Properties

Label 189.2.bd.a.185.1
Level $189$
Weight $2$
Character 189.185
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(47,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([7, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.47");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.bd (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 185.1
Character \(\chi\) \(=\) 189.185
Dual form 189.2.bd.a.47.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.68189 + 0.472890i) q^{2} +(0.605371 - 1.62281i) q^{3} +(5.08954 - 1.85244i) q^{4} +(2.55610 - 0.930344i) q^{5} +(-0.856127 + 4.63849i) q^{6} +(2.58147 + 0.579686i) q^{7} +(-8.05677 + 4.65158i) q^{8} +(-2.26705 - 1.96481i) q^{9} +O(q^{10})\) \(q+(-2.68189 + 0.472890i) q^{2} +(0.605371 - 1.62281i) q^{3} +(5.08954 - 1.85244i) q^{4} +(2.55610 - 0.930344i) q^{5} +(-0.856127 + 4.63849i) q^{6} +(2.58147 + 0.579686i) q^{7} +(-8.05677 + 4.65158i) q^{8} +(-2.26705 - 1.96481i) q^{9} +(-6.41523 + 3.70384i) q^{10} +(0.0485071 - 0.133272i) q^{11} +(0.0748907 - 9.38079i) q^{12} +(0.695830 + 1.91178i) q^{13} +(-7.19734 - 0.333907i) q^{14} +(0.0376120 - 4.71128i) q^{15} +(11.1096 - 9.32210i) q^{16} +(2.00080 + 3.46549i) q^{17} +(7.00913 + 4.19734i) q^{18} +(-2.63555 - 1.52164i) q^{19} +(11.2860 - 9.47004i) q^{20} +(2.50347 - 3.83831i) q^{21} +(-0.0670678 + 0.380360i) q^{22} +(1.29370 + 0.228114i) q^{23} +(2.67131 + 15.8906i) q^{24} +(1.83788 - 1.54216i) q^{25} +(-2.77020 - 4.79813i) q^{26} +(-4.56093 + 2.48957i) q^{27} +(14.2123 - 1.83168i) q^{28} +(2.12744 - 5.84511i) q^{29} +(2.12704 + 12.6529i) q^{30} +(-1.45503 - 3.99766i) q^{31} +(-13.4266 + 16.0012i) q^{32} +(-0.186911 - 0.159397i) q^{33} +(-7.00474 - 8.34792i) q^{34} +(7.13779 - 0.919915i) q^{35} +(-15.1779 - 5.80039i) q^{36} -9.38062 q^{37} +(7.78784 + 2.83454i) q^{38} +(3.52369 + 0.0281311i) q^{39} +(-16.2663 + 19.3854i) q^{40} +(-0.303455 + 0.110449i) q^{41} +(-4.89893 + 11.4778i) q^{42} +(0.643705 + 3.65063i) q^{43} -0.768151i q^{44} +(-7.62276 - 2.91311i) q^{45} -3.57744 q^{46} +(-6.27238 - 2.28296i) q^{47} +(-8.40258 - 23.6722i) q^{48} +(6.32793 + 2.99288i) q^{49} +(-4.19971 + 5.00502i) q^{50} +(6.83508 - 1.14902i) q^{51} +(7.08291 + 8.44108i) q^{52} +(6.59926 + 3.81008i) q^{53} +(11.0546 - 8.83357i) q^{54} -0.385785i q^{55} +(-23.4947 + 7.33749i) q^{56} +(-4.06482 + 3.35586i) q^{57} +(-2.94149 + 16.6820i) q^{58} +(-4.94316 - 4.14781i) q^{59} +(-8.53593 - 24.0479i) q^{60} +(-3.87584 + 10.6488i) q^{61} +(5.79268 + 10.0332i) q^{62} +(-4.71335 - 6.38626i) q^{63} +(13.9394 - 24.1437i) q^{64} +(3.55722 + 4.23933i) q^{65} +(0.576653 + 0.339098i) q^{66} +(-0.311427 + 1.76619i) q^{67} +(16.6028 + 13.9314i) q^{68} +(1.15335 - 1.96134i) q^{69} +(-18.7078 + 5.84250i) q^{70} +(6.03534 + 3.48450i) q^{71} +(27.4046 + 5.28464i) q^{72} +4.24105i q^{73} +(25.1578 - 4.43600i) q^{74} +(-1.39004 - 3.91611i) q^{75} +(-16.2325 - 2.86223i) q^{76} +(0.202475 - 0.315919i) q^{77} +(-9.46347 + 1.59087i) q^{78} +(-2.60094 - 14.7507i) q^{79} +(19.7246 - 34.1640i) q^{80} +(1.27905 + 8.90865i) q^{81} +(0.761604 - 0.439712i) q^{82} +(0.966634 + 0.351826i) q^{83} +(5.63124 - 24.1728i) q^{84} +(8.33835 + 6.99670i) q^{85} +(-3.45269 - 9.48620i) q^{86} +(-8.19763 - 6.99090i) q^{87} +(0.229115 + 1.29938i) q^{88} +(-2.58608 + 4.47923i) q^{89} +(21.8210 + 4.20791i) q^{90} +(0.688030 + 5.33855i) q^{91} +(7.00690 - 1.23551i) q^{92} +(-7.36829 - 0.0588240i) q^{93} +(17.9015 + 3.15651i) q^{94} +(-8.15238 - 1.43749i) q^{95} +(17.8390 + 31.4756i) q^{96} +(7.25860 - 1.27989i) q^{97} +(-18.3861 - 5.03417i) q^{98} +(-0.371822 + 0.206828i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} + 18 q^{6} - 6 q^{7} - 18 q^{8} - 15 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} + 18 q^{6} - 6 q^{7} - 18 q^{8} - 15 q^{9} - 9 q^{10} + 9 q^{11} - 9 q^{12} - 42 q^{14} - 24 q^{15} - 15 q^{16} - 9 q^{17} - 3 q^{18} - 9 q^{19} - 18 q^{20} + 15 q^{21} - 12 q^{22} + 30 q^{23} - 36 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} - 3 q^{30} - 9 q^{31} - 51 q^{32} - 9 q^{33} + 18 q^{34} - 9 q^{35} - 6 q^{37} - 9 q^{38} - 9 q^{39} - 9 q^{40} + 27 q^{42} - 12 q^{43} - 63 q^{45} - 6 q^{46} + 45 q^{47} + 30 q^{49} - 9 q^{50} + 33 q^{51} - 9 q^{52} + 45 q^{53} + 117 q^{54} - 51 q^{56} - 3 q^{58} - 9 q^{59} - 15 q^{60} - 63 q^{61} + 99 q^{62} - 33 q^{63} + 18 q^{64} - 102 q^{65} + 63 q^{66} - 3 q^{67} + 144 q^{68} - 108 q^{69} - 15 q^{70} + 18 q^{71} + 15 q^{72} - 33 q^{74} - 9 q^{75} - 36 q^{76} - 57 q^{77} + 66 q^{78} - 21 q^{79} - 72 q^{80} + 57 q^{81} - 18 q^{82} + 90 q^{83} + 51 q^{84} + 9 q^{85} - 33 q^{86} - 9 q^{87} + 45 q^{88} - 9 q^{89} - 81 q^{90} - 21 q^{91} + 150 q^{92} - 87 q^{93} - 9 q^{94} + 27 q^{95} - 9 q^{96} - 180 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.68189 + 0.472890i −1.89638 + 0.334384i −0.995102 0.0988485i \(-0.968484\pi\)
−0.901282 + 0.433232i \(0.857373\pi\)
\(3\) 0.605371 1.62281i 0.349511 0.936932i
\(4\) 5.08954 1.85244i 2.54477 0.926221i
\(5\) 2.55610 0.930344i 1.14312 0.416062i 0.300082 0.953913i \(-0.402986\pi\)
0.843040 + 0.537851i \(0.180764\pi\)
\(6\) −0.856127 + 4.63849i −0.349512 + 1.89365i
\(7\) 2.58147 + 0.579686i 0.975702 + 0.219101i
\(8\) −8.05677 + 4.65158i −2.84850 + 1.64458i
\(9\) −2.26705 1.96481i −0.755684 0.654936i
\(10\) −6.41523 + 3.70384i −2.02867 + 1.17126i
\(11\) 0.0485071 0.133272i 0.0146254 0.0401831i −0.932165 0.362033i \(-0.882083\pi\)
0.946791 + 0.321850i \(0.104305\pi\)
\(12\) 0.0748907 9.38079i 0.0216191 2.70800i
\(13\) 0.695830 + 1.91178i 0.192988 + 0.530231i 0.998013 0.0630103i \(-0.0200701\pi\)
−0.805024 + 0.593242i \(0.797848\pi\)
\(14\) −7.19734 0.333907i −1.92357 0.0892403i
\(15\) 0.0376120 4.71128i 0.00971138 1.21645i
\(16\) 11.1096 9.32210i 2.77741 2.33052i
\(17\) 2.00080 + 3.46549i 0.485266 + 0.840505i 0.999857 0.0169307i \(-0.00538946\pi\)
−0.514591 + 0.857436i \(0.672056\pi\)
\(18\) 7.00913 + 4.19734i 1.65207 + 0.989322i
\(19\) −2.63555 1.52164i −0.604638 0.349088i 0.166226 0.986088i \(-0.446842\pi\)
−0.770864 + 0.637000i \(0.780175\pi\)
\(20\) 11.2860 9.47004i 2.52362 2.11757i
\(21\) 2.50347 3.83831i 0.546301 0.837589i
\(22\) −0.0670678 + 0.380360i −0.0142989 + 0.0810931i
\(23\) 1.29370 + 0.228114i 0.269755 + 0.0475651i 0.306889 0.951745i \(-0.400712\pi\)
