Properties

Label 189.2.bd
Level 189
Weight 2
Character orbit bd
Rep. character \(\chi_{189}(47,\cdot)\)
Character field \(\Q(\zeta_{18})\)
Dimension 132
Newform subspaces 1
Sturm bound 48
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 189.bd (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 189 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 1 \)
Sturm bound: \(48\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(189, [\chi])\).

Total New Old
Modular forms 156 156 0
Cusp forms 132 132 0
Eisenstein series 24 24 0

Trace form

\( 132q - 3q^{2} - 9q^{3} - 3q^{4} - 9q^{5} + 18q^{6} - 6q^{7} - 18q^{8} - 15q^{9} + O(q^{10}) \) \( 132q - 3q^{2} - 9q^{3} - 3q^{4} - 9q^{5} + 18q^{6} - 6q^{7} - 18q^{8} - 15q^{9} - 9q^{10} + 9q^{11} - 9q^{12} - 42q^{14} - 24q^{15} - 15q^{16} - 9q^{17} - 3q^{18} - 9q^{19} - 18q^{20} + 15q^{21} - 12q^{22} + 30q^{23} - 36q^{24} - 3q^{25} - 12q^{28} + 6q^{29} - 3q^{30} - 9q^{31} - 51q^{32} - 9q^{33} + 18q^{34} - 9q^{35} - 6q^{37} - 9q^{38} - 9q^{39} - 9q^{40} + 27q^{42} - 12q^{43} - 63q^{45} - 6q^{46} + 45q^{47} + 30q^{49} - 9q^{50} + 33q^{51} - 9q^{52} + 45q^{53} + 117q^{54} - 51q^{56} - 3q^{58} - 9q^{59} - 15q^{60} - 63q^{61} + 99q^{62} - 33q^{63} + 18q^{64} - 102q^{65} + 63q^{66} - 3q^{67} + 144q^{68} - 108q^{69} - 15q^{70} + 18q^{71} + 15q^{72} - 33q^{74} - 9q^{75} - 36q^{76} - 57q^{77} + 66q^{78} - 21q^{79} - 72q^{80} + 57q^{81} - 18q^{82} + 90q^{83} + 51q^{84} + 9q^{85} - 33q^{86} - 9q^{87} + 45q^{88} - 9q^{89} - 81q^{90} - 21q^{91} + 150q^{92} - 87q^{93} - 9q^{94} + 27q^{95} - 9q^{96} - 180q^{98} + 96q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(189, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
189.2.bd.a \(132\) \(1.509\) None \(-3\) \(-9\) \(-9\) \(-6\)

Hecke Characteristic Polynomials

There are no characteristic polynomials of Hecke operators in the database