# Properties

 Label 189.2.ba.a.38.20 Level $189$ Weight $2$ Character 189.38 Analytic conductor $1.509$ Analytic rank $0$ Dimension $132$ Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [189,2,Mod(5,189)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(189, base_ring=CyclotomicField(18))

chi = DirichletCharacter(H, H._module([5, 15]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("189.5");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$189 = 3^{3} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 189.ba (of order $$18$$, degree $$6$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$1.50917259820$$ Analytic rank: $$0$$ Dimension: $$132$$ Relative dimension: $$22$$ over $$\Q(\zeta_{18})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

## Embedding invariants

 Embedding label 38.20 Character $$\chi$$ $$=$$ 189.38 Dual form 189.2.ba.a.5.20

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(1.95754 + 0.345166i) q^{2} +(-1.39494 - 1.02672i) q^{3} +(1.83342 + 0.667310i) q^{4} +(-0.649669 - 3.68445i) q^{5} +(-2.37625 - 2.49133i) q^{6} +(2.58740 + 0.552593i) q^{7} +(-0.0842052 - 0.0486159i) q^{8} +(0.891690 + 2.86442i) q^{9} +O(q^{10})$$ $$q+(1.95754 + 0.345166i) q^{2} +(-1.39494 - 1.02672i) q^{3} +(1.83342 + 0.667310i) q^{4} +(-0.649669 - 3.68445i) q^{5} +(-2.37625 - 2.49133i) q^{6} +(2.58740 + 0.552593i) q^{7} +(-0.0842052 - 0.0486159i) q^{8} +(0.891690 + 2.86442i) q^{9} -7.43669i q^{10} +(0.526860 + 0.0928996i) q^{11} +(-1.87236 - 2.81326i) q^{12} +(3.22666 + 3.84539i) q^{13} +(4.87419 + 1.97480i) q^{14} +(-2.87666 + 5.80660i) q^{15} +(-3.13729 - 2.63250i) q^{16} -4.53776 q^{17} +(0.756814 + 5.91498i) q^{18} +1.20759i q^{19} +(1.26756 - 7.18868i) q^{20} +(-3.04190 - 3.42737i) q^{21} +(0.999281 + 0.363709i) q^{22} +(5.35042 + 6.37638i) q^{23} +(0.0675459 + 0.154271i) q^{24} +(-8.45466 + 3.07725i) q^{25} +(4.98901 + 8.64122i) q^{26} +(1.69711 - 4.91119i) q^{27} +(4.37504 + 2.73973i) q^{28} +(2.30869 - 2.75138i) q^{29} +(-7.63540 + 10.3737i) q^{30} +(-0.0334941 + 0.0920242i) q^{31} +(-5.10770 - 6.08713i) q^{32} +(-0.639554 - 0.670527i) q^{33} +(-8.88283 - 1.56628i) q^{34} +(0.355050 - 9.89216i) q^{35} +(-0.276613 + 5.84671i) q^{36} +(-0.267738 + 0.463737i) q^{37} +(-0.416820 + 2.36390i) q^{38} +(-0.552849 - 8.67695i) q^{39} +(-0.124418 + 0.341834i) q^{40} +(-5.79016 + 4.85852i) q^{41} +(-4.77161 - 7.75916i) q^{42} +(-0.0316146 + 0.0115068i) q^{43} +(0.903962 + 0.521903i) q^{44} +(9.97451 - 5.14631i) q^{45} +(8.27273 + 14.3288i) q^{46} +(5.19200 - 1.88973i) q^{47} +(1.67348 + 6.89328i) q^{48} +(6.38928 + 2.85956i) q^{49} +(-17.6125 + 3.10555i) q^{50} +(6.32988 + 4.65901i) q^{51} +(3.34976 + 9.20340i) q^{52} +(-8.57774 - 4.95236i) q^{53} +(5.01732 - 9.02805i) q^{54} -2.00154i q^{55} +(-0.191008 - 0.172320i) q^{56} +(1.23986 - 1.68451i) q^{57} +(5.46902 - 4.58905i) q^{58} +(0.583744 - 0.489820i) q^{59} +(-9.14892 + 8.72631i) q^{60} +(2.21618 + 6.08890i) q^{61} +(-0.0973295 + 0.168580i) q^{62} +(0.724302 + 7.90414i) q^{63} +(-3.80200 - 6.58526i) q^{64} +(12.0719 - 14.3867i) q^{65} +(-1.02051 - 1.53333i) q^{66} +(-1.14393 - 6.48754i) q^{67} +(-8.31962 - 3.02809i) q^{68} +(-0.916728 - 14.3880i) q^{69} +(4.10946 - 19.2417i) q^{70} +(3.13261 - 1.80861i) q^{71} +(0.0641713 - 0.284549i) q^{72} +(-5.76249 + 3.32698i) q^{73} +(-0.684174 + 0.815366i) q^{74} +(14.9532 + 4.38802i) q^{75} +(-0.805838 + 2.21402i) q^{76} +(1.31186 + 0.531508i) q^{77} +(1.91277 - 17.1763i) q^{78} +(-0.909744 + 5.15941i) q^{79} +(-7.66112 + 13.2694i) q^{80} +(-7.40978 + 5.10834i) q^{81} +(-13.0114 + 7.51215i) q^{82} +(-1.39005 - 1.16639i) q^{83} +(-3.28996 - 8.31369i) q^{84} +(2.94804 + 16.7192i) q^{85} +(-0.0658585 + 0.0116126i) q^{86} +(-6.04537 + 1.46763i) q^{87} +(-0.0398480 - 0.0334364i) q^{88} -9.21301 q^{89} +(21.3018 - 6.63122i) q^{90} +(6.22374 + 11.7326i) q^{91} +(5.55454 + 15.2610i) q^{92} +(0.141205 - 0.0939788i) q^{93} +(10.8158 - 1.90712i) q^{94} +(4.44931 - 0.784534i) q^{95} +(0.875142 + 13.7353i) q^{96} +(-4.37434 - 12.0184i) q^{97} +(11.5202 + 7.80305i) q^{98} +(0.203692 + 1.59198i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9}+O(q^{10})$$ 132 * q - 3 * q^2 - 9 * q^3 - 3 * q^4 - 9 * q^5 - 18 * q^6 - 6 * q^7 - 18 * q^8 + 3 * q^9 $$132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9} - 9 q^{11} - 9 q^{12} + 3 q^{14} - 24 q^{15} + 3 q^{16} - 18 q^{17} - 3 q^{18} + 18 q^{20} - 21 q^{21} - 12 q^{22} - 6 q^{23} - 9 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} + 51 q^{30} - 9 q^{31} + 3 q^{32} - 9 q^{33} - 18 q^{34} + 18 q^{35} + 3 q^{37} - 99 q^{38} - 36 q^{39} - 54 q^{40} - 45 q^{42} - 12 q^{43} - 9 q^{44} - 9 q^{45} + 3 q^{46} + 45 q^{47} - 24 q^{49} - 9 q^{50} - 48 q^{51} - 9 q^{52} - 45 q^{53} + 171 q^{54} + 3 q^{56} - 3 q^{58} + 36 q^{59} + 57 q^{60} - 9 q^{61} - 99 q^{62} - 33 q^{63} + 18 q^{64} + 69 q^{65} - 9 q^{66} - 3 q^{67} + 36 q^{68} + 108 q^{69} + 66 q^{70} + 18 q^{71} - 129 q^{72} - 9 q^{73} + 75 q^{74} + 36 q^{75} + 36 q^{76} + 15 q^{77} + 66 q^{78} - 21 q^{79} + 72 q^{80} - 33 q^{81} - 18 q^{82} - 90 q^{83} - 120 q^{84} + 9 q^{85} - 105 q^{86} - 54 q^{87} - 63 q^{88} - 18 q^{89} + 81 q^{90} + 6 q^{91} + 150 q^{92} + 21 q^{93} - 9 q^{94} + 45 q^{95} - 81 q^{96} + 27 q^{98} + 96 q^{99}+O(q^{100})$$ 132 * q - 3 * q^2 - 9 * q^3 - 3 * q^4 - 9 * q^5 - 18 * q^6 - 6 * q^7 - 18 * q^8 + 3 * q^9 - 9 * q^11 - 9 * q^12 + 3 * q^14 - 24 * q^15 + 3 * q^16 - 18 * q^17 - 3 * q^18 + 18 * q^20 - 21 * q^21 - 12 * q^22 - 6 * q^23 - 9 * q^24 - 3 * q^25 - 12 * q^28 + 6 * q^29 + 51 * q^30 - 9 * q^31 + 3 * q^32 - 9 * q^33 - 18 * q^34 + 18 * q^35 + 3 * q^37 - 99 * q^38 - 36 * q^39 - 54 * q^40 - 45 * q^42 - 12 * q^43 - 9 * q^44 - 9 * q^45 + 3 * q^46 + 45 * q^47 - 24 * q^49 - 9 * q^50 - 48 * q^51 - 9 * q^52 - 45 * q^53 + 171 * q^54 + 3 * q^56 - 3 * q^58 + 36 * q^59 + 57 * q^60 - 9 * q^61 - 99 * q^62 - 33 * q^63 + 18 * q^64 + 69 * q^65 - 9 * q^66 - 3 * q^67 + 36 * q^68 + 108 * q^69 + 66 * q^70 + 18 * q^71 - 129 * q^72 - 9 * q^73 + 75 * q^74 + 36 * q^75 + 36 * q^76 + 15 * q^77 + 66 * q^78 - 21 * q^79 + 72 * q^80 - 33 * q^81 - 18 * q^82 - 90 * q^83 - 120 * q^84 + 9 * q^85 - 105 * q^86 - 54 * q^87 - 63 * q^88 - 18 * q^89 + 81 * q^90 + 6 * q^91 + 150 * q^92 + 21 * q^93 - 9 * q^94 + 45 * q^95 - 81 * q^96 + 27 * q^98 + 96 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/189\mathbb{Z}\right)^\times$$.