−0.0371344 + 0.999310i \(0.511823\pi\)
\(24\) 2.67131 + 15.8906i 0.545280 + 3.24365i
\(25\) 1.83788 1.54216i 0.367575 0.308432i
\(26\) −2.77020 4.79813i −0.543281 0.940990i
\(27\) −4.56093 + 2.48957i −0.877751 + 0.479118i
\(28\) 14.2123 1.83168i 2.68587 0.346154i
\(29\) 2.12744 5.84511i 0.395056 1.08541i −0.569605 0.821918i \(-0.692904\pi\)
0.964662 0.263491i \(-0.0848738\pi\)
\(30\) 2.12704 + 12.6529i 0.388343 + 2.31010i
\(31\) −1.45503 3.99766i −0.261331 0.718000i −0.999078 0.0429236i \(-0.986333\pi\)
0.737748 0.675077i \(-0.235889\pi\)
\(32\) −13.4266 + 16.0012i −2.37352 + 2.82865i
\(33\) −0.186911 0.159397i −0.0325371 0.0277475i
\(34\) −7.00474 8.34792i −1.20130 1.43166i
\(35\) 7.13779 0.919915i 1.20651 0.155494i
\(36\) −15.1779 5.80039i −2.52966 0.966732i
\(37\) −9.38062 −1.54217 −0.771083 0.636735i \(-0.780284\pi\)
−0.771083 + 0.636735i \(0.780284\pi\)
\(38\) 7.78784 + 2.83454i 1.26336 + 0.459824i
\(39\) 3.52369 + 0.0281311i 0.564242 + 0.00450458i
\(40\) −16.2663 + 19.3854i −2.57193 + 3.06511i
\(41\) −0.303455 + 0.110449i −0.0473917 + 0.0172492i −0.365607 0.930769i \(-0.619139\pi\)
0.318216 + 0.948018i \(0.396916\pi\)
\(42\) −4.89893 + 11.4778i −0.755921 + 1.77106i
\(43\) 0.643705 + 3.65063i 0.0981640 + 0.556716i 0.993732 + 0.111791i \(0.0356586\pi\)
−0.895568 + 0.444925i \(0.853230\pi\)
\(44\) 0.768151i 0.115803i
\(45\) −7.62276 2.91311i −1.13633 0.434260i
\(46\) −3.57744 −0.527464
\(47\) −6.27238 2.28296i −0.914921 0.333004i −0.158705 0.987326i \(-0.550732\pi\)
−0.756216 + 0.654322i \(0.772954\pi\)
\(48\) −8.40258 23.6722i −1.21281 3.41679i
\(49\) 6.32793 + 2.99288i 0.903990 + 0.427554i
\(50\) −4.19971 + 5.00502i −0.593929 + 0.707817i
\(51\) 6.83508 1.14902i 0.957102 0.160896i
\(52\) 7.08291 + 8.44108i 0.982222 + 1.17057i
\(53\) 6.59926 + 3.81008i 0.906477 + 0.523355i 0.879296 0.476276i \(-0.158014\pi\)
0.0271813 + 0.999631i \(0.491347\pi\)
\(54\) 11.0546 8.83357i 1.50434 1.20210i
\(55\) 0.385785i 0.0520192i
\(56\) −23.4947 + 7.33749i −3.13961 + 0.980513i
\(57\) −4.06482 + 3.35586i −0.538399 + 0.444495i
\(58\) −2.94149 + 16.6820i −0.386236 + 2.19045i
\(59\) −4.94316 4.14781i −0.643545 0.539998i 0.261560 0.965187i \(-0.415763\pi\)
−0.905105 + 0.425189i \(0.860208\pi\)
\(60\) −8.53593 24.0479i −1.10198 3.10457i
\(61\) −3.87584 + 10.6488i −0.496251 + 1.36344i 0.398621 + 0.917116i \(0.369489\pi\)
−0.894872 + 0.446322i \(0.852733\pi\)
\(62\) 5.79268 + 10.0332i 0.735671 + 1.27422i
\(63\) −4.71335 6.38626i −0.593826 0.804594i
\(64\) 13.9394 24.1437i 1.74242 3.01796i
\(65\) 3.55722 + 4.23933i 0.441218 + 0.525824i
\(66\) 0.576653 + 0.339098i 0.0709811 + 0.0417400i
\(67\) −0.311427 + 1.76619i −0.0380469 + 0.215775i −0.997904 0.0647156i \(-0.979386\pi\)
0.959857 + 0.280490i \(0.0904971\pi\)
\(68\) 16.6028 + 13.9314i 2.01338 + 1.68943i
\(69\) 1.15335 1.96134i 0.138848 0.236118i
\(70\) −18.7078 + 5.84250i −2.23600 + 0.698313i
\(71\) 6.03534 + 3.48450i 0.716263 + 0.413534i 0.813376 0.581739i \(-0.197627\pi\)
−0.0971130 + 0.995273i \(0.530961\pi\)
\(72\) 27.4046 + 5.28464i 3.22966 + 0.622800i
\(73\) 4.24105i 0.496377i 0.968712 + 0.248188i \(0.0798352\pi\)
−0.968712 + 0.248188i \(0.920165\pi\)
\(74\) 25.1578 4.43600i 2.92454 0.515675i
\(75\) −1.39004 3.91611i −0.160508 0.452193i
\(76\) −16.2325 2.86223i −1.86200 0.328320i
\(77\) 0.202475 0.315919i 0.0230742 0.0360023i
\(78\) −9.46347 + 1.59087i −1.07153 + 0.180131i
\(79\) −2.60094 14.7507i −0.292628 1.65958i −0.676688 0.736270i \(-0.736585\pi\)
0.384060 0.923308i \(-0.374526\pi\)
\(80\) 19.7246 34.1640i 2.20528 3.81965i
\(81\) 1.27905 + 8.90865i 0.142117 + 0.989850i
\(82\) 0.761604 0.439712i 0.0841050 0.0485581i
\(83\) 0.966634 + 0.351826i 0.106102 + 0.0386179i 0.394526 0.918885i \(-0.370909\pi\)
−0.288424 + 0.957503i \(0.593131\pi\)
\(84\) 5.63124 24.1728i 0.614419 2.63747i
\(85\) 8.33835 + 6.99670i 0.904421 + 0.758899i
\(86\) −3.45269 9.48620i −0.372314 1.02292i
\(87\) −8.19763 6.99090i −0.878878 0.749503i
\(88\) 0.229115 + 1.29938i 0.0244238 + 0.138514i
\(89\) −2.58608 + 4.47923i −0.274124 + 0.474797i −0.969914 0.243449i \(-0.921721\pi\)
0.695790 + 0.718246i \(0.255055\pi\)
\(90\) 21.8210 + 4.20791i 2.30013 + 0.443553i
\(91\) 0.688030 + 5.33855i 0.0721251 + 0.559632i
\(92\) 7.00690 1.23551i 0.730520 0.128810i
\(93\) −7.36829 0.0588240i −0.764056 0.00609976i
\(94\) 17.9015 + 3.15651i 1.84639 + 0.325569i
\(95\) −8.15238 1.43749i −0.836417 0.147483i
\(96\) 17.8390 + 31.4756i 1.82068 + 3.21247i
\(97\) 7.25860 1.27989i 0.736999 0.129953i 0.207466 0.978242i \(-0.433478\pi\)
0.529533 + 0.848289i \(0.322367\pi\)
\(98\) −18.3861 5.03417i −1.85728 0.508528i
\(99\) −0.371822 + 0.206828i −0.0373696 + 0.0207870i
\(100\) 6.49718 11.2534i 0.649718 1.12534i
\(101\) 1.17079 + 6.63987i 0.116498 + 0.660692i 0.985998 + 0.166759i \(0.0533302\pi\)
−0.869500 + 0.493933i \(0.835559\pi\)
\(102\) −17.7876 + 6.31380i −1.76123 + 0.625159i
\(103\) −3.92540 10.7850i −0.386781 1.06267i −0.968442 0.249241i \(-0.919819\pi\)
0.581660 0.813432i \(-0.302403\pi\)
\(104\) −14.4989 12.1660i −1.42174 1.19298i
\(105\) 2.82815 12.1402i 0.276000 1.18476i
\(106\) −19.5002 7.09751i −1.89403 0.689371i
\(107\) −15.4754 + 8.93470i −1.49606 + 0.863750i −0.999990 0.00453289i \(-0.998557\pi\)
−0.496069 + 0.868283i \(0.665224\pi\)
\(108\) −18.6012 + 21.1196i −1.78991 + 2.03223i
\(109\) −4.74241 + 8.21409i −0.454240 + 0.786768i −0.998644 0.0520558i \(-0.983423\pi\)
0.544404 + 0.838823i \(0.316756\pi\)
\(110\) 0.182434 + 1.03463i 0.0173944 + 0.0986485i
\(111\) −5.67876 + 15.2230i −0.539004 + 1.44490i
\(112\) 34.0830 17.6246i 3.22055 1.66536i
\(113\) −1.54842 0.273029i −0.145663 0.0256844i 0.100341 0.994953i \(-0.468007\pi\)
−0.246004 + 0.969269i \(0.579118\pi\)
\(114\) 9.31447 10.9223i 0.872380 1.02296i
\(115\) 3.51905 0.620503i 0.328153 0.0578622i
\(116\) 33.6899i 3.12803i
\(117\) 2.17879 5.70127i 0.201429 0.527082i
\(118\) 15.2185 + 8.78640i 1.40098 + 0.808853i
\(119\) 3.15611 + 10.1059i 0.289320 + 0.926405i
\(120\) 21.6118 + 38.1326i 1.97288 + 3.48101i
\(121\) 8.41108 + 7.05773i 0.764644 + 0.641612i
\(122\) 5.35889 30.3918i 0.485171 2.75154i
\(123\) −0.00446522 + 0.559313i −0.000402616 + 0.0504316i
\(124\) −14.8108 17.6509i −1.33005 1.58510i
