Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [189,2,Mod(47,189)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(189, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([7, 15]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("189.47");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 189 = 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 189.bd (of order \(18\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.50917259820\) |
Analytic rank: | \(0\) |
Dimension: | \(132\) |
Relative dimension: | \(22\) over \(\Q(\zeta_{18})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
47.1 | −2.68189 | − | 0.472890i | 0.605371 | + | 1.62281i | 5.08954 | + | 1.85244i | 2.55610 | + | 0.930344i | −0.856127 | − | 4.63849i | 2.58147 | − | 0.579686i | −8.05677 | − | 4.65158i | −2.26705 | + | 1.96481i | −6.41523 | − | 3.70384i |
47.2 | −2.47573 | − | 0.436538i | −1.50729 | + | 0.853281i | 4.05929 | + | 1.47746i | −2.58032 | − | 0.939158i | 4.10412 | − | 1.45451i | −2.62404 | + | 0.338290i | −5.05050 | − | 2.91591i | 1.54382 | − | 2.57228i | 5.97819 | + | 3.45151i |
47.3 | −2.26715 | − | 0.399760i | 0.415691 | − | 1.68143i | 3.10078 | + | 1.12859i | −1.73217 | − | 0.630457i | −1.61460 | + | 3.64587i | 0.678971 | − | 2.55715i | −2.59137 | − | 1.49613i | −2.65440 | − | 1.39791i | 3.67505 | + | 2.12179i |
47.4 | −2.06025 | − | 0.363278i | −1.46652 | − | 0.921586i | 2.23328 | + | 0.812849i | 0.338534 | + | 0.123216i | 2.68661 | + | 2.43145i | 1.84499 | + | 1.89632i | −0.682329 | − | 0.393943i | 1.30136 | + | 2.70305i | −0.652704 | − | 0.376839i |
47.5 | −1.63190 | − | 0.287749i | 1.35485 | + | 1.07906i | 0.700923 | + | 0.255115i | −3.60525 | − | 1.31220i | −1.90049 | − | 2.15078i | 2.03118 | + | 1.69538i | 1.79971 | + | 1.03907i | 0.671243 | + | 2.92394i | 5.50583 | + | 3.17879i |
47.6 | −1.57155 | − | 0.277106i | 1.72554 | + | 0.149982i | 0.513586 | + | 0.186930i | 1.78318 | + | 0.649025i | −2.67021 | − | 0.713863i | −1.28547 | − | 2.31248i | 2.00866 | + | 1.15970i | 2.95501 | + | 0.517603i | −2.62250 | − | 1.51410i |
47.7 | −1.38665 | − | 0.244504i | −0.458387 | + | 1.67029i | −0.0163608 | − | 0.00595485i | 1.98299 | + | 0.721749i | 1.04402 | − | 2.20404i | −2.18605 | + | 1.49037i | 2.46004 | + | 1.42030i | −2.57976 | − | 1.53128i | −2.57325 | − | 1.48566i |
47.8 | −0.910598 | − | 0.160563i | −1.05237 | − | 1.37569i | −1.07598 | − | 0.391623i | −0.473927 | − | 0.172495i | 0.737399 | + | 1.42167i | −2.46079 | + | 0.971863i | 2.51844 | + | 1.45402i | −0.785044 | + | 2.89546i | 0.403861 | + | 0.233169i |
47.9 | −0.877614 | − | 0.154747i | −0.824649 | + | 1.52314i | −1.13313 | − | 0.412424i | −1.30288 | − | 0.474210i | 0.959425 | − | 1.20912i | 1.81190 | − | 1.92796i | 2.47415 | + | 1.42845i | −1.63991 | − | 2.51211i | 1.07004 | + | 0.617790i |
47.10 | −0.313923 | − | 0.0553531i | 1.24200 | − | 1.20725i | −1.78390 | − | 0.649287i | −2.68563 | − | 0.977491i | −0.456717 | + | 0.310234i | −2.48320 | + | 0.913082i | 1.07619 | + | 0.621337i | 0.0851152 | − | 2.99879i | 0.788975 | + | 0.455515i |
47.11 | −0.0147002 | − | 0.00259205i | −1.71867 | + | 0.214901i | −1.87918 | − | 0.683964i | 1.54651 | + | 0.562885i | 0.0258218 | + | 0.00129578i | 2.21011 | + | 1.45445i | 0.0517058 | + | 0.0298524i | 2.90764 | − | 0.738686i | −0.0212751 | − | 0.0122832i |