 $$n$$ $$29$$ $$136$$ $$\chi(n)$$ $$e\left(\frac{13}{18}\right)$$ $$e\left(\frac{1}{6}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 1.95754 + 0.345166i 1.38419 + 0.244069i 0.815630 0.578575i $$-0.196391\pi$$
0.568557 + 0.822644i $$0.307502\pi$$
$$3$$ −1.39494 1.02672i −0.805366 0.592777i
$$4$$ 1.83342 + 0.667310i 0.916710 + 0.333655i
$$5$$ −0.649669 3.68445i −0.290541 1.64774i −0.684795 0.728736i $$-0.740108\pi$$
0.394254 0.919001i $$-0.371003\pi$$
$$6$$ −2.37625 2.49133i −0.970098 1.01708i
$$7$$ 2.58740 + 0.552593i 0.977945 + 0.208860i
$$8$$ −0.0842052 0.0486159i −0.0297710 0.0171883i
$$9$$ 0.891690 + 2.86442i 0.297230 + 0.954806i
$$10$$ 7.43669i 2.35169i
$$11$$ 0.526860 + 0.0928996i 0.158854 + 0.0280103i 0.252510 0.967594i $$-0.418744\pi$$
−0.0936554 + 0.995605i $$0.529855\pi$$
$$12$$ −1.87236 2.81326i −0.540504 0.812119i
$$13$$ 3.22666 + 3.84539i 0.894916 + 1.06652i 0.997420 + 0.0717866i $$0.0228700\pi$$
−0.102504 + 0.994733i $$0.532686\pi$$
$$14$$ 4.87419 + 1.97480i 1.30268 + 0.527788i
$$15$$ −2.87666 + 5.80660i −0.742750 + 1.49926i
$$16$$ −3.13729 2.63250i −0.784322 0.658124i
$$17$$ −4.53776 −1.10057 −0.550284 0.834977i $$-0.685481\pi$$
−0.550284 + 0.834977i $$0.685481\pi$$
$$18$$ 0.756814 + 5.91498i 0.178383 + 1.39417i
$$19$$ 1.20759i 0.277041i 0.990360 + 0.138520i $$0.0442346\pi$$
−0.990360 + 0.138520i $$0.955765\pi$$
$$20$$ 1.26756 7.18868i 0.283435 1.60744i
$$21$$ −3.04190 3.42737i −0.663797 0.747913i
$$22$$ 0.999281 + 0.363709i 0.213047 + 0.0775429i
$$23$$ 5.35042 + 6.37638i 1.11564 + 1.32957i 0.938459 + 0.345389i $$0.112253\pi$$
0.177180 + 0.984178i $$0.443302\pi$$
$$24$$ 0.0675459 + 0.154271i 0.0137878 + 0.0314905i
$$25$$ −8.45466 + 3.07725i −1.69093 + 0.615449i
$$26$$ 4.98901 + 8.64122i 0.978426 + 1.69468i
$$27$$ 1.69711 4.91119i 0.326608 0.945160i
$$28$$ 4.37504 + 2.73973i 0.826805 + 0.517761i
$$29$$ 2.30869 2.75138i 0.428712 0.510919i −0.507838 0.861452i $$-0.669555\pi$$
0.936550 + 0.350533i $$0.114000\pi$$
$$30$$ −7.63540 + 10.3737i −1.39403 + 1.89397i
$$31$$ −0.0334941 + 0.0920242i −0.00601571 + 0.0165280i −0.942664 0.333743i $$-0.891688\pi$$
0.936648 + 0.350271i $$0.113910\pi$$
$$32$$ −5.10770 6.08713i −0.902923 1.07606i
$$33$$ −0.639554 0.670527i −0.111332 0.116724i
$$34$$ −8.88283 1.56628i −1.52339 0.268615i
$$35$$ 0.355050 9.89216i 0.0600144 1.67208i
$$36$$ −0.276613 + 5.84671i −0.0461022 + 0.974452i
$$37$$ −0.267738 + 0.463737i −0.0440159 + 0.0762378i −0.887194 0.461397i $$-0.847349\pi$$
0.843178 + 0.537634i $$0.180682\pi$$
$$38$$ −0.416820 + 2.36390i −0.0676171 + 0.383476i
$$39$$ −0.552849 8.67695i −0.0885267 1.38942i
$$40$$ −0.124418 + 0.341834i −0.0196721 + 0.0540488i
$$41$$ −5.79016 + 4.85852i −0.904271 + 0.758773i −0.971020 0.238997i $$-0.923181\pi$$
0.0667499 + 0.997770i $$0.478737\pi$$
$$42$$ −4.77161 7.75916i −0.736276 1.19726i
$$43$$ −0.0316146 + 0.0115068i −0.00482118 + 0.00175477i −0.344430 0.938812i $$-0.611928\pi$$
0.339608 + 0.940567i $$0.389705\pi$$
$$44$$ 0.903962 + 0.521903i 0.136277 + 0.0786798i
$$45$$ 9.97451 5.14631i 1.48691 0.767167i
$$46$$ 8.27273 + 14.3288i 1.21975 + 2.11266i
$$47$$ 5.19200 1.88973i 0.757331 0.275646i 0.0656440 0.997843i $$-0.479090\pi$$
0.691687 + 0.722197i $$0.256868\pi$$
$$48$$ 1.67348 + 6.89328i 0.241545 + 0.994960i
$$49$$ 6.38928 + 2.85956i 0.912755 + 0.408508i
$$50$$ −17.6125 + 3.10555i −2.49078 + 0.439191i
$$51$$ 6.32988 + 4.65901i 0.886361 + 0.652392i
$$52$$ 3.34976 + 9.20340i 0.464528 + 1.27628i
$$53$$ −8.57774 4.95236i −1.17824 0.680259i −0.222636 0.974902i $$-0.571466\pi$$
−0.955608 + 0.294642i $$0.904799\pi$$
$$54$$ 5.01732 9.02805i 0.682771 1.22856i
$$55$$ 2.00154i 0.269888i
$$56$$ −0.191008 0.172320i −0.0255245 0.0230272i
$$57$$ 1.23986 1.68451i 0.164223 0.223119i
$$58$$ 5.46902 4.58905i 0.718117 0.602572i
$$59$$ 0.583744 0.489820i 0.0759970 0.0637691i −0.603998 0.796986i $$-0.706426\pi$$
0.679995 + 0.733217i $$0.261982\pi$$
$$60$$ −9.14892 + 8.72631i −1.18112 + 1.12656i
$$61$$ 2.21618 + 6.08890i 0.283753 + 0.779604i 0.996906 + 0.0785967i $$0.0250439\pi$$
−0.713154 + 0.701008i $$0.752734\pi$$
$$62$$ −0.0973295 + 0.168580i −0.0123609 + 0.0214096i
$$63$$ 0.724302 + 7.90414i 0.0912535 + 0.995828i
$$64$$ −3.80200 6.58526i −0.475250 0.823158i
$$65$$ 12.0719 14.3867i 1.49733 1.78445i
$$66$$ −1.02051 1.53333i −0.125616 0.188740i
$$67$$ −1.14393 6.48754i −0.139753 0.792579i −0.971431 0.237321i $$-0.923731\pi$$
0.831678 0.555258i $$-0.187380\pi$$
$$68$$ −8.31962 3.02809i −1.00890 0.367210i
$$69$$ −0.916728 14.3880i −0.110361 1.73212i
$$70$$ 4.10946 19.2417i 0.491175 2.29982i
$$71$$ 3.13261 1.80861i 0.371772 0.214643i −0.302460 0.953162i $$-0.597808\pi$$
0.674232 + 0.738519i $$0.264475\pi$$
$$72$$ 0.0641713 0.284549i 0.00756266 0.0335345i
$$73$$ −5.76249 + 3.32698i −0.674449 + 0.389393i −0.797760 0.602975i $$-0.793982\pi$$
0.123312 + 0.992368i $$0.460649\pi$$
$$74$$ −0.684174 + 0.815366i −0.0795336 + 0.0947844i
$$75$$ 14.9532 + 4.38802i 1.72664 + 0.506685i
$$76$$ −0.805838 + 2.21402i −0.0924360 + 0.253966i
$$77$$ 1.31186 + 0.531508i 0.149501 + 0.0605709i
$$78$$ 1.91277 17.1763i 0.216579 1.94483i
$$79$$ −0.909744 + 5.15941i −0.102354 + 0.580480i 0.889890 + 0.456175i $$0.150781\pi$$
−0.992244 + 0.124304i $$0.960330\pi$$
$$80$$ −7.66112 + 13.2694i −0.856539 + 1.48357i
$$81$$ −7.40978 + 5.10834i −0.823309 + 0.567594i
$$82$$ −13.0114 + 7.51215i −1.43687 + 0.829579i
$$83$$ −1.39005 1.16639i −0.152578 0.128028i 0.563303 0.826250i $$-0.309530\pi$$
−0.715881 + 0.698222i $$0.753975\pi$$
$$84$$ −3.28996 8.31369i −0.358964 0.907098i
$$85$$ 2.94804 + 16.7192i 0.319760 + 1.81345i
$$86$$ −0.0658585 + 0.0116126i −0.00710170 + 0.00125222i
$$87$$ −6.04537 + 1.46763i −0.648132 + 0.157346i
$$88$$ −0.0398480 0.0334364i −0.00424781 0.00356433i
$$89$$ −9.21301 −0.976577 −0.488289 0.872682i $$-0.662379\pi$$
−0.488289 + 0.872682i $$0.662379\pi$$
$$90$$ 21.3018 6.63122i 2.24541 0.698992i
$$91$$ 6.22374 + 11.7326i 0.652425 + 1.22991i
$$92$$ 5.55454 + 15.2610i 0.579101 + 1.59107i
$$93$$ 0.141205 0.0939788i 0.0146423 0.00974515i
$$94$$ 10.8158 1.90712i 1.11556 0.196704i
$$95$$ 4.44931 0.784534i 0.456490 0.0804915i
$$96$$ 0.875142 + 13.7353i 0.0893188 + 1.40186i
$$97$$ −4.37434 12.0184i −0.444147 1.22028i −0.936741 0.350025i $$-0.886173\pi$$
0.492593 0.870260i $$-0.336049\pi$$
$$98$$ 11.5202 + 7.80305i 1.16372 + 0.788227i
$$99$$ 0.203692 + 1.59198i 0.0204719 + 0.160000i
$$100$$ −17.5544 −1.75544
$$101$$ −1.63246 1.36979i −0.162436 0.136300i 0.557947 0.829877i $$-0.311589\pi$$
−0.720383 + 0.693577i $$0.756034\pi$$
