Properties

Label 189.2.ba.a.38.18
Level $189$
Weight $2$
Character 189.38
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(5,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.ba (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 38.18
Character \(\chi\) \(=\) 189.38
Dual form 189.2.ba.a.5.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.77439 + 0.312873i) q^{2} +(0.626754 + 1.61468i) q^{3} +(1.17119 + 0.426279i) q^{4} +(-0.155940 - 0.884381i) q^{5} +(0.606919 + 3.06116i) q^{6} +(2.64257 + 0.129722i) q^{7} +(-1.17597 - 0.678945i) q^{8} +(-2.21436 + 2.02401i) q^{9} +O(q^{10})\) \(q+(1.77439 + 0.312873i) q^{2} +(0.626754 + 1.61468i) q^{3} +(1.17119 + 0.426279i) q^{4} +(-0.155940 - 0.884381i) q^{5} +(0.606919 + 3.06116i) q^{6} +(2.64257 + 0.129722i) q^{7} +(-1.17597 - 0.678945i) q^{8} +(-2.21436 + 2.02401i) q^{9} -1.61803i q^{10} +(-3.83262 - 0.675794i) q^{11} +(0.0457470 + 2.15827i) q^{12} +(-1.72738 - 2.05861i) q^{13} +(4.64837 + 1.05697i) q^{14} +(1.33025 - 0.806082i) q^{15} +(-3.78373 - 3.17493i) q^{16} +7.46010 q^{17} +(-4.56240 + 2.89857i) q^{18} +4.84873i q^{19} +(0.194357 - 1.10225i) q^{20} +(1.44678 + 4.34820i) q^{21} +(-6.58912 - 2.39825i) q^{22} +(-5.01423 - 5.97573i) q^{23} +(0.359234 - 2.32434i) q^{24} +(3.94065 - 1.43428i) q^{25} +(-2.42097 - 4.19324i) q^{26} +(-4.65598 - 2.30691i) q^{27} +(3.03966 + 1.27840i) q^{28} +(-3.24899 + 3.87199i) q^{29} +(2.61259 - 1.01411i) q^{30} +(0.0550233 - 0.151175i) q^{31} +(-3.97480 - 4.73698i) q^{32} +(-1.31092 - 6.61199i) q^{33} +(13.2371 + 2.33407i) q^{34} +(-0.297359 - 2.35727i) q^{35} +(-3.45623 + 1.42657i) q^{36} +(-2.45256 + 4.24796i) q^{37} +(-1.51704 + 8.60355i) q^{38} +(2.24135 - 4.07940i) q^{39} +(-0.417065 + 1.14588i) q^{40} +(2.78205 - 2.33441i) q^{41} +(1.20672 + 8.16806i) q^{42} +(5.36266 - 1.95185i) q^{43} +(-4.20065 - 2.42525i) q^{44} +(2.13530 + 1.64271i) q^{45} +(-7.02757 - 12.1721i) q^{46} +(-3.75035 + 1.36502i) q^{47} +(2.75501 - 8.09940i) q^{48} +(6.96634 + 0.685599i) q^{49} +(7.44101 - 1.31205i) q^{50} +(4.67565 + 12.0457i) q^{51} +(-1.14555 - 3.14737i) q^{52} +(-2.73831 - 1.58096i) q^{53} +(-7.53976 - 5.55010i) q^{54} +3.49487i q^{55} +(-3.01950 - 1.94671i) q^{56} +(-7.82913 + 3.03896i) q^{57} +(-6.97641 + 5.85391i) q^{58} +(-4.24780 + 3.56433i) q^{59} +(1.90160 - 0.377018i) q^{60} +(2.92051 + 8.02404i) q^{61} +(0.144931 - 0.251029i) q^{62} +(-6.11415 + 5.06134i) q^{63} +(-0.631470 - 1.09374i) q^{64} +(-1.55123 + 1.84868i) q^{65} +(-0.257373 - 12.1424i) q^{66} +(1.25577 + 7.12184i) q^{67} +(8.73721 + 3.18008i) q^{68} +(6.50618 - 11.8417i) q^{69} +(0.209894 - 4.27575i) q^{70} +(-4.65524 + 2.68770i) q^{71} +(3.97820 - 0.876742i) q^{72} +(7.96064 - 4.59608i) q^{73} +(-5.68088 + 6.77020i) q^{74} +(4.78572 + 5.46393i) q^{75} +(-2.06691 + 5.67879i) q^{76} +(-10.0403 - 2.28301i) q^{77} +(5.25337 - 6.53720i) q^{78} +(-2.02358 + 11.4763i) q^{79} +(-2.21781 + 3.84136i) q^{80} +(0.806764 - 8.96377i) q^{81} +(5.66681 - 3.27174i) q^{82} +(7.47526 + 6.27249i) q^{83} +(-0.159085 + 5.70930i) q^{84} +(-1.16333 - 6.59757i) q^{85} +(10.1261 - 1.78551i) q^{86} +(-8.28833 - 2.81927i) q^{87} +(4.04820 + 3.39685i) q^{88} -7.39610 q^{89} +(3.27490 + 3.58289i) q^{90} +(-4.29768 - 5.66410i) q^{91} +(-3.32530 - 9.13618i) q^{92} +(0.278585 - 0.00590493i) q^{93} +(-7.08167 + 1.24869i) q^{94} +(4.28812 - 0.756112i) q^{95} +(5.15747 - 9.38694i) q^{96} +(-0.434182 - 1.19291i) q^{97} +(12.1465 + 3.39610i) q^{98} +(9.85460 - 6.26080i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9} - 9 q^{11} - 9 q^{12} + 3 q^{14} - 24 q^{15} + 3 q^{16} - 18 q^{17} - 3 q^{18} + 18 q^{20} - 21 q^{21} - 12 q^{22} - 6 q^{23} - 9 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} + 51 q^{30} - 9 q^{31} + 3 q^{32} - 9 q^{33} - 18 q^{34} + 18 q^{35} + 3 q^{37} - 99 q^{38} - 36 q^{39} - 54 q^{40} - 45 q^{42} - 12 q^{43} - 9 q^{44} - 9 q^{45} + 3 q^{46} + 45 q^{47} - 24 q^{49} - 9 q^{50} - 48 q^{51} - 9 q^{52} - 45 q^{53} + 171 q^{54} + 3 q^{56} - 3 q^{58} + 36 q^{59} + 57 q^{60} - 9 q^{61} - 99 q^{62} - 33 q^{63} + 18 q^{64} + 69 q^{65} - 9 q^{66} - 3 q^{67} + 36 q^{68} + 108 q^{69} + 66 q^{70} + 18 q^{71} - 129 q^{72} - 9 q^{73} + 75 q^{74} + 36 q^{75} + 36 q^{76} + 15 q^{77} + 66 q^{78} - 21 q^{79} + 72 q^{80} - 33 q^{81} - 18 q^{82} - 90 q^{83} - 120 q^{84} + 9 q^{85} - 105 q^{86} - 54 q^{87} - 63 q^{88} - 18 q^{89} + 81 q^{90} + 6 q^{91} + 150 q^{92} + 21 q^{93} - 9 q^{94} + 45 q^{95} - 81 q^{96} + 27 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.77439 + 0.312873i 1.25468 + 0.221235i 0.761198 0.648519i \(-0.224611\pi\)
0.493486 + 0.869754i \(0.335722\pi\)
\(3\) 0.626754 + 1.61468i 0.361857 + 0.932234i
\(4\) 1.17119 + 0.426279i 0.585596 + 0.213139i
\(5\) −0.155940 0.884381i −0.0697386 0.395507i −0.999618 0.0276423i \(-0.991200\pi\)
0.929879 0.367865i \(-0.119911\pi\)
\(6\) 0.606919 + 3.06116i 0.247774 + 1.24971i
\(7\) 2.64257 + 0.129722i 0.998797 + 0.0490304i
\(8\) −1.17597 0.678945i −0.415767 0.240043i
\(9\) −2.21436 + 2.02401i −0.738119 + 0.674670i
\(10\) 1.61803i 0.511665i
\(11\) −3.83262 0.675794i −1.15558 0.203759i −0.437168 0.899380i \(-0.644018\pi\)
−0.718409 + 0.695621i \(0.755130\pi\)
\(12\) 0.0457470 + 2.15827i 0.0132060 + 0.623038i
\(13\) −1.72738 2.05861i −0.479089 0.570956i 0.471318 0.881963i \(-0.343778\pi\)
−0.950408 + 0.311007i \(0.899334\pi\)
\(14\) 4.64837 + 1.05697i 1.24233 + 0.282486i
\(15\) 1.33025 0.806082i 0.343470 0.208130i
\(16\) −3.78373 3.17493i −0.945933 0.793732i
\(17\) 7.46010 1.80934 0.904670 0.426112i \(-0.140117\pi\)
0.904670 + 0.426112i \(0.140117\pi\)
\(18\) −4.56240 + 2.89857i −1.07537 + 0.683200i
\(19\) 4.84873i 1.11238i 0.831057 + 0.556188i \(0.187736\pi\)
−0.831057 + 0.556188i \(0.812264\pi\)
\(20\) 0.194357 1.10225i 0.0434595 0.246471i
\(21\) 1.44678 + 4.34820i 0.315714 + 0.948854i
\(22\) −6.58912 2.39825i −1.40481 0.511308i
\(23\) −5.01423 5.97573i −1.04554 1.24603i −0.968504 0.248997i \(-0.919899\pi\)
−0.0770353 0.997028i \(-0.524545\pi\)
\(24\) 0.359234 2.32434i 0.0733283 0.474453i
\(25\) 3.94065 1.43428i 0.788130 0.286856i
\(26\) −2.42097 4.19324i −0.474790 0.822361i
\(27\) −4.65598 2.30691i −0.896044 0.443966i
\(28\) 3.03966 + 1.27840i 0.574441 + 0.241595i