\(125\) −3.53731 + 6.12679i −0.316386 + 0.547997i
\(126\) 15.6607 + 14.8984i 1.39517 + 1.32725i
\(127\) 9.03739 + 15.6532i 0.801938 + 1.38900i 0.918339 + 0.395795i \(0.129531\pi\)
−0.116400 + 0.993202i \(0.537136\pi\)
\(128\) −11.6783 + 32.0858i −1.03222 + 2.83601i
\(129\) 6.31398 + 1.16537i 0.555915 + 0.102605i
\(130\) −11.5448 9.68725i −1.01255 0.849628i
\(131\) 0.952268 5.40058i 0.0832001 0.471851i −0.914530 0.404517i \(-0.867440\pi\)
0.997730 0.0673340i \(-0.0214493\pi\)
\(132\) −1.24657 0.465016i −0.108500 0.0404744i
\(133\) −5.92152 5.45585i −0.513461 0.473082i
\(134\) 4.88401i 0.421914i
\(135\) −9.34202 + 10.6068i −0.804033 + 0.912889i
\(136\) −32.2400 18.6138i −2.76456 1.59612i
\(137\) 2.69106 + 3.20708i 0.229913 + 0.273999i 0.868651 0.495425i \(-0.164988\pi\)
−0.638738 + 0.769424i \(0.720543\pi\)
\(138\) −2.16567 + 5.80551i −0.184354 + 0.494198i
\(139\) 7.34520 8.75367i 0.623012 0.742477i −0.358573 0.933502i \(-0.616737\pi\)
0.981585 + 0.191025i \(0.0611811\pi\)
\(140\) 34.6240 17.9043i 2.92626 1.51319i
\(141\) −7.50194 + 8.79688i −0.631777 + 0.740831i
\(142\) −17.8339 6.49101i −1.49659 0.544714i
\(143\) 0.288539 0.0241289
\(144\) −43.5023 0.694637i −3.62519 0.0578864i
\(145\) 16.9199i 1.40512i
\(146\) −2.00555 11.3740i −0.165980 0.941322i
\(147\) 8.68763 8.45725i 0.716544 0.697542i
\(148\) −47.7431 + 17.3771i −3.92446 + 1.42839i
\(149\) −14.9103 + 17.7694i −1.22150 + 1.45572i −0.371917 + 0.928266i \(0.621299\pi\)
−0.849581 + 0.527458i \(0.823145\pi\)
\(150\) 5.57984 + 9.84525i 0.455592 + 0.803861i
\(151\) −0.216400 0.0787632i −0.0176104 0.00640965i 0.333200 0.942856i \(-0.391872\pi\)
−0.350810 + 0.936447i \(0.614094\pi\)
\(152\) 28.3121 2.29641
\(153\) 2.27310 11.7876i 0.183770 0.952975i
\(154\) −0.393623 + 0.943009i −0.0317190 + 0.0759898i
\(155\) −7.43839 8.86472i −0.597466 0.712032i
\(156\) 17.9861 6.38426i 1.44004 0.511150i
\(157\) 6.32473 7.53752i 0.504769 0.601560i −0.452141 0.891947i \(-0.649340\pi\)
0.956909 + 0.290387i \(0.0937840\pi\)
\(158\) 13.9509 + 38.3297i 1.10987 + 3.04935i
\(159\) 10.1781 8.40285i 0.807172 0.666390i
\(160\) −19.4332 + 53.3921i −1.53633 + 4.22102i
\(161\) 3.20740 + 1.33881i 0.252779 + 0.105513i
\(162\) −7.64310 23.2872i −0.600499 1.82961i
\(163\) −0.272626 0.472203i −0.0213537 0.0369858i 0.855151 0.518379i \(-0.173464\pi\)
−0.876505 + 0.481393i \(0.840131\pi\)
\(164\) −1.33985 + 1.12426i −0.104624 + 0.0877903i
\(165\) −0.626057 0.233543i −0.0487385 0.0181813i
\(166\) −2.75878 0.486448i −0.214123 0.0377557i
\(167\) 2.22249 12.6044i 0.171981 0.975354i −0.769590 0.638539i \(-0.779539\pi\)
0.941571 0.336815i \(-0.109350\pi\)
\(168\) −2.31564 + 42.5695i −0.178655 + 3.28431i
\(169\) 6.78787 5.69570i 0.522144 0.438131i
\(170\) −25.6712 14.8213i −1.96889 1.13674i
\(171\) 2.98521 + 8.62800i 0.228285 + 0.659799i
\(172\) 10.0387 + 17.3876i 0.765447 + 1.32579i
\(173\) 2.57625 2.16173i 0.195869 0.164353i −0.539579 0.841935i \(-0.681416\pi\)
0.735447 + 0.677582i \(0.236972\pi\)
\(174\) 25.2911 + 14.8723i 1.91731 + 1.12746i
\(175\) 5.63838 2.91564i 0.426221 0.220402i
\(176\) −0.703479 1.93279i −0.0530268 0.145690i
\(177\) −9.72356 + 5.51087i −0.730868 + 0.414223i
\(178\) 4.81742 13.2357i 0.361081 0.992061i
\(179\) −1.15514 + 0.666922i −0.0863395 + 0.0498481i −0.542548 0.840025i \(-0.682540\pi\)
0.456209 + 0.889873i \(0.349207\pi\)
\(180\) −44.1927 0.705661i −3.29393 0.0525969i
\(181\) −2.64678 + 1.52812i −0.196733 + 0.113584i −0.595131 0.803629i \(-0.702900\pi\)
0.398398 + 0.917213i \(0.369566\pi\)
\(182\) −4.36977 13.9920i −0.323909 1.03716i
\(183\) 14.9347 + 12.7362i 1.10400 + 0.941490i
\(184\) −11.4841 + 4.17988i −0.846621 + 0.308145i
\(185\) −23.9778 + 8.72720i −1.76288 + 0.641637i
\(186\) 19.7888 3.32663i 1.45098 0.243920i
\(187\) 0.558907 0.0985503i 0.0408713 0.00720671i
\(188\) −36.1526 −2.63670
\(189\) −13.2170 + 3.78283i −0.961398 + 0.275160i
\(190\) 22.5436 1.63548
\(191\) 14.9021 2.62764i 1.07828 0.190130i 0.393825 0.919186i \(-0.371152\pi\)
0.684454 + 0.729056i \(0.260041\pi\)
\(192\) −30.7423 37.2369i −2.21863 2.68734i
\(193\) −4.48848 + 1.63367i −0.323088 + 0.117594i −0.498472 0.866906i \(-0.666105\pi\)
0.175384 + 0.984500i \(0.443883\pi\)
\(194\) −18.8615 + 6.86504i −1.35418 + 0.492881i
\(195\) 9.03307 3.20634i 0.646872 0.229611i
\(196\) 37.7504 + 3.51027i 2.69646 + 0.250733i
\(197\) 7.02585 4.05638i 0.500571 0.289005i −0.228378 0.973572i \(-0.573342\pi\)
0.728949 + 0.684568i \(0.240009\pi\)
\(198\) 0.899381 0.730521i 0.0639162 0.0519159i
\(199\) 4.36607 2.52075i 0.309502 0.178691i −0.337201 0.941433i \(-0.609480\pi\)
0.646704 + 0.762741i \(0.276147\pi\)
\(200\) −7.63386 + 20.9738i −0.539795 + 1.48307i
\(201\) 2.67767 + 1.57459i 0.188869 + 0.111063i
\(202\) −6.27986 17.2538i −0.441850 1.21397i
\(203\) 8.88025 13.8557i 0.623271 0.972479i
\(204\) 32.6589 18.5096i 2.28658 1.29593i
\(205\) −0.672905 + 0.564635i −0.0469977 + 0.0394358i
\(206\) 15.6276 + 27.0678i 1.08883 + 1.88590i
\(207\) −2.48468 3.05902i −0.172697 0.212616i
\(208\) 25.5522 + 14.7526i 1.77172 + 1.02291i
\(209\) −0.330635 + 0.277436i −0.0228705 + 0.0191906i
\(210\) −1.84383 + 33.8961i −0.127237 + 2.33905i
\(211\) −0.533965 + 3.02827i −0.0367597 + 0.208474i −0.997656 0.0684355i \(-0.978199\pi\)
0.960896 + 0.276910i \(0.0893104\pi\)
\(212\) 40.6451 + 7.16683i 2.79152 + 0.492220i
\(213\) 9.30832 7.68481i 0.637795 0.526555i
\(214\) 37.2781 31.2801i 2.54828 2.13826i
\(215\) 5.04171 + 8.73250i 0.343842 + 0.595552i
\(216\) 25.1659 41.2734i 1.71232 2.80830i
\(217\) −1.43872 11.1633i −0.0976666 0.757812i
\(218\) 8.83427 24.2720i 0.598332 1.64390i
\(219\) 6.88243 + 2.56741i 0.465072 + 0.173489i
\(220\) −0.714644 1.96347i −0.0481813 0.132377i
\(221\) −5.23303 + 6.23648i −0.352011 + 0.419511i
\(222\) 8.03100 43.5119i 0.539006 2.92033i
\(223\) 11.4325 + 13.6247i 0.765576 + 0.912378i 0.998187 0.0601917i \(-0.0191712\pi\)
−0.232611 + 0.972570i \(0.574727\pi\)
\(224\) −43.9361 + 33.5234i −2.93560 + 2.23988i
\(225\) −7.19661 0.114914i −0.479774 0.00766095i
\(226\) 4.28182 0.284822
\(227\) −6.79748 2.47408i −0.451165 0.164211i 0.106436 0.994320i \(-0.466056\pi\)
−0.557601 + 0.830109i \(0.688278\pi\)
\(228\) −14.4716 + 24.6096i −0.958402 + 1.62981i
\(229\) 9.76524 11.6378i 0.645305 0.769045i −0.339893 0.940464i \(-0.610391\pi\)
