0.552038i
$$446$$ −0.0104984 0.00880923i −0.000497115 0.000417129i
$$447$$ −25.6685 + 23.8299i −1.21408 + 1.12712i
$$448$$ 1.23545 + 21.1158i 0.0583697 + 0.997626i
$$449$$ −16.3545 9.44229i −0.771817 0.445609i 0.0617051 0.998094i $$-0.480346\pi$$
−0.833523 + 0.552485i $$0.813679\pi$$
$$450$$ 0.0832834 0.0599457i 0.00392602 0.00282587i
$$451$$ 19.4357i 0.915193i
$$452$$ −9.05281 + 1.59625i −0.425808 + 0.0750815i
$$453$$ 29.4826 + 15.1047i 1.38521 + 0.709680i
$$454$$ 0.195932 + 0.0345481i 0.00919554 + 0.00162142i
$$455$$ −18.6313 5.57248i −0.873450 0.261242i
$$456$$ 0.150668 + 0.0188394i 0.00705568 + 0.000882236i
$$457$$ −3.19633 18.1273i −0.149518 0.847960i −0.963628 0.267248i $$-0.913886\pi$$
0.814109 0.580711i $$-0.197226\pi$$
$$458$$ −0.0919191 + 0.159209i −0.00429510 + 0.00743933i
$$459$$ −2.93871 19.3894i −0.137167 0.905019i
$$460$$ −21.1779 + 12.2271i −0.987425 + 0.570090i
$$461$$ 15.0689 + 5.48464i 0.701830 + 0.255445i 0.668192 0.743989i $$-0.267068\pi$$
0.0336380 + 0.999434i $$0.489291\pi$$
$$462$$ −0.0877616 0.301659i −0.00408304 0.0140345i
$$463$$ 27.7311 + 23.2691i 1.28877 + 1.08141i 0.991971 + 0.126469i $$0.0403645\pi$$
0.296802 + 0.954939i $$0.404080\pi$$
$$464$$ 11.3261 + 31.1181i 0.525799 + 1.44462i
$$465$$ 13.0004 + 20.1164i 0.602877 + 0.932877i
$$466$$ −0.0646339 0.366557i −0.00299411 0.0169804i
$$467$$ −5.43272 + 9.40975i −0.251396 + 0.435431i −0.963911 0.266226i $$-0.914223\pi$$
0.712514 + 0.701658i $$0.247556\pi$$
$$468$$ 11.6386 + 24.1341i 0.537993 + 1.11560i
$$469$$ 11.3699 + 26.3393i 0.525015 + 1.21624i
$$470$$ 0.0398846 0.00703274i 0.00183974 0.000324396i
$$471$$ 20.1652 18.7208i 0.929163 0.862609i
$$472$$ −0.679916 0.119888i −0.0312957 0.00551827i
$$473$$ −7.89786 1.39261i −0.363144 0.0640321i
$$474$$ 0.00918158 + 0.0401766i 0.000421724 + 0.00184537i
$$475$$ 3.31348 0.584256i 0.152033 0.0268075i
$$476$$ −19.8340 2.31295i −0.909092 0.106014i
$$477$$ 9.10305 + 8.86918i 0.416800 + 0.406092i
$$478$$ −0.0853249 + 0.147787i −0.00390267 + 0.00675962i
$$479$$ 2.14052 + 12.1395i 0.0978027 + 0.554667i 0.993852 + 0.110713i $$0.0353135\pi$$
−0.896050 + 0.443954i $$0.853575\pi$$
$$480$$ 0.232783 0.454366i 0.0106251 0.0207389i
$$481$$ 1.21382 + 3.33494i 0.0553453 + 0.152060i
$$482$$ 0.0703504 + 0.0590310i 0.00320437 + 0.00268879i
$$483$$ −32.6941 + 9.51168i −1.48763 + 0.432796i
$$484$$ 18.9680 + 6.90379i 0.862182 + 0.313809i