\(29\) −3.24899 + 3.87199i −0.603321 + 0.719010i −0.978107 0.208101i \(-0.933272\pi\)
0.374786 + 0.927111i \(0.377716\pi\)
\(30\) 2.61259 1.01411i 0.476992 0.185149i
\(31\) 0.0550233 0.151175i 0.00988247 0.0271519i −0.934653 0.355560i \(-0.884290\pi\)
0.944536 + 0.328409i \(0.106512\pi\)
\(32\) −3.97480 4.73698i −0.702652 0.837388i
\(33\) −1.31092 6.61199i −0.228202 1.15100i
\(34\) 13.2371 + 2.33407i 2.27015 + 0.400289i
\(35\) −0.297359 2.35727i −0.0502628 0.398451i
\(36\) −3.45623 + 1.42657i −0.576038 + 0.237762i
\(37\) −2.45256 + 4.24796i −0.403198 + 0.698360i −0.994110 0.108376i \(-0.965435\pi\)
0.590911 + 0.806736i \(0.298768\pi\)
\(38\) −1.51704 + 8.60355i −0.246096 + 1.39568i
\(39\) 2.24135 4.07940i 0.358903 0.653228i
\(40\) −0.417065 + 1.14588i −0.0659438 + 0.181179i
\(41\) 2.78205 2.33441i 0.434483 0.364574i −0.399157 0.916882i \(-0.630697\pi\)
0.833640 + 0.552308i \(0.186253\pi\)
\(42\) 1.20672 + 8.16806i 0.186202 + 1.26036i
\(43\) 5.36266 1.95185i 0.817797 0.297654i 0.100957 0.994891i \(-0.467810\pi\)
0.716841 + 0.697237i \(0.245587\pi\)
\(44\) −4.20065 2.42525i −0.633272 0.365620i
\(45\) 2.13530 + 1.64271i 0.318312 + 0.244881i
\(46\) −7.02757 12.1721i −1.03616 1.79468i
\(47\) −3.75035 + 1.36502i −0.547045 + 0.199108i −0.600733 0.799450i \(-0.705125\pi\)
0.0536879 + 0.998558i \(0.482902\pi\)
\(48\) 2.75501 8.09940i 0.397651 1.16905i
\(49\) 6.96634 + 0.685599i 0.995192 + 0.0979428i
\(50\) 7.44101 1.31205i 1.05232 0.185552i
\(51\) 4.67565 + 12.0457i 0.654722 + 1.68673i
\(52\) −1.14555 3.14737i −0.158859 0.436462i
\(53\) −2.73831 1.58096i −0.376136 0.217162i 0.300000 0.953939i \(-0.403013\pi\)
−0.676136 + 0.736777i \(0.736347\pi\)
\(54\) −7.53976 5.55010i −1.02603 0.755273i
\(55\) 3.49487i 0.471249i
\(56\) −3.01950 1.94671i −0.403498 0.260140i
\(57\) −7.82913 + 3.03896i −1.03699 + 0.402520i
\(58\) −6.97641 + 5.85391i −0.916048 + 0.768656i
\(59\) −4.24780 + 3.56433i −0.553016 + 0.464036i −0.875961 0.482382i \(-0.839772\pi\)
0.322945 + 0.946418i \(0.395327\pi\)
\(60\) 1.90160 0.377018i 0.245495 0.0486728i
\(61\) 2.92051 + 8.02404i 0.373933 + 1.02737i 0.973826 + 0.227293i \(0.0729876\pi\)
−0.599893 + 0.800080i \(0.704790\pi\)
\(62\) 0.144931 0.251029i 0.0184063 0.0318807i
\(63\) −6.11415 + 5.06134i −0.770311 + 0.637668i
\(64\) −0.631470 1.09374i −0.0789338 0.136717i
\(65\) −1.55123 + 1.84868i −0.192406 + 0.229301i
\(66\) −0.257373 12.1424i −0.0316804 1.49463i
\(67\) 1.25577 + 7.12184i 0.153417 + 0.870072i 0.960219 + 0.279249i \(0.0900855\pi\)
−0.806802 + 0.590822i \(0.798803\pi\)
\(68\) 8.73721 + 3.18008i 1.05954 + 0.385642i
\(69\) 6.50618 11.8417i 0.783251 1.42557i
\(70\) 0.209894 4.27575i 0.0250871 0.511050i
\(71\) −4.65524 + 2.68770i −0.552475 + 0.318972i −0.750120 0.661302i \(-0.770004\pi\)
0.197644 + 0.980274i \(0.436671\pi\)
\(72\) 3.97820 0.876742i 0.468836 0.103325i
\(73\) 7.96064 4.59608i 0.931722 0.537930i 0.0443665 0.999015i \(-0.485873\pi\)
0.887356 + 0.461085i \(0.152540\pi\)
\(74\) −5.68088 + 6.77020i −0.660388 + 0.787020i
\(75\) 4.78572 + 5.46393i 0.552607 + 0.630921i
\(76\) −2.06691 + 5.67879i −0.237091 + 0.651402i
\(77\) −10.0403 2.28301i −1.14420 0.260173i
\(78\) 5.25337 6.53720i 0.594827 0.740193i
\(79\) −2.02358 + 11.4763i −0.227670 + 1.29118i 0.629844 + 0.776722i \(0.283119\pi\)
−0.857514 + 0.514461i \(0.827992\pi\)
\(80\) −2.21781 + 3.84136i −0.247958 + 0.429477i
\(81\) 0.806764 8.96377i 0.0896405 0.995974i
\(82\) 5.66681 3.27174i 0.625795 0.361303i
\(83\) 7.47526 + 6.27249i 0.820517 + 0.688495i 0.953093 0.302677i \(-0.0978805\pi\)
−0.132576 + 0.991173i \(0.542325\pi\)
\(84\) −0.159085 + 5.70930i −0.0173576 + 0.622936i
\(85\) −1.16333 6.59757i −0.126181 0.715607i
\(86\) 10.1261 1.78551i 1.09193 0.192537i
\(87\) −8.28833 2.81927i −0.888602 0.302258i
\(88\) 4.04820 + 3.39685i 0.431540 + 0.362105i
\(89\) −7.39610 −0.783985 −0.391993 0.919968i \(-0.628214\pi\)
−0.391993 + 0.919968i \(0.628214\pi\)
\(90\) 3.27490 + 3.58289i 0.345205 + 0.377670i
\(91\) −4.29768 5.66410i −0.450519 0.593760i
\(92\) −3.32530 9.13618i −0.346686 0.952513i
\(93\) 0.278585 0.00590493i 0.0288879 0.000612313i
\(94\) −7.08167 + 1.24869i −0.730419 + 0.128793i
\(95\) 4.28812 0.756112i 0.439952 0.0775755i
\(96\) 5.15747 9.38694i 0.526382 0.958051i
\(97\) −0.434182 1.19291i −0.0440845 0.121121i 0.915697 0.401870i \(-0.131640\pi\)
−0.959781 + 0.280748i \(0.909417\pi\)
\(98\) 12.1465 + 3.39610i 1.22698 + 0.343058i
\(99\) 9.85460 6.26080i 0.990424 0.629235i
\(100\) 5.22666 0.522666
\(101\) 1.96044 + 1.64500i 0.195071 + 0.163684i 0.735091 0.677968i \(-0.237139\pi\)
−0.540021 + 0.841652i \(0.681584\pi\)
\(102\) 4.52768 + 22.8366i 0.448307 + 2.26116i
\(103\) −10.3455 + 1.82420i −1.01938 + 0.179744i −0.658271 0.752781i \(-0.728712\pi\)
−0.361106 + 0.932525i \(0.617601\pi\)
\(104\) 0.633659 + 3.59366i 0.0621353 + 0.352387i
\(105\) 3.61985 1.95757i 0.353261 0.191039i
\(106\) −4.36420 3.66199i −0.423888 0.355684i
\(107\) 5.61020 3.23905i 0.542358 0.313131i −0.203676 0.979038i \(-0.565289\pi\)
0.746034 + 0.665908i \(0.231956\pi\)
\(108\) −4.46965 4.68658i −0.430093 0.450967i
\(109\) 1.42567 2.46933i 0.136554 0.236519i −0.789636 0.613576i \(-0.789730\pi\)
0.926190 + 0.377057i \(0.123064\pi\)
\(110\) −1.09345 + 6.20128i −0.104257 + 0.591269i
\(111\) −8.39623 1.29766i −0.796935 0.123169i
\(112\) −9.58691 8.88080i −0.905878 0.839156i
\(113\) 5.39586 14.8250i 0.507599 1.39462i −0.376107 0.926576i \(-0.622737\pi\)
0.883706 0.468042i \(-0.155040\pi\)
\(114\) −14.8428 + 2.94279i −1.39015 + 0.275617i
\(115\) −4.50290 + 5.36635i −0.419897 + 0.500414i
\(116\) −5.45573 + 3.14987i −0.506552 + 0.292458i
\(117\) 7.99169 + 1.06227i 0.738832 + 0.0982067i
\(118\) −8.65244 + 4.99549i −0.796522 + 0.459872i
\(119\) 19.7138 + 0.967740i 1.80716 + 0.0887126i
\(120\) −2.11162 + 0.0447582i −0.192763 + 0.00408585i
\(121\) 3.89563 + 1.41789i 0.354148 + 0.128899i
\(122\) 2.67163 + 15.1515i 0.241878 + 1.37176i
\(123\) 5.51298 + 3.02900i 0.497089 + 0.273116i
\(124\) 0.128886 0.153600i 0.0115743 0.0137937i
\(125\) −4.12801 7.14993i −0.369221 0.639509i
\(126\) −12.4325 + 7.06784i −1.10757 + 0.629653i
\(127\) −0.825343 + 1.42954i −0.0732373 + 0.126851i −0.900318 0.435232i \(-0.856666\pi\)
0.827081 + 0.562083i \(0.190000\pi\)
