Properties

Label 189.2.ba.a.38.9
Level $189$
Weight $2$
Character 189.38
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(5,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.ba (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 38.9
Character \(\chi\) \(=\) 189.38
Dual form 189.2.ba.a.5.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.19961 - 0.211524i) q^{2} +(-0.0787989 - 1.73026i) q^{3} +(-0.485062 - 0.176548i) q^{4} +(-0.243175 - 1.37911i) q^{5} +(-0.271462 + 2.09230i) q^{6} +(2.41247 - 1.08628i) q^{7} +(2.65438 + 1.53251i) q^{8} +(-2.98758 + 0.272685i) q^{9} +O(q^{10})\) \(q+(-1.19961 - 0.211524i) q^{2} +(-0.0787989 - 1.73026i) q^{3} +(-0.485062 - 0.176548i) q^{4} +(-0.243175 - 1.37911i) q^{5} +(-0.271462 + 2.09230i) q^{6} +(2.41247 - 1.08628i) q^{7} +(2.65438 + 1.53251i) q^{8} +(-2.98758 + 0.272685i) q^{9} +1.70584i q^{10} +(-6.43190 - 1.13412i) q^{11} +(-0.267252 + 0.853194i) q^{12} +(-0.697759 - 0.831556i) q^{13} +(-3.12380 + 0.792815i) q^{14} +(-2.36706 + 0.529428i) q^{15} +(-2.06921 - 1.73627i) q^{16} -1.26001 q^{17} +(3.64161 + 0.304829i) q^{18} +3.25785i q^{19} +(-0.125525 + 0.711888i) q^{20} +(-2.06964 - 4.08859i) q^{21} +(7.47588 + 2.72100i) q^{22} +(-2.13769 - 2.54760i) q^{23} +(2.44247 - 4.71352i) q^{24} +(2.85565 - 1.03937i) q^{25} +(0.661145 + 1.14514i) q^{26} +(0.707233 + 5.14780i) q^{27} +(-1.36198 + 0.100995i) q^{28} +(1.95642 - 2.33157i) q^{29} +(2.95153 - 0.134418i) q^{30} +(1.14128 - 3.13563i) q^{31} +(-1.82533 - 2.17534i) q^{32} +(-1.45549 + 11.2182i) q^{33} +(1.51153 + 0.266523i) q^{34} +(-2.08475 - 3.06291i) q^{35} +(1.49731 + 0.395183i) q^{36} +(2.93451 - 5.08271i) q^{37} +(0.689112 - 3.90815i) q^{38} +(-1.38382 + 1.27283i) q^{39} +(1.46802 - 4.03336i) q^{40} +(1.04396 - 0.875988i) q^{41} +(1.61793 + 5.34250i) q^{42} +(-4.70788 + 1.71353i) q^{43} +(2.91965 + 1.68566i) q^{44} +(1.10257 + 4.05390i) q^{45} +(2.02552 + 3.50830i) q^{46} +(8.38019 - 3.05014i) q^{47} +(-2.84115 + 3.71708i) q^{48} +(4.64000 - 5.24122i) q^{49} +(-3.64551 + 0.642802i) q^{50} +(0.0992877 + 2.18015i) q^{51} +(0.191647 + 0.526545i) q^{52} +(7.98523 + 4.61027i) q^{53} +(0.240477 - 6.32495i) q^{54} +9.14610i q^{55} +(8.06834 + 0.813732i) q^{56} +(5.63692 - 0.256715i) q^{57} +(-2.84012 + 2.38314i) q^{58} +(0.516276 - 0.433207i) q^{59} +(1.24164 + 0.161095i) q^{60} +(-2.39061 - 6.56816i) q^{61} +(-2.03235 + 3.52013i) q^{62} +(-6.91123 + 3.90318i) q^{63} +(4.43070 + 7.67421i) q^{64} +(-0.977133 + 1.16450i) q^{65} +(4.11894 - 13.1496i) q^{66} +(-1.92589 - 10.9222i) q^{67} +(0.611185 + 0.222453i) q^{68} +(-4.23956 + 3.89950i) q^{69} +(1.85301 + 4.11527i) q^{70} +(1.73180 - 0.999853i) q^{71} +(-8.34807 - 3.85468i) q^{72} +(-12.1033 + 6.98783i) q^{73} +(-4.59538 + 5.47656i) q^{74} +(-2.02340 - 4.85910i) q^{75} +(0.575167 - 1.58026i) q^{76} +(-16.7487 + 4.25080i) q^{77} +(1.92928 - 1.23419i) q^{78} +(1.78424 - 10.1189i) q^{79} +(-1.89134 + 3.27589i) q^{80} +(8.85129 - 1.62934i) q^{81} +(-1.43764 + 0.830022i) q^{82} +(-7.80237 - 6.54697i) q^{83} +(0.282070 + 2.34861i) q^{84} +(0.306404 + 1.73770i) q^{85} +(6.01008 - 1.05974i) q^{86} +(-4.18838 - 3.20138i) q^{87} +(-15.3347 - 12.8673i) q^{88} +15.8461 q^{89} +(-0.465155 - 5.09632i) q^{90} +(-2.58662 - 1.24814i) q^{91} +(0.587139 + 1.61315i) q^{92} +(-5.51537 - 1.72762i) q^{93} +(-10.6981 + 1.88637i) q^{94} +(4.49294 - 0.792227i) q^{95} +(-3.62006 + 3.32970i) q^{96} +(6.09610 + 16.7489i) q^{97} +(-6.67484 + 5.30595i) q^{98} +(19.5251 + 1.63439i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9} - 9 q^{11} - 9 q^{12} + 3 q^{14} - 24 q^{15} + 3 q^{16} - 18 q^{17} - 3 q^{18} + 18 q^{20} - 21 q^{21} - 12 q^{22} - 6 q^{23} - 9 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} + 51 q^{30} - 9 q^{31} + 3 q^{32} - 9 q^{33} - 18 q^{34} + 18 q^{35} + 3 q^{37} - 99 q^{38} - 36 q^{39} - 54 q^{40} - 45 q^{42} - 12 q^{43} - 9 q^{44} - 9 q^{45} + 3 q^{46} + 45 q^{47} - 24 q^{49} - 9 q^{50} - 48 q^{51} - 9 q^{52} - 45 q^{53} + 171 q^{54} + 3 q^{56} - 3 q^{58} + 36 q^{59} + 57 q^{60} - 9 q^{61} - 99 q^{62} - 33 q^{63} + 18 q^{64} + 69 q^{65} - 9 q^{66} - 3 q^{67} + 36 q^{68} + 108 q^{69} + 66 q^{70} + 18 q^{71} - 129 q^{72} - 9 q^{73} + 75 q^{74} + 36 q^{75} + 36 q^{76} + 15 q^{77} + 66 q^{78} - 21 q^{79} + 72 q^{80} - 33 q^{81} - 18 q^{82} - 90 q^{83} - 120 q^{84} + 9 q^{85} - 105 q^{86} - 54 q^{87} - 63 q^{88} - 18 q^{89} + 81 q^{90} + 6 q^{91} + 150 q^{92} + 21 q^{93} - 9 q^{94} + 45 q^{95} - 81 q^{96} + 27 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.19961 0.211524i −0.848253 0.149570i −0.267407 0.963584i \(-0.586167\pi\)
−0.580846 + 0.814014i \(0.697278\pi\)
\(3\) −0.0787989 1.73026i −0.0454946 0.998965i
\(4\) −0.485062 0.176548i −0.242531 0.0882741i
\(5\) −0.243175 1.37911i −0.108751 0.616758i −0.989656 0.143464i \(-0.954176\pi\)
0.880904 0.473294i \(-0.156935\pi\)
\(6\) −0.271462 + 2.09230i −0.110824 + 0.854179i
\(7\) 2.41247 1.08628i 0.911827 0.410574i
\(8\) 2.65438 + 1.53251i 0.938465 + 0.541823i
\(9\) −2.98758 + 0.272685i −0.995860 + 0.0908949i
\(10\) 1.70584i 0.539432i
\(11\) −6.43190 1.13412i −1.93929 0.341949i −0.939291 0.343120i \(-0.888516\pi\)
−0.999999 + 0.00117094i \(0.999627\pi\)
\(12\) −0.267252 + 0.853194i −0.0771489 + 0.246296i
\(13\) −0.697759 0.831556i −0.193523 0.230632i 0.660553 0.750779i \(-0.270322\pi\)
−0.854077 + 0.520147i \(0.825877\pi\)
\(14\) −3.12380 + 0.792815i −0.834869 + 0.211889i
\(15\) −2.36706 + 0.529428i −0.611172 + 0.136698i
\(16\) −2.06921 1.73627i −0.517302 0.434068i
\(17\) −1.26001 −0.305598 −0.152799 0.988257i \(-0.548829\pi\)
−0.152799 + 0.988257i \(0.548829\pi\)
\(18\) 3.64161 + 0.304829i 0.858336 + 0.0718488i
\(19\) 3.25785i 0.747402i 0.927549 + 0.373701i \(0.121911\pi\)
−0.927549 + 0.373701i \(0.878089\pi\)
\(20\) −0.125525 + 0.711888i −0.0280682 + 0.159183i
\(21\) −2.06964 4.08859i −0.451632 0.892204i
\(22\) 7.47588 + 2.72100i 1.59386 + 0.580119i
\(23\) −2.13769 2.54760i −0.445739 0.531211i 0.495655 0.868519i \(-0.334928\pi\)
−0.941394 + 0.337308i \(0.890484\pi\)
\(24\) 2.44247 4.71352i 0.498567 0.962144i
\(25\) 2.85565 1.03937i 0.571129 0.207874i
\(26\) 0.661145 + 1.14514i 0.129661 + 0.224580i
\(27\) 0.707233 + 5.14780i 0.136107 + 0.990694i
\(28\) −1.36198 + 0.100995i −0.257390 + 0.0190863i