0.985198 + 0.171419i \(0.0548353\pi\)
\(230\) −9.14427 + 3.32824i −0.602956 + 0.219458i
\(231\) −0.390105 0.519828i −0.0256670 0.0342022i
\(232\) 10.0486 + 56.9886i 0.659725 + 3.74149i
\(233\) 12.3912i 0.811776i −0.913923 0.405888i \(-0.866962\pi\)
0.913923 0.405888i \(-0.133038\pi\)
\(234\) −3.14721 + 16.3205i −0.205740 + 1.06691i
\(235\) −18.1568 −1.18442
\(236\) −32.8420 11.9535i −2.13783 0.778107i
\(237\) −25.5121 4.70877i −1.65719 0.305868i
\(238\) −13.2433 25.6104i −0.858436 1.66008i
\(239\) 5.11974 6.10146i 0.331168 0.394671i −0.574607 0.818430i \(-0.694845\pi\)
0.905775 + 0.423759i \(0.139290\pi\)
\(240\) −43.5011 52.6912i −2.80798 3.40120i
\(241\) 0.352467 + 0.420054i 0.0227044 + 0.0270581i 0.777277 0.629158i \(-0.216600\pi\)
−0.754573 + 0.656216i \(0.772156\pi\)
\(242\) −25.8952 14.9506i −1.66460 0.961059i
\(243\) 15.2314 + 3.31737i 0.977094 + 0.212809i
\(244\) 61.3772i 3.92927i
\(245\) 18.9592 + 1.76295i 1.21126 + 0.112630i
\(246\) −0.252518 1.50213i −0.0161000 0.0957723i
\(247\) 1.07513 6.09739i 0.0684092 0.387968i
\(248\) 30.3182 + 25.4400i 1.92521 + 1.61544i
\(249\) 1.15612 1.35568i 0.0732661 0.0859129i
\(250\) 6.58938 18.1042i 0.416749 1.14501i
\(251\) −8.86627 15.3568i −0.559634 0.969314i −0.997527 0.0702870i \(-0.977608\pi\)
0.437893 0.899027i \(-0.355725\pi\)
\(252\) −35.8189 23.7720i −2.25638 1.49749i
\(253\) 0.0931548 0.161349i 0.00585659 0.0101439i
\(254\) −31.6395 37.7065i −1.98524 2.36592i
\(255\) 16.4021 9.29599i 1.02714 0.582137i
\(256\) 6.46462 36.6627i 0.404039 2.29142i
\(257\) 21.4325 + 17.9840i 1.33692 + 1.12181i 0.982405 + 0.186764i \(0.0597999\pi\)
0.354519 + 0.935049i \(0.384645\pi\)
\(258\) −17.4845 0.139586i −1.08854 0.00869024i
\(259\) −24.2158 5.43782i −1.50469 0.337890i
\(260\) 25.9577 + 14.9867i 1.60983 + 0.929435i
\(261\) −16.3075 + 9.07114i −1.00941 + 0.561489i
\(262\) 14.9341i 0.922632i
\(263\) −10.9874 + 1.93738i −0.677512 + 0.119464i −0.501808 0.864979i \(-0.667331\pi\)
−0.175705 + 0.984443i \(0.556220\pi\)
\(264\) 2.24735 + 0.414793i 0.138315 + 0.0255288i
\(265\) 20.4130 + 3.59937i 1.25396 + 0.221107i
\(266\) 18.4609 + 11.8318i 1.13191 + 0.725453i
\(267\) 5.70342 + 6.90833i 0.349043 + 0.422783i
\(268\) 1.68675 + 9.56601i 0.103034 + 0.584337i
\(269\) −2.38895 + 4.13779i −0.145657 + 0.252286i −0.929618 0.368525i \(-0.879863\pi\)
0.783961 + 0.620810i \(0.213196\pi\)
\(270\) 20.0384 32.8641i 1.21950 2.00004i
\(271\) −18.5269 + 10.6965i −1.12543 + 0.649766i −0.942781 0.333412i \(-0.891800\pi\)
−0.182647 + 0.983179i \(0.558467\pi\)
\(272\) 54.5339 + 19.8487i 3.30660 + 1.20350i
\(273\) 9.07998 + 2.11526i 0.549546 + 0.128021i
\(274\) −8.73373 7.32847i −0.527624 0.442729i
\(275\) −0.116377 0.319743i −0.00701780 0.0192812i
\(276\) 2.23678 12.1188i 0.134638 0.729468i
\(277\) 2.15053 + 12.1962i 0.129213 + 0.732801i 0.978716 + 0.205218i \(0.0657905\pi\)
−0.849504 + 0.527583i \(0.823098\pi\)
\(278\) −15.5595 + 26.9499i −0.933198 + 1.61635i
\(279\) −4.55600 + 11.9217i −0.272761 + 0.713736i
\(280\) −53.2284 + 40.6135i −3.18101 + 2.42712i
\(281\) −15.3782 + 2.71159i −0.917385 + 0.161760i −0.612355 0.790583i \(-0.709778\pi\)
−0.305030 + 0.952343i \(0.598667\pi\)
\(282\) 15.9594 27.1399i 0.950371 1.61616i
\(283\) −22.5207 3.97101i −1.33872 0.236052i −0.541987 0.840387i \(-0.682328\pi\)
−0.796730 + 0.604335i \(0.793439\pi\)
\(284\) 37.1719 + 6.55441i 2.20575 + 0.388933i
\(285\) −7.26799 + 12.3596i −0.430518 + 0.732119i
\(286\) −0.773831 + 0.136447i −0.0457576 + 0.00806830i
\(287\) −0.847384 + 0.109211i −0.0500195 + 0.00644649i
\(288\) 61.8783 9.89489i 3.64621 0.583062i
\(289\) 0.493577 0.854901i 0.0290340 0.0502883i
\(290\) 8.00126 + 45.3774i 0.469850 + 2.66465i
\(291\) 2.31712 12.5542i 0.135832 0.735938i
\(292\) 7.85629 + 21.5850i 0.459755 + 1.26317i
\(293\) −25.2580 21.1939i −1.47559 1.23816i −0.910749 0.412960i \(-0.864495\pi\)
−0.564837 0.825203i \(-0.691061\pi\)
\(294\) −19.2999 + 26.7897i −1.12560 + 1.56241i
\(295\) −16.4941 6.00336i −0.960323 0.349529i
\(296\) 75.5775 43.6347i 4.39285 2.53622i
\(297\) 0.110553 + 0.728606i 0.00641492 + 0.0422780i
\(298\) 31.5848 54.7065i 1.82966 3.16906i
\(299\) 0.464091 + 2.63199i 0.0268391 + 0.152212i
\(300\) −14.3290 17.3562i −0.827288 1.00206i
\(301\) −0.454519 + 9.79712i −0.0261980 + 0.564697i
\(302\) 0.617608 + 0.108901i 0.0355393 + 0.00626654i
\(303\) 11.4840 + 2.11961i 0.659741 + 0.121769i
\(304\) −43.4649 + 7.66404i −2.49288 + 0.439563i
\(305\) 30.8252i 1.76505i
\(306\) −0.521958 + 32.6881i −0.0298384 + 1.86866i
\(307\) −13.5558 7.82647i −0.773672 0.446680i 0.0605107 0.998168i \(-0.480727\pi\)
−0.834183 + 0.551488i \(0.814060\pi\)
\(308\) 0.445286 1.98295i 0.0253725 0.112989i
\(309\) −19.8783 0.158696i −1.13084 0.00902793i
\(310\) 24.1410 + 20.2567i 1.37112 + 1.15050i
\(311\) 4.62000 26.2013i 0.261976 1.48574i −0.515533 0.856870i \(-0.672406\pi\)
0.777509 0.628872i \(-0.216483\pi\)
\(312\) −28.5204 + 16.1641i −1.61465 + 0.915111i
\(313\) −20.0560 23.9018i −1.13363 1.35101i −0.928088 0.372362i \(-0.878548\pi\)
−0.205544 0.978648i \(-0.565896\pi\)
\(314\) −13.3978 + 23.2057i −0.756084 + 1.30958i
\(315\) −17.9892 11.9389i −1.01358 0.672680i
\(316\) −40.5623 70.2560i −2.28181 3.95221i
\(317\) −4.23367 + 11.6319i −0.237787 + 0.653313i 0.762196 + 0.647347i \(0.224121\pi\)
−0.999982 + 0.00596653i \(0.998101\pi\)
\(318\) −23.3228 + 27.3487i −1.30788 + 1.53364i
\(319\) −0.675794 0.567058i −0.0378372 0.0317492i
\(320\) 13.1685 74.6821i 0.736140 4.17486i
\(321\) 5.13103 + 30.5224i 0.286386 + 1.70360i
\(322\) −9.23503 2.07379i −0.514648 0.115568i
\(323\) 12.1780i 0.677602i
\(324\) 23.0125 + 42.9716i 1.27847 + 2.38731i
\(325\) 4.22711 + 2.44053i 0.234478 + 0.135376i
\(326\) 0.954455 + 1.13748i 0.0528624 + 0.0629989i
\(327\) 10.4590 + 12.6686i 0.578386 + 0.700576i
\(328\) 1.93111 2.30140i 0.106627 0.127074i
\(329\) −14.8685 9.52940i −0.819729 0.525373i
\(330\) 1.78946 + 0.330281i 0.0985065 + 0.0181814i
\(331\) 17.8661 + 6.50272i 0.982008 + 0.357422i 0.782621 0.622499i \(-0.213882\pi\)
0.199388 + 0.979921i \(0.436105\pi\)
\(332\) 5.57146 0.305774
\(333\) 21.2664 + 18.4311i 1.16539 + 1.01002i
\(334\) 34.8545i 1.90715i
\(335\) 0.847127 + 4.80430i 0.0462835 + 0.262487i
\(336\) −7.96852 65.9799i −0.434718 3.59950i