$$102$$ 10.7828 + 11.3050i 1.06766 + 1.11937i
$$103$$ −11.7534 + 2.07244i −1.15810 + 0.204204i −0.719508 0.694485i $$-0.755632\pi$$
−0.438588 + 0.898688i $$0.644521\pi$$
$$104$$ −0.0847549 0.480669i −0.00831091 0.0471335i
$$105$$ −10.6518 + 13.4344i −1.03950 + 1.31106i
$$106$$ −15.0818 12.6552i −1.46488 1.22918i
$$107$$ 13.4523 7.76670i 1.30048 0.750835i 0.319998 0.947418i $$-0.396318\pi$$
0.980487 + 0.196583i $$0.0629845\pi$$
$$108$$ 6.38880 7.87178i 0.614762 0.757463i
$$109$$ −1.01428 + 1.75678i −0.0971503 + 0.168269i −0.910504 0.413500i $$-0.864306\pi$$
0.813354 + 0.581770i $$0.197639\pi$$
$$110$$ 0.690866 3.91809i 0.0658715 0.373576i
$$111$$ 0.849606 0.371990i 0.0806410 0.0353077i
$$112$$ −6.66272 8.54497i −0.629568 0.807424i
$$113$$ −2.57486 + 7.07437i −0.242222 + 0.665501i 0.757694 + 0.652610i $$0.226326\pi$$
−0.999917 + 0.0128913i $$0.995896\pi$$
$$114$$ 3.00850 2.86953i 0.281772 0.268757i
$$115$$ 20.0175 23.8559i 1.86664 2.22458i
$$116$$ 6.06881 3.50383i 0.563475 0.325323i
$$117$$ −8.13762 + 12.6714i −0.752323 + 1.17147i
$$118$$ 1.31177 0.757350i 0.120758 0.0697197i
$$119$$ −11.7410 2.50753i −1.07630 0.229865i
$$120$$ 0.524523 0.349095i 0.0478822 0.0318679i
$$121$$ −10.0677 3.66433i −0.915243 0.333121i
$$122$$ 2.23657 + 12.6842i 0.202489 + 1.14837i
$$123$$ 13.0652 0.832447i 1.17805 0.0750592i
$$124$$ −0.122817 + 0.146368i −0.0110293 + 0.0131442i
$$125$$ 7.47747 + 12.9514i 0.668805 + 1.15840i
$$126$$ −1.31040 + 15.7226i −0.116739 + 1.40068i
$$127$$ 9.23798 16.0006i 0.819738 1.41983i −0.0861371 0.996283i $$-0.527452\pi$$
0.905875 0.423545i $$-0.139214\pi$$
$$128$$ 0.265962 + 0.730726i 0.0235080 + 0.0645876i
$$129$$ 0.0559146 + 0.0164082i 0.00492301 + 0.00144466i
$$130$$ 28.5970 23.9957i 2.50812 2.10456i
$$131$$ 0.439975 0.369183i 0.0384408 0.0322556i −0.623365 0.781931i $$-0.714235\pi$$
0.661806 + 0.749675i $$0.269790\pi$$
$$132$$ −0.725121 1.65614i −0.0631137 0.144148i
$$133$$ −0.667307 + 3.12452i −0.0578628 + 0.270931i
$$134$$ 13.0944i 1.13119i
$$135$$ −19.1976 3.06226i −1.65227 0.263558i
$$136$$ 0.382103 + 0.220607i 0.0327651 + 0.0189169i
$$137$$ −0.799505 2.19662i −0.0683063 0.187670i 0.900843 0.434146i $$-0.142950\pi$$
−0.969149 + 0.246476i $$0.920727\pi$$
$$138$$ 3.17174 28.4815i 0.269996 2.42451i
$$139$$ 0.461702 0.0814105i 0.0391610 0.00690515i −0.154033 0.988066i $$-0.549226\pi$$
0.193194 + 0.981161i $$0.438115\pi$$
$$140$$ 7.25209 17.8995i 0.612914 1.51279i
$$141$$ −9.18274 2.69468i −0.773326 0.226933i
$$142$$ 6.75646 2.45915i 0.566989 0.206367i
$$143$$ 1.34277 + 2.32574i 0.112288 + 0.194488i
$$144$$ 4.74308 11.3339i 0.395257 0.944490i
$$145$$ −11.6372 6.71875i −0.966419 0.557962i
$$146$$ −12.4286 + 4.52365i −1.02860 + 0.374380i
$$147$$ −5.97667 10.5489i −0.492947 0.870059i
$$148$$ −0.800333 + 0.671559i −0.0657870 + 0.0552018i
$$149$$ −3.51315 + 9.65231i −0.287809 + 0.790748i 0.708564 + 0.705647i $$0.249344\pi$$
−0.996372 + 0.0851012i $$0.972879\pi$$
$$150$$ 27.7568 + 13.7510i 2.26633 + 1.12277i
$$151$$ 0.0992784 0.563036i 0.00807916 0.0458192i −0.980502 0.196511i $$-0.937039\pi$$
0.988581 + 0.150692i $$0.0481500\pi$$
$$152$$ 0.0587082 0.101686i 0.00476186 0.00824779i
$$153$$ −4.04628 12.9980i −0.327122 1.05083i
$$154$$ 2.38456 + 1.49326i 0.192153 + 0.120330i
$$155$$ 0.360819 + 0.0636221i 0.0289817 + 0.00511025i
$$156$$ 4.77661 16.2774i 0.382435 1.30324i
$$157$$ −5.09539 6.07244i −0.406656 0.484634i 0.523381 0.852099i $$-0.324670\pi$$
−0.930037 + 0.367465i $$0.880226\pi$$
$$158$$ −3.56171 + 9.78572i −0.283355 + 0.778510i
$$159$$ 6.88071 + 15.7152i 0.545675 + 1.24629i
$$160$$ −19.1094 + 22.7737i −1.51073 + 1.80042i
$$161$$ 10.3201 + 19.4549i 0.813341 + 1.53326i
$$162$$ −16.2681 + 7.44216i −1.27815 + 0.584711i
$$163$$ −2.96576 5.13684i −0.232296 0.402349i 0.726187 0.687497i $$-0.241290\pi$$
−0.958483 + 0.285148i $$0.907957\pi$$
$$164$$ −13.8579 + 5.04387i −1.08212 + 0.393860i
$$165$$ −2.05503 + 2.79203i −0.159984 + 0.217359i
$$166$$ −2.31847 2.76305i −0.179948 0.214454i
$$167$$ 10.6282 + 3.86836i 0.822438 + 0.299343i 0.718752 0.695267i $$-0.244714\pi$$
0.103687 + 0.994610i $$0.466936\pi$$
$$168$$ 0.0895191 + 0.436487i 0.00690655 + 0.0336757i
$$169$$ −2.11823 + 12.0131i −0.162941 + 0.924082i
$$170$$ 33.7459i 2.58819i
$$171$$ −3.45905 + 1.07680i −0.264520 + 0.0823447i
$$172$$ −0.0656414 −0.00500511
$$173$$ −7.90197 6.63054i −0.600776 0.504111i 0.290919 0.956748i $$-0.406039\pi$$
−0.891695 + 0.452637i $$0.850483\pi$$
$$174$$ −12.3406 + 0.786277i −0.935538 + 0.0596075i
$$175$$ −23.5761 + 3.29008i −1.78218 + 0.248707i
$$176$$ −1.40835 1.67841i −0.106159 0.126515i
$$177$$ −1.31719 + 0.0839245i −0.0990063 + 0.00630815i
$$178$$ −18.0348 3.18002i −1.35177 0.238353i
$$179$$ 7.50492i 0.560944i 0.959862 + 0.280472i $$0.0904910\pi$$
−0.959862 + 0.280472i $$0.909509\pi$$
$$180$$ 21.7216 2.77926i 1.61904 0.207154i
$$181$$ 15.7096 + 9.06992i 1.16768 + 0.674162i 0.953133 0.302552i $$-0.0978385\pi$$
0.214549 + 0.976713i $$0.431172\pi$$
$$182$$ 8.13349 + 25.1152i 0.602895 + 1.86166i
$$183$$ 3.16018 10.7690i 0.233607 0.796069i
$$184$$ −0.140540 0.797040i −0.0103607 0.0587586i
$$185$$ 1.88256 + 0.685195i 0.138408 + 0.0503765i
$$186$$ 0.308853 0.135228i 0.0226462 0.00991536i
$$187$$ −2.39076 0.421556i −0.174830 0.0308272i
$$188$$ 10.7802 0.786224
$$189$$ 7.10499 11.7694i 0.516812 0.856099i
$$190$$ 8.98049 0.651513
$$191$$ −11.7224 2.06698i −0.848203 0.149561i −0.267380 0.963591i $$-0.586158\pi$$
−0.580823 + 0.814030i $$0.697269\pi$$
$$192$$ −1.45767 + 13.0896i −0.105199 + 0.944661i
$$193$$ 6.92404 + 2.52014i 0.498403 + 0.181404i 0.578976 0.815345i $$-0.303453\pi$$
−0.0805725 + 0.996749i $$0.525675\pi$$
$$194$$ −4.41458 25.0363i −0.316948 1.79750i
$$195$$ −31.6107 + 7.67409i −2.26369 + 0.549553i
$$196$$ 9.80602 + 9.50640i 0.700430 + 0.679029i
$$197$$ 7.81959 + 4.51464i 0.557123 + 0.321655i 0.751990 0.659175i $$-0.229094\pi$$
−0.194867 + 0.980830i $$0.562428\pi$$
$$198$$ −0.150764 + 3.18667i −0.0107144 + 0.226467i
$$199$$ 27.0924i 1.92053i 0.279093 + 0.960264i $$0.409966\pi$$
−0.279093 + 0.960264i $$0.590034\pi$$
$$200$$ 0.861530 + 0.151911i 0.0609194 + 0.0107417i
$$201$$ −5.06518 + 10.2242i −0.357270 + 0.721159i
$$202$$ −2.72279 3.24489i −0.191575 0.228310i
$$203$$ 7.49389 5.84317i 0.525968 0.410110i
$$204$$ 8.49633 + 12.7659i 0.594862 + 0.893793i
$$205$$ 21.6627 + 18.1771i 1.51299 + 1.26955i
$$206$$ −23.7230 −1.65286
$$207$$ −13.4937 + 21.0116i −0.937878 + 1.46041i
$$208$$ 20.5583i 1.42546i
$$209$$ −0.112185 + 0.636232i −0.00775998 + 0.0440091i
$$210$$ −25.4883 + 22.6217i −1.75886 + 1.56104i