$$485$$ −2.26560 + 1.30805i −0.102876 + 0.0593953i
$$486$$ 0.209783 + 0.100674i 0.00951596 + 0.00456666i
$$487$$ 9.66499 16.7403i 0.437963 0.758574i −0.559570 0.828783i $$-0.689034\pi$$
0.997532 + 0.0702097i $$0.0223669\pi$$
$$488$$ −0.0311918 0.176898i −0.00141199 0.00800777i
$$489$$ −11.7395 27.8281i −0.530877 1.25843i
$$490$$ 0.0200542 + 0.170791i 0.000905955 + 0.00771555i
$$491$$ −32.7847 5.78082i −1.47955 0.260885i −0.625153 0.780502i $$-0.714963\pi$$
−0.854399 + 0.519617i $$0.826074\pi$$
$$492$$ 12.3107 7.95584i 0.555008 0.358677i
$$493$$ −30.7807 + 5.42746i −1.38629 + 0.244441i
$$494$$ 0.0978871i 0.00440415i
$$495$$ 5.58348 21.9778i 0.250959 0.987830i
$$496$$ −29.0973 16.7993i −1.30651 0.754311i
$$497$$ 20.3365 1.18986i 0.912218 0.0533727i
$$498$$ 0.121388 + 0.0374070i 0.00543953 + 0.00167625i
$$499$$ −15.4221 12.9407i −0.690389 0.579305i 0.228633 0.973513i $$-0.426575\pi$$
−0.919021 + 0.394208i $$0.871019\pi$$
$$500$$ 4.16710 23.6328i 0.186358 1.05689i
$$501$$ 4.82671 15.6630i 0.215641 0.699770i
$$502$$ 0.121241 + 0.144490i 0.00541127 + 0.00644890i
$$503$$ 5.39577 9.34574i 0.240585 0.416706i −0.720296 0.693667i $$-0.755994\pi$$
0.960881 + 0.276961i $$0.0893273\pi$$
$$504$$ 0.310313 0.358160i 0.0138225 0.0159537i
$$505$$ 1.90181 + 3.29403i 0.0846294 + 0.146582i
$$506$$ −0.174223 + 0.478673i −0.00774514 + 0.0212796i
$$507$$ 10.1049 6.53037i 0.448776 0.290024i
$$508$$ −8.06407 6.76656i −0.357785 0.300218i
$$509$$ −5.96937 + 33.8540i −0.264588 + 1.50055i 0.505619 + 0.862757i $$0.331264\pi$$
−0.770207 + 0.637794i $$0.779847\pi$$
$$510$$ 0.128037 + 0.0969292i 0.00566957 + 0.00429210i
$$511$$ 23.0212 + 34.9819i 1.01840 + 1.54751i
$$512$$ 1.19363i 0.0527514i
$$513$$ 4.76187 + 5.96118i 0.210242 + 0.263193i
$$514$$ −0.193442 0.111684i −0.00853237 0.00492616i
$$515$$ 0.578574 + 0.689518i 0.0254950 + 0.0303838i
$$516$$ −2.35083 5.57259i −0.103490 0.245320i
$$517$$ −4.86697 + 5.80022i −0.214049 + 0.255094i
$$518$$ 0.0228213 0.0215422i 0.00100271 0.000946511i
$$519$$ −2.21094 + 1.42883i −0.0970495 + 0.0627187i
$$520$$ −0.412377 0.150093i −0.0180839 0.00658200i
$$521$$ 32.8374 1.43863 0.719317 0.694682i $$-0.244455\pi$$
0.719317 + 0.694682i $$0.244455\pi$$
$$522$$ 0.152344 0.338122i 0.00666793 0.0147992i
$$523$$ 2.32319i 0.101586i −0.998709 0.0507929i $$-0.983825\pi$$
0.998709 0.0507929i $$-0.0161749\pi$$
$$524$$ −5.25638 29.8104i −0.229626 1.30227i
