Properties

Label 189.2.ba.a.38.2
Level $189$
Weight $2$
Character 189.38
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(5,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.ba (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 38.2
Character \(\chi\) \(=\) 189.38
Dual form 189.2.ba.a.5.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.44999 - 0.431999i) q^{2} +(1.58275 + 0.703494i) q^{3} +(3.93642 + 1.43274i) q^{4} +(0.403704 + 2.28952i) q^{5} +(-3.57380 - 2.40730i) q^{6} +(-0.412545 + 2.61339i) q^{7} +(-4.71627 - 2.72294i) q^{8} +(2.01019 + 2.22691i) q^{9} +O(q^{10})\) \(q+(-2.44999 - 0.431999i) q^{2} +(1.58275 + 0.703494i) q^{3} +(3.93642 + 1.43274i) q^{4} +(0.403704 + 2.28952i) q^{5} +(-3.57380 - 2.40730i) q^{6} +(-0.412545 + 2.61339i) q^{7} +(-4.71627 - 2.72294i) q^{8} +(2.01019 + 2.22691i) q^{9} -5.78368i q^{10} +(-5.86267 - 1.03375i) q^{11} +(5.22244 + 5.03692i) q^{12} +(-1.72550 - 2.05637i) q^{13} +(2.13971 - 6.22455i) q^{14} +(-0.971701 + 3.90774i) q^{15} +(3.96048 + 3.32324i) q^{16} +1.48856 q^{17} +(-3.96292 - 6.32430i) q^{18} +2.92214i q^{19} +(-1.69114 + 9.59091i) q^{20} +(-2.49146 + 3.84612i) q^{21} +(13.9169 + 5.06533i) q^{22} +(4.20752 + 5.01433i) q^{23} +(-5.54910 - 7.62760i) q^{24} +(-0.380452 + 0.138473i) q^{25} +(3.33910 + 5.78349i) q^{26} +(1.61501 + 4.93880i) q^{27} +(-5.36826 + 9.69633i) q^{28} +(3.10962 - 3.70590i) q^{29} +(4.06879 - 9.15412i) q^{30} +(1.68973 - 4.64251i) q^{31} +(-1.26641 - 1.50924i) q^{32} +(-8.55190 - 5.76052i) q^{33} +(-3.64696 - 0.643057i) q^{34} +(-6.14995 + 0.110507i) q^{35} +(4.72237 + 11.6461i) q^{36} +(-1.99304 + 3.45205i) q^{37} +(1.26236 - 7.15921i) q^{38} +(-1.28439 - 4.46860i) q^{39} +(4.33024 - 11.8972i) q^{40} +(5.76168 - 4.83463i) q^{41} +(7.76556 - 8.34663i) q^{42} +(0.444334 - 0.161724i) q^{43} +(-21.5968 - 12.4689i) q^{44} +(-4.28703 + 5.50138i) q^{45} +(-8.14219 - 14.1027i) q^{46} +(6.12493 - 2.22929i) q^{47} +(3.93057 + 8.04603i) q^{48} +(-6.65961 - 2.15628i) q^{49} +(0.991923 - 0.174903i) q^{50} +(2.35602 + 1.04720i) q^{51} +(-3.84605 - 10.5669i) q^{52} +(9.00163 + 5.19709i) q^{53} +(-1.82320 - 12.7977i) q^{54} -13.8400i q^{55} +(9.06177 - 11.2021i) q^{56} +(-2.05571 + 4.62502i) q^{57} +(-9.21946 + 7.73605i) q^{58} +(-0.316739 + 0.265775i) q^{59} +(-9.42379 + 13.9903i) q^{60} +(0.460673 + 1.26569i) q^{61} +(-6.14538 + 10.6441i) q^{62} +(-6.64908 + 4.33471i) q^{63} +(-2.71936 - 4.71007i) q^{64} +(4.01151 - 4.78073i) q^{65} +(18.4635 + 17.8076i) q^{66} +(1.32301 + 7.50314i) q^{67} +(5.85961 + 2.13272i) q^{68} +(3.13190 + 10.8964i) q^{69} +(15.1150 + 2.38603i) q^{70} +(0.361814 - 0.208894i) q^{71} +(-3.41686 - 15.9763i) q^{72} +(2.47715 - 1.43018i) q^{73} +(6.37420 - 7.59648i) q^{74} +(-0.699576 - 0.0484775i) q^{75} +(-4.18667 + 11.5028i) q^{76} +(5.12020 - 14.8950i) q^{77} +(1.21631 + 11.5029i) q^{78} +(0.359328 - 2.03785i) q^{79} +(-6.00976 + 10.4092i) q^{80} +(-0.918263 + 8.95303i) q^{81} +(-16.2046 + 9.35572i) q^{82} +(-3.50031 - 2.93711i) q^{83} +(-15.3179 + 11.5703i) q^{84} +(0.600939 + 3.40809i) q^{85} +(-1.15848 + 0.204271i) q^{86} +(7.52883 - 3.67791i) q^{87} +(24.8351 + 20.8391i) q^{88} -11.5745 q^{89} +(12.8797 - 11.6263i) q^{90} +(6.08595 - 3.66106i) q^{91} +(9.37835 + 25.7668i) q^{92} +(5.94040 - 6.15921i) q^{93} +(-15.9690 + 2.81577i) q^{94} +(-6.69030 + 1.17968i) q^{95} +(-0.942659 - 3.27966i) q^{96} +(-0.857926 - 2.35713i) q^{97} +(15.3844 + 8.15980i) q^{98} +(-9.48303 - 15.1337i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9} - 9 q^{11} - 9 q^{12} + 3 q^{14} - 24 q^{15} + 3 q^{16} - 18 q^{17} - 3 q^{18} + 18 q^{20} - 21 q^{21} - 12 q^{22} - 6 q^{23} - 9 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} + 51 q^{30} - 9 q^{31} + 3 q^{32} - 9 q^{33} - 18 q^{34} + 18 q^{35} + 3 q^{37} - 99 q^{38} - 36 q^{39} - 54 q^{40} - 45 q^{42} - 12 q^{43} - 9 q^{44} - 9 q^{45} + 3 q^{46} + 45 q^{47} - 24 q^{49} - 9 q^{50} - 48 q^{51} - 9 q^{52} - 45 q^{53} + 171 q^{54} + 3 q^{56} - 3 q^{58} + 36 q^{59} + 57 q^{60} - 9 q^{61} - 99 q^{62} - 33 q^{63} + 18 q^{64} + 69 q^{65} - 9 q^{66} - 3 q^{67} + 36 q^{68} + 108 q^{69} + 66 q^{70} + 18 q^{71} - 129 q^{72} - 9 q^{73} + 75 q^{74} + 36 q^{75} + 36 q^{76} + 15 q^{77} + 66 q^{78} - 21 q^{79} + 72 q^{80} - 33 q^{81} - 18 q^{82} - 90 q^{83} - 120 q^{84} + 9 q^{85} - 105 q^{86} - 54 q^{87} - 63 q^{88} - 18 q^{89} + 81 q^{90} + 6 q^{91} + 150 q^{92} + 21 q^{93} - 9 q^{94} + 45 q^{95} - 81 q^{96} + 27 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.44999 0.431999i −1.73240 0.305469i −0.783582 0.621289i \(-0.786610\pi\)
−0.948819 + 0.315819i \(0.897721\pi\)
\(3\) 1.58275 + 0.703494i 0.913801 + 0.406163i
\(4\) 3.93642 + 1.43274i 1.96821 + 0.716370i
\(5\) 0.403704 + 2.28952i 0.180542 + 1.02390i 0.931551 + 0.363611i \(0.118456\pi\)
−0.751009 + 0.660292i \(0.770432\pi\)
\(6\) −3.57380 2.40730i −1.45900 0.982775i
\(7\) −0.412545 + 2.61339i −0.155927 + 0.987769i
\(8\) −4.71627 2.72294i −1.66745 0.962704i
\(9\) 2.01019 + 2.22691i 0.670064 + 0.742304i
\(10\) 5.78368i 1.82896i
\(11\) −5.86267 1.03375i −1.76766 0.311686i −0.807237 0.590227i \(-0.799038\pi\)
−0.960424 + 0.278541i \(0.910149\pi\)
\(12\) 5.22244 + 5.03692i 1.50759 + 1.45403i
\(13\) −1.72550 2.05637i −0.478568 0.570335i 0.471704 0.881757i \(-0.343639\pi\)
−0.950272 + 0.311422i \(0.899195\pi\)
\(14\) 2.13971 6.22455i 0.571861 1.66358i
\(15\) −0.971701 + 3.90774i −0.250892 + 1.00897i
\(16\) 3.96048 + 3.32324i 0.990121 + 0.830810i
\(17\) 1.48856 0.361030 0.180515 0.983572i \(-0.442224\pi\)
0.180515 + 0.983572i \(0.442224\pi\)
\(18\) −3.96292 6.32430i −0.934068 1.49065i
\(19\) 2.92214i 0.670386i 0.942150 + 0.335193i \(0.108801\pi\)
−0.942150 + 0.335193i \(0.891199\pi\)
\(20\) −1.69114 + 9.59091i −0.378149 + 2.14459i
\(21\) −2.49146 + 3.84612i −0.543681 + 0.839292i
\(22\) 13.9169 + 5.06533i 2.96709 + 1.07993i
\(23\) 4.20752 + 5.01433i 0.877329 + 1.04556i 0.998598 + 0.0529404i \(0.0168593\pi\)
−0.121269 + 0.992620i \(0.538696\pi\)
\(24\) −5.54910 7.62760i −1.13270 1.55698i
\(25\) −0.380452 + 0.138473i −0.0760905 + 0.0276947i
\(26\) 3.33910 + 5.78349i 0.654852 + 1.13424i
\(27\) 1.61501 + 4.93880i 0.310809 + 0.950472i
\(28\) −5.36826 + 9.69633i −1.01451 + 1.83243i