\(29\) 1.95642 2.33157i 0.363298 0.432961i −0.553171 0.833068i \(-0.686582\pi\)
0.916469 + 0.400106i \(0.131027\pi\)
\(30\) 2.95153 0.134418i 0.538874 0.0245412i
\(31\) 1.14128 3.13563i 0.204979 0.563175i −0.794021 0.607891i \(-0.792016\pi\)
0.999000 + 0.0447153i \(0.0142381\pi\)
\(32\) −1.82533 2.17534i −0.322675 0.384549i
\(33\) −1.45549 + 11.2182i −0.253368 + 1.95284i
\(34\) 1.51153 + 0.266523i 0.259225 + 0.0457083i
\(35\) −2.08475 3.06291i −0.352387 0.517726i
\(36\) 1.49731 + 0.395183i 0.249551 + 0.0658639i
\(37\) 2.93451 5.08271i 0.482430 0.835593i −0.517367 0.855764i \(-0.673088\pi\)
0.999797 + 0.0201710i \(0.00642107\pi\)
\(38\) 0.689112 3.90815i 0.111789 0.633985i
\(39\) −1.38382 + 1.27283i −0.221589 + 0.203816i
\(40\) 1.46802 4.03336i 0.232115 0.637730i
\(41\) 1.04396 0.875988i 0.163039 0.136806i −0.557618 0.830098i \(-0.688285\pi\)
0.720657 + 0.693291i \(0.243840\pi\)
\(42\) 1.61793 + 5.34250i 0.249651 + 0.824365i
\(43\) −4.70788 + 1.71353i −0.717946 + 0.261311i −0.675053 0.737769i \(-0.735879\pi\)
−0.0428922 + 0.999080i \(0.513657\pi\)
\(44\) 2.91965 + 1.68566i 0.440153 + 0.254123i
\(45\) 1.10257 + 4.05390i 0.164361 + 0.604320i
\(46\) 2.02552 + 3.50830i 0.298646 + 0.517271i
\(47\) 8.38019 3.05014i 1.22238 0.444909i 0.351397 0.936227i \(-0.385707\pi\)
0.870980 + 0.491318i \(0.163485\pi\)
\(48\) −2.84115 + 3.71708i −0.410084 + 0.536514i
\(49\) 4.64000 5.24122i 0.662858 0.748745i
\(50\) −3.64551 + 0.642802i −0.515553 + 0.0909060i
\(51\) 0.0992877 + 2.18015i 0.0139031 + 0.305282i
\(52\) 0.191647 + 0.526545i 0.0265766 + 0.0730186i
\(53\) 7.98523 + 4.61027i 1.09686 + 0.633270i 0.935393 0.353609i \(-0.115046\pi\)
0.161462 + 0.986879i \(0.448379\pi\)
\(54\) 0.240477 6.32495i 0.0327248 0.860716i
\(55\) 9.14610i 1.23326i
\(56\) 8.06834 + 0.813732i 1.07818 + 0.108740i
\(57\) 5.63692 0.256715i 0.746628 0.0340027i
\(58\) −2.84012 + 2.38314i −0.372926 + 0.312922i
\(59\) 0.516276 0.433207i 0.0672134 0.0563987i −0.608562 0.793506i \(-0.708253\pi\)
0.675775 + 0.737108i \(0.263809\pi\)
\(60\) 1.24164 + 0.161095i 0.160295 + 0.0207972i
\(61\) −2.39061 6.56816i −0.306087 0.840966i −0.993410 0.114615i \(-0.963437\pi\)
0.687323 0.726352i \(-0.258786\pi\)
\(62\) −2.03235 + 3.52013i −0.258108 + 0.447056i
\(63\) −6.91123 + 3.90318i −0.870734 + 0.491755i
\(64\) 4.43070 + 7.67421i 0.553838 + 0.959276i
\(65\) −0.977133 + 1.16450i −0.121198 + 0.144439i
\(66\) 4.11894 13.1496i 0.507006 1.61861i
\(67\) −1.92589 10.9222i −0.235284 1.33436i −0.842014 0.539456i \(-0.818630\pi\)
0.606729 0.794908i \(-0.292481\pi\)
\(68\) 0.611185 + 0.222453i 0.0741171 + 0.0269764i
\(69\) −4.23956 + 3.89950i −0.510383 + 0.469445i
\(70\) 1.85301 + 4.11527i 0.221477 + 0.491869i
\(71\) 1.73180 0.999853i 0.205526 0.118661i −0.393704 0.919237i \(-0.628807\pi\)
0.599231 + 0.800576i \(0.295473\pi\)
\(72\) −8.34807 3.85468i −0.983830 0.454279i
\(73\) −12.1033 + 6.98783i −1.41658 + 0.817864i −0.995997 0.0893890i \(-0.971509\pi\)
−0.420585 + 0.907253i \(0.638175\pi\)
\(74\) −4.59538 + 5.47656i −0.534202 + 0.636637i
\(75\) −2.02340 4.85910i −0.233642 0.561081i
\(76\) 0.575167 1.58026i 0.0659762 0.181268i
\(77\) −16.7487 + 4.25080i −1.90869 + 0.484424i
\(78\) 1.92928 1.23419i 0.218448 0.139744i
\(79\) 1.78424 10.1189i 0.200743 1.13847i −0.703258 0.710935i \(-0.748272\pi\)
0.904000 0.427532i \(-0.140617\pi\)
\(80\) −1.89134 + 3.27589i −0.211458 + 0.366256i
\(81\) 8.85129 1.62934i 0.983476 0.181037i
\(82\) −1.43764 + 0.830022i −0.158761 + 0.0916606i
\(83\) −7.80237 6.54697i −0.856422 0.718623i 0.104772 0.994496i \(-0.466589\pi\)
−0.961194 + 0.275873i \(0.911033\pi\)
\(84\) 0.282070 + 2.34861i 0.0307763 + 0.256255i
\(85\) 0.306404 + 1.73770i 0.0332341 + 0.188480i
\(86\) 6.01008 1.05974i 0.648084 0.114275i
\(87\) −4.18838 3.20138i −0.449041 0.343224i
\(88\) −15.3347 12.8673i −1.63468 1.37166i
\(89\) 15.8461 1.67968 0.839842 0.542831i \(-0.182648\pi\)
0.839842 + 0.542831i \(0.182648\pi\)
\(90\) −0.465155 5.09632i −0.0490317 0.537199i
\(91\) −2.58662 1.24814i −0.271152 0.130841i
\(92\) 0.587139 + 1.61315i 0.0612134 + 0.168183i
\(93\) −5.51537 1.72762i −0.571918 0.179145i
\(94\) −10.6981 + 1.88637i −1.10343 + 0.194564i
\(95\) 4.49294 0.792227i 0.460966 0.0812807i
\(96\) −3.62006 + 3.32970i −0.369471 + 0.339836i
\(97\) 6.09610 + 16.7489i 0.618965 + 1.70059i 0.709506 + 0.704699i \(0.248918\pi\)
−0.0905410 + 0.995893i \(0.528860\pi\)
\(98\) −6.67484 + 5.30595i −0.674261 + 0.535982i
\(99\) 19.5251 + 1.63439i 1.96234 + 0.164262i
\(100\) −1.56866 −0.156866
\(101\) 3.07014 + 2.57616i 0.305491 + 0.256337i 0.782625 0.622493i \(-0.213880\pi\)
−0.477135 + 0.878830i \(0.658325\pi\)
\(102\) 0.342047 2.63633i 0.0338677 0.261036i
\(103\) −17.2239 + 3.03704i −1.69712 + 0.299248i −0.936687 0.350167i \(-0.886125\pi\)
−0.760434 + 0.649416i \(0.775014\pi\)
\(104\) −0.577751 3.27659i −0.0566531 0.321296i
\(105\) −5.13535 + 3.84851i −0.501159 + 0.375576i
\(106\) −8.60398 7.21960i −0.835692 0.701229i
\(107\) 5.14655 2.97136i 0.497535 0.287252i −0.230160 0.973153i \(-0.573925\pi\)
0.727695 + 0.685901i \(0.240592\pi\)
\(108\) 0.565783 2.62186i 0.0544425 0.252289i
\(109\) 2.39857 4.15445i 0.229742 0.397924i −0.727990 0.685588i \(-0.759545\pi\)
0.957731 + 0.287664i \(0.0928786\pi\)
\(110\) 1.93462 10.9718i 0.184459 1.04612i
\(111\) −9.02564 4.67694i −0.856675 0.443915i
\(112\) −6.87797 1.94097i −0.649907 0.183404i
\(113\) 3.57929 9.83401i 0.336711 0.925106i −0.649610 0.760268i \(-0.725068\pi\)
0.986321 0.164838i \(-0.0527101\pi\)
\(114\) −6.81640 0.884383i −0.638415 0.0828301i
\(115\) −2.99360 + 3.56763i −0.279154 + 0.332683i
\(116\) −1.36062 + 0.785553i −0.126330 + 0.0729368i
\(117\) 2.31136 + 2.29407i 0.213686 + 0.212087i
\(118\) −0.710964 + 0.410475i −0.0654495 + 0.0377873i
\(119\) −3.03974 + 1.36872i −0.278653 + 0.125471i
\(120\) −7.09443 2.22223i −0.647630 0.202861i
\(121\) 29.7465 + 10.8268i 2.70423 + 0.984258i
\(122\) 1.47848 + 8.38490i 0.133856 + 0.759133i
\(123\) −1.59795 1.73730i −0.144082 0.156647i
\(124\) −1.10718 + 1.31948i −0.0994276 + 0.118493i
\(125\) −5.62880 9.74936i −0.503455 0.872010i
\(126\) 9.11640 3.22041i 0.812154 0.286897i
\(127\) 0.960162 1.66305i 0.0852006 0.147572i −0.820276 0.571968i \(-0.806180\pi\)
0.905477 + 0.424396i \(0.139514\pi\)