\(128\) 3.45162 + 9.48325i 0.305083 + 0.838209i
\(129\) 6.51267 + 7.43562i 0.573408 + 0.654670i
\(130\) −3.33089 + 2.79495i −0.292138 + 0.245133i
\(131\) −3.78722 + 3.17786i −0.330891 + 0.277651i −0.793063 0.609140i \(-0.791515\pi\)
0.462172 + 0.886790i \(0.347070\pi\)
\(132\) 1.28321 8.30272i 0.111689 0.722659i
\(133\) −0.628988 + 12.8131i −0.0545402 + 1.11104i
\(134\) 13.0298i 1.12561i
\(135\) −1.31414 + 4.47740i −0.113103 + 0.385353i
\(136\) −8.77283 5.06500i −0.752264 0.434320i
\(137\) 1.12888 + 3.10156i 0.0964464 + 0.264984i 0.978529 0.206111i \(-0.0660809\pi\)
−0.882082 + 0.471096i \(0.843859\pi\)
\(138\) 15.2494 18.9762i 1.29812 1.61536i
\(139\) 14.5005 2.55683i 1.22992 0.216867i 0.479327 0.877637i \(-0.340881\pi\)
0.750589 + 0.660769i \(0.229770\pi\)
\(140\) 0.656588 2.88757i 0.0554918 0.244044i
\(141\) −4.55461 5.20008i −0.383567 0.437925i
\(142\) −9.10113 + 3.31254i −0.763750 + 0.277982i
\(143\) 5.22919 + 9.05722i 0.437287 + 0.757403i
\(144\) 14.8046 0.627884i 1.23372 0.0523237i
\(145\) 3.93096 + 2.26954i 0.326448 + 0.188475i
\(146\) 15.5633 5.66457i 1.28803 0.468803i
\(147\) 3.25917 + 11.6781i 0.268811 + 0.963193i
\(148\) −4.68323 + 3.92970i −0.384959 + 0.323019i
\(149\) 4.90321 13.4714i 0.401686 1.10362i −0.559766 0.828651i \(-0.689109\pi\)
0.961452 0.274973i \(-0.0886690\pi\)
\(150\) 6.78222 + 11.1925i 0.553766 + 0.913862i
\(151\) 3.72945 21.1508i 0.303498 1.72122i −0.326992 0.945027i \(-0.606035\pi\)
0.630490 0.776197i \(-0.282854\pi\)
\(152\) 3.29202 5.70195i 0.267018 0.462489i
\(153\) −16.5193 + 15.0993i −1.33551 + 1.22071i
\(154\) −17.1011 7.19228i −1.37805 0.579571i
\(155\) −0.142277 0.0250872i −0.0114279 0.00201505i
\(156\) 4.36401 3.82232i 0.349401 0.306031i
\(157\) −7.04028 8.39028i −0.561875 0.669617i 0.408067 0.912952i \(-0.366203\pi\)
−0.969942 + 0.243335i \(0.921759\pi\)
\(158\) −7.18124 + 19.7303i −0.571309 + 1.56966i
\(159\) 0.836498 5.41236i 0.0663386 0.429228i
\(160\) −3.56947 + 4.25392i −0.282191 + 0.336302i
\(161\) −12.4753 16.4417i −0.983189 1.29579i
\(162\) 4.23604 15.6528i 0.332815 1.22980i
\(163\) −6.53530 11.3195i −0.511884 0.886609i −0.999905 0.0137775i \(-0.995614\pi\)
0.488021 0.872832i \(-0.337719\pi\)
\(164\) 4.25342 1.54812i 0.332136 0.120888i
\(165\) −5.64309 + 2.19043i −0.439314 + 0.170525i
\(166\) 11.3016 + 13.4687i 0.877171 + 1.04537i
\(167\) 11.4933 + 4.18321i 0.889377 + 0.323707i 0.745988 0.665960i \(-0.231978\pi\)
0.143389 + 0.989666i \(0.454200\pi\)
\(168\) 1.25082 6.09562i 0.0965027 0.470287i
\(169\) 1.00339 5.69049i 0.0771836 0.437730i
\(170\) 12.0707i 0.925777i
\(171\) −9.81388 10.7368i −0.750486 0.821066i
\(172\) 7.11273 0.542340
\(173\) −7.61152 6.38682i −0.578693 0.485581i 0.305825 0.952088i \(-0.401068\pi\)
−0.884518 + 0.466507i \(0.845512\pi\)
\(174\) −13.8247 7.59569i −1.04804 0.575828i
\(175\) 10.5995 3.27899i 0.801247 0.247869i
\(176\) 12.3560 + 14.7253i 0.931368 + 1.10996i
\(177\) −8.41756 4.62486i −0.632702 0.347626i
\(178\) −13.1236 2.31404i −0.983654 0.173445i
\(179\) 5.62434i 0.420383i 0.977660 + 0.210191i \(0.0674087\pi\)
−0.977660 + 0.210191i \(0.932591\pi\)
\(180\) 1.80060 + 2.83416i 0.134208 + 0.211246i
\(181\) −4.37746 2.52733i −0.325374 0.187855i 0.328411 0.944535i \(-0.393487\pi\)
−0.653785 + 0.756680i \(0.726820\pi\)
\(182\) −5.85361 11.3950i −0.433899 0.844651i
\(183\) −11.1258 + 9.74479i −0.822442 + 0.720355i
\(184\) 1.83938 + 10.4316i 0.135601 + 0.769031i
\(185\) 4.13927 + 1.50657i 0.304325 + 0.110765i
\(186\) 0.496166 + 0.0766841i 0.0363807 + 0.00562275i
\(187\) −28.5917 5.04149i −2.09083 0.368670i
\(188\) −4.97426 −0.362785
\(189\) −12.0045 6.70016i −0.873198 0.487365i
\(190\) 7.84538 0.569164
\(191\) −1.38822 0.244781i −0.100448 0.0177118i 0.123198 0.992382i \(-0.460685\pi\)
−0.223646 + 0.974670i \(0.571796\pi\)
\(192\) 1.37026 1.70513i 0.0988898 0.123057i
\(193\) −14.4735 5.26791i −1.04182 0.379193i −0.236252 0.971692i \(-0.575919\pi\)
−0.805571 + 0.592499i \(0.798141\pi\)
\(194\) −0.397181 2.25253i −0.0285160 0.161722i
\(195\) −3.95726 1.34606i −0.283385 0.0963935i
\(196\) 7.86666 + 3.77257i 0.561905 + 0.269469i
\(197\) 11.2518 + 6.49623i 0.801658 + 0.462837i 0.844050 0.536264i \(-0.180165\pi\)
−0.0423928 + 0.999101i \(0.513498\pi\)
\(198\) 19.4448 8.02588i 1.38188 0.570375i
\(199\) 11.6287i 0.824340i −0.911107 0.412170i \(-0.864771\pi\)
0.911107 0.412170i \(-0.135229\pi\)
\(200\) −5.60787 0.988819i −0.396536 0.0699201i
\(201\) −10.7124 + 6.49131i −0.755595 + 0.457862i
\(202\) 2.96391 + 3.53225i 0.208540 + 0.248528i
\(203\) −9.08795 + 9.81054i −0.637849 + 0.688565i
\(204\) 0.341277 + 16.1009i 0.0238942 + 1.12729i
\(205\) −2.49834 2.09636i −0.174492 0.146416i
\(206\) −18.9278 −1.31876
\(207\) 23.1982 + 3.08355i 1.61239 + 0.214321i
\(208\) 13.2735i 0.920354i
\(209\) 3.27674 18.5833i 0.226657 1.28544i
\(210\) 7.03550 2.34093i 0.485496 0.161540i
\(211\) −3.55252 1.29301i −0.244565 0.0890146i 0.216829 0.976210i \(-0.430429\pi\)
−0.461395 + 0.887195i \(0.652651\pi\)
\(212\) −2.53315 3.01890i −0.173978 0.207339i
\(213\) −7.25746 5.83218i −0.497273 0.399614i
\(214\) 10.9681 3.99206i 0.749764 0.272892i
\(215\) −2.56243 4.43826i −0.174756 0.302687i
\(216\) 3.90901 + 5.87401i 0.265974 + 0.399676i
\(217\) 0.165014 0.392353i 0.0112018 0.0266347i
\(218\) 3.30229 3.93551i 0.223659 0.266546i
\(219\) 12.4105 + 9.97324i 0.838627 + 0.673929i
\(220\) −1.48979 + 4.09317i −0.100442 + 0.275961i
\(221\) −12.8864 15.3575i −0.866836 1.03305i
\(222\) −14.4922 4.92952i −0.972653 0.330848i
\(223\) 9.92238 + 1.74958i 0.664451 + 0.117161i 0.495694 0.868497i \(-0.334914\pi\)
0.168757 + 0.985658i \(0.446025\pi\)
\(224\) −9.88920 13.0334i −0.660750 0.870832i
\(225\) −5.82302 + 11.1519i −0.388201 + 0.743462i
\(226\) 14.2127 24.6171i 0.945415 1.63751i
\(227\) 0.0868851 0.492750i 0.00576677 0.0327050i −0.981789 0.189977i \(-0.939159\pi\)
0.987555 + 0.157272i \(0.0502699\pi\)
\(228\) −10.4649 + 0.221815i −0.693052 + 0.0146900i
\(229\) 7.54187 20.7211i 0.498381 1.36929i −0.394458 0.918914i \(-0.629068\pi\)
0.892839 0.450376i \(-0.148710\pi\)
\(230\) −9.66889 + 8.11316i −0.637548 + 0.534966i
\(231\) −2.60648 17.6427i −0.171494 1.16080i
\(232\) 6.44957 2.34745i 0.423435 0.154118i