$$211$$ 4.05592 + 1.47623i 0.279221 + 0.101628i 0.477835 0.878450i $$-0.341422\pi$$
−0.198614 + 0.980078i $$0.563644\pi$$
$$212$$ −12.4218 14.8038i −0.853135 1.01673i
$$213$$ −6.22672 0.693415i −0.426648 0.0475120i
$$214$$ 29.0142 10.5603i 1.98337 0.721887i
$$215$$ 0.0629352 + 0.109007i 0.00429215 + 0.00743421i
$$216$$ −0.381667 + 0.331042i −0.0259692 + 0.0225245i
$$217$$ −0.137515 + 0.219595i −0.00933509 + 0.0149071i
$$218$$ −2.59187 + 3.08887i −0.175544 + 0.209205i
$$219$$ 11.4542 + 1.27555i 0.774002 + 0.0861938i
$$220$$ 1.33565 3.66967i 0.0900496 0.247409i
$$221$$ −14.6418 17.4495i −0.984916 1.17378i
$$222$$ 1.79153 0.434928i 0.120240 0.0291905i
$$223$$ 1.40482 + 0.247708i 0.0940737 + 0.0165877i 0.220487 0.975390i $$-0.429235\pi$$
−0.126413 + 0.991978i $$0.540347\pi$$
$$224$$ −9.85197 18.5723i −0.658263 1.24091i
$$225$$ −16.3535 21.4737i −1.09023 1.43158i
$$226$$ −7.48221 + 12.9596i −0.497709 + 0.862058i
$$227$$ −3.36736 + 19.0973i −0.223500 + 1.26753i 0.642033 + 0.766677i $$0.278091\pi$$
−0.865533 + 0.500853i $$0.833020\pi$$
$$228$$ 3.39727 2.26105i 0.224990 0.149741i
$$229$$ 0.882943 2.42587i 0.0583465 0.160306i −0.907095 0.420927i $$-0.861705\pi$$
0.965441 + 0.260621i $$0.0839272\pi$$
$$230$$ 47.4192 39.7894i 3.12673 2.62364i
$$231$$ −1.28425 2.08833i −0.0844976 0.137402i
$$232$$ −0.328164 + 0.119442i −0.0215450 + 0.00784176i
$$233$$ −21.1555 12.2141i −1.38594 0.800173i −0.393085 0.919502i $$-0.628592\pi$$
−0.992855 + 0.119329i $$0.961926\pi$$
$$234$$ −20.3034 + 21.9959i −1.32728 + 1.43792i
$$235$$ −10.3357 17.9020i −0.674228 1.16780i
$$236$$ 1.39711 0.508506i 0.0909441 0.0331009i
$$237$$ 6.56631 6.26300i 0.426528 0.406825i
$$238$$ −22.1179 8.96119i −1.43369 0.580867i
$$239$$ −23.2178 + 4.09392i −1.50183 + 0.264813i −0.863264 0.504752i $$-0.831584\pi$$
−0.638568 + 0.769566i $$0.720473\pi$$
$$240$$ 24.3108 10.6442i 1.56925 0.687080i
$$241$$ −3.27955 9.01050i −0.211255 0.580418i 0.788129 0.615510i $$-0.211050\pi$$
−0.999384 + 0.0350921i $$0.988828\pi$$
$$242$$ −18.4430 10.6481i −1.18556 0.684484i
$$243$$ 15.5810 + 0.481960i 0.999522 + 0.0309178i
$$244$$ 12.6424i 0.809346i
$$245$$ 6.38499 25.3988i 0.407922 1.62267i
$$246$$ 25.8630 + 2.88013i 1.64896 + 0.183631i
$$247$$ −4.64366 + 3.89649i −0.295469 + 0.247928i
$$248$$ 0.00729422 0.00612058i 0.000463183 0.000388657i
$$249$$ 0.741473 + 3.05423i 0.0469889 + 0.193554i
$$250$$ 10.1670 + 27.9337i 0.643020 + 1.76668i
$$251$$ −6.84105 + 11.8491i −0.431803 + 0.747906i −0.997029 0.0770311i $$-0.975456\pi$$
0.565225 + 0.824937i $$0.308789\pi$$
$$252$$ −3.94656 + 14.9749i −0.248610 + 0.943332i
$$253$$ 2.22656 + 3.85651i 0.139983 + 0.242457i
$$254$$ 23.6066 28.1332i 1.48121 1.76523i
$$255$$ 13.0536 26.3490i 0.817447 1.65004i
$$256$$ 2.90925 + 16.4992i 0.181828 + 1.03120i
$$257$$ 28.7802 + 10.4751i 1.79526 + 0.653421i 0.998813 + 0.0487109i $$0.0155113\pi$$
0.796446 + 0.604710i $$0.206711\pi$$
$$258$$ 0.103791 + 0.0514194i 0.00646176 + 0.00320123i
$$259$$ −0.949004 + 1.05192i −0.0589682 + 0.0653632i
$$260$$ 31.7333 18.3212i 1.96801 1.13623i
$$261$$ 9.93974 + 4.15966i 0.615255 + 0.257476i
$$262$$ 0.988696 0.570824i 0.0610818 0.0352656i
$$263$$ 2.34116 2.79009i 0.144362 0.172044i −0.689018 0.724744i $$-0.741958\pi$$
0.833380 + 0.552700i $$0.186402\pi$$
$$264$$ 0.0212555 + 0.0875544i 0.00130818 + 0.00538860i
$$265$$ −12.6741 + 34.8217i −0.778561 + 2.13908i
$$266$$ −2.38476 + 5.88603i −0.146219 + 0.360896i
$$267$$ 12.8516 + 9.45919i 0.786503 + 0.578893i
$$268$$ 2.23190 12.6577i 0.136335 0.773194i
$$269$$ 16.1461 27.9659i 0.984446 1.70511i 0.340071 0.940400i $$-0.389549\pi$$
0.644374 0.764710i $$-0.277118\pi$$
$$270$$ −36.5230 12.6209i −2.22272 0.768081i
$$271$$ 21.4767 12.3996i 1.30462 0.753220i 0.323424 0.946254i $$-0.395166\pi$$
0.981192 + 0.193034i $$0.0618328\pi$$
$$272$$ 14.2363 + 11.9456i 0.863200 + 0.724311i
$$273$$ 3.36438 22.7563i 0.203622 1.37727i
$$274$$ −0.806859 4.57593i −0.0487441 0.276442i
$$275$$ −4.74030 + 0.835842i −0.285851 + 0.0504032i
$$276$$ 7.92053 26.9910i 0.476760 1.62467i
$$277$$ −12.0197 10.0857i −0.722191 0.605990i 0.205799 0.978594i $$-0.434021\pi$$
−0.927990 + 0.372604i $$0.878465\pi$$
$$278$$ 0.931898 0.0558915
$$279$$ −0.293462 0.0138840i −0.0175691 0.000831211i
$$280$$ −0.510813 + 0.815710i −0.0305269 + 0.0487480i
$$281$$ 4.41595 + 12.1327i 0.263433 + 0.723777i 0.998930 + 0.0462486i $$0.0147266\pi$$
−0.735497 + 0.677528i $$0.763051\pi$$
$$282$$ −17.0454 8.44450i −1.01504 0.502863i
$$283$$ 22.4248 3.95410i 1.33302 0.235047i 0.538672 0.842515i $$-0.318926\pi$$
0.794344 + 0.607469i $$0.207815\pi$$
$$284$$ 6.95028 1.22552i 0.412423 0.0727214i
$$285$$ −7.01200 3.47383i −0.415355 0.205772i
$$286$$ 1.82574 + 5.01619i 0.107959 + 0.296614i
$$287$$ −17.6662 + 9.37133i −1.04280 + 0.553172i
$$288$$ 12.8816 20.0584i 0.759054 1.18195i
$$289$$ 3.59128 0.211252
$$290$$ −20.4612 17.1690i −1.20152 1.00820i
$$291$$ −6.23762 + 21.2561i −0.365656 + 1.24606i
$$292$$ −12.7852 + 2.25437i −0.748196 + 0.131927i
$$293$$ 0.0377838 + 0.214282i 0.00220735 + 0.0125185i 0.985892 0.167385i $$-0.0535324\pi$$
−0.983684 + 0.179904i $$0.942421\pi$$
$$294$$ −8.05841 22.7128i −0.469976 1.32464i
$$295$$ −2.18396 1.83256i −0.127155 0.106696i
$$296$$ 0.0450900 0.0260327i 0.00262080 0.00151312i
$$297$$ 1.35039 2.42985i 0.0783573 0.140994i
$$298$$ −10.2088 + 17.6821i −0.591379 + 1.02430i
$$299$$ −7.25566 + 41.1489i −0.419606 + 2.37970i
$$300$$ 24.4873 + 18.0235i 1.41377 + 1.04059i
$$301$$ −0.0881582 + 0.0123026i −0.00508136 + 0.000709112i
$$302$$ 0.388682 1.06789i 0.0223661 0.0614504i
$$303$$ 0.870777 + 3.58685i 0.0500248 + 0.206059i
$$304$$ 3.17898 3.78856i 0.182327 0.217289i
$$305$$ 20.9945 12.1212i 1.20214 0.694057i
$$306$$ −3.43424 26.8408i −0.196322 1.53438i
$$307$$ 17.3825 10.0358i 0.992072 0.572773i 0.0861792 0.996280i $$-0.472534\pi$$
0.905893 + 0.423506i $$0.139201\pi$$
$$308$$ 2.05051 + 1.84989i 0.116839 + 0.105408i
$$309$$ 18.5230 + 9.17653i 1.05374 + 0.522034i
$$310$$ 0.684356 + 0.249085i 0.0388688 + 0.0141471i
$$311$$ −0.0344600 0.195432i −0.00195405 0.0110820i 0.983815 0.179186i $$-0.0573465\pi$$
−0.985769 + 0.168104i $$0.946235\pi$$
$$312$$ −0.375285 + 0.757522i −0.0212463 + 0.0428862i
$$313$$ 10.5334 12.5532i 0.595385 0.709552i −0.381247 0.924473i $$-0.624505\pi$$
0.976631 + 0.214922i $$0.0689496\pi$$
$$314$$ −7.87839 13.6458i −0.444604 0.770076i
$$315$$ 28.6519 7.80373i 1.61435 0.439690i
$$316$$ −5.11087 + 8.85229i −0.287509 + 0.497980i
$$317$$ −4.79018 13.1609i −0.269043 0.739190i −0.998479 0.0551403i $$-0.982439\pi$$