\(128\) −1.74937 4.80636i −0.154624 0.424826i
\(129\) 3.33582 + 8.01083i 0.293703 + 0.705314i
\(130\) 1.41850 1.19026i 0.124411 0.104393i
\(131\) −8.86037 + 7.43473i −0.774134 + 0.649576i −0.941764 0.336274i \(-0.890833\pi\)
0.167630 + 0.985850i \(0.446389\pi\)
\(132\) 2.68656 5.18457i 0.233835 0.451259i
\(133\) 3.53893 + 7.85945i 0.306864 + 0.681501i
\(134\) 13.5098i 1.16707i
\(135\) 6.92741 2.22717i 0.596217 0.191684i
\(136\) −3.34456 1.93098i −0.286793 0.165580i
\(137\) 3.03544 + 8.33979i 0.259335 + 0.712517i 0.999209 + 0.0397712i \(0.0126629\pi\)
−0.739874 + 0.672746i \(0.765115\pi\)
\(138\) 5.91065 3.78112i 0.503148 0.321870i
\(139\) 3.10686 0.547823i 0.263520 0.0464657i −0.0403269 0.999187i \(-0.512840\pi\)
0.303847 + 0.952721i \(0.401729\pi\)
\(140\) 0.470482 + 1.85376i 0.0397630 + 0.156671i
\(141\) −5.93788 14.2595i −0.500060 1.20087i
\(142\) −2.28897 + 0.833118i −0.192086 + 0.0699137i
\(143\) 3.54483 + 6.13983i 0.296434 + 0.513438i
\(144\) 6.65539 + 4.62301i 0.554615 + 0.385251i
\(145\) −3.69125 2.13114i −0.306541 0.176982i
\(146\) 15.9973 5.82255i 1.32395 0.481877i
\(147\) −9.43428 7.61540i −0.778127 0.628108i
\(148\) −2.32076 + 1.94735i −0.190765 + 0.160071i
\(149\) −5.54853 + 15.2445i −0.454553 + 1.24887i 0.474934 + 0.880021i \(0.342472\pi\)
−0.929488 + 0.368853i \(0.879750\pi\)
\(150\) 1.39948 + 6.25702i 0.114267 + 0.510884i
\(151\) −1.49133 + 8.45773i −0.121362 + 0.688280i 0.862040 + 0.506841i \(0.169187\pi\)
−0.983402 + 0.181440i \(0.941924\pi\)
\(152\) −4.99268 + 8.64757i −0.404960 + 0.701411i
\(153\) 3.76439 0.343587i 0.304333 0.0277773i
\(154\) 20.9911 1.55656i 1.69151 0.125431i
\(155\) −4.60191 0.811442i −0.369635 0.0651766i
\(156\) 0.895956 0.373089i 0.0717339 0.0298710i
\(157\) 14.3459 + 17.0968i 1.14493 + 1.36447i 0.920858 + 0.389898i \(0.127490\pi\)
0.224070 + 0.974573i \(0.428066\pi\)
\(158\) −4.28078 + 11.7614i −0.340561 + 0.935683i
\(159\) 7.34773 14.1798i 0.582713 1.12453i
\(160\) −2.55616 + 3.04632i −0.202083 + 0.240833i
\(161\) −7.92451 3.82388i −0.624539 0.301364i
\(162\) −10.9627 + 0.0823115i −0.861314 + 0.00646701i
\(163\) −3.71918 6.44181i −0.291309 0.504561i 0.682811 0.730595i \(-0.260757\pi\)
−0.974119 + 0.226034i \(0.927424\pi\)
\(164\) −0.661041 + 0.240599i −0.0516186 + 0.0187876i
\(165\) 15.8251 0.720703i 1.23198 0.0561066i
\(166\) 7.97497 + 9.50420i 0.618978 + 0.737669i
\(167\) 19.7455 + 7.18677i 1.52795 + 0.556129i 0.963119 0.269077i \(-0.0867187\pi\)
0.564832 + 0.825206i \(0.308941\pi\)
\(168\) 0.772190 14.0244i 0.0595757 1.08201i
\(169\) 2.05281 11.6420i 0.157908 0.895542i
\(170\) 2.14938i 0.164850i
\(171\) −0.888365 9.73309i −0.0679350 0.744308i
\(172\) 2.58614 0.197191
\(173\) 1.97984 + 1.66128i 0.150524 + 0.126305i 0.714940 0.699186i \(-0.246454\pi\)
−0.564416 + 0.825491i \(0.690898\pi\)
\(174\) 4.34725 + 4.72635i 0.329564 + 0.358304i
\(175\) 5.76011 5.60947i 0.435423 0.424036i
\(176\) 11.3398 + 13.5143i 0.854770 + 1.01868i
\(177\) −0.790242 0.859154i −0.0593982 0.0645780i
\(178\) −19.0091 3.35183i −1.42480 0.251230i
\(179\) 6.63013i 0.495559i −0.968816 0.247779i \(-0.920299\pi\)
0.968816 0.247779i \(-0.0797008\pi\)
\(180\) 0.180895 2.16105i 0.0134831 0.161075i
\(181\) −5.39330 3.11382i −0.400881 0.231449i 0.285983 0.958235i \(-0.407680\pi\)
−0.686864 + 0.726786i \(0.741013\pi\)
\(182\) 2.83893 + 2.04442i 0.210435 + 0.151542i
\(183\) −11.1762 + 4.65394i −0.826170 + 0.344029i
\(184\) −1.77003 10.0383i −0.130488 0.740035i
\(185\) −7.72323 2.81103i −0.567823 0.206671i
\(186\) 6.25087 + 3.23910i 0.458336 + 0.237502i
\(187\) 8.10428 + 1.42900i 0.592644 + 0.104499i
\(188\) −4.60341 −0.335738
\(189\) 7.29811 + 11.6506i 0.530860 + 0.847460i
\(190\) −5.55735 −0.403173
\(191\) 1.15411 + 0.203501i 0.0835084 + 0.0147248i 0.215246 0.976560i \(-0.430945\pi\)
−0.131738 + 0.991285i \(0.542056\pi\)
\(192\) 12.9292 8.27098i 0.933086 0.596906i
\(193\) 5.50708 + 2.00441i 0.396408 + 0.144281i 0.532530 0.846411i \(-0.321241\pi\)
−0.136121 + 0.990692i \(0.543464\pi\)
\(194\) −3.77016 21.3816i −0.270681 1.53511i
\(195\) 2.09188 + 1.59893i 0.149803 + 0.114502i
\(196\) −3.17602 + 1.72313i −0.226858 + 0.123081i
\(197\) −10.6718 6.16136i −0.760333 0.438979i 0.0690821 0.997611i \(-0.477993\pi\)
−0.829415 + 0.558632i \(0.811326\pi\)
\(198\) −23.0768 6.09065i −1.64000 0.432843i
\(199\) 4.92654i 0.349233i −0.984636 0.174617i \(-0.944131\pi\)
0.984636 0.174617i \(-0.0558686\pi\)
\(200\) 9.17281 + 1.61741i 0.648616 + 0.114368i
\(201\) −18.7465 + 4.19294i −1.32228 + 0.295747i
\(202\) −3.13806 3.73979i −0.220793 0.263131i
\(203\) 2.18707 7.75004i 0.153502 0.543946i
\(204\) 0.336741 1.07504i 0.0235766 0.0752676i
\(205\) −1.46195 1.22672i −0.102107 0.0856780i
\(206\) 21.3044 1.48435
\(207\) 7.08121 + 7.02825i 0.492178 + 0.488497i
\(208\) 2.93216i 0.203309i
\(209\) 3.69478 20.9542i 0.255573 1.44943i
\(210\) 6.97447 3.53046i 0.481284 0.243625i
\(211\) −12.9997 4.73151i −0.894937 0.325730i −0.146715 0.989179i \(-0.546870\pi\)
−0.748222 + 0.663448i \(0.769092\pi\)
\(212\) −3.05940 3.64605i −0.210120 0.250412i
\(213\) −1.86647 2.91766i −0.127888 0.199915i
\(214\) −6.80236 + 2.47586i −0.465000 + 0.169246i
\(215\) 3.50799 + 6.07602i 0.239243 + 0.414381i
\(216\) −6.01177 + 14.7481i −0.409049 + 1.00348i
\(217\) −0.652871 8.80434i −0.0443198 0.597678i
\(218\) −3.75612 + 4.47636i −0.254396 + 0.303178i
\(219\) 13.0445 + 20.3912i 0.881464 + 1.37791i
\(220\) 1.61473 4.43643i 0.108865 0.299104i
\(221\) 0.879186 + 1.04777i 0.0591404 + 0.0704808i
\(222\) 9.83796 + 7.51964i 0.660281 + 0.504685i
\(223\) 7.48235 + 1.31934i 0.501055 + 0.0883496i 0.418463 0.908234i \(-0.362569\pi\)
0.0825923 + 0.996583i \(0.473680\pi\)
\(224\) −6.76656 3.26513i −0.452110 0.218160i
\(225\) −8.24805 + 3.88389i −0.549870 + 0.258926i
\(226\) −6.37388 + 11.0399i −0.423984 + 0.734362i
\(227\) −2.67159 + 15.1514i −0.177320 + 1.00563i 0.758112 + 0.652124i \(0.226122\pi\)
−0.935432 + 0.353507i \(0.884989\pi\)
\(228\) −2.77958 0.870665i −0.184082 0.0576612i
\(229\) −6.65889 + 18.2952i −0.440032 + 1.20898i 0.499439 + 0.866349i \(0.333540\pi\)
−0.939471 + 0.342629i \(0.888683\pi\)
\(230\) 4.34579 3.64655i 0.286553 0.240446i
\(231\) 8.67477 + 28.6446i 0.570758 + 1.88468i
\(232\) 8.76622 3.19064i 0.575531 0.209476i