\(29\) 3.10962 3.70590i 0.577442 0.688168i −0.395699 0.918380i \(-0.629498\pi\)
0.973140 + 0.230212i \(0.0739420\pi\)
\(30\) 4.06879 9.15412i 0.742856 1.67131i
\(31\) 1.68973 4.64251i 0.303485 0.833819i −0.690403 0.723425i \(-0.742567\pi\)
0.993888 0.110394i \(-0.0352112\pi\)
\(32\) −1.26641 1.50924i −0.223871 0.266799i
\(33\) −8.55190 5.76052i −1.48870 1.00278i
\(34\) −3.64696 0.643057i −0.625448 0.110283i
\(35\) −6.14995 + 0.110507i −1.03953 + 0.0186791i
\(36\) 4.72237 + 11.6461i 0.787062 + 1.94102i
\(37\) −1.99304 + 3.45205i −0.327654 + 0.567514i −0.982046 0.188642i \(-0.939591\pi\)
0.654392 + 0.756156i \(0.272925\pi\)
\(38\) 1.26236 7.15921i 0.204782 1.16138i
\(39\) −1.28439 4.46860i −0.205667 0.715549i
\(40\) 4.33024 11.8972i 0.684671 1.88112i
\(41\) 5.76168 4.83463i 0.899824 0.755042i −0.0703323 0.997524i \(-0.522406\pi\)
0.970156 + 0.242482i \(0.0779615\pi\)
\(42\) 7.76556 8.34663i 1.19825 1.28791i
\(43\) 0.444334 0.161724i 0.0677603 0.0246627i −0.307918 0.951413i \(-0.599632\pi\)
0.375678 + 0.926750i \(0.377410\pi\)
\(44\) −21.5968 12.4689i −3.25585 1.87976i
\(45\) −4.28703 + 5.50138i −0.639073 + 0.820097i
\(46\) −8.14219 14.1027i −1.20050 2.07933i
\(47\) 6.12493 2.22929i 0.893413 0.325176i 0.145803 0.989314i \(-0.453424\pi\)
0.747610 + 0.664138i \(0.231201\pi\)
\(48\) 3.93057 + 8.04603i 0.567329 + 1.16134i
\(49\) −6.65961 2.15628i −0.951373 0.308040i
\(50\) 0.991923 0.174903i 0.140279 0.0247350i
\(51\) 2.35602 + 1.04720i 0.329909 + 0.146637i
\(52\) −3.84605 10.5669i −0.533351 1.46537i
\(53\) 9.00163 + 5.19709i 1.23647 + 0.713876i 0.968371 0.249516i \(-0.0802714\pi\)
0.268098 + 0.963392i \(0.413605\pi\)
\(54\) −1.82320 12.7977i −0.248105 1.74154i
\(55\) 13.8400i 1.86619i
\(56\) 9.06177 11.2021i 1.21093 1.49695i
\(57\) −2.05571 + 4.62502i −0.272286 + 0.612599i
\(58\) −9.21946 + 7.73605i −1.21057 + 1.01579i
\(59\) −0.316739 + 0.265775i −0.0412359 + 0.0346010i −0.663173 0.748466i \(-0.730791\pi\)
0.621937 + 0.783067i \(0.286346\pi\)
\(60\) −9.42379 + 13.9903i −1.21661 + 1.80614i
\(61\) 0.460673 + 1.26569i 0.0589831 + 0.162055i 0.965684 0.259719i \(-0.0836299\pi\)
−0.906701 + 0.421774i \(0.861408\pi\)
\(62\) −6.14538 + 10.6441i −0.780464 + 1.35180i
\(63\) −6.64908 + 4.33471i −0.837705 + 0.546123i
\(64\) −2.71936 4.71007i −0.339920 0.588758i
\(65\) 4.01151 4.78073i 0.497566 0.592976i
\(66\) 18.4635 + 17.8076i 2.27270 + 2.19196i
\(67\) 1.32301 + 7.50314i 0.161631 + 0.916654i 0.952470 + 0.304631i \(0.0985331\pi\)
−0.790840 + 0.612023i \(0.790356\pi\)
\(68\) 5.85961 + 2.13272i 0.710582 + 0.258631i
\(69\) 3.13190 + 10.8964i 0.377037 + 1.31177i
\(70\) 15.1150 + 2.38603i 1.80659 + 0.285185i
\(71\) 0.361814 0.208894i 0.0429395 0.0247911i −0.478377 0.878155i \(-0.658775\pi\)
0.521316 + 0.853364i \(0.325441\pi\)
\(72\) −3.41686 15.9763i −0.402681 1.88283i
\(73\) 2.47715 1.43018i 0.289929 0.167390i −0.347981 0.937502i \(-0.613133\pi\)
0.637910 + 0.770111i \(0.279799\pi\)
\(74\) 6.37420 7.59648i 0.740986 0.883073i
\(75\) −0.699576 0.0484775i −0.0807801 0.00559770i
\(76\) −4.18667 + 11.5028i −0.480244 + 1.31946i
\(77\) 5.12020 14.8950i 0.583501 1.69744i
\(78\) 1.21631 + 11.5029i 0.137719 + 1.30244i
\(79\) 0.359328 2.03785i 0.0404276 0.229276i −0.957899 0.287106i \(-0.907307\pi\)
0.998326 + 0.0578295i \(0.0184180\pi\)
\(80\) −6.00976 + 10.4092i −0.671911 + 1.16378i
\(81\) −0.918263 + 8.95303i −0.102029 + 0.994781i
\(82\) −16.2046 + 9.35572i −1.78950 + 1.03317i
\(83\) −3.50031 2.93711i −0.384209 0.322389i 0.430143 0.902761i \(-0.358463\pi\)
−0.814352 + 0.580371i \(0.802907\pi\)
\(84\) −15.3179 + 11.5703i −1.67132 + 1.26243i
\(85\) 0.600939 + 3.40809i 0.0651810 + 0.369660i
\(86\) −1.15848 + 0.204271i −0.124922 + 0.0220271i
\(87\) 7.52883 3.67791i 0.807175 0.394313i
\(88\) 24.8351 + 20.8391i 2.64743 + 2.22146i
\(89\) −11.5745 −1.22689 −0.613447 0.789736i \(-0.710218\pi\)
−0.613447 + 0.789736i \(0.710218\pi\)
\(90\) 12.8797 11.6263i 1.35764 1.22552i
\(91\) 6.08595 3.66106i 0.637980 0.383783i
\(92\) 9.37835 + 25.7668i 0.977760 + 2.68637i
\(93\) 5.94040 6.15921i 0.615991 0.638680i
\(94\) −15.9690 + 2.81577i −1.64708 + 0.290425i
\(95\) −6.69030 + 1.17968i −0.686410 + 0.121033i
\(96\) −0.942659 3.27966i −0.0962097 0.334729i
\(97\) −0.857926 2.35713i −0.0871092 0.239330i 0.888488 0.458901i \(-0.151757\pi\)
−0.975597 + 0.219570i \(0.929534\pi\)
\(98\) 15.3844 + 8.15980i 1.55406 + 0.824264i
\(99\) −9.48303 15.1337i −0.953080 1.52099i
\(100\) −1.69602 −0.169602
\(101\) −6.10933 5.12634i −0.607901 0.510089i 0.286073 0.958208i \(-0.407650\pi\)
−0.893974 + 0.448118i \(0.852094\pi\)
\(102\) −5.31984 3.58341i −0.526742 0.354811i
\(103\) 11.3583 2.00277i 1.11917 0.197339i 0.416691 0.909048i \(-0.363190\pi\)
0.702475 + 0.711709i \(0.252078\pi\)
\(104\) 2.53855 + 14.3968i 0.248925 + 1.41173i
\(105\) −9.81157 4.15155i −0.957511 0.405150i
\(106\) −19.8087 16.6215i −1.92399 1.61442i
\(107\) −4.21545 + 2.43379i −0.407523 + 0.235284i −0.689725 0.724072i \(-0.742269\pi\)
0.282202 + 0.959355i \(0.408935\pi\)
\(108\) −0.718659 + 21.7551i −0.0691530 + 2.09338i
\(109\) 9.50585 16.4646i 0.910496 1.57702i 0.0971299 0.995272i \(-0.469034\pi\)
0.813366 0.581753i \(-0.197633\pi\)
\(110\) −5.97887 + 33.9078i −0.570063 + 3.23299i
\(111\) −5.58298 + 4.06164i −0.529913 + 0.385513i
\(112\) −10.3188 + 8.97930i −0.975035 + 0.848464i
\(113\) 3.74928 10.3011i 0.352702 0.969041i −0.628796 0.777570i \(-0.716452\pi\)
0.981498 0.191471i \(-0.0613258\pi\)
\(114\) 7.03447 10.4432i 0.658838 0.978093i
\(115\) −9.78181 + 11.6575i −0.912158 + 1.08707i
\(116\) 17.5504 10.1327i 1.62951 0.940798i
\(117\) 1.11077 7.97623i 0.102691 0.737403i
\(118\) 0.890820 0.514315i 0.0820066 0.0473465i
\(119\) −0.614099 + 3.89020i −0.0562944 + 0.356614i
\(120\) 15.2233 15.7840i 1.38969 1.44088i
\(121\) 22.9657 + 8.35882i 2.08779 + 0.759892i
\(122\) −0.581866 3.29993i −0.0526797 0.298761i
\(123\) 12.5204 3.59869i 1.12893 0.324483i
\(124\) 13.3030 15.8539i 1.19465 1.42372i
\(125\) 5.34147 + 9.25169i 0.477755 + 0.827496i
\(126\) 18.1627 7.74759i 1.61807 0.690210i
\(127\) −1.97073 + 3.41341i −0.174874 + 0.302891i −0.940118 0.340850i \(-0.889285\pi\)
0.765243 + 0.643741i \(0.222619\pi\)