$$525$$ 4.23398 9.60937i 0.184786 0.419387i
$$526$$ −0.223500 + 0.0813475i −0.00974508 + 0.00354692i
$$527$$ 20.3839 24.2926i 0.887938 1.05820i
$$528$$ 7.08667 + 31.0097i 0.308408 + 1.34953i
$$529$$ 30.2661 + 11.0160i 1.31592 + 0.478955i
$$530$$ −0.104074 −0.00452069
$$531$$ −20.2660 28.1559i −0.879470 1.22186i
$$532$$ 7.13258 3.07893i 0.309237 0.133489i
$$533$$ −12.1485 14.4780i −0.526210 0.627113i
$$534$$ −0.0847027 + 0.165330i −0.00366544 + 0.00715452i
$$535$$ 3.53388 4.21152i 0.152783 0.182080i
$$536$$ 0.221422 + 0.608352i 0.00956397 + 0.0262768i
$$537$$ 13.7140 5.78533i 0.591802 0.249655i
$$538$$ −0.0504750 + 0.138679i −0.00217613 + 0.00597888i
$$539$$ −23.3964 22.0500i −1.00776 0.949761i
$$540$$ 16.2064 5.45983i 0.697413 0.234954i
$$541$$ 9.54866 + 16.5388i 0.410529 + 0.711057i 0.994948 0.100395i $$-0.0320108\pi$$
−0.584419 + 0.811452i $$0.698677\pi$$
$$542$$ −0.0254685 + 0.0213706i −0.00109396 + 0.000917945i
$$543$$ −16.9312 + 7.14253i −0.726587 + 0.306515i
$$544$$ −0.665664 0.117374i −0.0285401 0.00503239i
$$545$$ 1.10075 6.24269i 0.0471511 0.267407i
$$546$$ −0.253931 0.169855i −0.0108672 0.00726914i
$$547$$ 18.5854 15.5950i 0.794655 0.666795i −0.152238 0.988344i $$-0.548648\pi$$
0.946893 + 0.321549i $$0.104204\pi$$
$$548$$ 6.18713 + 3.57214i 0.264301 + 0.152594i
$$549$$ 5.08031 7.46019i 0.216822 0.318393i
$$550$$ −0.0785475 0.136048i −0.00334928 0.00580112i
$$551$$ 9.31510 7.81630i 0.396837 0.332985i
$$552$$ −0.749062 + 0.171184i −0.0318822 + 0.00728606i
$$553$$ 2.89496 + 3.06685i 0.123106 + 0.130416i
$$554$$ 0.0441683 + 0.121351i 0.00187653 + 0.00515573i
$$555$$ 2.20823 0.504648i 0.0937341 0.0214211i
$$556$$ −4.16372 + 11.4397i −0.176581 + 0.485153i
$$557$$ 14.3493 8.28455i 0.607998 0.351028i −0.164184 0.986430i $$-0.552499\pi$$
0.772181 + 0.635402i $$0.219166\pi$$
$$558$$ 0.102107 + 0.362152i 0.00432254 + 0.0153311i
$$559$$ −6.75372 + 3.89926i −0.285652 + 0.164921i
$$560$$ −1.01697 17.3816i −0.0429750 0.734506i
$$561$$ −29.9851 + 1.50470i −1.26597 + 0.0635283i
$$562$$ −0.419831 + 0.152806i −0.0177095 + 0.00644573i
$$563$$ 37.2905 13.5726i 1.57161 0.572019i 0.598251 0.801309i $$-0.295863\pi$$
0.973358 + 0.229290i $$0.0736405\pi$$
$$564$$ −5.66614 0.708489i −0.238587 0.0298328i
$$565$$ 7.45023 1.31368i 0.313433 0.0552668i
$$566$$ −0.146173 −0.00614411
$$567$$ 23.7269 2.00891i 0.996435 0.0843663i