\(233\) 5.56626 + 3.21368i 0.364658 + 0.210535i 0.671122 0.741347i \(-0.265813\pi\)
−0.306464 + 0.951882i \(0.599146\pi\)
\(234\) −2.28748 3.24090i −0.149538 0.211864i
\(235\) −6.24434 10.8155i −0.407336 0.705526i
\(236\) −0.326908 + 0.118985i −0.0212799 + 0.00774525i
\(237\) −17.6489 2.28983i −1.14642 0.148741i
\(238\) 3.93603 0.998959i 0.255135 0.0647529i
\(239\) 6.07613 1.07139i 0.393032 0.0693022i 0.0263604 0.999653i \(-0.491608\pi\)
0.366672 + 0.930350i \(0.380497\pi\)
\(240\) 5.81717 + 3.01436i 0.375497 + 0.194576i
\(241\) 5.43413 + 14.9301i 0.350043 + 0.961735i 0.982356 + 0.187022i \(0.0598836\pi\)
−0.632313 + 0.774713i \(0.717894\pi\)
\(242\) −33.3941 19.2801i −2.14665 1.23937i
\(243\) −3.51664 15.1866i −0.225593 0.974222i
\(244\) 3.60802i 0.230980i
\(245\) −8.35656 5.12456i −0.533881 0.327396i
\(246\) 1.54944 + 2.42208i 0.0987884 + 0.154426i
\(247\) 2.70908 2.27319i 0.172375 0.144640i
\(248\) 7.83475 6.57414i 0.497507 0.417458i
\(249\) −10.7131 + 14.0160i −0.678917 + 0.888229i
\(250\) 4.69014 + 12.8861i 0.296631 + 0.814986i
\(251\) −1.11938 + 1.93883i −0.0706548 + 0.122378i −0.899188 0.437562i \(-0.855842\pi\)
0.828534 + 0.559939i \(0.189176\pi\)
\(252\) 4.04148 0.673122i 0.254589 0.0424027i
\(253\) 10.8601 + 18.8103i 0.682771 + 1.18259i
\(254\) −1.50359 + 1.79191i −0.0943439 + 0.112435i
\(255\) 2.98253 0.667086i 0.186773 0.0417746i
\(256\) −1.99563 11.3178i −0.124727 0.707361i
\(257\) −2.72191 0.990695i −0.169788 0.0617979i 0.255727 0.966749i \(-0.417685\pi\)
−0.425516 + 0.904951i \(0.639907\pi\)
\(258\) −2.30721 10.3155i −0.143641 0.642214i
\(259\) 1.55817 15.4496i 0.0968197 0.959989i
\(260\) 0.679561 0.392345i 0.0421446 0.0243322i
\(261\) −5.20917 + 7.49923i −0.322440 + 0.464191i
\(262\) 12.2016 7.04460i 0.753818 0.435217i
\(263\) −15.5785 + 18.5658i −0.960614 + 1.14482i 0.0287842 + 0.999586i \(0.490836\pi\)
−0.989398 + 0.145229i \(0.953608\pi\)
\(264\) −21.0554 + 27.5469i −1.29587 + 1.69539i
\(265\) 4.41628 12.1336i 0.271290 0.745363i
\(266\) −2.58287 10.1769i −0.158366 0.623983i
\(267\) −1.24866 27.4178i −0.0764165 1.67794i
\(268\) −0.994128 + 5.63798i −0.0607260 + 0.344394i
\(269\) 8.17714 14.1632i 0.498569 0.863547i −0.501429 0.865199i \(-0.667192\pi\)
0.999999 + 0.00165141i \(0.000525660\pi\)
\(270\) −8.78129 + 1.20642i −0.534413 + 0.0734206i
\(271\) 10.2571 5.92196i 0.623076 0.359733i −0.154989 0.987916i \(-0.549534\pi\)
0.778066 + 0.628183i \(0.216201\pi\)
\(272\) 2.60723 + 2.18773i 0.158087 + 0.132650i
\(273\) −1.95579 + 4.57387i −0.118370 + 0.276823i
\(274\) −1.87728 10.6466i −0.113410 0.643183i
\(275\) −19.5460 + 3.44649i −1.17867 + 0.207831i
\(276\) 2.74490 1.14302i 0.165223 0.0688014i
\(277\) 1.76010 + 1.47690i 0.105754 + 0.0887385i 0.694132 0.719848i \(-0.255789\pi\)
−0.588377 + 0.808587i \(0.700233\pi\)
\(278\) −3.84289 −0.230481
\(279\) −2.55461 + 9.67915i −0.152941 + 0.579476i
\(280\) −0.839788 11.3250i −0.0501869 0.676800i
\(281\) −9.16288 25.1748i −0.546612 1.50180i −0.838256 0.545276i \(-0.816425\pi\)
0.291645 0.956527i \(-0.405798\pi\)
\(282\) 4.10691 + 18.3619i 0.244563 + 1.09344i
\(283\) −16.8040 + 2.96301i −0.998897 + 0.176132i −0.649108 0.760696i \(-0.724858\pi\)
−0.349789 + 0.936829i \(0.613747\pi\)
\(284\) −1.01655 + 0.179245i −0.0603212 + 0.0106363i
\(285\) −1.72479 7.71152i −0.102168 0.456791i
\(286\) −2.95370 8.11522i −0.174656 0.479863i
\(287\) 1.56696 3.24733i 0.0924947 0.191684i
\(288\) 6.04649 + 6.00126i 0.356293 + 0.353628i
\(289\) −15.4124 −0.906610
\(290\) 3.97727 + 3.33733i 0.233553 + 0.195975i
\(291\) 28.4995 11.8676i 1.67067 0.695692i
\(292\) 7.10454 1.25272i 0.415761 0.0733100i
\(293\) 0.994906 + 5.64239i 0.0581230 + 0.329632i 0.999980 0.00638305i \(-0.00203180\pi\)
−0.941857 + 0.336015i \(0.890921\pi\)
\(294\) 9.70663 + 11.1311i 0.566102 + 0.649178i
\(295\) −0.722987 0.606658i −0.0420939 0.0353210i
\(296\) 15.5786 8.99430i 0.905487 0.522783i
\(297\) 1.28936 33.9122i 0.0748160 1.96779i
\(298\) 9.88064 17.1138i 0.572370 0.991374i
\(299\) −0.626881 + 3.55522i −0.0362535 + 0.205604i
\(300\) 0.123609 + 2.71419i 0.00713657 + 0.156704i
\(301\) −9.49625 + 9.24790i −0.547355 + 0.533040i
\(302\) 3.57802 9.83053i 0.205892 0.565684i
\(303\) 4.21549 5.51514i 0.242174 0.316836i
\(304\) 5.65651 6.74117i 0.324423 0.386633i
\(305\) −8.47689 + 4.89414i −0.485385 + 0.280237i
\(306\) −4.58848 0.384089i −0.262306 0.0219569i
\(307\) 9.76278 5.63655i 0.557191 0.321695i −0.194826 0.980838i \(-0.562414\pi\)
0.752017 + 0.659143i \(0.229081\pi\)
\(308\) 8.87464 + 0.895052i 0.505680 + 0.0510003i
\(309\) 6.61208 + 29.5625i 0.376148 + 1.68175i
\(310\) 5.34886 + 1.94683i 0.303795 + 0.110572i
\(311\) 4.30517 + 24.4158i 0.244124 + 1.38449i 0.822519 + 0.568738i \(0.192568\pi\)
−0.578395 + 0.815757i \(0.696321\pi\)
\(312\) −5.62381 + 1.25785i −0.318386 + 0.0712117i
\(313\) 11.6606 13.8966i 0.659096 0.785480i −0.328160 0.944622i \(-0.606428\pi\)
0.987256 + 0.159142i \(0.0508728\pi\)
\(314\) −13.5931 23.5440i −0.767104 1.32866i
\(315\) 7.06357 + 8.58221i 0.397987 + 0.483553i
\(316\) −2.65194 + 4.59330i −0.149184 + 0.258393i
\(317\) −1.13396 3.11552i −0.0636893 0.174985i 0.903766 0.428027i \(-0.140791\pi\)
−0.967455 + 0.253042i \(0.918569\pi\)
\(318\) −11.8138 + 15.4560i −0.662484 + 0.866729i
\(319\) −15.2278 + 12.7776i −0.852590 + 0.715408i
\(320\) 9.50616 7.97661i 0.531410 0.445906i
\(321\) −5.54676 8.67071i −0.309590 0.483952i
\(322\) 8.69748 + 6.26339i 0.484692 + 0.349045i
\(323\) 4.10493i 0.228405i
\(324\) −4.58108 0.772350i −0.254505 0.0429083i
\(325\) −2.85685 1.64940i −0.158469 0.0914923i
\(326\) 3.09897 + 8.51436i 0.171636 + 0.471567i
\(327\) −7.37727 3.82278i −0.407964 0.211400i
\(328\) 4.11353 0.725327i 0.227132 0.0400495i
\(329\) 16.9037 16.4616i 0.931928 0.907556i
\(330\) −19.1364 2.48282i −1.05343 0.136675i
\(331\) −5.47613 + 1.99315i −0.300995 + 0.109553i −0.488103 0.872786i \(-0.662311\pi\)
0.187108 + 0.982339i \(0.440089\pi\)
\(332\) 2.62878 + 4.55318i 0.144273 + 0.249888i
\(333\) −7.38109 + 15.9852i −0.404482 + 0.875984i
\(334\) −22.1667 12.7980i −1.21291 0.700273i
\(335\) −14.5947 + 5.31203i −0.797392 + 0.290227i
\(336\) −2.81640 + 12.0536i −0.153647 + 0.657578i
\(337\) −19.7317 + 16.5569i −1.07485 + 0.901909i −0.995483 0.0949358i \(-0.969735\pi\)