\(233\) −6.16567 3.55975i −0.403926 0.233207i 0.284250 0.958750i \(-0.408255\pi\)
−0.688177 + 0.725543i \(0.741589\pi\)
\(234\) 13.8480 + 4.38527i 0.905275 + 0.286674i
\(235\) 1.79203 + 3.10388i 0.116899 + 0.202475i
\(236\) −6.49438 + 2.36376i −0.422748 + 0.153868i
\(237\) −19.7988 + 3.92538i −1.28607 + 0.254981i
\(238\) 34.6773 + 7.88508i 2.24780 + 0.511114i
\(239\) −17.0760 + 3.01096i −1.10456 + 0.194763i −0.696050 0.717993i \(-0.745061\pi\)
−0.408505 + 0.912756i \(0.633950\pi\)
\(240\) −7.59257 1.17346i −0.490098 0.0757462i
\(241\) 8.22015 + 22.5847i 0.529506 + 1.45481i 0.859654 + 0.510877i \(0.170679\pi\)
−0.330148 + 0.943929i \(0.607099\pi\)
\(242\) 6.46875 + 3.73473i 0.415827 + 0.240078i
\(243\) 14.9792 4.31542i 0.960918 0.276834i
\(244\) 10.6426i 0.681325i
\(245\) −0.480002 6.26781i −0.0306662 0.400436i
\(246\) 8.83450 + 7.09950i 0.563267 + 0.452647i
\(247\) 9.98166 8.37561i 0.635118 0.532927i
\(248\) −0.167345 + 0.140419i −0.0106264 + 0.00891663i
\(249\) −5.44289 + 16.0014i −0.344929 + 1.01405i
\(250\) −5.08769 13.9783i −0.321774 0.884067i
\(251\) −7.12754 + 12.3453i −0.449886 + 0.779226i −0.998378 0.0569302i \(-0.981869\pi\)
0.548492 + 0.836156i \(0.315202\pi\)
\(252\) −9.31838 + 3.32146i −0.587003 + 0.209232i
\(253\) 15.1793 + 26.2913i 0.954312 + 1.65292i
\(254\) −1.91174 + 2.27833i −0.119953 + 0.142955i
\(255\) 9.92382 6.01346i 0.621454 0.376577i
\(256\) 3.59609 + 20.3944i 0.224755 + 1.27465i
\(257\) 20.7228 + 7.54248i 1.29265 + 0.470487i 0.894597 0.446874i \(-0.147463\pi\)
0.398056 + 0.917361i \(0.369685\pi\)
\(258\) 9.22962 + 15.2313i 0.574611 + 0.948262i
\(259\) −7.03212 + 10.9074i −0.436954 + 0.677751i
\(260\) −2.60484 + 1.50390i −0.161545 + 0.0932682i
\(261\) −0.642530 15.1500i −0.0397716 0.937759i
\(262\) −7.71428 + 4.45384i −0.476590 + 0.275159i
\(263\) 9.10274 10.8482i 0.561299 0.668930i −0.408522 0.912748i \(-0.633956\pi\)
0.969821 + 0.243819i \(0.0784002\pi\)
\(264\) −2.94758 + 8.66552i −0.181411 + 0.533326i
\(265\) −0.971162 + 2.66825i −0.0596580 + 0.163909i
\(266\) −5.12495 + 22.5387i −0.314231 + 1.38194i
\(267\) −4.63554 11.9423i −0.283690 0.730857i
\(268\) −1.56514 + 8.87635i −0.0956061 + 0.542209i
\(269\) 1.82097 3.15402i 0.111027 0.192304i −0.805158 0.593061i \(-0.797919\pi\)
0.916184 + 0.400757i \(0.131253\pi\)
\(270\) −3.73265 + 7.53350i −0.227162 + 0.458474i
\(271\) −23.4729 + 13.5521i −1.42588 + 0.823232i −0.996792 0.0800305i \(-0.974498\pi\)
−0.429088 + 0.903263i \(0.641165\pi\)
\(272\) −28.2270 23.6853i −1.71151 1.43613i
\(273\) 6.45211 10.4894i 0.390499 0.634845i
\(274\) 1.03267 + 5.85658i 0.0623861 + 0.353809i
\(275\) −16.0723 + 2.83398i −0.969195 + 0.170895i
\(276\) 12.6678 11.0954i 0.762514 0.667866i
\(277\) −7.14943 5.99909i −0.429568 0.360450i 0.402221 0.915543i \(-0.368238\pi\)
−0.831789 + 0.555092i \(0.812683\pi\)
\(278\) 26.5295 1.59113
\(279\) 0.184139 + 0.446124i 0.0110241 + 0.0267087i
\(280\) −1.25077 + 2.97396i −0.0747478 + 0.177728i
\(281\) 5.06201 + 13.9078i 0.301974 + 0.829668i 0.994157 + 0.107945i \(0.0344271\pi\)
−0.692183 + 0.721722i \(0.743351\pi\)
\(282\) −6.45470 10.6520i −0.384372 0.634317i
\(283\) 17.5190 3.08907i 1.04140 0.183626i 0.373307 0.927708i \(-0.378224\pi\)
0.668088 + 0.744082i \(0.267113\pi\)
\(284\) −6.59789 + 1.16339i −0.391513 + 0.0690342i
\(285\) 3.90848 + 6.45004i 0.231518 + 0.382067i
\(286\) 6.44487 + 17.7071i 0.381093 + 1.04704i
\(287\) 7.65457 5.80796i 0.451835 0.342833i
\(288\) 18.3893 + 2.44434i 1.08360 + 0.144034i
\(289\) 38.6531 2.27371
\(290\) 6.26499 + 5.25695i 0.367893 + 0.308699i
\(291\) 1.65403 1.44872i 0.0969611 0.0849256i
\(292\) 11.2826 1.98943i 0.660267 0.116423i
\(293\) 1.65066 + 9.36134i 0.0964324 + 0.546895i 0.994299 + 0.106628i \(0.0340053\pi\)
−0.897867 + 0.440268i \(0.854884\pi\)
\(294\) 2.12927 + 21.7412i 0.124182 + 1.26797i
\(295\) 3.81462 + 3.20085i 0.222096 + 0.186361i
\(296\) 5.76826 3.33031i 0.335273 0.193570i
\(297\) 16.2856 + 11.9880i 0.944985 + 0.695614i
\(298\) 12.9151 22.3695i 0.748150 1.29583i
\(299\) −3.64022 + 20.6447i −0.210519 + 1.19391i
\(300\) 3.27583 + 8.43936i 0.189130 + 0.487247i
\(301\) 14.4244 4.46224i 0.831408 0.257199i
\(302\) 13.2350 36.3629i 0.761589 2.09245i
\(303\) −1.42743 + 4.19648i −0.0820039 + 0.241082i
\(304\) 15.3944 18.3463i 0.882927 1.05223i
\(305\) 6.64088 3.83412i 0.380256 0.219541i
\(306\) −34.0360 + 21.6237i −1.94571 + 1.23614i
\(307\) −24.1263 + 13.9293i −1.37696 + 0.794987i −0.991792 0.127860i \(-0.959189\pi\)
−0.385166 + 0.922847i \(0.625856\pi\)
\(308\) −10.7859 6.95380i −0.614584 0.396229i
\(309\) −9.42960 15.5614i −0.536431 0.885256i
\(310\) −0.244606 0.0890291i −0.0138927 0.00505652i
\(311\) −0.734417 4.16508i −0.0416449 0.236180i 0.956879 0.290485i \(-0.0938167\pi\)
−0.998524 + 0.0543051i \(0.982706\pi\)
\(312\) −5.40544 + 3.27549i −0.306023 + 0.185438i
\(313\) −0.662036 + 0.788983i −0.0374205 + 0.0445960i −0.784430 0.620217i \(-0.787044\pi\)
0.747010 + 0.664813i \(0.231489\pi\)
\(314\) −9.86712 17.0904i −0.556834 0.964464i
\(315\) 5.42959 + 4.61797i 0.305923 + 0.260193i
\(316\) −7.26209 + 12.5783i −0.408525 + 0.707585i
\(317\) 8.67463 + 23.8334i 0.487216 + 1.33861i 0.903191 + 0.429239i \(0.141218\pi\)
−0.415975 + 0.909376i \(0.636560\pi\)
\(318\) 3.17766 9.34193i 0.178194 0.523870i
\(319\) 15.0688 12.6442i 0.843690 0.707940i
\(320\) −0.868810 + 0.729018i −0.0485679 + 0.0407533i
\(321\) 8.74623 + 7.02856i 0.488167 + 0.392296i
\(322\) −16.9918 33.0773i −0.946918 1.84332i
\(323\) 36.1720i 2.01267i
\(324\) 4.76594 10.1544i 0.264774 0.564132i
\(325\) −9.75963 5.63473i −0.541367 0.312558i
\(326\) −8.05462 22.1299i −0.446104 1.22566i
\(327\) 4.88072 + 0.754331i 0.269904 + 0.0417146i
\(328\) −4.85653 + 0.856338i −0.268157 + 0.0472833i
\(329\) −10.0876 + 3.12065i −0.556150 + 0.172047i
\(330\) −10.6984 + 2.12111i −0.588926 + 0.116763i
\(331\) −18.6800 + 6.79897i −1.02675 + 0.373705i −0.799841 0.600211i \(-0.795083\pi\)
−0.226906 + 0.973917i \(0.572861\pi\)
\(332\) 6.08113 + 10.5328i 0.333746 + 0.578064i
\(333\) −3.16707 14.3705i −0.173554 0.787499i
\(334\) 19.0848 + 11.0186i 1.04427 + 0.602911i
\(335\) 6.10259 2.22116i 0.333420 0.121355i
\(336\) 8.33097 21.0458i 0.454492 1.14814i
\(337\) −23.6390 + 19.8355i −1.28770 + 1.08051i −0.295567 + 0.955322i \(0.595509\pi\)