$$568$$ 0.459704 0.0192888
$$569$$ −6.95833 + 1.22694i −0.291708 + 0.0514361i −0.317587 0.948229i $$-0.602873\pi$$
0.0258789 + 0.999665i $$0.491762\pi$$
$$570$$ −0.0619945 0.00775174i −0.00259666 0.000324685i
$$571$$ 20.5987 7.49733i 0.862030 0.313753i 0.127095 0.991891i $$-0.459435\pi$$
0.734935 + 0.678137i $$0.237212\pi$$
$$572$$ 38.5458 14.0295i 1.61168 0.586603i
$$573$$ 17.0082 0.853497i 0.710528 0.0356554i
$$574$$ −0.0749668 + 0.149370i −0.00312905 + 0.00623457i
$$575$$ −14.7450 + 8.51305i −0.614910 + 0.355019i
$$576$$ −16.7371 + 17.1785i −0.697380 + 0.715769i
$$577$$ 3.83091 2.21178i 0.159483 0.0920775i −0.418134 0.908385i $$-0.637316\pi$$
0.577617 + 0.816308i $$0.303983\pi$$
$$578$$ −0.0140710 + 0.0386599i −0.000585278 + 0.00160804i
$$579$$ 32.9463 7.52923i 1.36920 0.312904i
$$580$$ −9.32210 25.6122i −0.387079 1.06349i
$$581$$ 12.6473 3.00099i 0.524698 0.124502i
$$582$$ −0.0400649 + 0.00915605i −0.00166074 + 0.000379531i
$$583$$ 14.9051 12.5068i 0.617305 0.517980i
$$584$$ 0.472507 + 0.818406i 0.0195525 + 0.0338659i
$$585$$ −9.57824 19.8617i −0.396012 0.821180i
$$586$$ −0.134360 0.0775728i −0.00555036 0.00320450i
$$587$$ −28.2005 + 23.6630i −1.16396 + 0.976677i −0.999952 0.00978187i $$-0.996886\pi$$
−0.164007 + 0.986459i $$0.552442\pi$$
$$588$$ 4.38946 23.8454i 0.181018 0.983366i
$$589$$ −2.14239 + 12.1501i −0.0882755 + 0.500635i
$$590$$ 0.279761 + 0.0493294i 0.0115176 + 0.00203086i
$$591$$ 6.90545 2.91311i 0.284052 0.119829i
$$592$$ −2.43410 + 2.04245i −0.100041 + 0.0839444i
$$593$$ −15.9700 27.6608i −0.655809 1.13589i −0.981690 0.190484i $$-0.938994\pi$$
0.325882 0.945411i $$-0.394339\pi$$
$$594$$ 0.185503 0.304121i 0.00761126 0.0124782i
$$595$$ 16.3229 + 1.90350i 0.669174 + 0.0780359i
$$596$$ −13.8308 + 37.9999i −0.566533 + 1.55654i
$$597$$ −2.70673 + 1.14185i −0.110779 + 0.0467328i
$$598$$ 0.169418 + 0.465472i 0.00692801 + 0.0190346i
$$599$$ −24.7052 + 29.4425i −1.00943 + 1.20299i −0.0303390 + 0.999540i $$0.509659\pi$$
−0.979086 + 0.203446i $$0.934786\pi$$
$$600$$ 0.108048 0.210897i 0.00441103 0.00860982i
$$601$$ −11.7434 13.9953i −0.479025 0.570880i 0.471366 0.881938i $$-0.343761\pi$$
−0.950391 + 0.311058i $$0.899317\pi$$
$$602$$ 0.0553260 + 0.0411659i 0.00225492 + 0.00167780i
$$603$$ −13.3629 + 29.6584i −0.544180 + 1.20778i
$$604$$ 38.2471 1.55625
$$605$$ −15.6102 5.68164i −0.634644 0.230991i
$$606$$ 0.0133123 + 0.0582516i 0.000540774 + 0.00236631i