\(128\) 5.97533 + 16.4171i 0.528149 + 1.45108i
\(129\) 0.817041 + 0.0566174i 0.0719365 + 0.00498488i
\(130\) −11.8934 + 9.97975i −1.04312 + 0.875282i
\(131\) −13.0299 + 10.9334i −1.13843 + 0.955253i −0.999386 0.0350337i \(-0.988846\pi\)
−0.139040 + 0.990287i \(0.544402\pi\)
\(132\) −25.4106 34.9285i −2.21171 3.04013i
\(133\) −7.63670 1.20551i −0.662186 0.104531i
\(134\) 18.9541i 1.63739i
\(135\) −10.6555 + 5.69141i −0.917078 + 0.489838i
\(136\) −7.02047 4.05327i −0.602000 0.347565i
\(137\) −2.03367 5.58745i −0.173748 0.477368i 0.822000 0.569487i \(-0.192858\pi\)
−0.995748 + 0.0921190i \(0.970636\pi\)
\(138\) −2.96588 28.0490i −0.252473 2.38769i
\(139\) −14.8075 + 2.61096i −1.25595 + 0.221458i −0.761740 0.647883i \(-0.775655\pi\)
−0.494212 + 0.869341i \(0.664544\pi\)
\(140\) −24.3671 8.37627i −2.05940 0.707924i
\(141\) 11.2625 + 0.780443i 0.948476 + 0.0657252i
\(142\) −0.976681 + 0.355483i −0.0819613 + 0.0298315i
\(143\) 7.99027 + 13.8396i 0.668180 + 1.15732i
\(144\) 0.560769 + 15.5000i 0.0467308 + 1.29167i
\(145\) 9.74009 + 5.62344i 0.808870 + 0.467001i
\(146\) −6.68682 + 2.43380i −0.553405 + 0.201423i
\(147\) −9.02357 8.09785i −0.744251 0.667900i
\(148\) −12.7913 + 10.7332i −1.05144 + 0.882264i
\(149\) 3.05787 8.40142i 0.250510 0.688271i −0.749155 0.662395i \(-0.769540\pi\)
0.999665 0.0258761i \(-0.00823755\pi\)
\(150\) 1.69301 + 0.420985i 0.138234 + 0.0343733i
\(151\) 1.14713 6.50569i 0.0933519 0.529425i −0.901888 0.431970i \(-0.857819\pi\)
0.995240 0.0974552i \(-0.0310703\pi\)
\(152\) 7.95682 13.7816i 0.645383 1.11784i
\(153\) 2.99230 + 3.31490i 0.241913 + 0.267994i
\(154\) −18.9790 + 34.2806i −1.52937 + 2.76241i
\(155\) 11.3113 + 1.99448i 0.908542 + 0.160200i
\(156\) 1.34645 19.4305i 0.107802 1.55568i
\(157\) −9.62815 11.4744i −0.768410 0.915755i 0.229939 0.973205i \(-0.426147\pi\)
−0.998348 + 0.0574500i \(0.981703\pi\)
\(158\) −1.76070 + 4.83748i −0.140074 + 0.384849i
\(159\) 10.5912 + 14.5583i 0.839937 + 1.15455i
\(160\) 2.94419 3.50875i 0.232759 0.277391i
\(161\) −14.8402 + 8.92726i −1.16957 + 0.703567i
\(162\) 6.11743 21.5381i 0.480631 1.69219i
\(163\) −0.811012 1.40471i −0.0635234 0.110026i 0.832515 0.554003i \(-0.186900\pi\)
−0.896038 + 0.443977i \(0.853567\pi\)
\(164\) 29.6072 10.7761i 2.31193 0.841474i
\(165\) 9.73638 21.9053i 0.757976 1.70532i
\(166\) 7.30688 + 8.70800i 0.567124 + 0.675872i
\(167\) 4.07532 + 1.48330i 0.315358 + 0.114781i 0.494850 0.868979i \(-0.335223\pi\)
−0.179492 + 0.983759i \(0.557445\pi\)
\(168\) 22.2231 11.3552i 1.71455 0.876075i
\(169\) 1.00612 5.70596i 0.0773935 0.438920i
\(170\) 8.60938i 0.660310i
\(171\) −6.50735 + 5.87407i −0.497630 + 0.449201i
\(172\) 1.98079 0.151034
\(173\) −15.2536 12.7993i −1.15971 0.973112i −0.159808 0.987148i \(-0.551088\pi\)
−0.999901 + 0.0140363i \(0.995532\pi\)
\(174\) −20.0344 + 5.75838i −1.51880 + 0.436542i
\(175\) −0.204931 1.05140i −0.0154913 0.0794781i
\(176\) −19.7836 23.5772i −1.49125 1.77720i
\(177\) −0.688290 + 0.197832i −0.0517350 + 0.0148700i
\(178\) 28.3574 + 5.00017i 2.12547 + 0.374778i
\(179\) 10.2522i 0.766283i −0.923690 0.383141i \(-0.874842\pi\)
0.923690 0.383141i \(-0.125158\pi\)
\(180\) −24.7576 + 15.5135i −1.84532 + 1.15631i
\(181\) 16.8242 + 9.71345i 1.25053 + 0.721995i 0.971215 0.238204i \(-0.0765588\pi\)
0.279317 + 0.960199i \(0.409892\pi\)
\(182\) −16.4920 + 6.34042i −1.22247 + 0.469984i
\(183\) −0.161275 + 2.32735i −0.0119218 + 0.172042i
\(184\) −6.19009 35.1057i −0.456340 2.58803i
\(185\) −8.70813 3.16950i −0.640234 0.233026i
\(186\) −17.2147 + 12.5237i −1.26224 + 0.918284i
\(187\) −8.72696 1.53880i −0.638179 0.112528i
\(188\) 27.3043 1.99137
\(189\) −13.5733 + 2.18317i −0.987310 + 0.158803i
\(190\) 16.9008 1.22611
\(191\) −10.0007 1.76340i −0.723627 0.127595i −0.200309 0.979733i \(-0.564195\pi\)
−0.523317 + 0.852138i \(0.675306\pi\)
\(192\) −0.990557 9.36791i −0.0714873 0.676070i
\(193\) 10.3844 + 3.77961i 0.747485 + 0.272062i 0.687547 0.726140i \(-0.258688\pi\)
0.0599377 + 0.998202i \(0.480910\pi\)
\(194\) 1.08363 + 6.14556i 0.0778000 + 0.441226i
\(195\) 9.71243 4.74462i 0.695521 0.339769i
\(196\) −23.1256 18.0295i −1.65183 1.28782i
\(197\) 8.20018 + 4.73438i 0.584239 + 0.337310i 0.762816 0.646616i \(-0.223816\pi\)
−0.178577 + 0.983926i \(0.557150\pi\)
\(198\) 16.6956 + 41.1739i 1.18650 + 2.92610i
\(199\) 13.5033i 0.957225i 0.878026 + 0.478612i \(0.158860\pi\)
−0.878026 + 0.478612i \(0.841140\pi\)
\(200\) 2.17137 + 0.382871i 0.153539 + 0.0270731i
\(201\) −3.18443 + 12.8063i −0.224612 + 0.903288i
\(202\) 12.7532 + 15.1987i 0.897312 + 1.06937i
\(203\) 8.40210 + 9.65550i 0.589712 + 0.677683i
\(204\) 7.77394 + 7.49777i 0.544285 + 0.524949i
\(205\) 13.3950 + 11.2397i 0.935546 + 0.785016i
\(206\) −28.6928 −1.99913
\(207\) −2.70854 + 19.4495i −0.188257 + 1.35184i
\(208\) 13.8785i 0.962299i
\(209\) 3.02076 17.1316i 0.208950 1.18502i
\(210\) 22.2447 + 14.4098i 1.53503 + 0.994372i
\(211\) 0.606377 + 0.220703i 0.0417447 + 0.0151938i 0.362808 0.931864i \(-0.381818\pi\)
−0.321063 + 0.947058i \(0.604040\pi\)
\(212\) 27.9881 + 33.3549i 1.92223 + 2.29083i
\(213\) 0.719617 0.0760918i 0.0493073 0.00521373i
\(214\) 11.3792 4.14169i 0.777865 0.283120i
\(215\) 0.549650 + 0.952022i 0.0374858 + 0.0649273i
\(216\) 5.83123 27.6903i 0.396765 1.88408i
\(217\) 11.4356 + 6.33118i 0.776299 + 0.429788i
\(218\) −30.4019 + 36.2316i −2.05908 + 2.45391i
\(219\) 4.92684 0.520961i 0.332925 0.0352033i
\(220\) 19.8291 54.4801i 1.33688 3.67305i
\(221\) −2.56852 3.06104i −0.172777 0.205908i
\(222\) 15.4329 7.53911i 1.03579 0.505992i
\(223\) −18.1178 3.19466i −1.21326 0.213930i −0.469836 0.882754i \(-0.655687\pi\)
−0.743421 + 0.668824i \(0.766798\pi\)
\(224\) 4.46669 2.68698i 0.298443 0.179532i
\(225\) −1.07315 0.568876i −0.0715433 0.0379250i
\(226\) −13.6357 + 23.6177i −0.907034 + 1.57103i
\(227\) −4.13256 + 23.4369i −0.274288 + 1.55556i 0.466928 + 0.884295i \(0.345361\pi\)
−0.741216 + 0.671267i \(0.765750\pi\)
\(228\) −14.7186 + 15.2607i −0.974763 + 1.01067i
\(229\) −0.558869 + 1.53548i −0.0369311 + 0.101467i −0.956788 0.290788i \(-0.906083\pi\)
0.919857 + 0.392255i \(0.128305\pi\)
\(230\) 29.0013 24.3350i 1.91229 1.60460i
\(231\) 18.5825 19.9730i 1.22264 1.31413i