\(337\) 22.8085 8.30162i 1.24246 0.452218i 0.364612 0.931159i \(-0.381201\pi\)
0.877847 + 0.478941i \(0.158979\pi\)
\(338\) −15.5109 + 18.4852i −0.843682 + 1.00546i
\(339\) −1.38044 + 2.34752i −0.0749755 + 0.127500i
\(340\) 55.3993 + 20.1637i 3.00445 + 1.09353i
\(341\) −0.603356 −0.0326735
\(342\) −12.0861 21.7277i −0.653542 1.17490i
\(343\) 14.6004 + 11.3942i 0.788347 + 0.615230i
\(344\) −22.1674 26.4180i −1.19518 1.42437i
\(345\) 1.12337 6.08639i 0.0604800 0.327680i
\(346\) −5.88697 + 7.01582i −0.316485 + 0.377173i
\(347\) −10.4256 28.6441i −0.559675 1.53769i −0.820112 0.572203i \(-0.806089\pi\)
0.260438 0.965491i \(-0.416133\pi\)
\(348\) −54.6724 20.3949i −2.93075 1.09328i
\(349\) 3.07591 8.45099i 0.164650 0.452371i −0.829740 0.558150i \(-0.811511\pi\)
0.994390 + 0.105779i \(0.0337336\pi\)
\(350\) −13.7428 + 10.4858i −0.734581 + 0.560488i
\(351\) −7.93312 6.98716i −0.423439 0.372947i
\(352\) 1.48123 + 2.56557i 0.0789500 + 0.136745i
\(353\) −13.7471 + 11.5352i −0.731685 + 0.613957i −0.930590 0.366062i \(-0.880706\pi\)
0.198905 + 0.980019i \(0.436261\pi\)
\(354\) 23.4715 19.3778i 1.24750 1.02992i
\(355\) 18.6687 + 3.29179i 0.990831 + 0.174710i
\(356\) −4.86447 + 27.5878i −0.257816 + 1.46215i
\(357\) 18.3106 + 0.996034i 0.969099 + 0.0527157i
\(358\) 2.78259 2.33487i 0.147064 0.123402i
\(359\) 23.3898 + 13.5041i 1.23447 + 0.712719i 0.967958 0.251114i \(-0.0807969\pi\)
0.266508 + 0.963833i \(0.414130\pi\)
\(360\) 74.9653 11.9876i 3.95102 0.631803i
\(361\) −4.86923 8.43376i −0.256275 0.443882i
\(362\) 6.37574 5.34988i 0.335101 0.281184i
\(363\) 16.5452 9.37708i 0.868399 0.492169i
\(364\) 13.3911 + 25.8962i 0.701884 + 1.35733i
\(365\) 3.94563 + 10.8405i 0.206524 + 0.567419i
\(366\) −46.0761 27.0948i −2.40844 1.41627i
\(367\) −5.49659 + 15.1017i −0.286920 + 0.788305i 0.709574 + 0.704631i \(0.248888\pi\)
−0.996493 + 0.0836737i \(0.973335\pi\)
\(368\) 16.4990 9.52572i 0.860072 0.496563i
\(369\) 0.904958 + 0.345838i 0.0471103 + 0.0180036i
\(370\) 60.1789 34.7443i 3.12855 1.80627i
\(371\) 14.8271 + 13.6611i 0.769785 + 0.709249i
\(372\) −37.6102 + 13.3499i −1.95000 + 0.692161i
\(373\) 18.4113 6.70115i 0.953299 0.346972i 0.181895 0.983318i \(-0.441777\pi\)
0.771404 + 0.636346i \(0.219555\pi\)
\(374\) −1.45232 + 0.528603i −0.0750979 + 0.0273334i
\(375\) 7.80127 + 9.44937i 0.402856 + 0.487964i
\(376\) 61.1545 10.7832i 3.15380 0.556101i
\(377\) 12.6549 0.651759
\(378\) 33.6578 16.3953i 1.73117 0.843286i
\(379\) 4.00603 0.205776 0.102888 0.994693i \(-0.467192\pi\)
0.102888 + 0.994693i \(0.467192\pi\)
\(380\) −44.1547 + 7.78567i −2.26509 + 0.399397i
\(381\) 30.8732 5.19000i 1.58168 0.265892i
\(382\) −38.7233 + 14.0941i −1.98126 + 0.721118i
\(383\) −19.9066 + 7.24540i −1.01718 + 0.370222i −0.796185 0.605053i \(-0.793152\pi\)
−0.220993 + 0.975275i \(0.570930\pi\)
\(384\) 44.9996 + 38.3754i 2.29637 + 1.95834i
\(385\) 0.223634 0.995891i 0.0113975 0.0507553i
\(386\) 11.2651 6.50390i 0.573377 0.331040i
\(387\) 5.71348 9.54093i 0.290432 0.484993i
\(388\) 34.5720 19.9602i 1.75513 1.01332i
\(389\) 6.11758 16.8079i 0.310174 0.852195i −0.682447 0.730935i \(-0.739084\pi\)
0.992621 0.121260i \(-0.0386936\pi\)
\(390\) −22.7095 + 12.8707i −1.14994 + 0.651734i
\(391\) 1.79791 + 4.93971i 0.0909242 + 0.249812i
\(392\) −64.9043 + 5.32191i −3.27816 + 0.268797i
\(393\) −8.18767 4.81471i −0.413013 0.242870i
\(394\) −16.9244 + 14.2012i −0.852637 + 0.715447i
\(395\) −20.3714 35.2844i −1.02500 1.77535i
\(396\) −1.50927 + 1.74144i −0.0758436 + 0.0875105i
\(397\) −13.9690 8.06502i −0.701085 0.404772i 0.106666 0.994295i \(-0.465982\pi\)
−0.807752 + 0.589523i \(0.799316\pi\)
\(398\) −10.5173 + 8.82505i −0.527184 + 0.442360i
\(399\) −12.4385 + 6.30672i −0.622706 + 0.315731i
\(400\) 6.04197 34.2657i 0.302098 1.71328i
\(401\) 2.93174 + 0.516945i 0.146404 + 0.0258150i 0.246370 0.969176i \(-0.420762\pi\)
−0.0999658 + 0.994991i \(0.531873\pi\)
\(402\) −7.92584 2.95664i −0.395305 0.147464i
\(403\) 6.63017 5.56337i 0.330272 0.277131i
\(404\) 18.2588 + 31.6251i 0.908407 + 1.57341i
\(405\) 11.5575 + 21.5814i 0.574296 + 1.07239i
\(406\) −17.2637 + 41.3589i −0.856781 + 2.05261i
\(407\) −0.455027 + 1.25018i −0.0225548 + 0.0619689i
\(408\) −49.7239 + 41.0513i −2.46170 + 2.03234i
\(409\) −7.88805 21.6722i −0.390039 1.07162i −0.966983 0.254840i \(-0.917977\pi\)
0.576944 0.816783i \(-0.304245\pi\)
\(410\) 1.53765 1.83250i 0.0759391 0.0905007i
\(411\) 6.83358 2.42562i 0.337076 0.119647i
\(412\) −39.9570 47.6189i −1.96854 2.34601i
\(413\) −10.3562 13.5729i −0.509594 0.667879i
\(414\) 8.11023 + 7.02898i 0.398596 + 0.345455i
\(415\) 2.79813 0.137355
\(416\) −39.9335 14.5346i −1.95790 0.712617i
\(417\) −9.75901 17.2191i −0.477901 0.843224i
\(418\) 0.755532 0.900407i 0.0369543 0.0440404i
\(419\) 7.21684 2.62672i 0.352566 0.128323i −0.159665 0.987171i \(-0.551041\pi\)
0.512231 + 0.858848i \(0.328819\pi\)
\(420\) −8.09498 67.0270i −0.394995 3.27058i
\(421\) 6.15920 + 34.9305i 0.300181 + 1.70241i 0.645364 + 0.763875i \(0.276706\pi\)
−0.345183 + 0.938535i \(0.612183\pi\)
\(422\) 8.37399i 0.407639i
\(423\) 9.73424 + 17.4996i 0.473295 + 0.850861i
\(424\) −70.8916 −3.44280
\(425\) 9.02157 + 3.28358i 0.437610 + 0.159277i
\(426\) −21.3298 + 25.0117i −1.03343 + 1.21182i
\(427\) −16.1783 + 25.2427i −0.782923 + 1.22158i
\(428\) −62.2114 + 74.1407i −3.00710 + 3.58373i
\(429\) 0.174673 0.468246i 0.00843330 0.0226071i
\(430\) −17.6508 21.0355i −0.851200 1.01442i
\(431\) 12.6881 + 7.32548i 0.611164 + 0.352856i 0.773421 0.633893i \(-0.218544\pi\)
−0.162257 + 0.986749i \(0.551877\pi\)
\(432\) −27.4623 + 70.1756i −1.32128 + 3.37633i
\(433\) 20.7962i 0.999403i −0.866198 0.499701i \(-0.833443\pi\)
0.866198 0.499701i \(-0.166557\pi\)
\(434\) 9.13749 + 29.2583i 0.438614 + 1.40445i
\(435\) −27.4579 10.2428i −1.31650 0.491106i
\(436\) −8.92056 + 50.5910i −0.427217 + 2.42287i
\(437\) −3.06251 2.56975i −0.146500 0.122928i
\(438\) −19.6720 3.63087i −0.939967 0.173490i
\(439\) −8.96881 + 24.6416i −0.428058 + 1.17608i 0.518932 + 0.854815i \(0.326330\pi\)
−0.946990 + 0.321263i \(0.895892\pi\)
\(440\) 1.79451 + 3.10818i 0.0855498 + 0.148177i
\(441\) −8.46531 19.2182i −0.403110 0.915152i
\(442\) 11.0852 19.2002i 0.527272 0.913261i