$$607$$ 12.5091 14.9077i 0.507727 0.605085i −0.449906 0.893076i $$-0.648543\pi$$
0.957633 + 0.287990i $$0.0929871\pi$$
$$608$$ 0.247113 0.0899419i 0.0100218 0.00364763i
$$609$$ −4.11267 37.7274i −0.166654 1.52879i
$$610$$ 0.0128343 + 0.0727870i 0.000519646 + 0.00294706i
$$611$$ 7.36284i 0.297869i
$$612$$ −13.2272 18.3768i −0.534678 0.742837i
$$613$$ 26.4037 1.06643 0.533217 0.845979i $$-0.320983\pi$$
0.533217 + 0.845979i $$0.320983\pi$$
$$614$$ −0.239422 0.0871426i −0.00966230 0.00351679i
$$615$$ −10.1314 + 6.54745i −0.408536 + 0.264019i
$$616$$ −0.498005 0.527575i −0.0200652 0.0212566i
$$617$$ 16.7822 20.0003i 0.675628 0.805182i −0.313910 0.949453i $$-0.601639\pi$$
0.989538 + 0.144271i $$0.0460836\pi$$
$$618$$ 0.00549612 + 0.0130284i 0.000221087 + 0.000524080i
$$619$$ −18.0250 21.4814i −0.724486 0.863409i 0.270573 0.962700i $$-0.412787\pi$$
−0.995058 + 0.0992909i $$0.968343\pi$$
$$620$$ 23.9489 + 13.8269i 0.961813 + 0.555303i
$$621$$ −32.9609 20.1049i −1.32268 0.806784i
$$622$$ 0.496518i 0.0199085i
$$623$$ 1.11034 + 18.9774i 0.0444849 + 0.760313i
$$624$$ 24.6620 + 18.6701i 0.987268 + 0.747403i
$$625$$ −1.43988 + 8.16595i −0.0575951 + 0.326638i
$$626$$ 0.0111744 + 0.00937644i 0.000446619 + 0.000374758i
$$627$$ 9.81013 6.33985i 0.391779 0.253189i
$$628$$ 10.8655 29.8528i 0.433581 1.19125i
$$629$$ −1.49953 2.59725i −0.0597900 0.103559i
$$630$$ −0.127683 + 0.147370i −0.00508700 + 0.00587136i
$$631$$ −19.6263 + 33.9938i −0.781312 + 1.35327i 0.149866 + 0.988706i $$0.452116\pi$$
−0.931178 + 0.364565i $$0.881218\pi$$
$$632$$ 0.0611745 + 0.0729050i 0.00243339 + 0.00290000i
$$633$$ −3.07393 + 9.97511i −0.122178 + 0.396475i
$$634$$ −0.00877876 + 0.0497868i −0.000348649 + 0.00197729i
$$635$$ 6.63652 + 5.56870i 0.263362 + 0.220987i
$$636$$ 14.0231 + 4.32137i 0.556054 + 0.171354i
$$637$$ −31.2110 1.80127i −1.23663 0.0713691i
$$638$$ −0.491692 0.283879i −0.0194663 0.0112389i
$$639$$ 16.5445 + 16.1195i 0.654491 + 0.637676i
$$640$$ 0.785904i 0.0310656i
$$641$$ −29.4709 + 5.19651i −1.16403 + 0.205250i −0.722092 0.691797i $$-0.756819\pi$$
−0.441937 + 0.897046i $$0.645708\pi$$
$$642$$ 0.0725381 0.0468781i 0.00286285 0.00185013i
$$643$$ −1.69315 0.298548i −0.0667714 0.0117736i 0.140163 0.990128i $$-0.455237\pi$$
−0.206934 + 0.978355i $$0.566349\pi$$
$$644$$ −28.5879 + 26.9856i −1.12652 + 1.06338i
$$645$$ 1.93468 + 4.58610i 0.0761778 + 0.180577i