\(232\) −24.7567 + 9.01071i −1.62536 + 0.591582i
\(233\) −3.24564 1.87387i −0.212629 0.122762i 0.389903 0.920856i \(-0.372508\pi\)
−0.602533 + 0.798094i \(0.705842\pi\)
\(234\) −6.16709 + 19.0618i −0.403155 + 1.24611i
\(235\) 7.57666 + 13.1232i 0.494247 + 0.856061i
\(236\) −1.62760 + 0.592399i −0.105948 + 0.0385619i
\(237\) 2.00234 2.97262i 0.130066 0.193093i
\(238\) 3.18509 9.26564i 0.206459 0.600602i
\(239\) −5.32648 + 0.939202i −0.344541 + 0.0607519i −0.343241 0.939247i \(-0.611525\pi\)
−0.00129986 + 0.999999i \(0.500414\pi\)
\(240\) −16.8348 + 12.2473i −1.08668 + 0.790562i
\(241\) 4.99836 + 13.7329i 0.321973 + 0.884613i 0.990075 + 0.140543i \(0.0448848\pi\)
−0.668102 + 0.744070i \(0.732893\pi\)
\(242\) −52.6545 30.4001i −3.38476 1.95419i
\(243\) −7.75179 + 13.5244i −0.497277 + 0.867592i
\(244\) 5.64230i 0.361211i
\(245\) 2.24833 16.1178i 0.143641 1.02973i
\(246\) −32.2295 + 3.40793i −2.05488 + 0.217282i
\(247\) 6.00901 5.04216i 0.382344 0.320825i
\(248\) −20.6105 + 17.2943i −1.30877 + 1.09819i
\(249\) −3.47387 7.11115i −0.220148 0.450651i
\(250\) −9.08980 24.9740i −0.574889 1.57950i
\(251\) 12.6043 21.8313i 0.795575 1.37798i −0.126898 0.991916i \(-0.540502\pi\)
0.922473 0.386061i \(-0.126165\pi\)
\(252\) −32.3841 + 7.53685i −2.04001 + 0.474777i
\(253\) −19.4838 33.7469i −1.22493 2.12165i
\(254\) 6.30286 7.51146i 0.395477 0.471311i
\(255\) −1.44644 + 5.81692i −0.0905795 + 0.364269i
\(256\) −5.65846 32.0907i −0.353654 2.00567i
\(257\) −15.3320 5.58038i −0.956383 0.348095i −0.183768 0.982970i \(-0.558829\pi\)
−0.772615 + 0.634875i \(0.781052\pi\)
\(258\) −1.97728 0.491672i −0.123100 0.0306102i
\(259\) −8.19933 6.63272i −0.509482 0.412137i
\(260\) 22.6405 13.0715i 1.40411 0.810661i
\(261\) 14.5036 0.524723i 0.897753 0.0324795i
\(262\) 36.6462 21.1577i 2.26401 1.30713i
\(263\) −2.57566 + 3.06955i −0.158822 + 0.189276i −0.839587 0.543225i \(-0.817203\pi\)
0.680765 + 0.732502i \(0.261647\pi\)
\(264\) 24.6475 + 50.4545i 1.51695 + 3.10526i
\(265\) −8.26485 + 22.7075i −0.507706 + 1.39491i
\(266\) 18.1890 + 6.25254i 1.11524 + 0.383368i
\(267\) −18.3195 8.14260i −1.12114 0.498319i
\(268\) −5.54214 + 31.4310i −0.338540 + 1.91996i
\(269\) 5.74024 9.94239i 0.349989 0.606198i −0.636258 0.771476i \(-0.719519\pi\)
0.986247 + 0.165278i \(0.0528521\pi\)
\(270\) 28.5645 9.34071i 1.73838 0.568457i
\(271\) 15.3181 8.84389i 0.930507 0.537228i 0.0435349 0.999052i \(-0.486138\pi\)
0.886972 + 0.461824i \(0.152805\pi\)
\(272\) 5.89543 + 4.94686i 0.357463 + 0.299947i
\(273\) 12.2081 1.51311i 0.738866 0.0915777i
\(274\) 2.56868 + 14.5677i 0.155180 + 0.880068i
\(275\) 2.37361 0.418532i 0.143134 0.0252384i
\(276\) −3.28322 + 47.3800i −0.197627 + 2.85194i
\(277\) 5.58021 + 4.68236i 0.335283 + 0.281336i 0.794848 0.606808i \(-0.207550\pi\)
−0.459566 + 0.888144i \(0.651995\pi\)
\(278\) 37.4060 2.24346
\(279\) 13.7351 5.56944i 0.822301 0.333434i
\(280\) 29.3057 + 16.2248i 1.75135 + 0.969614i
\(281\) 8.20732 + 22.5494i 0.489608 + 1.34519i 0.901036 + 0.433744i \(0.142808\pi\)
−0.411428 + 0.911442i \(0.634970\pi\)
\(282\) −27.2559 6.77747i −1.62306 0.403592i
\(283\) −20.3559 + 3.58930i −1.21003 + 0.213362i −0.742031 0.670366i \(-0.766137\pi\)
−0.468003 + 0.883727i \(0.655026\pi\)
\(284\) 1.72354 0.303907i 0.102273 0.0180336i
\(285\) −11.4190 2.83945i −0.676401 0.168195i
\(286\) −13.5974 37.3585i −0.804030 2.20905i
\(287\) 10.2578 + 17.0520i 0.605499 + 1.00655i
\(288\) 0.815233 5.85404i 0.0480381 0.344953i
\(289\) −14.7842 −0.869657
\(290\) −21.4338 17.9851i −1.25863 1.05612i
\(291\) 0.300348 4.33429i 0.0176067 0.254081i
\(292\) 11.8002 2.08069i 0.690554 0.121763i
\(293\) −2.67148 15.1507i −0.156069 0.885114i −0.957802 0.287430i \(-0.907199\pi\)
0.801732 0.597683i \(-0.203912\pi\)
\(294\) 18.6094 + 23.7378i 1.08532 + 1.38442i
\(295\) −0.736366 0.617885i −0.0428729 0.0359746i
\(296\) 18.7994 10.8539i 1.09270 0.630868i
\(297\) −4.36280 30.6241i −0.253155 1.77699i
\(298\) −11.1211 + 19.2624i −0.644229 + 1.11584i
\(299\) 3.05124 17.3045i 0.176458 1.00074i
\(300\) −2.68437 1.19314i −0.154982 0.0688859i
\(301\) 0.239341 + 1.22794i 0.0137954 + 0.0707771i
\(302\) −5.62089 + 15.4433i −0.323446 + 0.888661i
\(303\) −6.06319 12.4116i −0.348321 0.713027i
\(304\) −9.71099 + 11.5731i −0.556963 + 0.663763i
\(305\) −2.71184 + 1.56568i −0.155279 + 0.0896506i
\(306\) −5.89905 9.41412i −0.337227 0.538170i
\(307\) −18.1401 + 10.4732i −1.03531 + 0.597737i −0.918502 0.395417i \(-0.870600\pi\)
−0.116809 + 0.993154i \(0.537267\pi\)
\(308\) 41.4959 51.2970i 2.36445 2.92292i
\(309\) 19.3863 + 4.82061i 1.10285 + 0.274235i
\(310\) −26.8508 9.77289i −1.52502 0.555063i
\(311\) −3.28948 18.6556i −0.186529 1.05786i −0.923975 0.382454i \(-0.875079\pi\)
0.737445 0.675407i \(-0.236032\pi\)
\(312\) −6.11020 + 24.5724i −0.345922 + 1.39114i
\(313\) −14.9448 + 17.8105i −0.844731 + 1.00671i 0.155092 + 0.987900i \(0.450433\pi\)
−0.999823 + 0.0188117i \(0.994012\pi\)
\(314\) 18.6319 + 32.2714i 1.05146 + 1.82118i
\(315\) −12.6087 13.4732i −0.710418 0.759131i
\(316\) 4.33418 7.50702i 0.243817 0.422303i
\(317\) 0.00193318 + 0.00531136i 0.000108578 + 0.000298316i 0.939747 0.341871i \(-0.111061\pi\)
−0.939638 + 0.342169i \(0.888838\pi\)
\(318\) −19.6591 40.2430i −1.10243 2.25671i
\(319\) −22.0616 + 18.5119i −1.23521 + 1.03647i
\(320\) 9.68597 8.12749i 0.541462 0.454341i
\(321\) −8.38416 + 0.886536i −0.467958 + 0.0494816i
\(322\) 40.2148 15.4607i 2.24108 0.861592i
\(323\) 4.34980i 0.242029i
\(324\) −16.4420 + 33.9273i −0.913446 + 1.88485i
\(325\) 0.941223 + 0.543415i 0.0522097 + 0.0301433i
\(326\) 1.38013 + 3.79189i 0.0764385 + 0.210013i
\(327\) 26.6282 19.3721i 1.47254 1.07128i
\(328\) −40.3380 + 7.11268i −2.22729 + 0.392732i
\(329\) 3.29920 + 16.9265i 0.181891 + 0.933189i
\(330\) −33.3170 + 49.4615i −1.83404 + 2.72277i
\(331\) −0.436165 + 0.158751i −0.0239738 + 0.00872576i −0.353979 0.935253i \(-0.615172\pi\)
0.330005 + 0.943979i \(0.392949\pi\)
\(332\) −9.57057 16.5767i −0.525253 0.909766i
\(333\) −11.6938 + 2.50095i −0.640816 + 0.137051i
\(334\) −9.34370 5.39459i −0.511264 0.295179i
\(335\) −16.6445 + 6.05809i −0.909385 + 0.330989i
\(336\) −22.6490 + 6.95277i −1.23560 + 0.379305i