0.729436 0.684050i $$-0.239783\pi$$
$$318$$ 8.04488 + 33.1380i 0.451134 + 1.85829i
$$319$$ 1.47196 1.23512i 0.0824137 0.0691533i
$$320$$ −21.7930 + 18.2865i −1.21827 + 1.02225i
$$321$$ −26.7394 2.97773i −1.49245 0.166201i
$$322$$ 13.4869 + 41.6457i 0.751594 + 2.32083i
$$323$$ 5.47976i 0.304902i
$$324$$ −16.9941 + 4.42112i −0.944116 + 0.245618i
$$325$$ −39.1136 22.5822i −2.16963 1.25264i
$$326$$ −4.03251 11.0792i −0.223340 0.613622i
$$327$$ 3.21858 1.40922i 0.177988 0.0779299i
$$328$$ 0.723763 0.127619i 0.0399631 0.00704658i
$$329$$ 14.4780 2.02044i 0.798200 0.111390i
$$330$$ −4.98650 + 4.75616i −0.274498 + 0.261818i
$$331$$ 13.7531 5.00572i 0.755939 0.275139i 0.0648361 0.997896i $$-0.479348\pi$$
0.691102 + 0.722757i $$0.257125\pi$$
$$332$$ −1.77020 3.06608i −0.0971524 0.168273i
$$333$$ −1.56707 0.353406i −0.0858752 0.0193665i
$$334$$ 19.4699 + 11.2410i 1.06535 + 0.615079i
$$335$$ −23.1598 + 8.42950i −1.26536 + 0.460553i
$$336$$ 0.520773 + 18.7604i 0.0284105 + 1.02347i
$$337$$ 15.3298 12.8633i 0.835070 0.700707i −0.121379 0.992606i $$-0.538732\pi$$
0.956449 + 0.291899i $$0.0942873\pi$$
$$338$$ −8.29301 + 22.7849i −0.451080 + 1.23933i
$$339$$ 10.8552 7.22463i 0.589572 0.392388i
$$340$$ −5.75187 + 32.6205i −0.311939 + 1.76910i
$$341$$ −0.0261957 + 0.0453723i −0.00141858 + 0.00245705i
$$342$$ −7.14288 + 0.913922i −0.386243 + 0.0494193i
$$343$$ 14.9515 + 10.9295i 0.807303 + 0.590137i
$$344$$ 0.00322153 0.000568042i 0.000173693 3.06268e-5i
$$345$$ −52.4165 + 12.7251i −2.82201 + 0.685096i
$$346$$ −13.1797 15.7070i −0.708547 0.844414i
$$347$$ −3.69757 + 10.1590i −0.198496 + 0.545363i −0.998507 0.0546221i $$-0.982605\pi$$
0.800011 + 0.599985i $$0.204827\pi$$
$$348$$ −12.0631 1.34336i −0.646648 0.0720115i
$$349$$ 18.8455 22.4591i 1.00877 1.20221i 0.0295221 0.999564i $$-0.490601\pi$$
0.979252 0.202646i $$-0.0649541\pi$$
$$350$$ −47.2866 1.69721i −2.52758 0.0907199i
$$351$$ 24.3614 9.32074i 1.30032 0.497504i
$$352$$ −2.12555 3.68157i −0.113292 0.196228i
$$353$$ 18.9495 6.89706i 1.00858 0.367094i 0.215693 0.976461i $$-0.430799\pi$$
0.792888 + 0.609368i $$0.208577\pi$$
$$354$$ −2.60742 0.290366i −0.138583 0.0154328i
$$355$$ −8.69890 10.3669i −0.461689 0.550220i
$$356$$ −16.8913 6.14794i −0.895238 0.325840i
$$357$$ 13.8034 + 15.5526i 0.730554 + 0.823130i
$$358$$ −2.59045 + 14.6911i −0.136909 + 0.776451i
$$359$$ 16.7354i 0.883260i −0.897197 0.441630i $$-0.854400\pi$$
0.897197 0.441630i $$-0.145600\pi$$
$$360$$ −1.09010 0.0515736i −0.0574532 0.00271817i
$$361$$ 17.5417 0.923249
$$362$$ 27.6214 + 23.1771i 1.45175 + 1.21816i
$$363$$ 10.2815 + 15.4482i 0.539639 + 0.810820i
$$364$$ 3.58145 + 25.6639i 0.187719 + 1.34516i
$$365$$ 16.0018 + 19.0702i 0.837572 + 0.998180i
$$366$$ 9.90326 19.9900i 0.517652 1.04489i
$$367$$ −8.10506 1.42914i −0.423081 0.0746005i −0.0419455 0.999120i $$-0.513356\pi$$
−0.381135 + 0.924519i $$0.624467\pi$$
$$368$$ 34.0895i 1.77704i
$$369$$ −19.0798 12.2531i −0.993257 0.637873i
$$370$$ 3.44867 + 1.99109i 0.179288 + 0.103512i
$$371$$ −19.4574 17.5537i −1.01018 0.911345i
$$372$$ 0.321601 0.0780749i 0.0166743 0.00404799i
$$373$$ 2.60691 + 14.7845i 0.134981 + 0.765513i 0.974873 + 0.222761i $$0.0715068\pi$$
−0.839892 + 0.542753i $$0.817382\pi$$
$$374$$ −4.53450 1.65042i −0.234473 0.0853413i
$$375$$ 2.86684 25.7436i 0.148043 1.32939i
$$376$$ −0.529065 0.0932884i −0.0272844 0.00481098i
$$377$$ 18.0295 0.928566
$$378$$ 17.9707 20.5866i 0.924311 1.05886i
$$379$$ −23.6638 −1.21553 −0.607763 0.794118i $$-0.707933\pi$$
−0.607763 + 0.794118i $$0.707933\pi$$
$$380$$ 8.68099 + 1.53069i 0.445325 + 0.0785229i
$$381$$ −29.3146 + 12.8351i −1.50183 + 0.657560i
$$382$$ −22.2336 8.09235i −1.13757 0.414041i
$$383$$ 0.334399 + 1.89647i 0.0170870 + 0.0969052i 0.992159 0.124985i $$-0.0398884\pi$$
−0.975072 + 0.221890i $$0.928777\pi$$
$$384$$ 0.379251 1.29238i 0.0193536 0.0659517i
$$385$$ 1.10604 5.17880i 0.0563690 0.263936i
$$386$$ 12.6842 + 7.32321i 0.645608 + 0.372742i
$$387$$ −0.0611507 0.0802970i −0.00310846 0.00408173i
$$388$$ 24.9538i 1.26684i
$$389$$ −28.0414 4.94446i −1.42176 0.250694i −0.590705 0.806888i $$-0.701150\pi$$
−0.831053 + 0.556193i $$0.812261\pi$$
$$390$$ −64.5278 + 4.11137i −3.26749 + 0.208187i
$$391$$ −24.2789 28.9345i −1.22784 1.46328i
$$392$$ −0.398991 0.551411i −0.0201521 0.0278504i
$$393$$ −0.992784 + 0.0632549i −0.0500793 + 0.00319079i
$$394$$ 13.7488 + 11.5366i 0.692656 + 0.581207i
$$395$$ 19.6007 0.986216
$$396$$ −0.688894 + 3.05470i −0.0346182 + 0.153505i
$$397$$ 17.7545i 0.891073i −0.895264 0.445536i $$-0.853013\pi$$
0.895264 0.445536i $$-0.146987\pi$$
$$398$$ −9.35138 + 53.0343i −0.468742 + 2.65837i
$$399$$ 4.13886 3.67337i 0.207202 0.183899i
$$400$$ 34.6256 + 12.6027i 1.73128 + 0.630134i
$$401$$ 15.5181 + 18.4938i 0.774939 + 0.923536i 0.998693 0.0511095i $$-0.0162758\pi$$
−0.223754 + 0.974646i $$0.571831\pi$$
$$402$$ −13.4443 + 18.2659i −0.670542 + 0.911019i
$$403$$ −0.461943 + 0.168134i −0.0230110 + 0.00837533i
$$404$$ −2.07890 3.60076i −0.103429 0.179145i
$$405$$ 23.6354 + 23.9823i 1.17445 + 1.19169i
$$406$$ 16.6864 8.85157i 0.828133 0.439296i
$$407$$ −0.184142 + 0.219451i −0.00912756 + 0.0108778i
$$408$$ −0.306507 0.700046i −0.0151744 0.0346575i
$$409$$ −6.50514 + 17.8727i −0.321659 + 0.883750i 0.668489 + 0.743722i $$0.266941\pi$$
−0.990148 + 0.140028i $$0.955281\pi$$
$$410$$ 36.1313 + 43.0596i 1.78440 + 2.12656i
$$411$$ −1.14006 + 3.88501i −0.0562349 + 0.191634i
$$412$$ −22.9319 4.04350i −1.12977 0.199209i
$$413$$ 1.78105 0.944787i 0.0876398 0.0464899i
$$414$$ −33.6669 + 36.4734i −1.65464 + 1.79257i
$$415$$ −3.39444 + 5.87934i −0.166626 + 0.288605i
$$416$$ 6.92652 39.2822i 0.339600 1.92597i
$$417$$ −0.727630 0.360476i −0.0356322 0.0176526i
$$418$$ −0.439211 + 1.20672i −0.0214825 + 0.0590228i
$$419$$ −24.5217 + 20.5762i −1.19796 + 1.00521i −0.198279 + 0.980146i $$0.563535\pi$$
−0.999686 + 0.0250662i $$0.992020\pi$$
$$420$$ −28.4940 + 17.5228i −1.39037 + 0.855027i
$$421$$ −11.0428 + 4.01925i −0.538193 + 0.195886i −0.596793 0.802395i $$-0.703559\pi$$
0.0585997 + 0.998282i $$0.481336\pi$$
$$422$$ 7.43006 + 4.28975i 0.361689 + 0.208822i
$$423$$ 10.0426 + 13.1870i 0.488290 + 0.641174i
$$424$$ 0.481527 + 0.834030i 0.0233850 + 0.0405041i
$$425$$ 38.3652 13.9638i 1.86099 0.677344i
$$426$$ −11.9497 3.50664i −0.578964 0.169897i
$$427$$ 2.36946 + 16.9791i 0.114666 + 0.821675i
$$428$$ 29.8465 5.26275i 1.44269 0.254385i
$$429$$ 0.514812 4.62290i 0.0248553 0.223196i
$$430$$ 0.0855724 + 0.235108i 0.00412667 + 0.0113379i