$$646$$ 0.0143641 + 0.0814627i 0.000565147 + 0.00320511i
$$647$$ −23.2767 + 40.3164i −0.915102 + 1.58500i −0.108350 + 0.994113i $$0.534557\pi$$
−0.806752 + 0.590890i $$0.798777\pi$$
$$648$$ 0.537160 0.0139826i 0.0211017 0.000549288i
$$649$$ −45.9942 + 26.5548i −1.80543 + 1.04237i
$$650$$ −0.143550 0.0522479i −0.00563049 0.00204933i
$$651$$ 27.8012 + 26.6406i 1.08962 + 1.04413i
$$652$$ −26.7131 22.4150i −1.04617 0.877837i
$$653$$ −6.57724 18.0708i −0.257387 0.707165i −0.999326 0.0366983i $$-0.988316\pi$$
0.741939 0.670467i $$-0.233906\pi$$
$$654$$ 0.0454067 0.0886286i 0.00177554 0.00346565i
$$655$$ 4.32586 + 24.5332i 0.169026 + 0.958591i
$$656$$ 8.46075 14.6544i 0.330337 0.572160i
$$657$$ −11.6920 + 46.0224i −0.456149 + 1.79551i
$$658$$ 0.0597765 0.0258038i 0.00233033 0.00100594i
$$659$$ 20.4588 3.60744i 0.796962 0.140526i 0.239683 0.970851i $$-0.422957\pi$$
0.557279 + 0.830325i $$0.311845\pi$$
$$660$$ −5.83280 25.5231i −0.227041 0.993484i
$$661$$ 13.9006 + 2.45105i 0.540671 + 0.0953350i 0.437313 0.899309i $$-0.355930\pi$$
0.103358 + 0.994644i $$0.467041\pi$$
$$662$$ 0.0893478 + 0.0157544i 0.00347260 + 0.000612313i
$$663$$ −21.3959 + 19.8634i −0.830949 + 0.771430i
$$664$$ 0.288870 0.0509356i 0.0112103 0.00197668i
$$665$$ −5.86993 + 2.53388i −0.227626 + 0.0982597i
$$666$$ 0.0354867 + 0.00263989i 0.00137508 + 0.000102294i
$$667$$ −30.7670 + 53.2901i −1.19130 + 2.06340i
$$668$$ −3.28598 18.6357i −0.127138 0.721038i
$$669$$ −0.863134 1.33559i −0.0333707 0.0516370i
$$670$$ −0.0911072 0.250315i −0.00351978 0.00967051i
$$671$$ −10.5850 8.88191i −0.408631 0.342882i
$$672$$ 0.195475 0.797110i 0.00754062 0.0307492i
$$673$$ −6.36430 2.31642i −0.245326 0.0892913i 0.216431 0.976298i $$-0.430558\pi$$
−0.461757 + 0.887007i $$0.652781\pi$$
$$674$$ 0.221066 0.127633i 0.00851515 0.00491623i
$$675$$ 11.2836 3.80139i 0.434308 0.146315i
$$676$$ 6.94558 12.0301i 0.267138 0.462696i
$$677$$ −5.48142 31.0867i −0.210668 1.19476i −0.888267 0.459327i $$-0.848091\pi$$
0.677599 0.735431i $$-0.263020\pi$$
$$678$$ 0.117927 + 0.0147456i 0.00452898 + 0.000566299i
$$679$$ −3.05832 + 2.88691i −0.117368 + 0.110789i
$$680$$ 0.365209 + 0.0643962i 0.0140051 + 0.00246948i
$$681$$ 20.5461 + 10.5263i 0.787329 + 0.403369i
$$682$$ 0.567294 0.100029i 0.0217228 0.00383032i
$$683$$ 24.5110i 0.937886i 0.883229 + 0.468943i $$0.155365\pi$$
−0.883229 + 0.468943i $$0.844635\pi$$