\(337\) 23.5471 19.7584i 1.28269 1.07631i 0.289828 0.957079i \(-0.406402\pi\)
0.992867 0.119230i \(-0.0380427\pi\)
\(338\) −4.92993 + 13.5449i −0.268153 + 0.736745i
\(339\) 13.1809 13.6664i 0.715888 0.742256i
\(340\) −2.51736 + 14.2767i −0.136523 + 0.774262i
\(341\) −14.7055 + 25.4707i −0.796349 + 1.37932i
\(342\) 18.4805 11.5802i 0.999312 0.626186i
\(343\) 8.38259 16.5146i 0.452617 0.891705i
\(344\) −2.53596 0.447159i −0.136730 0.0241092i
\(345\) −23.6831 + 11.5695i −1.27506 + 0.622879i
\(346\) 31.8418 + 37.9476i 1.71183 + 2.04008i
\(347\) −8.94119 + 24.5657i −0.479988 + 1.31876i 0.429515 + 0.903060i \(0.358685\pi\)
−0.909503 + 0.415697i \(0.863538\pi\)
\(348\) 34.9061 3.69095i 1.87116 0.197856i
\(349\) 12.5313 14.9342i 0.670783 0.799408i −0.318108 0.948055i \(-0.603047\pi\)
0.988890 + 0.148647i \(0.0474918\pi\)
\(350\) 0.0478767 + 2.66444i 0.00255912 + 0.142420i
\(351\) 7.36931 11.8430i 0.393344 0.632130i
\(352\) 5.86435 + 10.1573i 0.312571 + 0.541388i
\(353\) 5.82048 2.11848i 0.309793 0.112755i −0.182445 0.983216i \(-0.558401\pi\)
0.492238 + 0.870461i \(0.336179\pi\)
\(354\) 1.77176 0.187345i 0.0941681 0.00995728i
\(355\) 0.624331 + 0.744049i 0.0331361 + 0.0394900i
\(356\) −45.5621 16.5832i −2.41479 0.878910i
\(357\) −3.70870 + 5.72519i −0.196285 + 0.303009i
\(358\) −4.42892 + 25.1177i −0.234076 + 1.32751i
\(359\) 7.17444i 0.378652i 0.981914 + 0.189326i \(0.0606303\pi\)
−0.981914 + 0.189326i \(0.939370\pi\)
\(360\) 35.1987 14.2727i 1.85513 0.752236i
\(361\) 10.4611 0.550583
\(362\) −37.0228 31.0658i −1.94588 1.63278i
\(363\) 30.4685 + 29.3861i 1.59918 + 1.54237i
\(364\) 29.2022 5.69189i 1.53061 0.298336i
\(365\) 4.27447 + 5.09411i 0.223736 + 0.266638i
\(366\) 1.40053 5.63230i 0.0732070 0.294405i
\(367\) 14.8859 + 2.62478i 0.777035 + 0.137012i 0.548081 0.836425i \(-0.315358\pi\)
0.228954 + 0.973437i \(0.426470\pi\)
\(368\) 33.8418i 1.76412i
\(369\) 22.3484 + 3.11223i 1.16341 + 0.162016i
\(370\) 19.9656 + 11.5271i 1.03796 + 0.599267i
\(371\) −17.2956 + 21.3807i −0.897943 + 1.11003i
\(372\) 32.2085 15.7342i 1.66993 0.815779i
\(373\) −1.37201 7.78108i −0.0710402 0.402889i −0.999505 0.0314680i \(-0.989982\pi\)
0.928465 0.371421i \(-0.121129\pi\)
\(374\) 20.7162 + 7.54007i 1.07121 + 0.389888i
\(375\) 1.94569 + 18.4008i 0.100475 + 0.950213i
\(376\) −34.9570 6.16387i −1.80277 0.317877i
\(377\) −12.9864 −0.668831
\(378\) 34.1974 + 0.514889i 1.75893 + 0.0264830i
\(379\) 22.3921 1.15021 0.575103 0.818081i \(-0.304962\pi\)
0.575103 + 0.818081i \(0.304962\pi\)
\(380\) −28.0260 4.94174i −1.43770 0.253506i
\(381\) −5.52050 + 4.01618i −0.282824 + 0.205755i
\(382\) 23.7398 + 8.64059i 1.21464 + 0.442091i
\(383\) −1.10882 6.28841i −0.0566579 0.321323i 0.943285 0.331983i \(-0.107718\pi\)
−0.999943 + 0.0106605i \(0.996607\pi\)
\(384\) −2.09188 + 30.1877i −0.106751 + 1.54051i
\(385\) 36.1694 + 5.70962i 1.84336 + 0.290989i
\(386\) −23.8088 13.7460i −1.21184 0.699654i
\(387\) 1.25334 + 0.664395i 0.0637109 + 0.0337731i
\(388\) 10.5078i 0.533455i
\(389\) 26.0035 + 4.58512i 1.31843 + 0.232475i 0.788221 0.615393i \(-0.211002\pi\)
0.530209 + 0.847867i \(0.322114\pi\)
\(390\) −25.8450 + 7.42850i −1.30871 + 0.376157i
\(391\) 6.26317 + 7.46415i 0.316742 + 0.377478i
\(392\) 25.5371 + 28.3033i 1.28982 + 1.42953i
\(393\) −28.3146 + 8.13834i −1.42828 + 0.410525i
\(394\) −18.0451 15.1416i −0.909098 0.762824i
\(395\) 4.81076 0.242056
\(396\) −15.6466 73.1592i −0.786269 3.67639i
\(397\) 0.545945i 0.0274002i −0.999906 0.0137001i \(-0.995639\pi\)
0.999906 0.0137001i \(-0.00436101\pi\)
\(398\) 5.83341 33.0829i 0.292403 1.65830i
\(399\) −11.2389 7.28040i −0.562649 0.364476i
\(400\) −1.96696 0.715913i −0.0983478 0.0357957i
\(401\) −6.49034 7.73488i −0.324112 0.386262i 0.579243 0.815155i \(-0.303348\pi\)
−0.903355 + 0.428893i \(0.858904\pi\)
\(402\) 13.3341 29.9996i 0.665045 1.49624i
\(403\) −12.4624 + 4.53593i −0.620794 + 0.225951i
\(404\) −16.7042 28.9325i −0.831064 1.43945i
\(405\) −20.8688 + 1.51199i −1.03698 + 0.0751316i
\(406\) −16.4139 27.2855i −0.814607 1.35416i
\(407\) 15.2531 18.1779i 0.756068 0.901047i
\(408\) −8.26019 11.3542i −0.408940 0.562115i
\(409\) 1.49274 4.10126i 0.0738111 0.202794i −0.897300 0.441420i \(-0.854475\pi\)
0.971112 + 0.238626i \(0.0766970\pi\)
\(410\) −27.9619 33.3238i −1.38094 1.64574i
\(411\) 0.711957 10.2742i 0.0351183 0.506789i
\(412\) 47.5805 + 8.38972i 2.34412 + 0.413332i
\(413\) −0.563906 0.937406i −0.0277480 0.0461267i
\(414\) 15.0381 46.4810i 0.739080 2.28442i
\(415\) 5.31147 9.19974i 0.260730 0.451598i
\(416\) −0.918382 + 5.20840i −0.0450274 + 0.255363i
\(417\) −25.2733 6.28448i −1.23764 0.307752i
\(418\) −14.8016 + 40.6671i −0.723971 + 1.98909i
\(419\) −23.2196 + 19.4835i −1.13435 + 0.951833i −0.999239 0.0389971i \(-0.987584\pi\)
−0.135111 + 0.990830i \(0.543139\pi\)
\(420\) −32.6744 30.3997i −1.59435 1.48335i
\(421\) −37.1134 + 13.5082i −1.80880 + 0.658348i −0.811543 + 0.584292i \(0.801372\pi\)
−0.997254 + 0.0740563i \(0.976406\pi\)
\(422\) −1.39027 0.802673i −0.0676773 0.0390735i
\(423\) 17.2767 + 9.15837i 0.840023 + 0.445295i
\(424\) −28.3027 49.0218i −1.37450 2.38071i
\(425\) −0.566328 + 0.206126i −0.0274709 + 0.00999860i
\(426\) −1.79592 0.124449i −0.0870127 0.00602960i
\(427\) −3.49778 + 0.681765i −0.169270 + 0.0329929i
\(428\) −20.0808 + 3.54078i −0.970641 + 0.171150i
\(429\) 2.91055 + 27.5257i 0.140523 + 1.32895i
\(430\) −0.935362 2.56989i −0.0451072 0.123931i
\(431\) 17.4266 + 10.0613i 0.839411 + 0.484634i 0.857064 0.515210i \(-0.172286\pi\)
−0.0176528 + 0.999844i \(0.505619\pi\)
\(432\) −10.0166 + 24.9271i −0.481924 + 1.19931i
\(433\) 15.6631i 0.752722i −0.926473 0.376361i \(-0.877175\pi\)
0.926473 0.376361i \(-0.122825\pi\)
\(434\) −25.2820 20.4514i −1.21357 0.981701i
\(435\) 11.4601 + 15.7526i 0.549468 + 0.755279i
\(436\) 61.0085 51.1922i 2.92178 2.45166i
\(437\) −14.6526 + 12.2950i −0.700929 + 0.588149i
\(438\) −12.2957 0.852040i −0.587513 0.0407120i
\(439\) 3.26067 + 8.95860i 0.155623 + 0.427571i 0.992862 0.119266i \(-0.0380541\pi\)
−0.837239 + 0.546837i \(0.815832\pi\)
\(440\) −37.6855 + 65.2732i −1.79659 + 3.11178i
\(441\) −8.58525 19.1649i −0.408822 0.912614i
\(442\) 4.97047 + 8.60910i 0.236421 + 0.409493i