$$431$$ −8.85449 5.11214i −0.426506 0.246243i 0.271351 0.962480i $$-0.412530\pi$$
−0.697857 + 0.716237i $$0.745863\pi$$
$$432$$ −18.2530 + 10.9402i −0.878199 + 0.526361i
$$433$$ 2.62462i 0.126131i −0.998009 0.0630656i $$-0.979912\pi$$
0.998009 0.0630656i $$-0.0200877\pi$$
$$434$$ −0.344986 + 0.382399i −0.0165599 + 0.0183558i
$$435$$ 9.33489 + 21.3204i 0.447574 + 1.02224i
$$436$$ −3.03192 + 2.54408i −0.145203 + 0.121839i
$$437$$ −7.70007 + 6.46112i −0.368344 + 0.309077i
$$438$$ 21.9817 + 6.45053i 1.05033 + 0.308218i
$$439$$ −0.310662 0.853536i −0.0148271 0.0407371i 0.932058 0.362308i $$-0.118011\pi$$
−0.946885 + 0.321571i $$0.895789\pi$$
$$440$$ −0.0973069 + 0.168541i −0.00463893 + 0.00803486i
$$441$$ −2.49371 + 20.8514i −0.118748 + 0.992924i
$$442$$ −22.6389 39.2118i −1.07682 1.86512i
$$443$$ −7.50939 + 8.94934i −0.356782 + 0.425196i −0.914344 0.404939i $$-0.867293\pi$$
0.557562 + 0.830136i $$0.311737\pi$$
$$444$$ 1.80592 0.115063i 0.0857050 0.00546066i
$$445$$ 5.98540 + 33.9449i 0.283735 + 1.60914i
$$446$$ 2.66448 + 0.969793i 0.126167 + 0.0459210i
$$447$$ 14.8109 9.85732i 0.700529 0.466235i
$$448$$ −6.19833 19.1397i −0.292844 0.904264i
$$449$$ 8.77509 5.06630i 0.414122 0.239094i −0.278437 0.960454i $$-0.589816\pi$$
0.692559 + 0.721361i $$0.256483\pi$$
$$450$$ −24.6005 47.6803i −1.15968 2.24767i
$$451$$ −3.50196 + 2.02186i −0.164901 + 0.0952054i
$$452$$ −9.44160 + 11.2521i −0.444095 + 0.529252i
$$453$$ −0.716567 + 0.683467i −0.0336673 + 0.0321121i
$$454$$ −13.1835 + 36.2213i −0.618731 + 1.69995i
$$455$$ 39.1848 30.5534i 1.83701 1.43236i
$$456$$ −0.186297 + 0.0815679i −0.00872414 + 0.00381977i
$$457$$ 4.79126 27.1726i 0.224126 1.27108i −0.640223 0.768189i $$-0.721158\pi$$
0.864349 0.502892i $$-0.167731\pi$$
$$458$$ 2.56572 4.44395i 0.119888 0.207652i
$$459$$ −7.70106 + 22.2858i −0.359455 + 1.04021i
$$460$$ 52.6197 30.3800i 2.45341 1.41648i
$$461$$ 14.3944 + 12.0783i 0.670413 + 0.562543i 0.913188 0.407540i $$-0.133613\pi$$
−0.242775 + 0.970083i $$0.578058\pi$$
$$462$$ −1.79315 4.53127i −0.0834248 0.210814i
$$463$$ 0.164111 + 0.930721i 0.00762690 + 0.0432543i 0.988384 0.151979i $$-0.0485647\pi$$
−0.980757 + 0.195233i $$0.937454\pi$$
$$464$$ −14.4860 + 2.55428i −0.672497 + 0.118579i
$$465$$ −0.437997 0.459209i −0.0203116 0.0212953i
$$466$$ −37.1966 31.2117i −1.72310 1.44585i
$$467$$ −10.5286 −0.487204 −0.243602 0.969875i $$-0.578329\pi$$
−0.243602 + 0.969875i $$0.578329\pi$$
$$468$$ −23.3754 + 17.8017i −1.08053 + 0.822884i
$$469$$ 0.625167 17.4180i 0.0288675 0.804288i
$$470$$ −14.0534 38.6113i −0.648234 1.78101i
$$471$$ 0.873031 + 13.7022i 0.0402271 + 0.631364i
$$472$$ −0.0729674 + 0.0128661i −0.00335859 + 0.000592211i
$$473$$ −0.0177254 + 0.00312548i −0.000815017 + 0.000143709i
$$474$$ 15.0156 9.99357i 0.689688 0.459020i
$$475$$ −3.71606 10.2098i −0.170504 0.468457i
$$476$$ −19.8529 12.4323i −0.909955 0.569831i
$$477$$ 6.53695 28.9862i 0.299306 1.32719i
$$478$$ −46.8627 −2.14345
$$479$$ −3.38457 2.83999i −0.154645 0.129763i 0.562182 0.827013i $$-0.309962\pi$$
−0.716827 + 0.697251i $$0.754406\pi$$
$$480$$ 50.0386 12.1478i 2.28394 0.554470i
$$481$$ −2.64715 + 0.466764i −0.120700 + 0.0212826i
$$482$$ −3.30972 18.7704i −0.150754 0.854967i
$$483$$ 5.57878 37.7342i 0.253843 1.71696i
$$484$$ −16.0130 13.4365i −0.727864 0.610751i
$$485$$ −41.4394 + 23.9250i −1.88167 + 1.08638i
$$486$$ 30.3340 + 6.32149i 1.37598 + 0.286749i
$$487$$ 17.8504 30.9178i 0.808879 1.40102i −0.104761 0.994497i $$-0.533408\pi$$
0.913641 0.406523i $$-0.133259\pi$$
$$488$$ 0.109404 0.620459i 0.00495247 0.0280869i
$$489$$ −1.13706 + 10.2106i −0.0514197 + 0.461738i
$$490$$ 21.2656 47.5151i 0.960684 2.14651i
$$491$$ 7.59387 20.8640i 0.342707 0.941579i −0.641899 0.766789i $$-0.721853\pi$$
0.984606 0.174790i $$-0.0559246\pi$$
$$492$$ 24.5096 + 7.19234i 1.10498 + 0.324256i
$$493$$ −10.4763 + 12.4851i −0.471827 + 0.562302i
$$494$$ −10.4351 + 6.02469i −0.469496 + 0.271064i
$$495$$ 5.73326 1.78476i 0.257691 0.0802189i
$$496$$ 0.347334 0.200533i 0.0155958 0.00900422i
$$497$$ 9.10473 2.94854i 0.408403 0.132260i
$$498$$ 0.397242 + 6.23470i 0.0178008 + 0.279383i
$$499$$ 34.0726 + 12.4014i 1.52530 + 0.555164i 0.962465 0.271405i $$-0.0874882\pi$$
0.562835 + 0.826569i $$0.309710\pi$$
$$500$$ 5.06676 + 28.7351i 0.226593 + 1.28507i
$$501$$ −10.8540 16.3084i −0.484920 0.728604i
$$502$$ −17.4815 + 20.8336i −0.780237 + 0.929851i
$$503$$ −1.90297 3.29604i −0.0848491 0.146963i 0.820478 0.571678i $$-0.193708\pi$$
−0.905327 + 0.424715i $$0.860374\pi$$
$$504$$ 0.323277 0.700782i 0.0143999 0.0312153i
$$505$$ −3.98639 + 6.90463i −0.177392 + 0.307252i
$$506$$ 3.02743 + 8.31779i 0.134586 + 0.369771i
$$507$$ 15.2889 14.5826i 0.679002 0.647637i
$$508$$ 27.6145 23.1713i 1.22519 1.02806i
$$509$$ −8.19879 + 6.87960i −0.363405 + 0.304933i −0.806146 0.591717i $$-0.798450\pi$$
0.442741 + 0.896649i $$0.354006\pi$$
$$510$$ 34.6476 47.0734i 1.53422 2.08444i
$$511$$ −16.7483 + 5.42391i −0.740903 + 0.239940i
$$512$$ 31.7467i 1.40302i
$$513$$ 5.93072 + 2.04941i 0.261848 + 0.0904837i
$$514$$ 52.7226 + 30.4394i 2.32549 + 1.34262i
$$515$$ 15.2716 + 41.9584i 0.672948 + 1.84891i
$$516$$ 0.0915656 + 0.0673954i 0.00403095 + 0.00296692i
$$517$$ 2.91101 0.513290i 0.128026 0.0225745i
$$518$$ −2.22080 + 1.73161i −0.0975762 + 0.0760826i
$$519$$ 4.21503 + 17.3623i 0.185019 + 0.762120i
$$520$$ −1.71594 + 0.624551i −0.0752490 + 0.0273884i
$$521$$ 20.5421 + 35.5799i 0.899965 + 1.55878i 0.827537 + 0.561411i $$0.189741\pi$$
0.0724277 + 0.997374i $$0.476925\pi$$
$$522$$ 18.0216 + 11.5735i 0.788785 + 0.506560i
$$523$$ −31.7383 18.3241i −1.38782 0.801258i −0.394751 0.918788i $$-0.629169\pi$$
−0.993069 + 0.117530i $$0.962502\pi$$
$$524$$ 1.05302 0.383267i 0.0460013 0.0167431i
$$525$$ 36.2651 + 19.6166i 1.58274 + 0.856138i
$$526$$ 5.54595 4.65360i 0.241815 0.202907i
$$527$$ 0.151988 0.417584i 0.00662071 0.0181902i
$$528$$ 0.241304 + 3.78726i 0.0105014 + 0.164819i
$$529$$ −8.03735 + 45.5821i −0.349450 + 1.98183i
$$530$$ −36.8292 + 63.7900i −1.59976 + 2.77086i
$$531$$ 1.92357 + 1.23532i 0.0834757 + 0.0536083i
$$532$$ −3.30848 + 5.28326i −0.143441 + 0.229058i
$$533$$ −37.3658 6.58860i −1.61849 0.285384i
$$534$$ 21.8924 + 22.9526i 0.947376 + 0.993257i
$$535$$ −37.3556 44.5187i −1.61502 1.92471i
$$536$$ −0.219073 + 0.601898i −0.00946250 + 0.0259980i
$$537$$ 7.70546 10.4689i 0.332515 0.451765i
$$538$$ 41.2595 49.1711i 1.77882 2.11992i
$$539$$ 3.10060 + 2.10015i 0.133553 + 0.0904598i
$$540$$ −33.1538 18.4252i −1.42671 0.792893i
$$541$$ −17.5845 30.4573i −0.756018 1.30946i −0.944867 0.327455i $$-0.893809\pi$$