\(443\) −0.0928329 0.110634i −0.00441063 0.00525638i 0.763835 0.645412i \(-0.223314\pi\)
−0.768245 + 0.640156i \(0.778870\pi\)
\(444\) −0.702521 + 87.9977i −0.0333402 + 4.17619i
\(445\) −2.44306 + 13.8553i −0.115812 + 0.656804i
\(446\) −37.1037 31.1337i −1.75691 1.47422i
\(447\) 19.8102 + 34.9537i 0.936988 + 1.65325i
\(448\) 49.9798 54.2457i 2.36132 2.56287i
\(449\) 15.6193 + 9.01783i 0.737122 + 0.425578i 0.821022 0.570897i \(-0.193404\pi\)
−0.0838999 + 0.996474i \(0.526738\pi\)
\(450\) 19.3549 3.09502i 0.912398 0.145901i
\(451\) 0.0457996i 0.00215662i
\(452\) −8.38653 + 1.47877i −0.394469 + 0.0695556i
\(453\) −0.258820 + 0.303496i −0.0121604 + 0.0142595i
\(454\) 19.4001 + 3.42076i 0.910492 + 0.160544i
\(455\) 6.72535 + 13.0057i 0.315289 + 0.609719i
\(456\) 17.1393 45.9452i 0.802621 2.15158i
\(457\) −3.40011 19.2830i −0.159050 0.902020i −0.954989 0.296642i \(-0.904133\pi\)
0.795938 0.605378i \(-0.206978\pi\)
\(458\) −20.6860 + 35.8291i −0.966591 + 1.67418i
\(459\) −17.7531 10.8247i −0.828643 0.505255i
\(460\) 16.7609 9.67690i 0.781480 0.451188i
\(461\) −12.6847 4.61684i −0.590784 0.215028i 0.0292902 0.999571i \(-0.490675\pi\)
−0.620074 + 0.784543i \(0.712898\pi\)
\(462\) 1.29204 + 1.20965i 0.0601111 + 0.0562778i
\(463\) −6.46334 5.42339i −0.300377 0.252046i 0.480124 0.877200i \(-0.340592\pi\)
−0.780501 + 0.625154i \(0.785036\pi\)
\(464\) −30.8535 84.7693i −1.43234 3.93531i
\(465\) −18.8888 + 6.70468i −0.875946 + 0.310922i
\(466\) 5.85969 + 33.2319i 0.271445 + 1.53944i
\(467\) 6.97283 12.0773i 0.322664 0.558870i −0.658373 0.752692i \(-0.728755\pi\)
0.981037 + 0.193822i \(0.0620883\pi\)
\(468\) 0.527783 33.0529i 0.0243968 1.52787i
\(469\) −1.82778 + 4.37883i −0.0843989 + 0.202196i
\(470\) 48.6945 8.58616i 2.24611 0.396050i
\(471\) −8.40319 14.8269i −0.387199 0.683186i
\(472\) 59.1197 + 10.4244i 2.72121 + 0.479822i
\(473\) 0.517752 + 0.0912936i 0.0238063 + 0.00419768i
\(474\) 70.6475 + 0.564007i 3.24495 + 0.0259057i
\(475\) −7.19043 + 1.26787i −0.329920 + 0.0581737i
\(476\) 34.7837 + 45.5878i 1.59431 + 2.08951i
\(477\) −7.47478 21.6039i −0.342247 0.989176i
\(478\) −10.8453 + 18.7845i −0.496051 + 0.859185i
\(479\) −3.80300 21.5679i −0.173764 0.985462i −0.939561 0.342381i \(-0.888767\pi\)
0.765798 0.643082i \(-0.222344\pi\)
\(480\) 74.8813 + 63.8584i 3.41785 + 2.91473i
\(481\) −6.52732 17.9337i −0.297620 0.817704i
\(482\) −1.14392 0.959862i −0.0521041 0.0437205i
\(483\) 4.11431 4.39455i 0.187207 0.199959i
\(484\) 55.8826 + 20.3396i 2.54012 + 0.924527i
\(485\) 17.3630 10.0245i 0.788411 0.455189i
\(486\) −42.4177 1.69405i −1.92411 0.0768438i
\(487\) 4.85645 8.41162i 0.220067 0.381167i −0.734761 0.678326i \(-0.762706\pi\)
0.954828 + 0.297159i \(0.0960392\pi\)
\(488\) −18.3069 103.824i −0.828715 4.69987i
\(489\) −0.931337 + 0.156564i −0.0421165 + 0.00708008i
\(490\) −51.6803 + 4.23759i −2.33468 + 0.191435i
\(491\) 26.7581 + 4.71818i 1.20758 + 0.212928i 0.740971 0.671537i \(-0.234366\pi\)
0.466606 + 0.884465i \(0.345477\pi\)
\(492\) 1.01337 + 2.85492i 0.0456862 + 0.128710i
\(493\) 24.5128 4.32226i 1.10400 0.194665i
\(494\) 16.8610i 0.758611i
\(495\) −0.757994 + 0.874595i −0.0340693 + 0.0393101i
\(496\) −53.4314 30.8486i −2.39914 1.38514i
\(497\) 13.5601 + 12.4937i 0.608253 + 0.560420i
\(498\) −2.45950 + 4.18251i −0.110213 + 0.187423i
\(499\) −24.8714 20.8696i −1.11340 0.934253i −0.115147 0.993349i \(-0.536734\pi\)
−0.998252 + 0.0590959i \(0.981178\pi\)
\(500\) −6.65374 + 37.7352i −0.297564 + 1.68757i
\(501\) −19.1091 11.2370i −0.853731 0.502032i
\(502\) 31.0405 + 36.9926i 1.38540 + 1.65106i
\(503\) −12.9131 + 22.3661i −0.575764 + 0.997253i 0.420194 + 0.907434i \(0.361962\pi\)
−0.995958 + 0.0898189i \(0.971371\pi\)
\(504\) 67.6805 + 29.5282i 3.01473 + 1.31529i
\(505\) 9.17002 + 15.8829i 0.408060 + 0.706781i
\(506\) −0.173531 + 0.476773i −0.00771439 + 0.0211951i
\(507\) −5.13388 14.4635i −0.228004 0.642345i
\(508\) 74.9928 + 62.9264i 3.32727 + 2.79191i
\(509\) 5.07095 28.7588i 0.224766 1.27471i −0.638367 0.769733i \(-0.720390\pi\)
0.863132 0.504978i \(-0.168499\pi\)
\(510\) −39.5928 + 32.6873i −1.75320 + 1.44742i
\(511\) −2.45848 + 10.9481i −0.108757 + 0.484316i
\(512\) 33.0926i 1.46250i
\(513\) 15.8088 + 0.378688i 0.697975 + 0.0167195i
\(514\) −65.9842 38.0960i −2.91044 1.68034i
\(515\) −20.0674 23.9154i −0.884276 1.05384i
\(516\) 34.2940 5.76506i 1.50971 0.253793i
\(517\) −0.608510 + 0.725194i −0.0267623 + 0.0318940i
\(518\) 67.5156 + 3.13225i 2.96646 + 0.137623i
\(519\) −1.94850 5.48943i −0.0855297 0.240959i
\(520\) −48.3792 17.6086i −2.12157 0.772188i
\(521\) −2.87036 −0.125753 −0.0628763 0.998021i \(-0.520027\pi\)
−0.0628763 + 0.998021i \(0.520027\pi\)
\(522\) 39.4454 32.0395i 1.72648 1.40233i
\(523\) 7.76370i 0.339483i −0.985489 0.169742i \(-0.945707\pi\)
0.985489 0.169742i \(-0.0542933\pi\)
\(524\) −5.15765 29.2505i −0.225313 1.27781i
\(525\) −1.31824 10.9151i −0.0575326 0.476374i
\(526\) 28.5509 10.3917i 1.24488 0.453098i
\(527\) 10.9426 13.0409i 0.476668 0.568071i
\(528\) −3.56243 0.0284403i −0.155035 0.00123771i
\(529\) −19.9913 7.27624i −0.869187 0.316358i
\(530\) −56.4477 −2.45193
\(531\) 3.05676 + 19.1157i 0.132652 + 0.829549i
\(532\) −40.2445 16.7985i −1.74482 0.728308i
\(533\) −0.422306 0.503284i −0.0182921 0.0217997i
\(534\) −18.5628 15.8303i −0.803292 0.685044i
\(535\) −31.2442 + 37.2354i −1.35080 + 1.60983i
\(536\) −5.70648 15.6784i −0.246482 0.677205i
\(537\) 0.383001 + 2.27832i 0.0165277 + 0.0983167i
\(538\) 4.45020 12.2268i 0.191862 0.527136i
\(539\) 0.705817 0.698161i 0.0304017 0.0300719i
\(540\) −27.8981 + 71.2893i −1.20054 + 3.06780i
\(541\) 0.0411054 + 0.0711966i 0.00176726 + 0.00306098i 0.866908 0.498469i \(-0.166104\pi\)
−0.865140 + 0.501530i \(0.832771\pi\)
\(542\) 44.6289 37.4481i 1.91697 1.60853i
\(543\) 0.877569 + 5.22030i 0.0376601 + 0.224025i
\(544\) −82.3163 14.5146i −3.52928 0.622307i
\(545\) −4.48013 + 25.4081i −0.191908 + 1.08836i
\(546\) −25.3518 1.37905i −1.08496 0.0590180i
\(547\) 0.989409 0.830213i 0.0423041 0.0354973i −0.621390 0.783501i \(-0.713432\pi\)
0.663695 + 0.748004i \(0.268987\pi\)
\(548\) 19.6372 + 11.3375i 0.838859 + 0.484315i
\(549\) 29.7096 16.5261i 1.26797 0.705316i
\(550\) 0.463314 + 0.802484i 0.0197558 + 0.0342180i
\(551\) −14.5011 + 12.1679i −0.617769 + 0.518370i