\(443\) 24.6628 29.3919i 1.17176 1.39645i 0.270756 0.962648i \(-0.412726\pi\)
0.901007 0.433805i \(-0.142829\pi\)
\(444\) −27.7962 + 7.98934i −1.31915 + 0.379157i
\(445\) −4.67267 26.5000i −0.221506 1.25622i
\(446\) 43.0082 + 15.6537i 2.03650 + 0.741225i
\(447\) 10.7502 11.1461i 0.508466 0.527195i
\(448\) 13.4311 5.16363i 0.634560 0.243959i
\(449\) −10.9571 + 6.32611i −0.517099 + 0.298547i −0.735747 0.677256i \(-0.763169\pi\)
0.218648 + 0.975804i \(0.429835\pi\)
\(450\) 2.38345 + 1.85734i 0.112357 + 0.0875557i
\(451\) −38.7766 + 22.3877i −1.82592 + 1.05420i
\(452\) 29.5174 35.1775i 1.38838 1.65461i
\(453\) 6.39233 9.48987i 0.300338 0.445873i
\(454\) 20.2494 55.6348i 0.950352 2.61107i
\(455\) 10.8390 + 12.4559i 0.508139 + 0.583941i
\(456\) 22.2889 16.2153i 1.04378 0.759349i
\(457\) −4.01602 + 22.7760i −0.187861 + 1.06542i 0.734362 + 0.678758i \(0.237481\pi\)
−0.922224 + 0.386657i \(0.873630\pi\)
\(458\) 2.03255 3.52047i 0.0949747 0.164501i
\(459\) 2.40404 + 7.35172i 0.112211 + 0.343149i
\(460\) −55.2075 + 31.8740i −2.57406 + 1.48613i
\(461\) 9.36232 + 7.85592i 0.436047 + 0.365887i 0.834228 0.551420i \(-0.185914\pi\)
−0.398181 + 0.917307i \(0.630358\pi\)
\(462\) −54.1552 + 40.9059i −2.51953 + 1.90311i
\(463\) −4.76681 27.0339i −0.221532 1.25637i −0.869204 0.494453i \(-0.835368\pi\)
0.647672 0.761919i \(-0.275743\pi\)
\(464\) 24.6312 4.34314i 1.14347 0.201625i
\(465\) 16.4998 + 11.1142i 0.765159 + 0.515407i
\(466\) 7.14227 + 5.99308i 0.330859 + 0.277624i
\(467\) 8.55744 0.395991 0.197996 0.980203i \(-0.436557\pi\)
0.197996 + 0.980203i \(0.436557\pi\)
\(468\) 15.8003 29.8064i 0.730370 1.37780i
\(469\) −20.1544 + 0.362151i −0.930645 + 0.0167226i
\(470\) −12.8935 35.4247i −0.594734 1.63402i
\(471\) −7.16678 24.9344i −0.330228 1.14892i
\(472\) 2.21752 0.391008i 0.102069 0.0179976i
\(473\) −2.77217 + 0.488808i −0.127464 + 0.0224754i
\(474\) −6.18988 + 6.41788i −0.284311 + 0.294783i
\(475\) −0.404639 1.11174i −0.0185661 0.0510100i
\(476\) −7.99099 + 14.4336i −0.366267 + 0.661563i
\(477\) 6.52153 + 30.4930i 0.298601 + 1.39618i
\(478\) 13.4555 0.615441
\(479\) −14.1236 11.8511i −0.645325 0.541492i 0.260324 0.965521i \(-0.416171\pi\)
−0.905648 + 0.424030i \(0.860615\pi\)
\(480\) 7.12830 3.48225i 0.325361 0.158942i
\(481\) 10.5377 1.85808i 0.480477 0.0847211i
\(482\) −6.31332 35.8046i −0.287564 1.63086i
\(483\) −29.7686 + 3.68963i −1.35452 + 0.167884i
\(484\) 78.4265 + 65.8076i 3.56484 + 2.99126i
\(485\) 5.05035 2.91582i 0.229324 0.132401i
\(486\) 24.8343 29.7859i 1.12651 1.35111i
\(487\) 2.97561 5.15391i 0.134838 0.233546i −0.790698 0.612207i \(-0.790282\pi\)
0.925535 + 0.378661i \(0.123615\pi\)
\(488\) 1.27373 7.22370i 0.0576592 0.327002i
\(489\) −0.295420 2.79385i −0.0133594 0.126342i
\(490\) −12.4712 + 38.5171i −0.563393 + 1.74003i
\(491\) 0.532431 1.46284i 0.0240283 0.0660171i −0.927099 0.374818i \(-0.877705\pi\)
0.951127 + 0.308801i \(0.0999275\pi\)
\(492\) 54.4417 + 3.77257i 2.45442 + 0.170080i
\(493\) 4.62887 5.51647i 0.208474 0.248449i
\(494\) −16.9002 + 9.75733i −0.760376 + 0.439003i
\(495\) 30.8205 27.8211i 1.38528 1.25046i
\(496\) 22.1203 12.7712i 0.993232 0.573443i
\(497\) 0.396656 + 1.03174i 0.0177924 + 0.0462799i
\(498\) 5.43893 + 18.9229i 0.243724 + 0.847957i
\(499\) −11.8949 4.32937i −0.532487 0.193809i 0.0617616 0.998091i \(-0.480328\pi\)
−0.594248 + 0.804282i \(0.702550\pi\)
\(500\) 7.77099 + 44.0715i 0.347529 + 1.97094i
\(501\) 5.40672 + 5.21465i 0.241555 + 0.232973i
\(502\) −40.3114 + 48.0412i −1.79918 + 2.14418i
\(503\) −8.60005 14.8957i −0.383457 0.664167i 0.608097 0.793863i \(-0.291933\pi\)
−0.991554 + 0.129696i \(0.958600\pi\)
\(504\) 43.1620 2.33863i 1.92259 0.104171i
\(505\) 9.27048 16.0569i 0.412531 0.714524i
\(506\) 33.1564 + 91.0963i 1.47398 + 4.04973i
\(507\) 5.60654 8.32331i 0.248995 0.369651i
\(508\) −12.6482 + 10.6131i −0.561172 + 0.470879i
\(509\) 5.05938 4.24533i 0.224253 0.188171i −0.523738 0.851879i \(-0.675463\pi\)
0.747991 + 0.663709i \(0.231018\pi\)
\(510\) 6.05665 13.6265i 0.268193 0.603391i
\(511\) 2.71569 + 7.06378i 0.120135 + 0.312483i
\(512\) 46.1249i 2.03845i
\(513\) −14.4319 + 4.71929i −0.637183 + 0.208362i
\(514\) 35.1524 + 20.2952i 1.55051 + 0.895185i
\(515\) 9.17077 + 25.1965i 0.404113 + 1.11029i
\(516\) 3.13510 + 1.39348i 0.138015 + 0.0613444i
\(517\) −38.2130 + 6.73798i −1.68060 + 0.296336i
\(518\) 17.2229 + 19.7922i 0.756732 + 0.869618i
\(519\) −15.1384 30.9889i −0.664502 1.36026i
\(520\) −31.9370 + 11.6241i −1.40053 + 0.509751i
\(521\) 1.45542 + 2.52086i 0.0637632 + 0.110441i 0.896145 0.443762i \(-0.146356\pi\)
−0.832382 + 0.554203i \(0.813023\pi\)
\(522\) −35.7604 4.97999i −1.56519 0.217968i
\(523\) −28.5887 16.5057i −1.25010 0.721745i −0.278970 0.960300i \(-0.589993\pi\)
−0.971129 + 0.238555i \(0.923326\pi\)
\(524\) −66.9558 + 24.3699i −2.92498 + 1.06460i
\(525\) 0.415297 1.80827i 0.0181250 0.0789192i
\(526\) 7.63636 6.40767i 0.332961 0.279388i
\(527\) 2.51528 6.91067i 0.109567 0.301034i
\(528\) −14.7261 51.2345i −0.640870 2.22969i
\(529\) −3.44635 + 19.5452i −0.149841 + 0.849793i
\(530\) 30.0584 52.0626i 1.30565 2.26145i
\(531\) −1.22856 0.171090i −0.0533151 0.00742466i
\(532\) −28.3341 15.6868i −1.22844 0.680110i
\(533\) −19.8836 3.50601i −0.861253 0.151862i
\(534\) 41.3650 + 27.8633i 1.79004 + 1.20576i
\(535\) −7.27400 8.66882i −0.314483 0.374786i
\(536\) 14.1909 38.9893i 0.612955 1.68408i
\(537\) 7.21234 16.2266i 0.311236 0.700230i
\(538\) −18.3586 + 21.8789i −0.791495 + 0.943268i
\(539\) 36.8141 + 19.5259i 1.58569 + 0.841041i
\(540\) −50.0988 + 7.13722i −2.15591 + 0.307137i
\(541\) 9.91176 + 17.1677i 0.426140 + 0.738096i 0.996526 0.0832808i \(-0.0265398\pi\)
−0.570386 + 0.821377i \(0.693207\pi\)
\(542\) −41.3496 + 15.0500i −1.77612 + 0.646454i
\(543\) 19.7951 + 27.2097i 0.849489 + 1.16768i
\(544\) −1.88513 2.24661i −0.0808241 0.0963225i
\(545\) 41.5336 + 15.1170i 1.77910 + 0.647541i
\(546\) −30.5632 1.56676i −1.30799 0.0670512i
\(547\) 0.455289 2.58207i 0.0194667 0.110401i −0.973526 0.228576i \(-0.926593\pi\)
0.992993 + 0.118174i \(0.0377042\pi\)
\(548\) 24.9083i 1.06403i
\(549\) −1.89253 + 3.57015i −0.0807714 + 0.152370i
\(550\) −5.99612 −0.255676
\(551\) 10.8292 + 9.08675i 0.461338 + 0.387109i