0.188849 0.982006i $$-0.439524\pi$$
$$542$$ 46.3213 16.8596i 1.98967 0.724180i
$$543$$ −12.6015 28.7813i −0.540784 1.23512i
$$544$$ 23.1775 + 27.6219i 0.993729 + 1.18428i
$$545$$ 7.13173 + 2.59574i 0.305490 + 0.111189i
$$546$$ 14.4406 43.3849i 0.618000 1.85670i
$$547$$ −5.94589 + 33.7208i −0.254228 + 1.44180i 0.543818 + 0.839203i $$0.316978\pi$$
−0.798046 + 0.602596i $$0.794133\pi$$
$$548$$ 4.56085i 0.194830i
$$549$$ −15.4650 + 11.7775i −0.660031 + 0.502651i
$$550$$ −9.56781 −0.407973
$$551$$ 3.32255 + 2.78795i 0.141545 + 0.118771i
$$552$$ −0.622294 + 1.25612i −0.0264866 + 0.0534638i
$$553$$ −5.20493 + 12.8468i −0.221336 + 0.546300i
$$554$$ −20.0477 23.8919i −0.851743 1.01507i
$$555$$ −1.92254 2.88866i −0.0816074 0.122617i
$$556$$ 0.900819 + 0.158839i 0.0382032 + 0.00673626i
$$557$$ 34.3108i 1.45379i −0.686746 0.726897i $$-0.740962\pi$$
0.686746 0.726897i $$-0.259038\pi$$
$$558$$ −0.569670 0.128472i −0.0241161 0.00543864i
$$559$$ −0.146258 0.0844420i −0.00618605 0.00357152i
$$560$$ −27.1550 + 30.0999i −1.14751 + 1.27195i
$$561$$ 2.90214 + 3.04269i 0.122529 + 0.128462i
$$562$$ 4.45657 + 25.2744i 0.187989 + 1.06614i
$$563$$ −12.0895 4.40022i −0.509512 0.185447i 0.0744555 0.997224i $$-0.476278\pi$$
−0.583967 + 0.811777i $$0.698500\pi$$
$$564$$ −15.0376 11.0682i −0.633198 0.466056i
$$565$$ 27.7380 + 4.89096i 1.16695 + 0.205764i
$$566$$ 45.2622 1.90251
$$567$$ −21.9949 + 9.12274i −0.923699 + 0.383119i
$$568$$ −0.351709 −0.0147574
$$569$$ −2.71061 0.477954i −0.113635 0.0200369i 0.116542 0.993186i $$-0.462819\pi$$
−0.230176 + 0.973149i $$0.573930\pi$$
$$570$$ −12.5272 9.22045i −0.524707 0.386202i
$$571$$ −25.9325 9.43866i −1.08524 0.394996i −0.263386 0.964691i $$-0.584839\pi$$
−0.821856 + 0.569695i $$0.807061\pi$$
$$572$$ 0.909864 + 5.16009i 0.0380433 + 0.215754i
$$573$$ 14.2298 + 14.9189i 0.594458 + 0.623247i
$$574$$ −37.8169 + 12.2469i −1.57845 + 0.511177i
$$575$$ −64.8577 37.4456i −2.70475 1.56159i
$$576$$ 15.4727 16.7625i 0.644697 0.698439i
$$577$$ 8.16361i 0.339856i −0.985457 0.169928i $$-0.945647\pi$$
0.985457 0.169928i $$-0.0543535\pi$$
$$578$$ 7.03005 + 1.23959i 0.292412 + 0.0515600i
$$579$$ −7.07110 10.6245i −0.293865 0.441539i
$$580$$ −16.8524 20.0839i −0.699759 0.833940i
$$581$$ −2.95208 3.78605i −0.122473 0.157072i
$$582$$ −19.5473 + 39.4566i −0.810260 + 1.63553i
$$583$$ −4.05920 3.40607i −0.168115 0.141065i
$$584$$ 0.646976 0.0267721
$$585$$ 51.9740 + 21.7505i 2.14886 + 0.899271i
$$586$$ 0.432507i 0.0178667i
$$587$$ 4.51916 25.6294i 0.186526 1.05784i −0.737454 0.675398i $$-0.763972\pi$$
0.923979 0.382442i $$-0.124917\pi$$
$$588$$ −3.91835 23.3289i −0.161590 0.962066i
$$589$$ −0.111128 0.0404472i −0.00457894 0.00166660i
$$590$$ −3.64264 4.34113i −0.149965 0.178721i
$$591$$ −6.27255 14.3262i −0.258018 0.589300i
$$592$$ 2.06076 0.750055i 0.0846966 0.0308271i
$$593$$ −11.0942 19.2157i −0.455584 0.789095i 0.543137 0.839644i $$-0.317236\pi$$
−0.998722 + 0.0505489i $$0.983903\pi$$
$$594$$ 3.48213 4.29041i 0.142874 0.176038i
$$595$$ −1.61113 + 44.8883i −0.0660500 + 1.84024i
$$596$$ −12.8822 + 15.3524i −0.527674 + 0.628858i
$$597$$ 27.8163 37.7921i 1.13845 1.54673i
$$598$$ −28.4064 + 78.0460i −1.16163 + 3.19154i
$$599$$ 10.5607 + 12.5858i 0.431500 + 0.514242i 0.937354 0.348377i $$-0.113267\pi$$
−0.505854 + 0.862619i $$0.668823\pi$$
$$600$$ −1.04581 1.09646i −0.0426950 0.0447627i
$$601$$ −23.4204 4.12965i −0.955338 0.168452i −0.325815 0.945434i $$-0.605639\pi$$
−0.629523 + 0.776982i $$0.716750\pi$$
$$602$$ −0.176819 0.00634641i −0.00720662 0.000258660i
$$603$$ 17.5630 9.06156i 0.715220 0.369015i
$$604$$ 0.557738 0.966031i 0.0226940 0.0393072i
$$605$$ −6.96041 + 39.4745i −0.282981 + 1.60486i
$$606$$ 0.466516 + 7.32196i 0.0189509 + 0.297434i
$$607$$ 7.02430 19.2991i 0.285108 0.783327i −0.711625 0.702559i $$-0.752041\pi$$
0.996733 0.0807677i $$-0.0257372\pi$$
$$608$$ 7.35076 6.16802i 0.298113 0.250146i
$$609$$ −16.4528 + 0.456715i −0.666701 + 0.0185070i
$$610$$ 45.2813 16.4810i 1.83339 0.667298i
$$611$$ 24.0196 + 13.8677i 0.971730 + 0.561028i
$$612$$ 1.25521 26.5310i 0.0507387 1.07245i
$$613$$ 3.78576 + 6.55712i 0.152905 + 0.264840i 0.932294 0.361701i $$-0.117804\pi$$
−0.779389 + 0.626540i $$0.784470\pi$$
$$614$$ 37.4909 13.6456i 1.51301 0.550690i
$$615$$ −11.5552 47.5974i −0.465950 1.91931i
$$616$$ −0.0846259 0.108533i −0.00340968 0.00437292i
$$617$$ −20.9804 + 3.69941i −0.844639 + 0.148933i −0.579190 0.815192i $$-0.696631\pi$$
−0.265448 + 0.964125i $$0.585520\pi$$
$$618$$ 33.0921 + 24.3569i 1.33116 + 0.979778i
$$619$$ 14.3321 + 39.3772i 0.576057 + 1.58270i 0.794768 + 0.606913i $$0.207592\pi$$
−0.218712 + 0.975789i $$0.570185\pi$$
$$620$$ 0.619077 + 0.357424i 0.0248627 + 0.0143545i
$$621$$ 40.3959 15.4556i 1.62103 0.620210i
$$622$$ 0.394460i 0.0158164i
$$623$$ −23.8378 5.09104i −0.955039 0.203968i
$$624$$ −21.1076 + 28.6775i −0.844981 + 1.14802i
$$625$$ 8.39926 7.04781i 0.335970 0.281913i
$$626$$ 24.9525 20.9376i 0.997303 0.836837i
$$627$$ 0.809723 0.772320i 0.0323372 0.0308435i
$$628$$ −5.28978 14.5335i −0.211085 0.579951i
$$629$$ 1.21493 2.10433i 0.0484426 0.0839050i
$$630$$ 58.7806 5.38641i 2.34188 0.214600i
$$631$$ 15.3609 + 26.6058i 0.611507 + 1.05916i 0.990987 + 0.133961i $$0.0427698\pi$$
−0.379479 + 0.925200i $$0.623897\pi$$
$$632$$ 0.327435 0.390222i 0.0130247 0.0155222i
$$633$$ −4.14206 6.22354i −0.164632 0.247364i
$$634$$ −4.83424 27.4163i −0.191992 1.08884i
$$635$$ −64.9553 23.6418i −2.57767 0.938196i
$$636$$ 2.12833 + 33.4041i 0.0843937 + 1.32456i
$$637$$ 9.61996 + 33.7961i 0.381157 + 1.33905i
$$638$$ 3.30773 1.90972i 0.130954 0.0756064i
$$639$$ 7.97393 + 7.36037i 0.315444 + 0.291172i
$$640$$ 2.51954 1.45466i 0.0995935 0.0575003i
$$641$$ −6.04399 + 7.20295i −0.238723 + 0.284499i −0.872083 0.489358i $$-0.837231\pi$$
0.633359 + 0.773858i $$0.281675\pi$$
$$642$$ −51.3154 15.0585i −2.02526 0.594313i
$$643$$ 11.5765 31.8061i 0.456531 1.25431i −0.471519 0.881856i $$-0.656294\pi$$
0.928051 0.372454i $$-0.121484\pi$$
$$644$$ 5.93871 + 42.5557i 0.234018 + 1.67693i
$$645$$ 0.0241292 0.216675i 0.000950084 0.00853155i
$$646$$ 1.89143 10.7268i 0.0744173 0.422041i
$$647$$ −13.4560 + 23.3065i −0.529011 + 0.916274i 0.470417 + 0.882444i $$0.344104\pi$$
−0.999428 + 0.0338292i $$0.989230\pi$$
$$648$$ 0.872289 0.0699162i 0.0342667 0.00274657i
$$649$$ 0.353055 0.203837i 0.0138586 0.00800129i
$$650$$ −68.7716 57.7062i −2.69744 2.26342i
$$651$$ 0.417286 0.165132i 0.0163547 0.00647202i
$$652$$ −2.00961 11.3971i −0.0787024 0.446344i