−0.992133 + 0.125187i \(0.960047\pi\)
\(338\) 3.56080 9.78322i 0.193682 0.532137i
\(339\) 27.3194 0.579067i 1.48379 0.0314506i
\(340\) 1.44992 8.22292i 0.0786331 0.445950i
\(341\) −0.313046 + 0.542212i −0.0169524 + 0.0293624i
\(342\) −14.0544 22.1218i −0.759975 1.19621i
\(343\) 18.3201 + 2.71543i 0.989193 + 0.146620i
\(344\) −7.63150 1.34564i −0.411463 0.0725520i
\(345\) −11.4871 3.90734i −0.618446 0.210364i
\(346\) −11.5076 13.7142i −0.618650 0.737278i
\(347\) 5.76541 15.8403i 0.309503 0.850353i −0.683250 0.730184i \(-0.739434\pi\)
0.992753 0.120169i \(-0.0383436\pi\)
\(348\) −8.50542 6.83504i −0.455938 0.366397i
\(349\) 10.6801 12.7280i 0.571690 0.681314i −0.400287 0.916390i \(-0.631089\pi\)
0.971977 + 0.235076i \(0.0755339\pi\)
\(350\) 19.8336 2.50192i 1.06015 0.133733i
\(351\) 3.29361 + 13.5698i 0.175800 + 0.724301i
\(352\) 12.0327 + 20.8412i 0.641343 + 1.11084i
\(353\) 22.0893 8.03985i 1.17570 0.427918i 0.321016 0.947074i \(-0.395976\pi\)
0.854680 + 0.519156i \(0.173754\pi\)
\(354\) −13.4891 10.8399i −0.716935 0.576137i
\(355\) 3.10289 + 3.69788i 0.164684 + 0.196263i
\(356\) −8.66225 3.15280i −0.459098 0.167098i
\(357\) 10.7931 + 32.4380i 0.571234 + 1.71680i
\(358\) −1.75970 + 9.97978i −0.0930033 + 0.527448i
\(359\) 15.6227i 0.824534i 0.911063 + 0.412267i \(0.135263\pi\)
−0.911063 + 0.412267i \(0.864737\pi\)
\(360\) −1.39574 3.38153i −0.0735617 0.178222i
\(361\) −4.51020 −0.237379
\(362\) −6.97659 5.85406i −0.366682 0.307682i
\(363\) 0.152164 + 7.17885i 0.00798654 + 0.376792i
\(364\) −2.61891 8.46576i −0.137268 0.443726i
\(365\) −5.30607 6.32352i −0.277732 0.330988i
\(366\) −22.7904 + 13.8101i −1.19127 + 0.721866i
\(367\) −11.3941 2.00909i −0.594767 0.104873i −0.131842 0.991271i \(-0.542089\pi\)
−0.462925 + 0.886397i \(0.653200\pi\)
\(368\) 38.5304i 2.00853i
\(369\) −1.43557 + 10.8001i −0.0747327 + 0.562232i
\(370\) 6.87331 + 3.96831i 0.357327 + 0.206303i
\(371\) −7.03109 4.53303i −0.365036 0.235343i
\(372\) 0.328793 + 0.111839i 0.0170471 + 0.00579859i
\(373\) −5.63907 31.9808i −0.291980 1.65590i −0.679229 0.733926i \(-0.737686\pi\)
0.387249 0.921975i \(-0.373425\pi\)
\(374\) −49.1555 17.8912i −2.54177 0.925130i
\(375\) 8.95757 11.1467i 0.462567 0.575611i
\(376\) 5.33706 + 0.941068i 0.275238 + 0.0485319i
\(377\) 13.5832 0.699568
\(378\) −19.2044 15.6446i −0.987766 0.804671i
\(379\) 5.32262 0.273405 0.136702 0.990612i \(-0.456350\pi\)
0.136702 + 0.990612i \(0.456350\pi\)
\(380\) 5.34453 + 0.942385i 0.274169 + 0.0483433i
\(381\) −2.82552 0.436694i −0.144756 0.0223725i
\(382\) −2.38667 0.868676i −0.122112 0.0444453i
\(383\) −0.00487891 0.0276697i −0.000249301 0.00141386i 0.984683 0.174355i \(-0.0557840\pi\)
−0.984932 + 0.172941i \(0.944673\pi\)
\(384\) −13.1491 + 11.5169i −0.671010 + 0.587720i
\(385\) −0.453363 + 9.23545i −0.0231055 + 0.470682i
\(386\) −24.0334 13.8757i −1.22327 0.706254i
\(387\) −7.92428 + 15.1762i −0.402814 + 0.771448i
\(388\) 1.58220i 0.0803242i
\(389\) −25.2469 4.45171i −1.28007 0.225711i −0.508060 0.861322i \(-0.669637\pi\)
−0.772009 + 0.635611i \(0.780748\pi\)
\(390\) −6.60059 3.62656i −0.334234 0.183638i
\(391\) −37.4067 44.5795i −1.89174 2.25448i
\(392\) −7.72671 5.53601i −0.390258 0.279611i
\(393\) −7.50487 4.12340i −0.378570 0.207998i
\(394\) 17.9326 + 15.0472i 0.903432 + 0.758069i
\(395\) 10.4650 0.526549
\(396\) 14.2105 3.13179i 0.714103 0.157379i
\(397\) 6.04507i 0.303393i −0.988427 0.151697i \(-0.951526\pi\)
0.988427 0.151697i \(-0.0484737\pi\)
\(398\) 3.63832 20.6340i 0.182373 1.03429i
\(399\) −21.0832 + 7.01506i −1.05548 + 0.351192i
\(400\) −19.4641 7.08435i −0.973205 0.354218i
\(401\) −11.5485 13.7630i −0.576706 0.687291i 0.396287 0.918127i \(-0.370298\pi\)
−0.972993 + 0.230836i \(0.925854\pi\)
\(402\) −21.0390 + 8.16651i −1.04933 + 0.407308i
\(403\) −0.406257 + 0.147866i −0.0202371 + 0.00736571i
\(404\) 1.59482 + 2.76230i 0.0793451 + 0.137430i
\(405\) −8.05319 + 0.684325i −0.400166 + 0.0340044i
\(406\) −19.1950 + 14.5644i −0.952634 + 0.722817i
\(407\) 12.2705 14.6234i 0.608224 0.724854i
\(408\) 2.67992 17.3398i 0.132676 0.858448i
\(409\) −9.02981 + 24.8092i −0.446495 + 1.22674i 0.488653 + 0.872478i \(0.337488\pi\)
−0.935148 + 0.354257i \(0.884734\pi\)
\(410\) −3.77715 4.50143i −0.186540 0.222310i
\(411\) −4.30049 + 3.76669i −0.212128 + 0.185797i
\(412\) −12.8942 2.27360i −0.635253 0.112012i
\(413\) −11.6875 + 8.86795i −0.575103 + 0.436363i
\(414\) 40.1980 + 12.7295i 1.97562 + 0.625622i
\(415\) 4.38158 7.58911i 0.215083 0.372535i
\(416\) −2.88562 + 16.3651i −0.141479 + 0.802367i
\(417\) 13.2167 + 21.8111i 0.647224 + 1.06809i
\(418\) 11.6284 31.9489i 0.568766 1.56267i
\(419\) −2.46834 + 2.07119i −0.120586 + 0.101184i −0.701087 0.713076i \(-0.747301\pi\)
0.580500 + 0.814260i \(0.302857\pi\)
\(420\) 5.07401 0.749618i 0.247586 0.0365776i
\(421\) 7.06763 2.57241i 0.344455 0.125371i −0.163999 0.986461i \(-0.552439\pi\)
0.508454 + 0.861089i \(0.330217\pi\)
\(422\) −5.89901 3.40580i −0.287159 0.165792i
\(423\) 5.54182 10.6134i 0.269452 0.516041i
\(424\) 2.14678 + 3.71832i 0.104257 + 0.180578i
\(425\) 29.3977 10.6999i 1.42600 0.519020i
\(426\) −11.0529 12.6192i −0.535513 0.611404i
\(427\) 6.67676 + 21.5829i 0.323111 + 1.04447i
\(428\) 7.95135 1.40204i 0.384343 0.0677701i
\(429\) −11.3471 + 14.1201i −0.547841 + 0.681725i
\(430\) −3.15814 8.67692i −0.152299 0.418438i
\(431\) 12.5235 + 7.23047i 0.603238 + 0.348280i 0.770314 0.637664i \(-0.220099\pi\)
−0.167076 + 0.985944i \(0.553433\pi\)
\(432\) 10.2927 + 23.5111i 0.495207 + 1.13118i
\(433\) 2.90783i 0.139741i −0.997556 0.0698707i \(-0.977741\pi\)
0.997556 0.0698707i \(-0.0222587\pi\)
\(434\) 0.415555 0.644560i 0.0199473 0.0309399i
\(435\) −1.20083 + 7.76967i −0.0575753 + 0.372527i
\(436\) 2.72236 2.28433i 0.130377 0.109400i
\(437\) 28.9747 24.3127i 1.38605 1.16303i
\(438\) 18.9008 + 21.5794i 0.903115 + 1.03110i
\(439\) −12.4035 34.0785i −0.591989 1.62648i −0.766808 0.641876i \(-0.778156\pi\)
0.174819 0.984601i \(-0.444066\pi\)
\(440\) 2.37283 4.10986i 0.113120 0.195930i
\(441\) −16.8136 + 12.5818i −0.800650 + 0.599133i
\(442\) −18.0607 31.2820i −0.859058 1.48793i
\(443\) −13.7969 + 16.4425i −0.655512 + 0.781209i −0.986734 0.162344i \(-0.948095\pi\)