\(552\) −0.168985 + 21.1670i −0.00719246 + 0.900926i
\(553\) 1.83652 39.5860i 0.0780967 1.68337i
\(554\) −11.5350 31.6921i −0.490074 1.34647i
\(555\) −0.352824 + 44.1947i −0.0149766 + 1.87596i
\(556\) 21.1680 58.1587i 0.897725 2.46648i
\(557\) 35.2510 20.3522i 1.49363 0.862350i 0.493660 0.869655i \(-0.335659\pi\)
0.999973 + 0.00730507i \(0.00232530\pi\)
\(558\) 6.58104 34.1273i 0.278598 1.44473i
\(559\) −6.53128 + 3.77084i −0.276244 + 0.159489i
\(560\) 70.7227 76.7591i 2.98858 3.24366i
\(561\) 0.178417 0.966661i 0.00753277 0.0408125i
\(562\) 39.9603 14.5444i 1.68563 0.613517i
\(563\) 32.9305 11.9857i 1.38786 0.505138i 0.463306 0.886198i \(-0.346663\pi\)
0.924550 + 0.381060i \(0.124441\pi\)
\(564\) −21.8857 + 58.6690i −0.921555 + 2.47041i
\(565\) −4.21193 + 0.742677i −0.177197 + 0.0312447i
\(566\) 62.2760 2.61765
\(567\) −1.86238 + 23.7388i −0.0782128 + 0.996937i
\(568\) −64.8337 −2.72036
\(569\) −5.97075 + 1.05280i −0.250307 + 0.0441359i −0.297394 0.954755i \(-0.596117\pi\)
0.0470868 + 0.998891i \(0.485006\pi\)
\(570\) 13.6472 36.5841i 0.571620 1.53234i
\(571\) 7.29077 2.65362i 0.305109 0.111051i −0.184928 0.982752i \(-0.559205\pi\)
0.490038 + 0.871701i \(0.336983\pi\)
\(572\) 1.46853 0.534502i 0.0614024 0.0223486i
\(573\) 4.75712 25.7741i 0.198732 1.07673i
\(574\) 2.22095 0.693610i 0.0927006 0.0289507i
\(575\) 2.72945 1.57585i 0.113826 0.0657173i
\(576\) −79.0391 + 27.3468i −3.29329 + 1.13945i
\(577\) 24.3850 14.0787i 1.01516 0.586104i 0.102463 0.994737i \(-0.467328\pi\)
0.912699 + 0.408633i \(0.133994\pi\)
\(578\) −0.919447 + 2.52616i −0.0382440 + 0.105074i
\(579\) −0.0660463 + 8.27295i −0.00274479 + 0.343812i
\(580\) −31.3431 86.1146i −1.30145 3.57571i
\(581\) 2.29138 + 1.46857i 0.0950626 + 0.0609266i
\(582\) −0.277540 + 34.7647i −0.0115044 + 1.44104i
\(583\) 0.827889 0.694681i 0.0342876 0.0287707i
\(584\) −19.7276 34.1691i −0.816332 1.41393i
\(585\) 0.265066 16.6000i 0.0109591 0.686327i
\(586\) 77.7615 + 44.8956i 3.21230 + 1.85462i
\(587\) 14.0329 11.7750i 0.579200 0.486006i −0.305484 0.952197i \(-0.598818\pi\)
0.884684 + 0.466191i \(0.154374\pi\)
\(588\) 28.5495 59.1368i 1.17736 2.43876i
\(589\) −2.24818 + 12.7501i −0.0926347 + 0.525357i
\(590\) 47.0743 + 8.30047i 1.93802 + 0.341725i
\(591\) −2.32950 13.8573i −0.0958229 0.570011i
\(592\) −104.215 + 87.4471i −4.28323 + 3.59405i
\(593\) −10.2123 17.6882i −0.419367 0.726366i 0.576509 0.817091i \(-0.304415\pi\)
−0.995876 + 0.0907255i \(0.971081\pi\)
\(594\) −0.641041 1.90176i −0.0263022 0.0780304i
\(595\) 17.4693 + 22.8954i 0.716170 + 0.938619i
\(596\) −42.9697 + 118.058i −1.76011 + 4.83586i
\(597\) −1.44762 8.61130i −0.0592471 0.352437i
\(598\) −2.48929 6.83925i −0.101794 0.279678i
\(599\) −19.6942 + 23.4706i −0.804684 + 0.958985i −0.999762 0.0218030i \(-0.993059\pi\)
0.195079 + 0.980788i \(0.437504\pi\)
\(600\) 29.4153 + 25.0853i 1.20088 + 1.02410i
\(601\) 2.11771 + 2.52379i 0.0863832 + 0.102947i 0.807505 0.589861i \(-0.200818\pi\)
−0.721122 + 0.692809i \(0.756373\pi\)
\(602\) −3.41399 26.4898i −0.139144 1.07964i
\(603\) 4.17625 3.39216i 0.170070 0.138139i
\(604\) −1.24728 −0.0507511
\(605\) 28.0657 + 10.2151i 1.14103 + 0.415301i
\(606\) −31.8013 0.253883i −1.29184 0.0103133i
\(607\) −28.1092 + 33.4993i −1.14092 + 1.35969i −0.217427 + 0.976077i \(0.569766\pi\)
−0.923492 + 0.383618i \(0.874678\pi\)
\(608\) 59.7348 21.7417i 2.42256 0.881741i
\(609\) −17.1094 22.7988i −0.693306 0.923855i
\(610\) −14.5769 82.6699i −0.590203 3.34721i
\(611\) 13.5799i 0.549386i
\(612\) −10.2669 64.2045i −0.415014 2.59531i
\(613\) −20.8813 −0.843387 −0.421694 0.906738i \(-0.638564\pi\)
−0.421694 + 0.906738i \(0.638564\pi\)
\(614\) 40.0564 + 14.5793i 1.61654 + 0.588374i
\(615\) 0.508940 + 1.43381i 0.0205224 + 0.0578169i
\(616\) −0.161778 + 3.48711i −0.00651822 + 0.140500i
\(617\) 13.6109 16.2208i 0.547954 0.653026i −0.418997 0.907988i \(-0.637618\pi\)
0.966951 + 0.254961i \(0.0820627\pi\)
\(618\) 53.3865 8.97464i 2.14752 0.361013i
\(619\) 2.45683 + 2.92793i 0.0987483 + 0.117684i 0.813155 0.582047i \(-0.197748\pi\)
−0.714407 + 0.699730i \(0.753303\pi\)
\(620\) −54.2794 31.3382i −2.17991 1.25857i
\(621\) −6.46837 + 2.18034i −0.259567 + 0.0874940i
\(622\) 72.4539i 2.90514i
\(623\) −9.27243 + 10.0639i −0.371492 + 0.403200i
\(624\) 39.4092 32.5357i 1.57763 1.30247i
\(625\) −5.42474 + 30.7652i −0.216990 + 1.23061i
\(626\) 65.0910 + 54.6178i 2.60156 + 2.18297i
\(627\) 0.250070 + 0.704511i 0.00998683 + 0.0281355i
\(628\) 18.2272 50.0787i 0.727343 1.99836i
\(629\) −18.7688 32.5085i −0.748360 1.29620i
\(630\) 53.8909 + 23.5119i 2.14706 + 0.936737i
\(631\) −20.3234 + 35.2011i −0.809061 + 1.40133i 0.104454 + 0.994530i \(0.466690\pi\)
−0.913515 + 0.406805i \(0.866643\pi\)
\(632\) 89.5690 + 106.744i 3.56286 + 4.24605i
\(633\) 4.59107 + 2.69975i 0.182478 + 0.107305i
\(634\) 5.85363 33.1976i 0.232478 1.31845i
\(635\) 37.6633 + 31.6033i 1.49462 + 1.25414i
\(636\) 36.2358 61.6209i 1.43684 2.44343i
\(637\) −1.31856 + 14.1801i −0.0522431 + 0.561837i
\(638\) 2.08056 + 1.20121i 0.0823703 + 0.0475565i
\(639\) −6.83604 19.7578i −0.270430 0.781608i
\(640\) 92.8792i 3.67137i
\(641\) 10.4719 1.84648i 0.413616 0.0729316i 0.0370316 0.999314i \(-0.488210\pi\)
0.376584 + 0.926383i \(0.377099\pi\)
\(642\) −28.1946 79.4315i −1.11275 3.13491i
\(643\) −41.6989 7.35263i −1.64444 0.289960i −0.726646 0.687012i \(-0.758922\pi\)
−0.917796 + 0.397052i \(0.870033\pi\)
\(644\) 18.8043 + 0.872388i 0.740992 + 0.0343769i
\(645\) 17.2233 2.89536i 0.678168 0.114005i
\(646\) 5.75885 + 32.6601i 0.226579 + 1.28499i
\(647\) −20.0622 + 34.7487i −0.788726 + 1.36611i 0.138021 + 0.990429i \(0.455926\pi\)
−0.926748 + 0.375685i \(0.877408\pi\)
\(648\) −51.7443 65.8253i −2.03271 2.58586i
\(649\) −0.792565 + 0.457588i −0.0311109 + 0.0179619i
\(650\) −12.4908 4.54627i −0.489928 0.178319i
\(651\) −18.9869 4.42314i −0.744154 0.173357i
\(652\) −2.26227 1.89827i −0.0885974 0.0743420i
\(653\) 7.62691 + 20.9548i 0.298464 + 0.820023i 0.994757 + 0.102266i \(0.0326092\pi\)
−0.696293 + 0.717758i \(0.745169\pi\)
\(654\) −34.0409 29.0299i −1.33110 1.13516i
\(655\) −2.59031 14.6904i −0.101212 0.574000i
\(656\) −2.34166 + 4.05588i −0.0914266 + 0.158355i
\(657\) 8.33284 9.61468i 0.325095 0.375104i
\(658\) 44.3822 + 18.5256i 1.73020 + 0.722205i