−0.0793704 + 0.996845i \(0.525291\pi\)
\(338\) −4.92514 + 13.5317i −0.267892 + 0.736028i
\(339\) −17.2974 5.41818i −0.939467 0.294275i
\(340\) 0.158163 0.896988i 0.00857761 0.0486460i
\(341\) −10.8967 + 18.8737i −0.590091 + 1.02207i
\(342\) −0.993086 + 11.8638i −0.0536999 + 0.641522i
\(343\) 5.50045 17.6846i 0.296996 0.954879i
\(344\) −15.1225 2.66651i −0.815352 0.143768i
\(345\) 6.40881 + 4.89856i 0.345039 + 0.263730i
\(346\) −2.02363 2.41167i −0.108791 0.129652i
\(347\) 4.20173 11.5442i 0.225561 0.619723i −0.774354 0.632752i \(-0.781925\pi\)
0.999915 + 0.0130291i \(0.00414741\pi\)
\(348\) 1.46642 + 2.29232i 0.0786086 + 0.122881i
\(349\) 18.6013 22.1681i 0.995702 1.18663i 0.0132892 0.999912i \(-0.495770\pi\)
0.982413 0.186720i \(-0.0597858\pi\)
\(350\) −8.09642 + 5.51078i −0.432772 + 0.294563i
\(351\) 3.78721 4.18002i 0.202146 0.223113i
\(352\) 9.27322 + 16.0617i 0.494264 + 0.856091i
\(353\) 3.51751 1.28027i 0.187218 0.0681419i −0.246710 0.969089i \(-0.579349\pi\)
0.433928 + 0.900948i \(0.357127\pi\)
\(354\) 0.766251 + 1.19781i 0.0407258 + 0.0636626i
\(355\) −1.80004 2.14520i −0.0955361 0.113856i
\(356\) −7.68635 2.79760i −0.407376 0.148273i
\(357\) 2.60777 + 5.15169i 0.138018 + 0.272656i
\(358\) −1.40243 + 7.95357i −0.0741207 + 0.420359i
\(359\) 27.7719i 1.46574i −0.680366 0.732872i \(-0.738179\pi\)
0.680366 0.732872i \(-0.261821\pi\)
\(360\) −3.28600 + 12.4503i −0.173187 + 0.656188i
\(361\) 8.38643 0.441391
\(362\) 5.81121 + 4.87619i 0.305431 + 0.256287i
\(363\) 16.3892 52.3222i 0.860211 2.74621i
\(364\) 1.03431 + 1.06209i 0.0542128 + 0.0556687i
\(365\) 12.5802 + 14.9925i 0.658479 + 0.784745i
\(366\) 14.3915 3.21888i 0.752258 0.168254i
\(367\) −0.528883 0.0932564i −0.0276075 0.00486795i 0.159827 0.987145i \(-0.448906\pi\)
−0.187435 + 0.982277i \(0.560017\pi\)
\(368\) 8.98313i 0.468278i
\(369\) −2.88005 + 2.90176i −0.149930 + 0.151059i
\(370\) 8.67027 + 5.00578i 0.450746 + 0.260238i
\(371\) 24.2721 + 2.44797i 1.26015 + 0.127092i
\(372\) 2.37029 + 1.81173i 0.122894 + 0.0939339i
\(373\) 4.59769 + 26.0748i 0.238059 + 1.35010i 0.836074 + 0.548616i \(0.184845\pi\)
−0.598015 + 0.801485i \(0.704044\pi\)
\(374\) −9.41972 3.42850i −0.487082 0.177283i
\(375\) −16.4254 + 10.5075i −0.848202 + 0.542605i
\(376\) 26.9186 + 4.74647i 1.38822 + 0.244781i
\(377\) −3.30394 −0.170161
\(378\) −6.29050 15.5200i −0.323549 0.798261i
\(379\) 2.24417 0.115275 0.0576375 0.998338i \(-0.481643\pi\)
0.0576375 + 0.998338i \(0.481643\pi\)
\(380\) −2.31922 0.408941i −0.118974 0.0209783i
\(381\) −2.95316 1.53028i −0.151295 0.0783986i
\(382\) −1.34144 0.488243i −0.0686338 0.0249807i
\(383\) −0.800525 4.54000i −0.0409049 0.231983i 0.957501 0.288431i \(-0.0931337\pi\)
−0.998406 + 0.0564478i \(0.982023\pi\)
\(384\) −8.17839 + 3.40560i −0.417352 + 0.173791i
\(385\) 9.93520 + 22.0647i 0.506345 + 1.12452i
\(386\) −6.18237 3.56939i −0.314674 0.181677i
\(387\) 13.5979 6.40308i 0.691222 0.325487i
\(388\) 9.20051i 0.467085i
\(389\) −21.7483 3.83480i −1.10268 0.194432i −0.407456 0.913225i \(-0.633584\pi\)
−0.695225 + 0.718793i \(0.744695\pi\)
\(390\) −2.17123 2.36058i −0.109945 0.119532i
\(391\) 2.69352 + 3.21001i 0.136217 + 0.162337i
\(392\) 20.3485 6.80135i 1.02776 0.343520i
\(393\) 13.5622 + 14.7449i 0.684122 + 0.743780i
\(394\) 11.4987 + 9.64857i 0.579297 + 0.486088i
\(395\) −14.3890 −0.723990
\(396\) −9.18233 4.23990i −0.461430 0.213063i
\(397\) 32.2983i 1.62101i −0.585734 0.810503i \(-0.699194\pi\)
0.585734 0.810503i \(-0.300806\pi\)
\(398\) −1.04208 + 5.90993i −0.0522348 + 0.296238i
\(399\) 13.3200 6.74257i 0.666835 0.337551i
\(400\) −7.71356 2.80750i −0.385678 0.140375i
\(401\) −2.55228 3.04169i −0.127455 0.151895i 0.698543 0.715568i \(-0.253832\pi\)
−0.825998 + 0.563673i \(0.809388\pi\)
\(402\) 23.3754 1.06456i 1.16586 0.0530953i
\(403\) −3.40379 + 1.23888i −0.169555 + 0.0617128i
\(404\) −1.03439 1.79162i −0.0514631 0.0891367i
\(405\) −4.39945 11.8107i −0.218610 0.586879i
\(406\) −4.26294 + 8.83442i −0.211566 + 0.438445i
\(407\) −24.6388 + 29.3634i −1.22130 + 1.45549i
\(408\) −3.07755 + 5.93910i −0.152361 + 0.294030i
\(409\) 5.76398 15.8364i 0.285011 0.783060i −0.711735 0.702448i \(-0.752090\pi\)
0.996746 0.0806120i \(-0.0256875\pi\)
\(410\) 1.49429 + 1.78083i 0.0737978 + 0.0879488i
\(411\) 14.1908 5.90925i 0.699981 0.291482i
\(412\) 8.89085 + 1.56770i 0.438021 + 0.0772348i
\(413\) 0.774916 1.60592i 0.0381311 0.0790220i
\(414\) −7.00806 9.92900i −0.344427 0.487984i
\(415\) −7.13167 + 12.3524i −0.350080 + 0.606356i
\(416\) −0.535280 + 3.03572i −0.0262442 + 0.148839i
\(417\) −1.19269 5.33249i −0.0584063 0.261133i
\(418\) −8.86460 + 24.3553i −0.433582 + 1.19126i
\(419\) 3.67966 3.08760i 0.179763 0.150839i −0.548466 0.836173i \(-0.684788\pi\)
0.728229 + 0.685334i \(0.240344\pi\)
\(420\) 3.17041 0.960130i 0.154700 0.0468495i
\(421\) 5.73851 2.08865i 0.279678 0.101794i −0.198373 0.980127i \(-0.563566\pi\)
0.478051 + 0.878332i \(0.341343\pi\)
\(422\) 14.5938 + 8.42571i 0.710413 + 0.410157i
\(423\) −24.2048 + 11.3977i −1.17688 + 0.554175i
\(424\) 14.1306 + 24.4748i 0.686241 + 1.18860i
\(425\) −3.59815 + 1.30962i −0.174536 + 0.0635259i
\(426\) 1.62188 + 3.89486i 0.0785802 + 0.188707i
\(427\) −12.9021 13.2486i −0.624377 0.641145i
\(428\) −3.02098 + 0.532681i −0.146025 + 0.0257481i
\(429\) 10.3442 6.61728i 0.499420 0.319485i
\(430\) −2.92300 8.03088i −0.140960 0.387283i
\(431\) 5.79371 + 3.34500i 0.279073 + 0.161123i 0.633004 0.774149i \(-0.281822\pi\)
−0.353931 + 0.935272i \(0.615155\pi\)
\(432\) 7.47457 11.8798i 0.359620 0.571568i
\(433\) 26.0904i 1.25383i 0.779089 + 0.626913i \(0.215682\pi\)
−0.779089 + 0.626913i \(0.784318\pi\)
\(434\) −1.07914 + 10.6999i −0.0518002 + 0.513611i
\(435\) −3.39656 + 6.55474i −0.162852 + 0.314276i
\(436\) −1.89692 + 1.59170i −0.0908459 + 0.0762287i
\(437\) 8.29969 6.96427i 0.397028 0.333146i
\(438\) −11.3351 27.2207i −0.541611 1.30065i
\(439\) 10.5968 + 29.1143i 0.505755 + 1.38955i 0.885577 + 0.464492i \(0.153763\pi\)
−0.379822 + 0.925060i \(0.624015\pi\)
\(440\) −14.0165 + 24.2772i −0.668209 + 1.15737i
\(441\) −12.4332 + 16.9238i −0.592057 + 0.805896i
\(442\) −0.833052 1.44289i −0.0396242 0.0686312i
\(443\) −14.0849 + 16.7857i −0.669191 + 0.797511i −0.988674 0.150081i \(-0.952047\pi\)