$$684$$ 8.03138 + 3.61862i 0.307087 + 0.138361i
$$685$$ −5.09185 2.93978i −0.194550 0.112323i
$$686$$ 0.0947582 + 0.259705i 0.00361789 + 0.00991558i
$$687$$ −15.6332 + 14.5134i −0.596445 + 0.553723i
$$688$$ −5.34872 4.48811i −0.203918 0.171107i
$$689$$ 3.28552 18.6331i 0.125168 0.709866i
$$690$$ 0.308212 0.0704359i 0.0117334 0.00268145i
$$691$$ 17.3675 + 20.6978i 0.660691 + 0.787381i 0.987485 0.157714i $$-0.0504125\pi$$
−0.326793 + 0.945096i $$0.605968\pi$$
$$692$$ −1.51968 + 2.63216i −0.0577695 + 0.100060i
$$693$$ 0.576392 36.4496i 0.0218953 1.38461i
$$694$$ 0.157307 + 0.272465i 0.00597131 + 0.0103426i
$$695$$ 3.42663 9.41460i 0.129980 0.357116i
$$696$$ −0.0429219 0.855334i −0.00162695 0.0324213i
$$697$$ 12.2347 + 10.2661i 0.463420 + 0.388856i
$$698$$ −0.0168631 + 0.0956353i −0.000638277 + 0.00361985i
$$699$$ 5.35865 42.8558i 0.202683 1.62095i
$$700$$ −0.708143 12.1032i −0.0267653 0.457458i
$$701$$ 28.6921i 1.08369i 0.840479 + 0.541843i $$0.182273\pi$$
−0.840479 + 0.541843i $$0.817727\pi$$
$$702$$ −0.0519096 0.342495i −0.00195920 0.0129267i
$$703$$ 1.01047 + 0.583393i 0.0381104 + 0.0220031i
$$704$$ 23.6018 + 28.1275i 0.889525 + 1.06009i
$$705$$ 4.66308 + 0.583068i 0.175622 + 0.0219596i
$$706$$ −0.183193 + 0.218321i −0.00689457 + 0.00821662i
$$707$$ 4.19737 + 4.44659i 0.157858 + 0.167231i
$$708$$ −35.6472 18.2630i −1.33971 0.686365i
$$709$$ 35.7630 + 13.0167i 1.34311 + 0.488852i 0.910790 0.412869i $$-0.135473\pi$$
0.432319 + 0.901721i $$0.357696\pi$$
$$710$$ −0.189152 −0.00709874
$$711$$ −0.354762 + 4.76889i −0.0133046 + 0.178847i
$$712$$ 0.428981i 0.0160768i
$$713$$ −10.8413 61.4838i −0.406008 2.30259i
$$714$$ 0.236249 + 0.104093i 0.00884138 + 0.00389560i
$$715$$ −31.7221 + 11.5459i −1.18634 + 0.431793i
$$716$$ 11.0463 13.1645i 0.412820 0.491980i
$$717$$ −14.5117 + 13.4723i −0.541949 + 0.503131i
$$718$$ 0.281961 + 0.102625i 0.0105227 + 0.00382994i
$$719$$ −12.3232 −0.459577 −0.229789 0.973241i $$-0.573803\pi$$
−0.229789 + 0.973241i $$0.573803\pi$$
$$720$$ 13.7773 14.1406i 0.513449 0.526988i
$$721$$ 1.16091 + 0.863790i 0.0432346 + 0.0321692i
$$722$$ 0.161617 + 0.192607i 0.00601475 + 0.00716810i
$$723$$ 5.78390 + 8.94986i 0.215105 + 0.332849i
$$724$$ −13.6377 + 16.2528i −0.506842 + 0.604030i
$$725$$ −6.49047 17.8324i −0.241050 0.662280i
$$726$$ −0.208069 0.157517i −0.00772217 0.00584600i