47.12 | 0.0159182 | + | 0.00280680i | −0.402650 | − | 1.68460i | −1.87914 | − | 0.683951i | 3.75147 | + | 1.36542i | −0.00168110 | − | 0.0279459i | 0.157938 | − | 2.64103i | −0.0559891 | − | 0.0323253i | −2.67575 | + | 1.35661i | 0.0558840 | + | 0.0322646i |
47.13 | 0.245063 | + | 0.0432112i | 1.36915 | + | 1.06086i | −1.82120 | − | 0.662861i | 1.99870 | + | 0.727467i | 0.289688 | + | 0.319140i | 0.302346 | + | 2.62842i | −0.848674 | − | 0.489982i | 0.749157 | + | 2.90496i | 0.458373 | + | 0.264642i |
47.14 | 0.882178 | + | 0.155552i | 1.65967 | − | 0.495491i | −1.12534 | − | 0.409592i | 0.123522 | + | 0.0449584i | 1.54119 | − | 0.178947i | 1.69913 | − | 2.02805i | −2.48059 | − | 1.43217i | 2.50898 | − | 1.64470i | 0.101975 | + | 0.0588754i |
47.15 | 0.892534 | + | 0.157378i | −1.71459 | + | 0.245341i | −1.10754 | − | 0.403110i | −1.14226 | − | 0.415747i | −1.56894 | − | 0.0508626i | −1.98483 | − | 1.74942i | −2.49483 | − | 1.44039i | 2.87962 | − | 0.841317i | −0.954073 | − | 0.550834i |
47.16 | 1.10401 | + | 0.194666i | −0.867806 | − | 1.49897i | −0.698446 | − | 0.254214i | −3.85196 | − | 1.40200i | −0.666265 | − | 1.82381i | 2.61259 | + | 0.417595i | −2.66330 | − | 1.53766i | −1.49383 | + | 2.60163i | −3.97967 | − | 2.29767i |
47.17 | 1.65422 | + | 0.291684i | −0.549790 | + | 1.64248i | 0.771989 | + | 0.280981i | 3.52188 | + | 1.28186i | −1.38856 | + | 2.55666i | −2.17331 | − | 1.50888i | −1.71431 | − | 0.989760i | −2.39546 | − | 1.80604i | 5.45209 | + | 3.14776i |
47.18 | 1.66985 | + | 0.294440i | 0.685602 | − | 1.59058i | 0.822331 | + | 0.299304i | 1.39543 | + | 0.507895i | 1.61319 | − | 2.45417i | −0.356869 | + | 2.62157i | −1.65184 | − | 0.953692i | −2.05990 | − | 2.18101i | 2.18062 | + | 1.25898i |
47.19 | 1.87320 | + | 0.330296i | 0.583821 | + | 1.63069i | 1.52040 | + | 0.553380i | −0.848304 | − | 0.308757i | 0.555004 | + | 3.24744i | 2.48993 | − | 0.894564i | −0.629295 | − | 0.363324i | −2.31831 | + | 1.90406i | −1.48706 | − | 0.858555i |
47.20 | 2.22112 | + | 0.391643i | 1.67689 | + | 0.433617i | 2.90060 | + | 1.05573i | −3.20807 | − | 1.16764i | 3.55476 | + | 1.61986i | −2.62457 | + | 0.334082i | 2.12267 | + | 1.22552i | 2.62395 | + | 1.45426i | −6.66821 | − | 3.84989i |
See next 80 embeddings (of 132 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
189.bd | even | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 189.2.bd.a | yes | 132 |
3.b | odd | 2 | 1 | 567.2.bd.a | 132 | ||
7.d | odd | 6 | 1 | 189.2.ba.a | ✓ | 132 | |
21.g | even | 6 | 1 | 567.2.ba.a | 132 | ||
27.e | even | 9 | 1 | 567.2.ba.a | 132 | ||
27.f | odd | 18 | 1 | 189.2.ba.a | ✓ | 132 | |
189.z | odd | 18 | 1 | 567.2.bd.a | 132 | ||
189.bd | even | 18 | 1 | inner | 189.2.bd.a | yes | 132 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
189.2.ba.a | ✓ | 132 | 7.d | odd | 6 | 1 | |
189.2.ba.a | ✓ | 132 | 27.f | odd | 18 | 1 | |
189.2.bd.a | yes | 132 | 1.a | even | 1 | 1 | trivial |
189.2.bd.a | yes | 132 | 189.bd | even | 18 | 1 | inner |
567.2.ba.a | 132 | 21.g | even | 6 | 1 | ||
567.2.ba.a | 132 | 27.e | even | 9 | 1 | ||
567.2.bd.a | 132 | 3.b | odd | 2 | 1 | ||
567.2.bd.a | 132 | 189.z | odd | 18 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(189, [\chi])\).