0.319482 + 0.947592i \(0.396491\pi\)
\(444\) 3.55229 + 3.86207i 0.168584 + 0.183286i
\(445\) −3.85337 21.8536i −0.182667 1.03596i
\(446\) −8.69684 3.16539i −0.411807 0.149886i
\(447\) 26.8141 + 8.39914i 1.26826 + 0.397265i
\(448\) 19.0252 + 13.7008i 0.898858 + 0.647302i
\(449\) 34.7658 20.0721i 1.64070 0.947259i 0.660116 0.751163i \(-0.270507\pi\)
0.980585 0.196096i \(-0.0628264\pi\)
\(450\) 10.7160 2.91450i 0.505156 0.137391i
\(451\) −7.70813 + 4.45029i −0.362962 + 0.209556i
\(452\) −3.47235 + 4.13819i −0.163326 + 0.194644i
\(453\) 14.7516 + 1.91392i 0.693089 + 0.0899237i
\(454\) 6.40975 17.6106i 0.300824 0.826508i
\(455\) −1.09233 + 3.87076i −0.0512092 + 0.181464i
\(456\) 15.3559 + 7.95720i 0.719108 + 0.372630i
\(457\) 4.01948 22.7956i 0.188023 1.06633i −0.733985 0.679165i \(-0.762342\pi\)
0.922009 0.387169i \(-0.126547\pi\)
\(458\) 11.8579 20.5385i 0.554085 0.959703i
\(459\) −0.891123 6.48630i −0.0415941 0.302754i
\(460\) 2.08194 1.20201i 0.0970709 0.0560439i
\(461\) 19.1500 + 16.0688i 0.891905 + 0.748397i 0.968591 0.248658i \(-0.0799896\pi\)
−0.0766866 + 0.997055i \(0.524434\pi\)
\(462\) −4.34732 36.1973i −0.202256 1.68405i
\(463\) −0.605828 3.43582i −0.0281552 0.159676i 0.967489 0.252915i \(-0.0813892\pi\)
−0.995644 + 0.0932385i \(0.970278\pi\)
\(464\) −8.09647 + 1.42763i −0.375869 + 0.0662759i
\(465\) −1.04138 + 8.02644i −0.0482927 + 0.372217i
\(466\) −5.99758 5.03257i −0.277832 0.233129i
\(467\) 15.1473 0.700932 0.350466 0.936575i \(-0.386023\pi\)
0.350466 + 0.936575i \(0.386023\pi\)
\(468\) −0.716140 1.52084i −0.0331036 0.0703007i
\(469\) −16.5107 24.2575i −0.762394 1.12011i
\(470\) 5.20304 + 14.2952i 0.239998 + 0.659390i
\(471\) 28.4514 26.1693i 1.31097 1.20582i
\(472\) 2.03429 0.358700i 0.0936356 0.0165105i
\(473\) 32.2240 5.68196i 1.48166 0.261257i
\(474\) 20.6875 + 6.48007i 0.950208 + 0.297640i
\(475\) 3.38611 + 9.30326i 0.155365 + 0.426863i
\(476\) 1.71611 0.127255i 0.0786578 0.00583274i
\(477\) −25.1137 11.5961i −1.14988 0.530950i
\(478\) −7.51562 −0.343756
\(479\) 6.70132 + 5.62308i 0.306191 + 0.256925i 0.782916 0.622128i \(-0.213732\pi\)
−0.476724 + 0.879053i \(0.658176\pi\)
\(480\) 5.47234 + 4.18278i 0.249777 + 0.190917i
\(481\) −6.27414 + 1.10630i −0.286076 + 0.0504429i
\(482\) −3.36076 19.0598i −0.153078 0.868150i
\(483\) −5.99185 + 14.0128i −0.272639 + 0.637603i
\(484\) −12.5174 10.5034i −0.568975 0.477426i
\(485\) 21.6162 12.4801i 0.981541 0.566693i
\(486\) 1.00627 + 18.9619i 0.0456454 + 0.860128i
\(487\) −12.1626 + 21.0663i −0.551142 + 0.954606i 0.447051 + 0.894509i \(0.352474\pi\)
−0.998193 + 0.0600970i \(0.980859\pi\)
\(488\) 3.72015 21.0980i 0.168403 0.955063i
\(489\) −10.8529 + 6.94275i −0.490786 + 0.313962i
\(490\) 8.94065 + 7.91508i 0.403898 + 0.357567i
\(491\) 4.07946 11.2082i 0.184103 0.505820i −0.812967 0.582310i \(-0.802149\pi\)
0.997070 + 0.0764897i \(0.0243712\pi\)
\(492\) 0.468388 + 1.12481i 0.0211165 + 0.0507104i
\(493\) −2.46511 + 2.93781i −0.111023 + 0.132312i
\(494\) −3.73068 + 2.15391i −0.167851 + 0.0969089i
\(495\) −2.49400 27.3247i −0.112097 1.22816i
\(496\) −7.80584 + 4.50670i −0.350493 + 0.202357i
\(497\) 3.09178 4.29332i 0.138685 0.192582i
\(498\) 15.8163 14.5477i 0.708745 0.651897i
\(499\) −3.92338 1.42799i −0.175634 0.0639257i 0.252706 0.967543i \(-0.418679\pi\)
−0.428341 + 0.903617i \(0.640902\pi\)
\(500\) 1.00908 + 5.72280i 0.0451276 + 0.255932i
\(501\) 10.8790 34.7311i 0.486039 1.55167i
\(502\) 1.75293 2.08906i 0.0782371 0.0932394i
\(503\) 5.52280 + 9.56576i 0.246249 + 0.426516i 0.962482 0.271345i \(-0.0874685\pi\)
−0.716233 + 0.697861i \(0.754135\pi\)
\(504\) −24.3267 0.230978i −1.08360 0.0102886i
\(505\) 2.80623 4.86053i 0.124876 0.216291i
\(506\) −9.04910 24.8622i −0.402282 1.10526i
\(507\) −20.3055 2.63450i −0.901799 0.117002i
\(508\) −0.759346 + 0.637167i −0.0336906 + 0.0282697i
\(509\) −19.5610 + 16.4136i −0.867026 + 0.727521i −0.963470 0.267817i \(-0.913698\pi\)
0.0964436 + 0.995338i \(0.469253\pi\)
\(510\) −3.71897 + 0.169368i −0.164679 + 0.00749976i
\(511\) −21.6081 + 30.0054i −0.955884 + 1.32736i
\(512\) 24.2287i 1.07077i
\(513\) −16.7707 + 2.30406i −0.740446 + 0.101727i
\(514\) 3.05568 + 1.76420i 0.134780 + 0.0778154i
\(515\) 8.37683 + 23.0152i 0.369127 + 1.01417i
\(516\) −0.203785 4.47468i −0.00897113 0.196987i
\(517\) −57.3598 + 10.1141i −2.52268 + 0.444817i
\(518\) −5.13714 + 18.2039i −0.225713 + 0.799832i
\(519\) 2.71843 3.55653i 0.119326 0.156114i
\(520\) −4.37829 + 1.59357i −0.192001 + 0.0698825i
\(521\) −1.17194 2.02986i −0.0513436 0.0889298i 0.839211 0.543805i \(-0.183017\pi\)
−0.890555 + 0.454876i \(0.849684\pi\)
\(522\) 7.83524 7.89429i 0.342939 0.345524i
\(523\) −22.8023 13.1649i −0.997075 0.575662i −0.0896937 0.995969i \(-0.528589\pi\)
−0.907382 + 0.420308i \(0.861922\pi\)
\(524\) 5.61042 2.04203i 0.245092 0.0892063i
\(525\) −10.1597 9.52445i −0.443406 0.415681i
\(526\) 22.6153 18.9765i 0.986073 0.827414i
\(527\) −1.43802 + 3.95094i −0.0626413 + 0.172105i
\(528\) 22.4896 20.6857i 0.978733 0.900229i
\(529\) 2.07336 11.7586i 0.0901462 0.511244i
\(530\) −7.86437 + 13.6215i −0.341606 + 0.591679i
\(531\) −1.42429 + 1.43502i −0.0618088 + 0.0622746i
\(532\) −0.329027 4.43712i −0.0142651 0.192373i
\(533\) −1.45687 0.256885i −0.0631039 0.0111269i
\(534\) −4.30162 + 33.1548i −0.186149 + 1.43475i
\(535\) −5.34935 6.37511i −0.231273 0.275620i
\(536\) 11.6264 31.9432i 0.502183 1.37974i
\(537\) −11.4718 + 0.522447i −0.495046 + 0.0225452i
\(538\) −12.8052 + 15.2607i −0.552073 + 0.657935i
\(539\) −35.7882 + 28.4487i −1.54151 + 1.22537i
\(540\) −3.75343 0.142707i −0.161522 0.00614113i
\(541\) −7.55773 13.0904i −0.324932 0.562799i 0.656566 0.754268i \(-0.272008\pi\)
−0.981499 + 0.191469i \(0.938675\pi\)
\(542\) −13.5572 + 4.93442i −0.582332 + 0.211951i
\(543\) −4.96273 + 9.57716i −0.212971 + 0.410995i
\(544\) 2.29994 + 2.74096i 0.0986090 + 0.117518i
\(545\) −6.31272 2.29764i −0.270407 0.0984203i
\(546\) 3.31366 5.07317i 0.141812 0.217112i
\(547\) −0.705768 + 4.00261i −0.0301764 + 0.171139i −0.996171 0.0874219i \(-0.972137\pi\)
0.965995 + 0.258561i \(0.0832483\pi\)
\(548\) 4.58122i 0.195700i
\(549\) 8.93319 + 18.9710i 0.381259 + 0.809663i
\(550\) 24.1766 1.03089
\(551\) 7.59589 + 6.37371i 0.323596 + 0.271529i