0.331222 + 0.943553i \(0.392539\pi\)
\(444\) −9.28043 5.09895i −0.440430 0.241985i
\(445\) 1.15335 + 6.54097i 0.0546740 + 0.310072i
\(446\) 17.0588 + 6.20889i 0.807757 + 0.293999i
\(447\) 24.8251 0.526198i 1.17419 0.0248883i
\(448\) −1.52682 2.97220i −0.0721356 0.140423i
\(449\) −1.81557 + 1.04822i −0.0856820 + 0.0494685i −0.542229 0.840231i \(-0.682419\pi\)
0.456547 + 0.889699i \(0.349086\pi\)
\(450\) −13.8215 + 17.9660i −0.651549 + 0.846926i
\(451\) −12.2401 + 7.06682i −0.576364 + 0.332764i
\(452\) 12.6392 15.0628i 0.594496 0.708493i
\(453\) 36.4891 7.23448i 1.71441 0.339905i
\(454\) 0.308337 0.847148i 0.0144709 0.0397586i
\(455\) −4.33904 + 4.68404i −0.203418 + 0.219591i
\(456\) 11.2701 + 1.74183i 0.527770 + 0.0815686i
\(457\) 4.80346 27.2418i 0.224696 1.27432i −0.638569 0.769565i \(-0.720473\pi\)
0.863265 0.504751i \(-0.168416\pi\)
\(458\) 19.8653 34.4077i 0.928245 1.60777i
\(459\) −34.7341 17.2098i −1.62125 0.803286i
\(460\) −7.56131 + 4.36553i −0.352548 + 0.203544i
\(461\) 30.3564 + 25.4721i 1.41384 + 1.18635i 0.954545 + 0.298068i \(0.0963423\pi\)
0.459295 + 0.888284i \(0.348102\pi\)
\(462\) 0.895015 32.1206i 0.0416398 1.49438i
\(463\) 3.97186 + 22.5255i 0.184588 + 1.04685i 0.926484 + 0.376335i \(0.122816\pi\)
−0.741896 + 0.670515i \(0.766073\pi\)
\(464\) 24.5866 4.33528i 1.14140 0.201260i
\(465\) −0.0486648 0.245454i −0.00225678 0.0113827i
\(466\) −9.82656 8.24546i −0.455206 0.381964i
\(467\) 33.4415 1.54749 0.773743 0.633500i \(-0.218382\pi\)
0.773743 + 0.633500i \(0.218382\pi\)
\(468\) 8.90698 + 4.65081i 0.411725 + 0.214984i
\(469\) 2.39461 + 18.9829i 0.110573 + 0.876547i
\(470\) 2.20863 + 6.06817i 0.101877 + 0.279904i
\(471\) 9.13506 16.6264i 0.420921 0.766105i
\(472\) 7.41525 1.30751i 0.341315 0.0601830i
\(473\) −21.8720 + 3.85663i −1.00568 + 0.177328i
\(474\) −36.3589 + 0.770669i −1.67002 + 0.0353980i
\(475\) 6.95444 + 19.1072i 0.319091 + 0.876697i
\(476\) 22.6761 + 9.53700i 1.03936 + 0.437128i
\(477\) 9.26349 2.04155i 0.424146 0.0934761i
\(478\) −31.2416 −1.42896
\(479\) −11.4018 9.56726i −0.520962 0.437139i 0.344005 0.938968i \(-0.388216\pi\)
−0.864967 + 0.501829i \(0.832661\pi\)
\(480\) −9.10589 3.09737i −0.415625 0.141375i
\(481\) 12.9814 2.28897i 0.591901 0.104368i
\(482\) 7.51962 + 42.6459i 0.342510 + 1.94247i
\(483\) 18.7291 30.4484i 0.852206 1.38545i
\(484\) 3.95811 + 3.32125i 0.179914 + 0.150966i
\(485\) −0.987277 + 0.570005i −0.0448299 + 0.0258826i
\(486\) 27.9292 2.97064i 1.26689 0.134751i
\(487\) −10.9979 + 19.0489i −0.498362 + 0.863189i −0.999998 0.00188992i \(-0.999398\pi\)
0.501636 + 0.865079i \(0.332732\pi\)
\(488\) 2.01346 11.4189i 0.0911449 0.516908i
\(489\) 14.1813 17.6469i 0.641298 0.798021i
\(490\) 1.10932 11.2717i 0.0501139 0.509205i
\(491\) −14.1796 + 38.9582i −0.639918 + 1.75816i 0.0120663 + 0.999927i \(0.496159\pi\)
−0.651984 + 0.758233i \(0.726063\pi\)
\(492\) 5.16556 + 5.89760i 0.232881 + 0.265885i
\(493\) −24.2378 + 28.8854i −1.09161 + 1.30093i
\(494\) 20.3319 11.7386i 0.914774 0.528145i
\(495\) −7.07366 7.73890i −0.317937 0.347838i
\(496\) −0.688163 + 0.397311i −0.0308994 + 0.0178398i
\(497\) −12.6505 + 6.49856i −0.567450 + 0.291500i
\(498\) −14.6642 + 26.6899i −0.657120 + 1.19600i
\(499\) −24.2680 8.83284i −1.08639 0.395412i −0.264105 0.964494i \(-0.585077\pi\)
−0.822281 + 0.569082i \(0.807299\pi\)
\(500\) −1.78683 10.1336i −0.0799095 0.453189i
\(501\) 0.448930 + 21.1798i 0.0200567 + 0.946243i
\(502\) −16.5095 + 19.6753i −0.736857 + 0.878152i
\(503\) 6.47284 + 11.2113i 0.288610 + 0.499887i 0.973478 0.228780i \(-0.0734736\pi\)
−0.684868 + 0.728667i \(0.740140\pi\)
\(504\) 10.6264 1.80079i 0.473338 0.0802136i
\(505\) 1.14910 1.99029i 0.0511341 0.0885669i
\(506\) 18.7081 + 51.4002i 0.831678 + 2.28502i
\(507\) 9.81717 1.94639i 0.435996 0.0864423i
\(508\) −1.57601 + 1.32243i −0.0699243 + 0.0586735i
\(509\) −2.10687 + 1.76788i −0.0933854 + 0.0783597i −0.688285 0.725440i \(-0.741636\pi\)
0.594900 + 0.803800i \(0.297192\pi\)
\(510\) 19.4902 7.56533i 0.863040 0.334999i
\(511\) 21.6328 11.1128i 0.956977 0.491601i
\(512\) 17.1291i 0.757006i
\(513\) 11.1856 22.5756i 0.493857 0.996737i
\(514\) 34.4105 + 19.8669i 1.51778 + 0.876292i
\(515\) 3.22657 + 8.86493i 0.142180 + 0.390636i
\(516\) 4.45793 + 11.4847i 0.196250 + 0.505588i
\(517\) 15.2961 2.69712i 0.672723 0.118619i
\(518\) −15.8904 + 17.1538i −0.698182 + 0.753695i
\(519\) 5.54210 16.2931i 0.243271 0.715188i
\(520\) 3.07935 1.12079i 0.135038 0.0491499i
\(521\) −13.5062 23.3935i −0.591719 1.02489i −0.994001 0.109372i \(-0.965116\pi\)
0.402281 0.915516i \(-0.368217\pi\)
\(522\) 3.59991 27.0830i 0.157564 1.18539i
\(523\) 5.83341 + 3.36792i 0.255077 + 0.147269i 0.622087 0.782948i \(-0.286285\pi\)
−0.367010 + 0.930217i \(0.619618\pi\)
\(524\) −5.79021 + 2.10747i −0.252947 + 0.0920650i
\(525\) 11.9378 + 15.0596i 0.521008 + 0.657257i
\(526\) 19.5459 16.4010i 0.852243 0.715117i
\(527\) 0.410479 1.12778i 0.0178808 0.0491270i
\(528\) −16.0324 + 29.1801i −0.697721 + 1.26990i
\(529\) −6.57290 + 37.2768i −0.285778 + 1.62073i
\(530\) −2.55804 + 4.43066i −0.111114 + 0.192456i
\(531\) 2.19191 16.4903i 0.0951210 0.715617i
\(532\) −6.19862 + 14.7385i −0.268744 + 0.638994i
\(533\) −9.61131 1.69473i −0.416312 0.0734070i
\(534\) −4.48883 22.6407i −0.194251 0.979757i
\(535\) −3.73941 4.45645i −0.161669 0.192669i
\(536\) 3.35859 9.22765i 0.145069 0.398574i
\(537\) −9.08149 + 3.52508i −0.391895 + 0.152118i
\(538\) 4.21792 5.02673i 0.181848 0.216718i
\(539\) −26.2360 7.33545i −1.13006 0.315960i
\(540\) −3.44772 + 4.68370i −0.148366 + 0.201554i
\(541\) 7.43623 + 12.8799i 0.319709 + 0.553752i 0.980427 0.196882i \(-0.0630816\pi\)
−0.660719 + 0.750634i \(0.729748\pi\)
\(542\) −45.8903 + 16.7027i −1.97116 + 0.717443i
\(543\) 1.33722 8.65219i 0.0573857 0.371301i
\(544\) −29.6524 35.3384i −1.27134 1.51512i
\(545\) −2.40615 0.875767i −0.103068 0.0375137i
\(546\) 14.7304 16.5935i 0.630403 0.710138i
\(547\) 7.58978 43.0438i 0.324515 1.84042i −0.188543 0.982065i \(-0.560376\pi\)
0.513058 0.858354i \(-0.328512\pi\)
\(548\) 4.11374i 0.175730i
\(549\) −22.7078 11.8570i −0.969146 0.506043i
\(550\) −29.4052 −1.25384
\(551\) −18.7742 15.7535i −0.799809 0.671120i
\(552\) −15.6909 + 9.50808i −0.667849 + 0.404691i