\(552\) 14.8993 59.9183i 0.634158 2.55029i
\(553\) 5.17746 + 1.77977i 0.220168 + 0.0756835i
\(554\) −11.6487 13.8823i −0.494905 0.589804i
\(555\) −11.5531 11.1426i −0.490400 0.472979i
\(556\) −62.0292 10.9374i −2.63062 0.463850i
\(557\) 5.03023i 0.213138i −0.994305 0.106569i \(-0.966014\pi\)
0.994305 0.106569i \(-0.0339864\pi\)
\(558\) −36.0569 + 7.71149i −1.52641 + 0.326453i
\(559\) −1.09926 0.634660i −0.0464939 0.0268433i
\(560\) −24.7240 20.0001i −1.04478 0.845158i
\(561\) −12.7301 8.57490i −0.537463 0.362033i
\(562\) −10.3665 58.7913i −0.437284 2.47996i
\(563\) 23.5676 + 8.57790i 0.993255 + 0.361515i 0.786980 0.616979i \(-0.211644\pi\)
0.206275 + 0.978494i \(0.433866\pi\)
\(564\) 43.2158 + 19.2084i 1.81972 + 0.808820i
\(565\) 25.0980 + 4.42546i 1.05588 + 0.186181i
\(566\) 51.4223 2.16144
\(567\) −23.0189 6.09330i −0.966705 0.255895i
\(568\) −2.27522 −0.0954660
\(569\) 39.1333 + 6.90026i 1.64055 + 0.289274i 0.916369 0.400334i \(-0.131106\pi\)
0.724183 + 0.689607i \(0.242217\pi\)
\(570\) 26.7497 + 11.8896i 1.12042 + 0.498000i
\(571\) 16.6785 + 6.07049i 0.697975 + 0.254042i 0.666546 0.745464i \(-0.267772\pi\)
0.0314288 + 0.999506i \(0.489994\pi\)
\(572\) 11.6246 + 65.9263i 0.486048 + 2.75652i
\(573\) −14.5881 9.82647i −0.609426 0.410507i
\(574\) −17.7650 46.2086i −0.741498 1.92871i
\(575\) −2.29511 1.32508i −0.0957128 0.0552598i
\(576\) 5.02247 15.5239i 0.209269 0.646829i
\(577\) 30.4025i 1.26567i 0.774285 + 0.632837i \(0.218110\pi\)
−0.774285 + 0.632837i \(0.781890\pi\)
\(578\) 36.2210 + 6.38674i 1.50660 + 0.265653i
\(579\) 13.7769 + 13.2875i 0.572550 + 0.552211i
\(580\) 30.2841 + 36.0912i 1.25748 + 1.49861i
\(581\) 9.11984 7.93598i 0.378355 0.329240i
\(582\) −2.60826 + 10.4892i −0.108116 + 0.434792i
\(583\) −47.4011 39.7743i −1.96315 1.64728i
\(584\) −15.5772 −0.644590
\(585\) 18.7102 0.676909i 0.773570 0.0279867i
\(586\) 38.2731i 1.58105i
\(587\) −3.14215 + 17.8200i −0.129690 + 0.735511i 0.848721 + 0.528842i \(0.177373\pi\)
−0.978411 + 0.206669i \(0.933738\pi\)
\(588\) −23.9184 44.8050i −0.986380 1.84773i
\(589\) 13.5661 + 4.93765i 0.558980 + 0.203452i
\(590\) 1.53716 + 1.83192i 0.0632839 + 0.0754188i
\(591\) 9.64822 + 13.2621i 0.396875 + 0.545530i
\(592\) −19.3654 + 7.04843i −0.795913 + 0.289689i
\(593\) −12.0267 20.8309i −0.493879 0.855423i 0.506096 0.862477i \(-0.331088\pi\)
−0.999975 + 0.00705396i \(0.997755\pi\)
\(594\) −2.54076 + 76.9132i −0.104249 + 3.15579i
\(595\) −9.15459 + 0.164497i −0.375302 + 0.00674372i
\(596\) 24.0741 28.6904i 0.986113 1.17520i
\(597\) −9.49951 + 21.3724i −0.388789 + 0.874713i
\(598\) −14.9510 + 41.0775i −0.611392 + 1.67979i
\(599\) −15.6768 18.6829i −0.640537 0.763362i 0.343918 0.939000i \(-0.388246\pi\)
−0.984455 + 0.175637i \(0.943801\pi\)
\(600\) 3.16739 + 2.13354i 0.129308 + 0.0871012i
\(601\) −29.8621 5.26550i −1.21810 0.214784i −0.472593 0.881281i \(-0.656682\pi\)
−0.745508 + 0.666496i \(0.767793\pi\)
\(602\) −0.0559157 3.11182i −0.00227895 0.126828i
\(603\) −14.0493 + 18.0290i −0.572133 + 0.734196i
\(604\) 13.8365 23.9656i 0.563000 0.975145i
\(605\) −9.86634 + 55.9548i −0.401124 + 2.27488i
\(606\) 9.49294 + 33.0275i 0.385624 + 1.34165i
\(607\) 7.85212 21.5735i 0.318708 0.875642i −0.672112 0.740450i \(-0.734613\pi\)
0.990819 0.135192i \(-0.0431653\pi\)
\(608\) 4.41023 3.70062i 0.178858 0.150080i
\(609\) 6.50584 + 21.1931i 0.263630 + 0.858786i
\(610\) 7.32034 2.66439i 0.296392 0.107878i
\(611\) −15.1528 8.74848i −0.613017 0.353926i
\(612\) 7.02955 + 17.3360i 0.284153 + 0.700767i
\(613\) 18.5790 + 32.1798i 0.750400 + 1.29973i 0.947629 + 0.319374i \(0.103473\pi\)
−0.197228 + 0.980358i \(0.563194\pi\)
\(614\) 48.9674 17.8227i 1.97616 0.719265i
\(615\) 13.2938 + 27.2129i 0.536058 + 1.09733i
\(616\) −64.7063 + 56.3067i −2.60709 + 2.26866i
\(617\) 13.0891 2.30796i 0.526948 0.0929151i 0.0961556 0.995366i \(-0.469345\pi\)
0.430792 + 0.902451i \(0.358234\pi\)
\(618\) −45.4136 20.1853i −1.82680 0.811970i
\(619\) −13.8173 37.9628i −0.555365 1.52585i −0.826286 0.563251i \(-0.809550\pi\)
0.270921 0.962602i \(-0.412672\pi\)
\(620\) 41.6683 + 24.0572i 1.67344 + 0.966160i
\(621\) −17.9696 + 28.8783i −0.721095 + 1.15885i
\(622\) 47.1269i 1.88962i
\(623\) 4.77500 30.2487i 0.191306 1.21189i
\(624\) 9.76343 21.9661i 0.390850 0.879350i
\(625\) −20.5763 + 17.2655i −0.823051 + 0.690622i
\(626\) 44.3087 37.1794i 1.77093 1.48599i
\(627\) 16.8331 24.9899i 0.672248 0.998000i
\(628\) −21.4606 58.9626i −0.856372 2.35286i
\(629\) −2.96677 + 5.13860i −0.118293 + 0.204889i
\(630\) 25.0706 + 38.4562i 0.998837 + 1.53213i
\(631\) −1.35510 2.34710i −0.0539456 0.0934365i 0.837792 0.545990i \(-0.183846\pi\)
−0.891737 + 0.452554i \(0.850513\pi\)
\(632\) −7.24363 + 8.63263i −0.288136 + 0.343387i
\(633\) 0.804479 + 0.775900i 0.0319752 + 0.0308393i
\(634\) −0.00244176 0.0138479i −9.69745e−5 0.000549970i
\(635\) −8.61066 3.13403i −0.341704 0.124370i
\(636\) 20.8332 + 72.4820i 0.826089 + 2.87410i
\(637\) 7.05705 + 17.4153i 0.279611 + 0.690019i
\(638\) 62.0478 35.8233i 2.45650 1.41826i
\(639\) 1.19250 + 0.385812i 0.0471747 + 0.0152625i
\(640\) −35.1749 + 20.3083i −1.39041 + 0.802754i
\(641\) −1.64219 + 1.95709i −0.0648628 + 0.0773004i −0.797500 0.603319i \(-0.793845\pi\)
0.732637 + 0.680619i \(0.238289\pi\)
\(642\) 20.9241 + 1.44994i 0.825807 + 0.0572248i
\(643\) 16.6501 45.7459i 0.656617 1.80404i 0.0649050 0.997891i \(-0.479326\pi\)
0.591712 0.806149i \(-0.298452\pi\)
\(644\) −71.2077 + 13.8793i −2.80598 + 0.546922i
\(645\) 0.200216 + 1.89349i 0.00788350 + 0.0745560i
\(646\) 1.87911 10.6569i 0.0739325 0.419292i
\(647\) −0.456728 + 0.791077i −0.0179558 + 0.0311004i −0.874864 0.484369i \(-0.839049\pi\)
0.856908 + 0.515470i \(0.172382\pi\)
\(648\) 28.7093 39.7245i 1.12781 1.56053i
\(649\) 2.13168 1.23073i 0.0836758 0.0483102i
\(650\) −2.07123 1.73797i −0.0812403 0.0681687i
\(651\) 13.6457 + 18.0655i 0.534818 + 0.708044i
\(652\) −1.17989 6.69151i −0.0462082 0.262060i
\(653\) −32.5579 + 5.74084i −1.27409 + 0.224656i −0.769469 0.638684i \(-0.779479\pi\)
−0.504621 + 0.863341i \(0.668368\pi\)
\(654\) −73.6073 + 35.9579i −2.87827 + 1.40607i
\(655\) −30.2924 25.4183i −1.18362 0.993176i
\(656\) 38.8857 1.51823
\(657\) 8.16444 + 2.64145i 0.318525 + 0.103053i