\(552\) −17.2294 + 3.85361i −0.733333 + 0.164021i
\(553\) −6.68753 26.3497i −0.284383 1.12051i
\(554\) −1.79904 2.14401i −0.0764339 0.0910904i
\(555\) −4.25522 + 13.5847i −0.180624 + 0.576638i
\(556\) −1.60374 0.282782i −0.0680135 0.0119926i
\(557\) 11.4174i 0.483772i 0.970305 + 0.241886i \(0.0777660\pi\)
−0.970305 + 0.241886i \(0.922234\pi\)
\(558\) 5.11191 11.0709i 0.216405 0.468666i
\(559\) 4.70986 + 2.71924i 0.199206 + 0.115012i
\(560\) −1.00426 + 9.95749i −0.0424379 + 0.420781i
\(561\) 1.83394 14.1351i 0.0774288 0.596785i
\(562\) 5.66682 + 32.1381i 0.239040 + 1.35567i
\(563\) 30.9865 + 11.2782i 1.30592 + 0.475318i 0.898922 0.438109i \(-0.144352\pi\)
0.407003 + 0.913427i \(0.366574\pi\)
\(564\) 0.362744 + 7.96509i 0.0152743 + 0.335391i
\(565\) −14.4326 2.54486i −0.607184 0.107063i
\(566\) 20.7850 0.873661
\(567\) 19.5835 13.5457i 0.822431 0.568865i
\(568\) 6.12913 0.257172
\(569\) −30.8899 5.44673i −1.29497 0.228339i −0.516647 0.856199i \(-0.672820\pi\)
−0.778326 + 0.627860i \(0.783931\pi\)
\(570\) 0.437913 + 9.61565i 0.0183422 + 0.402755i
\(571\) 13.2797 + 4.83342i 0.555739 + 0.202272i 0.604595 0.796533i \(-0.293335\pi\)
−0.0488555 + 0.998806i \(0.515557\pi\)
\(572\) −0.635488 3.60403i −0.0265711 0.150692i
\(573\) 0.261166 2.01294i 0.0109104 0.0840918i
\(574\) −2.56663 + 3.56408i −0.107129 + 0.148762i
\(575\) −8.75238 5.05319i −0.365000 0.210733i
\(576\) −15.3297 21.7191i −0.638739 0.904964i
\(577\) 16.4989i 0.686860i 0.939178 + 0.343430i \(0.111589\pi\)
−0.939178 + 0.343430i \(0.888411\pi\)
\(578\) 18.4888 + 3.26008i 0.769034 + 0.135601i
\(579\) 3.03420 9.68661i 0.126097 0.402562i
\(580\) 1.41423 + 1.68542i 0.0587229 + 0.0699832i
\(581\) −25.9348 7.31881i −1.07596 0.303636i
\(582\) −36.6986 + 8.20819i −1.52121 + 0.340240i
\(583\) −46.1316 38.7090i −1.91058 1.60316i
\(584\) −42.8356 −1.77255
\(585\) 2.60172 3.74549i 0.107568 0.154857i
\(586\) 6.97912i 0.288305i
\(587\) −2.18078 + 12.3678i −0.0900102 + 0.510473i 0.906152 + 0.422951i \(0.139006\pi\)
−0.996163 + 0.0875220i \(0.972105\pi\)
\(588\) 3.23173 + 5.35955i 0.133274 + 0.221024i
\(589\) 10.2154 + 3.71810i 0.420918 + 0.153202i
\(590\) 0.738980 + 0.880682i 0.0304233 + 0.0362571i
\(591\) −9.81981 + 18.9504i −0.403933 + 0.779517i
\(592\) −14.8971 + 5.42209i −0.612266 + 0.222847i
\(593\) 0.438896 + 0.760190i 0.0180233 + 0.0312173i 0.874896 0.484310i \(-0.160929\pi\)
−0.856873 + 0.515527i \(0.827596\pi\)
\(594\) −8.71996 + 40.4087i −0.357784 + 1.65799i
\(595\) 2.62681 + 3.85931i 0.107689 + 0.158216i
\(596\) 5.38276 6.41493i 0.220487 0.262766i
\(597\) −8.52419 + 0.388206i −0.348872 + 0.0158882i
\(598\) 1.50403 4.13228i 0.0615042 0.168981i
\(599\) 11.1914 + 13.3374i 0.457267 + 0.544949i 0.944581 0.328277i \(-0.106468\pi\)
−0.487315 + 0.873226i \(0.662024\pi\)
\(600\) 2.07574 15.9988i 0.0847416 0.653147i
\(601\) −4.00786 0.706693i −0.163484 0.0288266i 0.0913070 0.995823i \(-0.470896\pi\)
−0.254791 + 0.966996i \(0.582007\pi\)
\(602\) 13.3480 9.08520i 0.544022 0.370285i
\(603\) 8.73207 + 32.1059i 0.355597 + 1.30745i
\(604\) 2.21658 3.83924i 0.0901915 0.156216i
\(605\) 7.69783 43.6566i 0.312961 1.77489i
\(606\) −6.22353 + 5.72434i −0.252814 + 0.232535i
\(607\) −10.9299 + 30.0296i −0.443630 + 1.21886i 0.493458 + 0.869770i \(0.335733\pi\)
−0.937088 + 0.349094i \(0.886490\pi\)
\(608\) 7.08692 5.94663i 0.287413 0.241168i
\(609\) −13.5819 3.17349i −0.550367 0.128596i
\(610\) 11.2042 4.07799i 0.453645 0.165113i
\(611\) −8.38372 4.84034i −0.339169 0.195819i
\(612\) −1.88663 0.497936i −0.0762623 0.0201279i
\(613\) 6.60506 + 11.4403i 0.266776 + 0.462069i 0.968027 0.250845i \(-0.0807084\pi\)
−0.701252 + 0.712914i \(0.747375\pi\)
\(614\) −12.9038 + 4.69660i −0.520755 + 0.189539i
\(615\) −2.00735 + 2.62622i −0.0809440 + 0.105899i
\(616\) −50.9719 14.3843i −2.05372 0.579559i
\(617\) 19.4342 3.42678i 0.782393 0.137957i 0.231837 0.972755i \(-0.425527\pi\)
0.550557 + 0.834798i \(0.314415\pi\)
\(618\) −1.67876 36.8620i −0.0675297 1.48281i
\(619\) −5.18243 14.2386i −0.208299 0.572298i 0.790915 0.611926i \(-0.209605\pi\)
−0.999215 + 0.0396279i \(0.987383\pi\)
\(620\) 2.08896 + 1.20606i 0.0838945 + 0.0484365i
\(621\) 11.6027 12.8061i 0.465600 0.513893i
\(622\) 30.2001i 1.21092i
\(623\) 38.2282 17.2133i 1.53158 0.689635i
\(624\) 5.07340 0.231051i 0.203098 0.00924945i
\(625\) −0.436975 + 0.366666i −0.0174790 + 0.0146666i
\(626\) −16.9276 + 14.2040i −0.676564 + 0.567705i
\(627\) −36.5472 4.74176i −1.45956 0.189368i
\(628\) −3.94025 10.8257i −0.157233 0.431994i
\(629\) −3.69752 + 6.40429i −0.147430 + 0.255356i
\(630\) −6.65819 11.7894i −0.265269 0.469702i
\(631\) −7.62600 13.2086i −0.303586 0.525827i 0.673359 0.739315i \(-0.264851\pi\)
−0.976946 + 0.213489i \(0.931517\pi\)
\(632\) 20.2434 24.1251i 0.805238 0.959645i
\(633\) −7.16236 + 22.8657i −0.284678 + 0.908829i
\(634\) 0.701300 + 3.97727i 0.0278522 + 0.157958i
\(635\) −2.52702 0.919760i −0.100282 0.0364995i
\(636\) −6.06752 + 5.58085i −0.240593 + 0.221295i
\(637\) −7.59597 0.201320i −0.300963 0.00797657i
\(638\) 20.9701 12.1071i 0.830216 0.479325i
\(639\) −4.90124 + 3.45938i −0.193890 + 0.136851i
\(640\) −6.20311 + 3.58137i −0.245199 + 0.141566i
\(641\) 1.47670 1.75987i 0.0583263 0.0695106i −0.736092 0.676881i \(-0.763331\pi\)
0.794419 + 0.607370i \(0.207776\pi\)
\(642\) 4.81989 + 11.5747i 0.190226 + 0.456819i
\(643\) 3.12733 8.59228i 0.123330 0.338846i −0.862628 0.505838i \(-0.831183\pi\)
0.985958 + 0.166992i \(0.0534054\pi\)
\(644\) 3.16878 + 3.25388i 0.124867 + 0.128221i
\(645\) 10.2366 6.54851i 0.403068 0.257847i
\(646\) −0.868291 + 4.92432i −0.0341624 + 0.193745i
\(647\) −3.30310 + 5.72115i −0.129858 + 0.224921i −0.923622 0.383306i \(-0.874786\pi\)
0.793763 + 0.608227i \(0.208119\pi\)
\(648\) 25.9917 + 9.23979i 1.02105 + 0.362973i
\(649\) −3.81194 + 2.20083i −0.149632 + 0.0863900i
\(650\) 3.07821 + 2.58293i 0.120738 + 0.101311i
\(651\) −15.1823 + 1.82341i −0.595043 + 0.0714650i
\(652\) 0.666744 + 3.78129i 0.0261117 + 0.148087i
\(653\) 3.17671 0.560140i 0.124314 0.0219200i −0.111145 0.993804i \(-0.535452\pi\)
0.235459 + 0.971884i \(0.424341\pi\)
\(654\) 8.04124 + 6.14632i 0.314437 + 0.240340i
\(655\) 12.4080 + 10.4115i 0.484819 + 0.406811i
\(656\) −3.68113 −0.143724
\(657\) 34.2541 24.1771i 1.33638 0.943239i