\(553\) −6.83617 + 30.0644i −0.290704 + 1.27847i
\(554\) −10.8089 12.8816i −0.459228 0.547287i
\(555\) 0.161681 + 7.62782i 0.00686296 + 0.323783i
\(556\) 18.0728 + 3.18672i 0.766456 + 0.135147i
\(557\) 26.1298i 1.10715i 0.832798 + 0.553577i \(0.186737\pi\)
−0.832798 + 0.553577i \(0.813263\pi\)
\(558\) 0.187154 + 0.849210i 0.00792288 + 0.0359499i
\(559\) −13.2814 7.66805i −0.561745 0.324324i
\(560\) −6.35902 + 9.86335i −0.268718 + 0.416803i
\(561\) −9.77960 49.3261i −0.412895 2.08255i
\(562\) 4.63063 + 26.2616i 0.195331 + 1.10778i
\(563\) 20.0729 + 7.30595i 0.845973 + 0.307909i 0.728397 0.685155i \(-0.240266\pi\)
0.117576 + 0.993064i \(0.462488\pi\)
\(564\) −3.11764 8.03182i −0.131276 0.338201i
\(565\) −13.9524 2.46018i −0.586981 0.103501i
\(566\) 32.0520 1.34725
\(567\) 3.29473 23.5827i 0.138366 0.990381i
\(568\) 7.29921 0.306268
\(569\) −15.0727 2.65772i −0.631879 0.111417i −0.151470 0.988462i \(-0.548401\pi\)
−0.480409 + 0.877044i \(0.659512\pi\)
\(570\) 4.91713 + 12.6677i 0.205956 + 0.530594i
\(571\) −35.6407 12.9722i −1.49152 0.542868i −0.537669 0.843156i \(-0.680695\pi\)
−0.953849 + 0.300288i \(0.902917\pi\)
\(572\) 2.26348 + 12.8368i 0.0946408 + 0.536735i
\(573\) −0.474833 2.39495i −0.0198364 0.100050i
\(574\) 15.3994 7.91068i 0.642757 0.330185i
\(575\) −28.3302 16.3565i −1.18145 0.682111i
\(576\) 3.61204 + 1.14383i 0.150502 + 0.0476594i
\(577\) 20.9397i 0.871730i 0.900012 + 0.435865i \(0.143557\pi\)
−0.900012 + 0.435865i \(0.856443\pi\)
\(578\) 68.5858 + 12.0935i 2.85279 + 0.503025i
\(579\) −0.565337 26.6716i −0.0234946 1.10844i
\(580\) 3.63645 + 4.33375i 0.150995 + 0.179949i
\(581\) 18.9402 + 17.5452i 0.785773 + 0.727898i
\(582\) 3.38817 2.05310i 0.140444 0.0851037i
\(583\) 9.42649 + 7.90976i 0.390405 + 0.327589i
\(584\) −12.4819 −0.516506
\(585\) −0.306776 7.23335i −0.0126836 0.299062i
\(586\) 17.1271i 0.707515i
\(587\) 0.524168 2.97270i 0.0216347 0.122697i −0.972078 0.234659i \(-0.924603\pi\)
0.993712 + 0.111963i \(0.0357137\pi\)
\(588\) −1.16102 + 15.0666i −0.0478795 + 0.621336i
\(589\) 0.733008 + 0.266793i 0.0302031 + 0.0109930i
\(590\) 5.76718 + 6.87305i 0.237431 + 0.282959i
\(591\) −3.43719 + 22.2396i −0.141387 + 0.914813i
\(592\) 22.7668 8.28643i 0.935709 0.340570i
\(593\) −4.67012 8.08888i −0.191779 0.332170i 0.754061 0.656804i \(-0.228092\pi\)
−0.945840 + 0.324634i \(0.894759\pi\)
\(594\) 25.1463 + 26.3667i 1.03176 + 1.08184i
\(595\) −2.21833 17.5854i −0.0909426 0.720933i
\(596\) 11.4852 13.6875i 0.470452 0.560662i
\(597\) 18.7767 7.28837i 0.768478 0.298293i
\(598\) −12.9184 + 35.4929i −0.528271 + 1.45141i
\(599\) −0.0277621 0.0330855i −0.00113433 0.00135184i 0.765477 0.643463i \(-0.222503\pi\)
−0.766611 + 0.642111i \(0.778059\pi\)
\(600\) −1.91814 9.67464i −0.0783075 0.394966i
\(601\) −22.8510 4.02924i −0.932110 0.164356i −0.313083 0.949726i \(-0.601362\pi\)
−0.619027 + 0.785370i \(0.712473\pi\)
\(602\) 26.9906 3.40475i 1.10006 0.138767i
\(603\) −17.1954 13.2286i −0.700251 0.538711i
\(604\) 13.3840 23.1818i 0.544588 0.943254i
\(605\) 0.646472 3.66632i 0.0262828 0.149057i
\(606\) −3.84579 + 6.99960i −0.156225 + 0.284339i
\(607\) −7.20354 + 19.7916i −0.292383 + 0.803314i 0.703334 + 0.710859i \(0.251694\pi\)
−0.995717 + 0.0924552i \(0.970529\pi\)
\(608\) 22.9684 19.2727i 0.931490 0.781613i
\(609\) −21.5368 8.52530i −0.872713 0.345463i
\(610\) 12.9831 4.72547i 0.525671 0.191329i
\(611\) 9.28833 + 5.36262i 0.375766 + 0.216948i
\(612\) −25.7838 + 10.6424i −1.04225 + 0.430192i
\(613\) 2.31304 + 4.00629i 0.0934226 + 0.161813i 0.908949 0.416907i \(-0.136886\pi\)
−0.815527 + 0.578720i \(0.803553\pi\)
\(614\) −47.1675 + 17.1676i −1.90353 + 0.692827i
\(615\) 1.81909 5.34792i 0.0733529 0.215649i
\(616\) 10.2570 + 9.50154i 0.413267 + 0.382828i
\(617\) 6.75722 1.19148i 0.272036 0.0479672i −0.0359662 0.999353i \(-0.511451\pi\)
0.308002 + 0.951386i \(0.400340\pi\)
\(618\) −11.8631 30.5622i −0.477203 1.22939i
\(619\) −4.07011 11.1825i −0.163592 0.449464i 0.830628 0.556827i \(-0.187982\pi\)
−0.994220 + 0.107363i \(0.965759\pi\)
\(620\) −0.155939 0.0900315i −0.00626267 0.00361575i
\(621\) 9.56067 + 39.3903i 0.383656 + 1.58068i
\(622\) 7.62027i 0.305545i
\(623\) −19.5447 0.959438i −0.783042 0.0384391i
\(624\) −21.4325 + 8.31925i −0.857985 + 0.333036i
\(625\) 10.3827 8.71212i 0.415308 0.348485i
\(626\) −1.42156 + 1.19283i −0.0568171 + 0.0476752i
\(627\) 32.0598 6.35630i 1.28034 0.253846i
\(628\) −4.66892 12.8277i −0.186310 0.511883i
\(629\) −18.2964 + 31.6902i −0.729523 + 1.26357i
\(630\) 8.18938 + 9.89287i 0.326273 + 0.394141i
\(631\) 1.75818 + 3.04526i 0.0699920 + 0.121230i 0.898898 0.438159i \(-0.144369\pi\)
−0.828906 + 0.559389i \(0.811036\pi\)
\(632\) 10.1714 12.1218i 0.404597 0.482180i
\(633\) −0.138762 6.54657i −0.00551530 0.260203i
\(634\) 7.93538 + 45.0038i 0.315154 + 1.78733i
\(635\) 1.39296 + 0.506995i 0.0552778 + 0.0201195i
\(636\) 3.28687 5.98233i 0.130333 0.237215i
\(637\) −10.6221 15.5253i −0.420865 0.615135i
\(638\) 30.6939 17.7212i 1.21519 0.701587i
\(639\) 4.86843 15.3738i 0.192592 0.608178i
\(640\) 7.84856 4.53137i 0.310241 0.179118i
\(641\) 0.0654360 0.0779836i 0.00258457 0.00308017i −0.764751 0.644326i \(-0.777138\pi\)
0.767335 + 0.641246i \(0.221582\pi\)
\(642\) 13.3202 + 15.2079i 0.525706 + 0.600207i
\(643\) −6.93586 + 19.0561i −0.273524 + 0.751500i 0.724536 + 0.689237i \(0.242054\pi\)
−0.998060 + 0.0622635i \(0.980168\pi\)
\(644\) −7.60217 24.5744i −0.299567 0.968365i
\(645\) 5.56034 6.91919i 0.218938 0.272443i
\(646\) −11.3173 + 64.1834i −0.445272 + 2.52526i
\(647\) −20.9497 + 36.2860i −0.823619 + 1.42655i 0.0793513 + 0.996847i \(0.474715\pi\)
−0.902970 + 0.429703i \(0.858618\pi\)
\(648\) −7.03463 + 9.99335i −0.276346 + 0.392576i
\(649\) 18.6889 10.7901i 0.733605 0.423547i
\(650\) −15.5545 13.0517i −0.610096 0.511931i
\(651\) 0.736946 + 0.0205344i 0.0288832 + 0.000804808i
\(652\) −2.82884 16.0431i −0.110786 0.628297i
\(653\) −2.10324 + 0.370857i −0.0823060 + 0.0145128i −0.214650 0.976691i \(-0.568861\pi\)
0.132343 + 0.991204i \(0.457750\pi\)
\(654\) 8.42430 + 2.86552i 0.329416 + 0.112051i
\(655\) 3.40101 + 2.85379i 0.132889 + 0.111507i
\(656\) −17.9381 −0.700365
\(657\) −8.32520 + 26.2898i −0.324797 + 1.02566i
\(658\) −18.8758 + 2.38110i −0.735855 + 0.0928250i