\(658\) −0.770771 42.8950i −0.0300478 1.67222i
\(659\) 1.83204 + 5.03348i 0.0713661 + 0.196077i 0.970247 0.242115i \(-0.0778412\pi\)
−0.898881 + 0.438192i \(0.855619\pi\)
\(660\) 69.7110 72.2787i 2.71350 2.81344i
\(661\) −24.2105 + 4.26896i −0.941679 + 0.166043i −0.623355 0.781939i \(-0.714231\pi\)
−0.318324 + 0.947982i \(0.603120\pi\)
\(662\) 1.13718 0.200515i 0.0441977 0.00779325i
\(663\) −1.91189 6.65180i −0.0742518 0.258334i
\(664\) 8.51083 + 23.3833i 0.330284 + 0.907448i
\(665\) −0.322918 17.9710i −0.0125222 0.696887i
\(666\) 29.7301 1.07559i 1.15202 0.0416784i
\(667\) 31.6664 1.22613
\(668\) 13.9170 + 11.6777i 0.538465 + 0.451826i
\(669\) −26.4285 17.8021i −1.02178 0.688269i
\(670\) 43.3958 7.65185i 1.67653 0.295617i
\(671\) −1.39237 7.89653i −0.0537519 0.304842i
\(672\) 8.95993 1.11053i 0.345637 0.0428395i
\(673\) 5.50769 + 4.62150i 0.212306 + 0.178146i 0.742739 0.669581i \(-0.233526\pi\)
−0.530433 + 0.847727i \(0.677971\pi\)
\(674\) −66.2258 + 38.2355i −2.55092 + 1.47278i
\(675\) −1.29833 1.65534i −0.0499726 0.0637142i
\(676\) 12.1357 21.0196i 0.466756 0.808445i
\(677\) −4.53365 + 25.7116i −0.174242 + 0.988177i 0.764773 + 0.644300i \(0.222851\pi\)
−0.939015 + 0.343876i \(0.888260\pi\)
\(678\) −38.1969 + 27.7883i −1.46694 + 1.06720i
\(679\) 6.51404 1.26967i 0.249986 0.0487256i
\(680\) 6.44584 17.7098i 0.247187 0.679140i
\(681\) −23.0285 + 34.1875i −0.882456 + 1.31007i
\(682\) 47.0317 56.0502i 1.80094 2.14627i
\(683\) −21.2228 + 12.2530i −0.812068 + 0.468848i −0.847673 0.530518i \(-0.821997\pi\)
0.0356056 + 0.999366i \(0.488664\pi\)
\(684\) −34.0317 + 13.7995i −1.30123 + 0.527635i
\(685\) 11.9716 6.91179i 0.457410 0.264086i
\(686\) −27.6715 + 36.8393i −1.05650 + 1.40653i
\(687\) −1.96475 + 2.03712i −0.0749600 + 0.0777209i
\(688\) 2.29723 + 0.836122i 0.0875809 + 0.0318768i
\(689\) −4.84516 27.4783i −0.184586 1.04684i
\(690\) 63.0213 18.1139i 2.39918 0.689585i
\(691\) 29.3463 34.9736i 1.11639 1.33046i 0.178331 0.983971i \(-0.442930\pi\)
0.938055 0.346486i \(-0.112625\pi\)
\(692\) −41.7065 72.2378i −1.58544 2.74607i
\(693\) 43.4624 18.5395i 1.65100 0.704259i
\(694\) 32.5181 56.3231i 1.23437 2.13800i
\(695\) −11.9557 32.8479i −0.453504 1.24599i
\(696\) −45.5227 3.15452i −1.72553 0.119572i
\(697\) 8.57663 7.19665i 0.324863 0.272593i
\(698\) −37.1529 + 31.1750i −1.40626 + 1.17999i
\(699\) −3.81878 5.24917i −0.144440 0.198542i
\(700\) 0.699682 4.43235i 0.0264455 0.167527i
\(701\) 20.0327i 0.756626i 0.925678 + 0.378313i \(0.123496\pi\)
−0.925678 + 0.378313i \(0.876504\pi\)
\(702\) −23.1708 + 25.8315i −0.874527 + 0.974949i
\(703\) −10.0874 5.82396i −0.380453 0.219655i
\(704\) 11.0737 + 30.4247i 0.417355 + 1.14667i
\(705\) 2.75988 + 26.1008i 0.103943 + 0.983014i
\(706\) −15.1753 + 2.67581i −0.571129 + 0.100705i
\(707\) 15.9175 13.8512i 0.598639 0.520929i
\(708\) −2.99284 0.207391i −0.112478 0.00779421i
\(709\) 22.9835 8.36532i 0.863164 0.314166i 0.127769 0.991804i \(-0.459219\pi\)
0.735396 + 0.677638i \(0.236996\pi\)
\(710\) −1.20817 2.09262i −0.0453420 0.0785346i
\(711\) 5.26043 3.29628i 0.197282 0.123620i
\(712\) 54.5885 + 31.5167i 2.04579 + 1.18114i
\(713\) 30.3887 11.0606i 1.13806 0.414222i
\(714\) 11.5595 12.4245i 0.432605 0.464975i
\(715\) −28.4602 + 23.8810i −1.06435 + 0.893097i
\(716\) 14.6887 40.3568i 0.548942 1.50821i
\(717\) −9.09120 2.26063i −0.339517 0.0844246i
\(718\) 3.09935 17.5773i 0.115667 0.655978i
\(719\) 9.44610 16.3611i 0.352280 0.610167i −0.634369 0.773031i \(-0.718740\pi\)
0.986649 + 0.162864i \(0.0520732\pi\)
\(720\) −35.2611 + 7.54130i −1.31410 + 0.281048i
\(721\) 0.548226 + 30.5099i 0.0204170 + 1.13625i
\(722\) −25.6295 4.51917i −0.953830 0.168186i
\(723\) −1.74985 + 25.2520i −0.0650778 + 0.939133i
\(724\) 52.3102 + 62.3409i 1.94409 + 2.31688i
\(725\) −0.669894 + 1.84052i −0.0248792 + 0.0683551i
\(726\) −61.9526 85.1579i −2.29928 3.16051i
\(727\) 13.6834 16.3072i 0.507488 0.604800i −0.450087 0.892985i \(-0.648607\pi\)
0.957575 + 0.288184i \(0.0930516\pi\)
\(728\) −38.6718 + 0.694886i −1.43327 + 0.0257542i
\(729\) −21.7835 + 15.9524i −0.806796 + 0.590830i
\(730\) −8.27173 14.3271i −0.306151 0.530268i
\(731\) 0.661419 0.240737i 0.0244635 0.00890398i
\(732\) −3.96933 + 8.93035i −0.146711 + 0.330075i
\(733\) −27.9446 33.3030i −1.03216 1.23008i −0.972754 0.231842i \(-0.925525\pi\)
−0.0594026 0.998234i \(-0.518920\pi\)
\(734\) −35.3362 12.8613i −1.30428 0.474720i
\(735\) 14.8973 23.9288i 0.549496 0.882625i
\(736\) 2.23942 12.7004i 0.0825460 0.468141i
\(737\) 45.3561i 1.67071i
\(738\) −53.4087 17.2794i −1.96600 0.636063i
\(739\) −33.9746 −1.24978 −0.624888 0.780714i \(-0.714855\pi\)
−0.624888 + 0.780714i \(0.714855\pi\)
\(740\) −29.7378 24.9530i −1.09318 0.917289i
\(741\) 13.0579 3.75317i 0.479694 0.137876i
\(742\) 51.6104 44.9108i 1.89468 1.64873i
\(743\) 25.7124 + 30.6429i 0.943297 + 1.12418i 0.992110 + 0.125370i \(0.0400117\pi\)
−0.0488129 + 0.998808i \(0.515544\pi\)
\(744\) −44.7877 + 12.8731i −1.64200 + 0.471951i
\(745\) 20.4697 + 3.60935i 0.749950 + 0.132236i
\(746\) 19.6562i 0.719666i
\(747\) −0.495613 13.6990i −0.0181335 0.501221i
\(748\) −32.1483 18.5608i −1.17546 0.678651i
\(749\) −4.62139 12.0207i −0.168862 0.439226i
\(750\) 3.18221 45.9222i 0.116198 1.67684i
\(751\) 2.27124 + 12.8809i 0.0828789 + 0.470029i 0.997794 + 0.0663836i \(0.0211461\pi\)
−0.914915 + 0.403646i \(0.867743\pi\)
\(752\) 31.6662 + 11.5255i 1.15475 + 0.420293i
\(753\) 35.3076 25.6864i 1.28668 0.936063i
\(754\) 31.8164 + 5.61009i 1.15868 + 0.204307i
\(755\) 15.3580 0.558934
\(756\) −56.5580 10.8531i −2.05700 0.394723i
\(757\) −34.8391 −1.26625 −0.633124 0.774051i \(-0.718227\pi\)
−0.633124 + 0.774051i \(0.718227\pi\)
\(758\) −54.8604 9.67336i −1.99262 0.351352i
\(759\) −7.09718 67.1196i −0.257611 2.43629i
\(760\) 34.7654 + 12.6536i 1.26108 + 0.458994i
\(761\) −4.38204 24.8518i −0.158849 0.900876i −0.955182 0.296018i \(-0.904341\pi\)
0.796334 0.604858i \(-0.206770\pi\)
\(762\) 15.2601 7.45473i 0.552816 0.270056i
\(763\) 39.1069 + 31.6349i 1.41576 + 1.14526i
\(764\) −36.8405 21.2699i −1.33284 0.769518i
\(765\) −6.38152 + 8.18916i −0.230724 + 0.296080i
\(766\) 15.8855i 0.573967i
\(767\) 1.09307 + 0.192737i 0.0394683 + 0.00695933i