\(658\) −23.7598 + 16.1720i −0.926254 + 0.630449i
\(659\) 7.87606 + 21.6393i 0.306808 + 0.842948i 0.993274 + 0.115786i \(0.0369387\pi\)
−0.686466 + 0.727162i \(0.740839\pi\)
\(660\) −7.80340 2.44431i −0.303747 0.0951446i
\(661\) 37.0781 6.53786i 1.44217 0.254293i 0.602816 0.797880i \(-0.294045\pi\)
0.839353 + 0.543586i \(0.182934\pi\)
\(662\) 6.99082 1.23267i 0.271706 0.0479091i
\(663\) 1.74364 1.60378i 0.0677173 0.0622857i
\(664\) −10.6772 29.3353i −0.414355 1.13843i
\(665\) 9.97850 6.79180i 0.386949 0.263375i
\(666\) 12.2357 17.6147i 0.474123 0.682558i
\(667\) −10.1221 −0.391930
\(668\) −8.30898 6.97206i −0.321484 0.269757i
\(669\) 1.69320 13.0504i 0.0654628 0.504556i
\(670\) 18.6315 3.28524i 0.719799 0.126920i
\(671\) 7.92713 + 44.9570i 0.306023 + 1.73554i
\(672\) −5.11631 + 11.9652i −0.197366 + 0.461567i
\(673\) −3.99428 3.35160i −0.153968 0.129195i 0.562549 0.826764i \(-0.309821\pi\)
−0.716518 + 0.697569i \(0.754265\pi\)
\(674\) 27.1725 15.6881i 1.04665 0.604281i
\(675\) 7.37007 + 13.9652i 0.283674 + 0.537521i
\(676\) −3.05112 + 5.28470i −0.117351 + 0.203258i
\(677\) 0.768000 4.35554i 0.0295166 0.167397i −0.966486 0.256718i \(-0.917359\pi\)
0.996003 + 0.0893213i \(0.0284698\pi\)
\(678\) 19.6041 + 10.1585i 0.752890 + 0.390136i
\(679\) 32.9006 + 33.7841i 1.26261 + 1.29652i
\(680\) −1.84973 + 5.08209i −0.0709339 + 0.194889i
\(681\) 26.4263 + 3.42864i 1.01266 + 0.131386i
\(682\) 17.0641 20.3362i 0.653417 0.778712i
\(683\) 42.6121 24.6021i 1.63051 0.941373i 0.646569 0.762856i \(-0.276203\pi\)
0.983937 0.178517i \(-0.0571301\pi\)
\(684\) −1.28745 + 4.87799i −0.0492268 + 0.186515i
\(685\) 10.7634 6.21424i 0.411247 0.237434i
\(686\) −10.3391 + 20.0512i −0.394749 + 0.765557i
\(687\) 32.1800 + 10.0800i 1.22775 + 0.384574i
\(688\) 12.7168 + 4.62852i 0.484822 + 0.176461i
\(689\) −1.73806 9.85702i −0.0662148 0.375523i
\(690\) −6.65191 7.23198i −0.253234 0.275317i
\(691\) 16.4941 19.6569i 0.627466 0.747785i −0.354869 0.934916i \(-0.615474\pi\)
0.982335 + 0.187131i \(0.0599189\pi\)
\(692\) −0.667048 1.15536i −0.0253573 0.0439202i
\(693\) 48.8790 17.2667i 1.85676 0.655909i
\(694\) −7.48230 + 12.9597i −0.284024 + 0.491945i
\(695\) −1.51102 4.15149i −0.0573162 0.157475i
\(696\) −6.21140 14.9164i −0.235443 0.565405i
\(697\) −1.31541 + 1.10376i −0.0498246 + 0.0418078i
\(698\) −27.0033 + 22.6585i −1.02209 + 0.857637i
\(699\) 5.12188 9.88430i 0.193727 0.373859i
\(700\) −3.78435 + 1.70400i −0.143035 + 0.0644053i
\(701\) 7.17348i 0.270939i −0.990782 0.135469i \(-0.956746\pi\)
0.990782 0.135469i \(-0.0432542\pi\)
\(702\) −5.42735 + 4.21332i −0.204842 + 0.159021i
\(703\) 16.5587 + 9.56017i 0.624523 + 0.360569i
\(704\) −19.7944 54.3847i −0.746029 2.04970i
\(705\) −18.2216 + 11.6566i −0.686264 + 0.439012i
\(706\) −4.49045 + 0.791788i −0.169000 + 0.0297993i
\(707\) 10.2050 + 2.87987i 0.383800 + 0.108309i
\(708\) 0.231634 + 0.556259i 0.00870535 + 0.0209055i
\(709\) 34.1456 12.4280i 1.28237 0.466743i 0.391152 0.920326i \(-0.372077\pi\)
0.891214 + 0.453583i \(0.149854\pi\)
\(710\) 1.70558 + 2.95416i 0.0640094 + 0.110868i
\(711\) −2.57128 + 30.7176i −0.0964307 + 1.15200i
\(712\) 42.0616 + 24.2843i 1.57632 + 0.910092i
\(713\) −10.4280 + 3.79549i −0.390532 + 0.142142i
\(714\) −2.03861 6.73162i −0.0762931 0.251925i
\(715\) 7.60550 6.38177i 0.284430 0.238665i
\(716\) −1.17054 + 3.21602i −0.0437450 + 0.120188i
\(717\) −2.33257 10.4289i −0.0871113 0.389473i
\(718\) −5.87442 + 33.3155i −0.219231 + 1.24332i
\(719\) −13.9224 + 24.1144i −0.519219 + 0.899314i 0.480531 + 0.876978i \(0.340444\pi\)
−0.999751 + 0.0223364i \(0.992890\pi\)
\(720\) 4.75723 10.3027i 0.177292 0.383960i
\(721\) −38.2530 + 26.0367i −1.42462 + 0.969657i
\(722\) −10.0604 1.77393i −0.374411 0.0660188i
\(723\) 25.4048 10.5789i 0.944814 0.393434i
\(724\) 2.06635 + 2.46258i 0.0767952 + 0.0915209i
\(725\) 3.16347 8.69157i 0.117488 0.322797i
\(726\) −30.7281 + 59.2996i −1.14043 + 2.20081i
\(727\) −28.8118 + 34.3365i −1.06857 + 1.27347i −0.108384 + 0.994109i \(0.534568\pi\)
−0.960186 + 0.279363i \(0.909877\pi\)
\(728\) −4.95309 7.27707i −0.183574 0.269706i
\(729\) −25.9996 + 7.28138i −0.962950 + 0.269681i
\(730\) −11.9201 20.6462i −0.441182 0.764150i
\(731\) 5.93200 2.15907i 0.219403 0.0798562i
\(732\) 6.24281 0.284308i 0.230741 0.0105083i
\(733\) −17.3125 20.6322i −0.639451 0.762067i 0.344833 0.938664i \(-0.387936\pi\)
−0.984283 + 0.176597i \(0.943491\pi\)
\(734\) 0.614728 + 0.223743i 0.0226900 + 0.00825850i
\(735\) −8.20831 + 14.8628i −0.302768 + 0.548223i
\(736\) −1.63991 + 9.30040i −0.0604479 + 0.342817i
\(737\) 72.4349i 2.66818i
\(738\) 4.06873 2.87178i 0.149772 0.105712i
\(739\) 13.1981 0.485501 0.242750 0.970089i \(-0.421950\pi\)
0.242750 + 0.970089i \(0.421950\pi\)
\(740\) 3.24997 + 2.72705i 0.119471 + 0.100248i
\(741\) −4.14668 4.50829i −0.152332 0.165616i
\(742\) −28.5993 8.07074i −1.04991 0.296286i
\(743\) −22.0972 26.3344i −0.810667 0.966115i 0.189208 0.981937i \(-0.439408\pi\)
−0.999875 + 0.0158221i \(0.994963\pi\)
\(744\) −11.9923 13.0381i −0.439660 0.478000i
\(745\) 22.3731 + 3.94498i 0.819686 + 0.144533i
\(746\) 32.2521i 1.18083i
\(747\) 25.0955 + 17.4320i 0.918196 + 0.637804i
\(748\) −3.67879 2.12395i −0.134510 0.0776594i
\(749\) 9.18816 12.7589i 0.335728 0.466200i
\(750\) 21.9266 9.13056i 0.800647 0.333401i
\(751\) −3.01307 17.0880i −0.109949 0.623549i −0.989128 0.147058i \(-0.953020\pi\)
0.879179 0.476491i \(-0.158092\pi\)
\(752\) −22.6362 8.23892i −0.825459 0.300443i
\(753\) 3.44288 + 1.78404i 0.125465 + 0.0650141i
\(754\) 3.96344 + 0.698861i 0.144340 + 0.0254510i
\(755\) 12.0268 0.437701
\(756\) −1.48314 6.93976i −0.0539412 0.252397i
\(757\) 27.2517 0.990478 0.495239 0.868757i \(-0.335080\pi\)
0.495239 + 0.868757i \(0.335080\pi\)
\(758\) −2.69213 0.474694i −0.0977824 0.0172417i
\(759\) 31.6909 20.2731i 1.15031 0.735865i
\(760\) 13.1401 + 4.78259i 0.476640 + 0.173483i
\(761\) 4.96087 + 28.1345i 0.179832 + 1.01988i 0.932418 + 0.361382i \(0.117695\pi\)
−0.752586 + 0.658494i \(0.771194\pi\)
\(762\) 3.21895 + 2.46040i 0.116610 + 0.0891310i
\(763\) 1.27360 12.6280i 0.0461073 0.457164i
\(764\) −0.523887 0.302466i −0.0189536 0.0109428i
\(765\) −1.38925 5.10797i −0.0502285 0.184679i
\(766\) 5.61557i 0.202899i
\(767\) −0.720472 0.127039i −0.0260147