\(659\) −14.8769 + 2.62320i −0.579522 + 0.102185i −0.455723 0.890122i \(-0.650619\pi\)
−0.123800 + 0.992307i \(0.539508\pi\)
\(660\) −3.61897 0.0288917i −0.140868 0.00112461i
\(661\) −19.6850 3.47099i −0.765656 0.135006i −0.222837 0.974856i \(-0.571532\pi\)
−0.542819 + 0.839850i \(0.682643\pi\)
\(662\) −50.9900 8.99091i −1.98178 0.349442i
\(663\) 6.95273 + 12.2676i 0.270021 + 0.476435i
\(664\) −9.42449 + 1.66179i −0.365741 + 0.0644900i
\(665\) −20.2118 8.43664i −0.783780 0.327159i
\(666\) −65.7500 39.3737i −2.54776 1.52570i
\(667\) 4.08562 7.07651i 0.158196 0.274003i
\(668\) −12.0374 68.2674i −0.465740 2.64134i
\(669\) 29.0313 10.3048i 1.12241 0.398407i
\(670\) −4.54381 12.4840i −0.175543 0.482299i
\(671\) 1.23118 + 1.03308i 0.0475292 + 0.0398818i
\(672\) 27.8047 + 91.5943i 1.07259 + 3.53332i
\(673\) 38.6509 + 14.0678i 1.48988 + 0.542273i 0.953418 0.301651i \(-0.0975377\pi\)
0.536463 + 0.843924i \(0.319760\pi\)
\(674\) −57.2443 + 33.0500i −2.20497 + 1.27304i
\(675\) −4.54310 + 11.6092i −0.174864 + 0.446838i
\(676\) 23.9962 41.5626i 0.922930 1.59856i
\(677\) 3.61587 + 20.5066i 0.138969 + 0.788134i 0.972013 + 0.234927i \(0.0754850\pi\)
−0.833044 + 0.553207i \(0.813404\pi\)
\(678\) 2.59209 6.94859i 0.0995485 0.266859i
\(679\) 19.4798 + 0.903726i 0.747564 + 0.0346818i
\(680\) −99.7258 17.5844i −3.82431 0.674329i
\(681\) −8.12997 + 9.53332i −0.311541 + 0.365318i
\(682\) 1.61813 0.285321i 0.0619616 0.0109255i
\(683\) 26.1374i 1.00012i 0.865991 + 0.500060i \(0.166689\pi\)
−0.865991 + 0.500060i \(0.833311\pi\)
\(684\) 31.1762 + 38.3826i 1.19205 + 1.46760i
\(685\) 9.86230 + 5.69400i 0.376819 + 0.217557i
\(686\) −44.5449 23.6537i −1.70073 0.903103i
\(687\) −12.9743 22.8923i −0.495002 0.873397i
\(688\) 41.1829 + 34.5565i 1.57008 + 1.31746i
\(689\) −2.69207 + 15.2675i −0.102560 + 0.581644i
\(690\) −0.134555 + 16.8543i −0.00512240 + 0.641631i
\(691\) 19.9455 + 23.7702i 0.758764 + 0.904260i 0.997769 0.0667585i \(-0.0212657\pi\)
−0.239005 + 0.971018i \(0.576821\pi\)
\(692\) 9.10745 15.7746i 0.346213 0.599659i
\(693\) −1.07974 + 0.318379i −0.0410160 + 0.0120942i
\(694\) 41.5058 + 71.8901i 1.57554 + 2.72891i
\(695\) 10.6311 29.2088i 0.403262 1.10795i
\(696\) 98.5651 + 18.1922i 3.73610 + 0.689573i
\(697\) −0.989912 0.830635i −0.0374956 0.0314625i
\(698\) −4.25287 + 24.1192i −0.160974 + 0.912926i
\(699\) −20.1087 7.50129i −0.760579 0.283725i
\(700\) 23.2957 25.2841i 0.880495 0.955647i
\(701\) 35.8873i 1.35545i −0.735317 0.677723i \(-0.762967\pi\)
0.735317 0.677723i \(-0.237033\pi\)
\(702\) 24.5799 + 14.9873i 0.927710 + 0.565660i
\(703\) 24.7232 + 14.2739i 0.932451 + 0.538351i
\(704\) −2.54153 3.02887i −0.0957873 0.114155i
\(705\) −10.9916 + 29.4651i −0.413967 + 1.10972i
\(706\) 31.4134 37.4370i 1.18226 1.40896i
\(707\) −0.826692 + 17.8193i −0.0310909 + 0.670164i
\(708\) −39.2799 + 46.0601i −1.47623 + 1.73105i
\(709\) 47.5071 + 17.2912i 1.78417 + 0.649384i 0.999568 + 0.0293794i \(0.00935309\pi\)
0.784598 + 0.620004i \(0.212869\pi\)
\(710\) −51.6241 −1.93742
\(711\) −23.0857 + 38.5509i −0.865783 + 1.44577i
\(712\) 48.1175i 1.80328i
\(713\) −0.970447 5.50368i −0.0363435 0.206114i
\(714\) −49.5781 + 5.98764i −1.85541 + 0.224082i
\(715\) 0.737535 0.268441i 0.0275822 0.0100391i
\(716\) −4.64371 + 5.53416i −0.173544 + 0.206821i
\(717\) −6.80221 12.0020i −0.254033 0.448224i
\(718\) −69.1148 25.1557i −2.57934 0.938804i
\(719\) 41.8931 1.56235 0.781175 0.624312i \(-0.214621\pi\)
0.781175 + 0.624312i \(0.214621\pi\)
\(720\) −111.842 + 38.6965i −4.16812 + 1.44213i
\(721\) −3.88140 30.1165i −0.144551 1.12160i
\(722\) 17.0470 + 20.3158i 0.634424 + 0.756077i
\(723\) 0.895043 0.317700i 0.0332870 0.0118154i
\(724\) −10.6401 + 12.6804i −0.395437 + 0.471264i
\(725\) −5.10411 14.0234i −0.189562 0.520817i
\(726\) −39.9382 + 32.9724i −1.48224 + 1.22372i
\(727\) 4.61680 12.6846i 0.171228 0.470444i −0.824162 0.566354i \(-0.808354\pi\)
0.995390 + 0.0959094i \(0.0305759\pi\)
\(728\) −30.3760 39.8110i −1.12581 1.47549i
\(729\) 14.6041 22.7095i 0.540893 0.841092i
\(730\) −15.7081 27.2073i −0.581384 1.00699i
\(731\) −11.3633 + 9.53495i −0.420287 + 0.352663i
\(732\) 99.6038 + 37.1560i 3.68146 + 1.37332i
\(733\) −26.9369 4.74970i −0.994936 0.175434i −0.347603 0.937642i \(-0.613004\pi\)
−0.647333 + 0.762208i \(0.724116\pi\)
\(734\) 7.59979 43.1006i 0.280513 1.59087i
\(735\) 14.3383 29.7000i 0.528876 1.09550i
\(736\) −21.0201 + 17.6380i −0.774813 + 0.650145i
\(737\) 0.220278 + 0.127177i 0.00811404 + 0.00468464i
\(738\) −2.59055 0.499555i −0.0953593 0.0183889i
\(739\) −8.53378 14.7809i −0.313920 0.543726i 0.665287 0.746588i \(-0.268309\pi\)
−0.979207 + 0.202862i \(0.934976\pi\)
\(740\) −105.869 + 88.8349i −3.89183 + 3.26564i
\(741\) −9.24408 5.43593i −0.339590 0.199694i
\(742\) −46.2249 29.6260i −1.69697 1.08760i
\(743\) 2.70067 + 7.42004i 0.0990781 + 0.272215i 0.979322 0.202306i \(-0.0648436\pi\)
−0.880244 + 0.474521i \(0.842621\pi\)
\(744\) 59.6382 33.8002i 2.18644 1.23918i
\(745\) −21.5805 + 59.2920i −0.790649 + 2.17229i
\(746\) −46.2081 + 26.6783i −1.69180 + 0.976761i
\(747\) −1.50014 2.69686i −0.0548872 0.0986729i
\(748\) 2.66202 1.53692i 0.0973331 0.0561953i
\(749\) −45.1284 + 14.0938i −1.64896 + 0.514975i
\(750\) −25.3907 21.6531i −0.927137 0.790658i
\(751\) 6.02030 2.19121i 0.219684 0.0799584i −0.229834 0.973230i \(-0.573818\pi\)
0.449517 + 0.893272i \(0.351596\pi\)
\(752\) −90.9659 + 33.1089i −3.31719 + 1.20736i
\(753\) −30.2886 + 5.09173i −1.10378 + 0.185553i
\(754\) −33.9390 + 5.98436i −1.23599 + 0.217938i
\(755\) −0.626416 −0.0227976
\(756\) −60.2612 + 43.7366i −2.19168 + 1.59069i
\(757\) −31.0889 −1.12994 −0.564972 0.825110i \(-0.691113\pi\)
−0.564972 + 0.825110i \(0.691113\pi\)
\(758\) −10.7437 + 1.89441i −0.390230 + 0.0688081i
\(759\) −0.205446 0.248849i −0.00745722 0.00903264i
\(760\) 72.3684 26.3400i 2.62508 0.955451i
\(761\) 9.23274 3.36044i 0.334687 0.121816i −0.169210 0.985580i \(-0.554122\pi\)
0.503896 + 0.863764i \(0.331899\pi\)
\(762\) −80.3444 + 28.5187i −2.91057 + 1.03312i
\(763\) −17.0040 + 18.4553i −0.615585 + 0.668126i
\(764\) 70.9773 40.9788i 2.56787 1.48256i
\(765\) −5.15629 32.2451i −0.186426 1.16583i
\(766\) 49.9610 28.8450i 1.80516 1.04221i
\(767\) 4.49008 12.3364i 0.162127