$$727$$ −9.28805 + 25.5187i −0.344475 + 0.946437i 0.639604 + 0.768705i $$0.279098\pi$$
−0.984079 + 0.177732i $$0.943124\pi$$
$$728$$ −0.700739 0.0817168i −0.0259711 0.00302863i
$$729$$ 19.8224 + 18.3322i 0.734164 + 0.678972i
$$730$$ −0.194420 0.336745i −0.00719579 0.0124635i
$$731$$ 5.04834 4.23606i 0.186720 0.156676i
$$732$$ 1.29295 10.3403i 0.0477887 0.382190i
$$733$$ −45.2315 7.97554i −1.67066 0.294583i −0.743360 0.668891i $$-0.766769\pi$$
−0.927304 + 0.374308i $$0.877880\pi$$
$$734$$ 0.00160288 0.00909040i 5.91635e−5 0.000335533i
$$735$$ −3.61241 + 19.6241i −0.133246 + 0.723846i
$$736$$ −1.01940 + 0.855382i −0.0375757 + 0.0315298i
$$737$$ 43.1289 + 24.9005i 1.58867 + 0.917221i
$$738$$ −0.182393 + 0.0514248i −0.00671398 + 0.00189297i
$$739$$ −13.8133 23.9253i −0.508129 0.880106i −0.999956 0.00941271i $$-0.997004\pi$$
0.491826 0.870693i $$-0.336330\pi$$
$$740$$ 2.00343 1.68107i 0.0736474 0.0617975i
$$741$$ 3.34496 10.8546i 0.122880 0.398754i
$$742$$ −0.162791 + 0.0386276i −0.00597624 + 0.00141806i
$$743$$ 3.93643 + 10.8153i 0.144414 + 0.396773i 0.990719 0.135925i $$-0.0434005\pi$$
−0.846306 + 0.532698i $$0.821178\pi$$
$$744$$ 0.591184 + 0.636796i 0.0216739 + 0.0233461i
$$745$$ 11.3824 31.2729i 0.417019 1.14575i
$$746$$ 0.416599 0.240524i 0.0152528 0.00880620i
$$747$$ 12.1823 + 8.29605i 0.445729 + 0.303536i
$$748$$ −30.0195 + 17.3318i −1.09762 + 0.633712i
$$749$$ 3.96451 7.89919i 0.144860 0.288630i
$$750$$ −0.141465 + 0.276124i −0.00516558 + 0.0100826i
$$751$$ 10.9144 3.97250i 0.398270 0.144959i −0.135117 0.990830i $$-0.543141\pi$$
0.533387 + 0.845871i $$0.320919\pi$$
$$752$$ −6.19461 + 2.25465i −0.225894 + 0.0822188i
$$753$$ 8.50688 + 20.1653i 0.310008 + 0.734865i
$$754$$ −0.543712 + 0.0958710i −0.0198008 + 0.00349142i
$$755$$ −31.4764 −1.14554
$$756$$ 23.3233 14.5552i 0.848260 0.529369i
$$757$$ 25.0813 0.911595 0.455798 0.890083i $$-0.349354\pi$$
0.455798 + 0.890083i $$0.349354\pi$$
$$758$$ −0.126470 + 0.0223000i −0.00459358 + 0.000809972i
$$759$$ −35.6764 + 47.1261i −1.29497 + 1.71057i
$$760$$ −0.135576 + 0.0493457i −0.00491786 + 0.00178996i
$$761$$ −24.4966 + 8.91602i −0.888000 + 0.323205i −0.745434 0.666580i $$-0.767758\pi$$
−0.142566 + 0.989785i $$0.545535\pi$$
$$762$$ 0.0738707 + 0.114306i 0.00267605 + 0.00414086i
$$763$$ −0.595223 10.1732i −0.0215485 0.368296i
$$764$$ 17.0277 9.83096i 0.616041 0.355672i
$$765$$ 10.8857 + 15.1236i 0.393572 + 0.546795i
$$766$$