\(659\) −15.2227 41.8239i −0.592991 1.62923i −0.764924 0.644121i \(-0.777223\pi\)
0.171933 0.985109i \(-0.444999\pi\)
\(660\) −7.54287 + 0.159880i −0.293606 + 0.00622332i
\(661\) 36.2766 6.39654i 1.41099 0.248796i 0.584341 0.811508i \(-0.301353\pi\)
0.826653 + 0.562712i \(0.190242\pi\)
\(662\) −35.2729 + 6.21956i −1.37092 + 0.241730i
\(663\) 16.7207 30.4328i 0.649378 1.18191i
\(664\) −4.53199 12.4515i −0.175875 0.483213i
\(665\) 11.4298 1.44181i 0.443227 0.0559111i
\(666\) −1.12347 26.4898i −0.0435336 1.02646i
\(667\) 39.4291 1.52670
\(668\) 11.6776 + 9.79869i 0.451821 + 0.379123i
\(669\) 3.39388 + 17.1180i 0.131215 + 0.661819i
\(670\) 11.5233 2.03187i 0.445185 0.0784982i
\(671\) −5.77061 32.7267i −0.222772 1.26340i
\(672\) 14.8467 24.1366i 0.572723 0.931090i
\(673\) −2.34203 1.96519i −0.0902785 0.0757527i 0.596531 0.802590i \(-0.296545\pi\)
−0.686810 + 0.726837i \(0.740990\pi\)
\(674\) −48.1509 + 27.7999i −1.85470 + 1.07081i
\(675\) −21.6564 2.41277i −0.833553 0.0928674i
\(676\) 3.60089 6.23693i 0.138496 0.239882i
\(677\) −4.86997 + 27.6190i −0.187168 + 1.06148i 0.735970 + 0.677014i \(0.236727\pi\)
−0.923138 + 0.384469i \(0.874385\pi\)
\(678\) 48.6566 + 7.52003i 1.86864 + 0.288805i
\(679\) −0.992611 3.20866i −0.0380929 0.123137i
\(680\) −3.11135 + 8.54836i −0.119315 + 0.327815i
\(681\) 0.850087 0.168542i 0.0325754 0.00645854i
\(682\) −0.725110 + 0.864153i −0.0277659 + 0.0330901i
\(683\) −5.74458 + 3.31663i −0.219810 + 0.126907i −0.605862 0.795570i \(-0.707172\pi\)
0.386052 + 0.922477i \(0.373838\pi\)
\(684\) −6.91705 16.7583i −0.264480 0.640771i
\(685\) 2.56693 1.48201i 0.0980772 0.0566249i
\(686\) 31.6575 + 10.5501i 1.20869 + 0.402805i
\(687\) 38.1848 0.809371i 1.45684 0.0308794i
\(688\) −26.4878 9.64078i −1.00984 0.367551i
\(689\) 1.47551 + 8.36805i 0.0562126 + 0.318797i
\(690\) −19.1602 10.5272i −0.729414 0.400762i
\(691\) 5.85721 6.98035i 0.222819 0.265545i −0.643041 0.765832i \(-0.722328\pi\)
0.865860 + 0.500287i \(0.166772\pi\)
\(692\) −6.19198 10.7248i −0.235384 0.407697i
\(693\) 26.8536 15.2663i 1.02008 0.579917i
\(694\) 15.1861 26.3031i 0.576457 0.998452i
\(695\) −4.52242 12.4252i −0.171545 0.471316i
\(696\) 7.83267 + 8.94269i 0.296896 + 0.338972i
\(697\) 20.7544 17.4150i 0.786127 0.659639i
\(698\) 22.9329 19.2430i 0.868021 0.728356i
\(699\) 1.88348 12.1866i 0.0712399 0.460941i
\(700\) 13.8118 + 0.678013i 0.522037 + 0.0256265i
\(701\) 3.37952i 0.127643i −0.997961 0.0638214i \(-0.979671\pi\)
0.997961 0.0638214i \(-0.0203288\pi\)
\(702\) 1.59853 + 25.1086i 0.0603327 + 0.947662i
\(703\) −20.5972 11.8918i −0.776839 0.448508i
\(704\) 1.68104 + 4.61862i 0.0633566 + 0.174071i
\(705\) −3.88860 + 4.83891i −0.146453 + 0.182244i
\(706\) 41.7105 7.35469i 1.56980 0.276798i
\(707\) 4.96720 + 4.60134i 0.186811 + 0.173051i
\(708\) −7.88709 9.00482i −0.296415 0.338422i
\(709\) −31.1392 + 11.3337i −1.16946 + 0.425647i −0.852466 0.522782i \(-0.824894\pi\)
−0.316989 + 0.948429i \(0.602672\pi\)
\(710\) 4.34878 + 7.53231i 0.163207 + 0.282682i
\(711\) −18.7472 29.5083i −0.703074 1.10665i
\(712\) 8.69757 + 5.02154i 0.325955 + 0.188190i
\(713\) −1.17928 + 0.429223i −0.0441644 + 0.0160745i
\(714\) 9.00229 + 60.9346i 0.336902 + 2.28042i
\(715\) 7.19459 6.03698i 0.269062 0.225770i
\(716\) −2.39754 + 6.58718i −0.0896001 + 0.246174i
\(717\) −15.5642 25.6851i −0.581256 0.959228i
\(718\) −4.88792 + 27.7208i −0.182416 + 1.03453i
\(719\) 6.10517 10.5745i 0.227684 0.394361i −0.729437 0.684048i \(-0.760218\pi\)
0.957121 + 0.289687i \(0.0935512\pi\)
\(720\) −2.86392 12.9950i −0.106732 0.484295i
\(721\) −27.5754 + 3.47852i −1.02696 + 0.129547i
\(722\) −8.00285 1.41112i −0.297835 0.0525164i
\(723\) −31.3149 + 27.4279i −1.16461 + 1.02006i
\(724\) −4.04949 4.82600i −0.150498 0.179357i
\(725\) −7.24960 + 19.9181i −0.269243 + 0.739740i
\(726\) −1.97607 + 12.7857i −0.0733388 + 0.474522i
\(727\) 6.93845 8.26893i 0.257333 0.306677i −0.621874 0.783117i \(-0.713628\pi\)
0.879207 + 0.476440i \(0.158073\pi\)
\(728\) 1.20831 + 9.57868i 0.0447829 + 0.355010i
\(729\) 16.3563 + 21.4819i 0.605789 + 0.795626i
\(730\) −7.43658 12.8805i −0.275240 0.476730i
\(731\) 40.0060 14.5610i 1.47967 0.538557i
\(732\) −17.1844 + 6.67032i −0.635155 + 0.246542i
\(733\) 5.24676 + 6.25285i 0.193794 + 0.230954i 0.854187 0.519965i \(-0.174055\pi\)
−0.660394 + 0.750919i \(0.729611\pi\)
\(734\) −19.5890 7.12981i −0.723043 0.263166i
\(735\) 9.81964 4.70343i 0.362203 0.173489i
\(736\) −8.37635 + 47.5047i −0.308756 + 1.75105i
\(737\) 28.1439i 1.03669i
\(738\) −5.92633 + 18.7145i −0.218151 + 0.688890i
\(739\) −1.55326 −0.0571375 −0.0285688 0.999592i \(-0.509095\pi\)
−0.0285688 + 0.999592i \(0.509095\pi\)
\(740\) 4.20565 + 3.52896i 0.154603 + 0.129727i
\(741\) 19.7799 + 10.8677i 0.726634 + 0.399235i
\(742\) −11.0576 10.2432i −0.405939 0.376040i
\(743\) −3.17132 3.77943i −0.116344 0.138654i 0.704729 0.709477i \(-0.251069\pi\)
−0.821073 + 0.570823i \(0.806624\pi\)
\(744\) −0.331616 0.182200i −0.0121576 0.00667977i
\(745\) −12.6785 2.23556i −0.464504 0.0819046i
\(746\) 58.5107i 2.14223i
\(747\) −29.2485 + 1.24047i −1.07015 + 0.0453864i
\(748\) −31.3373 18.0926i −1.14580 0.661530i
\(749\) 15.2455 7.83164i 0.557059 0.286162i
\(750\) 19.3817 16.9760i 0.707721 0.619874i
\(751\) 0.323318 + 1.83363i 0.0117981 + 0.0669101i 0.990138 0.140093i \(-0.0447401\pi\)
−0.978340 + 0.207003i \(0.933629\pi\)
\(752\) 18.5242 + 6.74224i 0.675506 + 0.245864i
\(753\) −24.4008 3.77122i −0.889215 0.137431i
\(754\) 24.1018 + 4.24981i 0.877738 + 0.154769i
\(755\) −19.2869 −0.701922
\(756\) −11.2034 12.9644i −0.407464 0.471512i
\(757\) 11.8379 0.430255 0.215128 0.976586i \(-0.430983\pi\)
0.215128 + 0.976586i \(0.430983\pi\)
\(758\) 9.44442 + 1.66531i 0.343037 + 0.0604866i
\(759\) −32.9382 + 40.9878i −1.19558 + 1.48776i
\(760\) −5.55605 2.02224i −0.201539 0.0733543i
\(761\) 0.859368 + 4.87372i 0.0311521 + 0.176672i 0.996414 0.0846121i \(-0.0269651\pi\)
−0.965262 + 0.261284i \(0.915854\pi\)
\(762\) −4.87696 1.65890i −0.176673 0.0600955i
\(763\) 4.08776 6.34044i 0.147987 0.229539i
\(764\) −1.52153 0.878456i −0.0550470 0.0317814i
\(765\) 15.9296 + 12.2548i 0.575935 + 0.443073i
\(766\) 0.0506234i 0.00182910i
\(767\) 14.6751 + 2.58762i 0.529888 +