$$653$$ −38.0056 + 6.70141i −1.48727 + 0.262247i −0.857481 0.514516i $$-0.827972\pi$$
−0.629793 + 0.776763i $$0.716860\pi$$
$$654$$ 6.78690 1.64765i 0.265389 0.0644282i
$$655$$ −1.64607 1.38122i −0.0643175 0.0539688i
$$656$$ 30.9554 1.20861
$$657$$ −14.6682 13.5396i −0.572261 0.528228i
$$658$$ 29.0387 + 1.04226i 1.13205 + 0.0406314i
$$659$$ −4.48755 12.3294i −0.174810 0.480287i 0.821085 0.570807i $$-0.193369\pi$$
−0.995895 + 0.0905197i $$0.971147\pi$$
$$660$$ −5.63087 + 3.74761i −0.219181 + 0.145876i
$$661$$ −44.5728 + 7.85938i −1.73368 + 0.305695i −0.949250 0.314523i $$-0.898156\pi$$
−0.784430 + 0.620217i $$0.787044\pi$$
$$662$$ 28.6500 5.05176i 1.11351 0.196342i
$$663$$ 2.50870 + 39.3739i 0.0974297 + 1.52916i
$$664$$ 0.0603443 + 0.165795i 0.00234181 + 0.00643408i
$$665$$ 11.9457 + 0.428755i 0.463234 + 0.0166264i
$$666$$ −2.94562 1.23271i −0.114140 0.0477664i
$$667$$ 29.8963 1.15759
$$668$$ 16.9046 + 14.1847i 0.654060 + 0.548821i
$$669$$ −1.70531 1.78789i −0.0659310 0.0691240i
$$670$$ −48.2458 + 8.50704i −1.86390 + 0.328655i
$$671$$ 0.601960 + 3.41388i 0.0232384 + 0.131791i
$$672$$ −5.32570 + 36.0224i −0.205444 + 1.38959i
$$673$$ 13.0981 + 10.9906i 0.504895 + 0.423657i 0.859328 0.511424i $$-0.170882\pi$$
−0.354434 + 0.935081i $$0.615326\pi$$
$$674$$ 34.4487 19.8890i 1.32691 0.766094i
$$675$$ 0.764486 + 46.7449i 0.0294251 + 1.79921i
$$676$$ −11.9000 + 20.6115i −0.457694 + 0.792749i
$$677$$ 2.82362 16.0135i 0.108520 0.615450i −0.881235 0.472678i $$-0.843287\pi$$
0.989756 0.142772i $$-0.0456016\pi$$
$$678$$ 23.7431 10.3956i 0.911847 0.399242i
$$679$$ −4.67689 33.5137i −0.179483 1.28614i
$$680$$ 0.564577 1.55116i 0.0216505 0.0594844i
$$681$$ 24.3048 23.1821i 0.931362 0.888340i
$$682$$ −0.0669400 + 0.0797760i −0.00256326 + 0.00305478i
$$683$$ 15.1999 8.77566i 0.581608 0.335791i −0.180164 0.983637i $$-0.557663\pi$$
0.761772 + 0.647845i $$0.224330\pi$$
$$684$$ −7.06044 0.334036i −0.269963 0.0127722i
$$685$$ −7.57394 + 4.37281i −0.289385 + 0.167077i
$$686$$ 25.4955 + 26.5556i 0.973423 + 1.01390i
$$687$$ −3.72233 + 2.47739i −0.142016 + 0.0945183i
$$688$$ 0.129476 + 0.0471253i 0.00493622 + 0.00179664i
$$689$$ −8.63374 48.9644i −0.328919 1.86539i
$$690$$ −106.999 + 6.81742i −4.07339 + 0.259535i
$$691$$ −9.66628 + 11.5198i −0.367723 + 0.438235i −0.917899 0.396814i $$-0.870116\pi$$
0.550177 + 0.835048i $$0.314560\pi$$
$$692$$ −10.0630 17.4296i −0.382538 0.662575i
$$693$$ −0.352686 + 4.23166i −0.0133974 + 0.160747i
$$694$$ −10.7447 + 18.6103i −0.407862 + 0.706437i
$$695$$ −0.599906 1.64823i −0.0227557 0.0625209i
$$696$$ 0.580402 + 0.170319i 0.0220001 + 0.00645593i
$$697$$ 26.2743 22.0468i 0.995212 0.835082i
$$698$$ 44.6428 37.4597i 1.68975 1.41787i
$$699$$ 16.9700 + 38.7586i 0.641865 + 1.46599i
$$700$$ −45.4203 9.70045i −1.71673 0.366642i
$$701$$ 29.7179i 1.12243i 0.827670 + 0.561215i $$0.189666\pi$$
−0.827670 + 0.561215i $$0.810334\pi$$
$$702$$ 50.9056 9.83693i 1.92131 0.371271i
$$703$$ −0.560004 0.323319i −0.0211210 0.0121942i
$$704$$ −1.39135 3.82271i −0.0524386 0.144074i
$$705$$ −3.96268 + 35.5840i −0.149243 + 1.34017i
$$706$$ 39.4750 6.96051i 1.48566 0.261962i
$$707$$ −3.46688 4.44629i −0.130386 0.167220i
$$708$$ −2.47097 0.725108i −0.0928648 0.0272512i
$$709$$ 12.7351 4.63518i 0.478275 0.174078i −0.0916221 0.995794i $$-0.529205\pi$$
0.569897 + 0.821716i $$0.306983\pi$$
$$710$$ −13.4501 23.2962i −0.504772 0.874292i
$$711$$ −15.5899 + 1.99471i −0.584668 + 0.0748075i
$$712$$ 0.775784 + 0.447899i 0.0290737 + 0.0167857i
$$713$$ −0.765989 + 0.278797i −0.0286865 + 0.0104410i
$$714$$ 21.6524 + 35.2092i 0.810322 + 1.31767i
$$715$$ 7.69672 6.45831i 0.287841 0.241527i
$$716$$ −5.00811 + 13.7597i −0.187162 + 0.514223i
$$717$$ 36.5906 + 18.1274i 1.36650 + 0.676980i
$$718$$ 5.77649 32.7601i 0.215577 1.22260i
$$719$$ −6.04872 + 10.4767i −0.225579 + 0.390714i −0.956493 0.291755i $$-0.905761\pi$$
0.730914 + 0.682470i $$0.239094\pi$$
$$720$$ −44.8406 10.1124i −1.67111 0.376867i
$$721$$ −31.5559 1.13261i −1.17520 0.0421805i
$$722$$ 34.3385 + 6.05481i 1.27795 + 0.225337i
$$723$$ −4.67650 + 15.9363i −0.173921 + 0.592676i
$$724$$ 22.7498 + 27.1121i 0.845488 + 1.00761i
$$725$$ −11.0525 + 30.3664i −0.410478 + 1.12778i
$$726$$ 14.7942 + 33.7892i 0.549065 + 1.25403i
$$727$$ −12.2167 + 14.5592i −0.453091 + 0.539973i −0.943436 0.331556i $$-0.892426\pi$$
0.490345 + 0.871529i $$0.336871\pi$$
$$728$$ 0.0463194 1.29052i 0.00171671 0.0478298i
$$729$$ −21.2397 16.6696i −0.786654 0.617394i
$$730$$ 24.7417 + 42.8539i 0.915731 + 1.58609i
$$731$$ 0.143460 0.0522150i 0.00530604 0.00193124i
$$732$$ 12.9802 17.6353i 0.479762 0.651820i
$$733$$ −0.281308 0.335249i −0.0103903 0.0123827i 0.760824 0.648958i $$-0.224795\pi$$
−0.771215 + 0.636575i $$0.780350\pi$$
$$734$$ −15.3726 5.59518i −0.567415 0.206522i
$$735$$ −34.9841 + 28.8741i −1.29041 + 1.06504i
$$736$$ 11.4855 65.1374i 0.423360 2.40100i
$$737$$ 3.52429i 0.129819i
$$738$$ −33.1201 30.5717i −1.21917 1.12536i
$$739$$ −23.5322 −0.865644 −0.432822 0.901479i $$-0.642482\pi$$
−0.432822 + 0.901479i $$0.642482\pi$$
$$740$$ 2.99428 + 2.51250i 0.110072 + 0.0923613i
$$741$$ 10.4782 0.667616i 0.384927 0.0245255i
$$742$$ −32.0296 41.0781i −1.17584 1.50803i
$$743$$ 24.1698 + 28.8045i 0.886705 + 1.05673i 0.998017 + 0.0629481i $$0.0200503\pi$$
−0.111312 + 0.993786i $$0.535505\pi$$
$$744$$ −0.0164591 + 0.00104868i −0.000603419 + 3.84466e-5i
$$745$$ 37.8459 + 6.67325i 1.38657 + 0.244489i
$$746$$ 29.8410i 1.09256i
$$747$$ 2.10154 5.02174i 0.0768912 0.183736i
$$748$$ −4.10196 2.36827i −0.149983 0.0865925i
$$749$$ 39.0984 12.6619i 1.42862 0.462656i
$$750$$ 14.4977 49.4044i 0.529383 1.80399i
$$751$$ 7.27989 + 41.2863i 0.265647 + 1.50656i 0.767187 + 0.641424i $$0.221656\pi$$
−0.501540 + 0.865134i $$0.667233\pi$$
$$752$$ −21.2635 7.73929i −0.775401 0.282223i
$$753$$ 21.7085 9.50481i 0.791101 0.346375i
$$754$$ 35.2934 + 6.22317i 1.28531 + 0.226635i
$$755$$ −2.13898 −0.0778453
$$756$$ 20.8803 16.8370i 0.759408 0.612358i
$$757$$ −48.7358 −1.77133 −0.885667 0.464321i $$-0.846298\pi$$
−0.885667 + 0.464321i $$0.846298\pi$$
$$758$$ −46.3227 8.16794i −1.68252 0.296673i
$$759$$ 0.853655 7.66564i 0.0309857 0.278245i
$$760$$ −0.412796 0.150246i −0.0149737 0.00544998i
$$761$$ −3.97930 22.5677i −0.144250 0.818080i −0.967967 0.251079i $$-0.919215\pi$$
0.823717 0.567001i $$-0.191896\pi$$
$$762$$ −61.8146 + 15.0067i −2.23930 + 0.543634i
$$763$$ −3.59513 + 3.98502i −0.130153 + 0.144267i
$$764$$ −20.1128 11.6121i −0.727654 0.420111i
$$765$$ −45.2619 + 23.3527i −1.63645 + 0.844320i
$$766$$ 3.82783i 0.138305i
$$767$$ 3.76709 +