Properties

Label 189.2.ba.a.38.17
Level $189$
Weight $2$
Character 189.38
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(5,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.ba (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 38.17
Character \(\chi\) \(=\) 189.38
Dual form 189.2.ba.a.5.17

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.72891 + 0.304854i) q^{2} +(1.65859 + 0.499066i) q^{3} +(1.01682 + 0.370091i) q^{4} +(-0.0612092 - 0.347134i) q^{5} +(2.71542 + 1.36847i) q^{6} +(-2.64149 - 0.150064i) q^{7} +(-1.39560 - 0.805749i) q^{8} +(2.50187 + 1.65549i) q^{9} +O(q^{10})\) \(q+(1.72891 + 0.304854i) q^{2} +(1.65859 + 0.499066i) q^{3} +(1.01682 + 0.370091i) q^{4} +(-0.0612092 - 0.347134i) q^{5} +(2.71542 + 1.36847i) q^{6} +(-2.64149 - 0.150064i) q^{7} +(-1.39560 - 0.805749i) q^{8} +(2.50187 + 1.65549i) q^{9} -0.618825i q^{10} +(0.991951 + 0.174908i) q^{11} +(1.50179 + 1.12129i) q^{12} +(-0.216492 - 0.258005i) q^{13} +(-4.52116 - 1.06472i) q^{14} +(0.0717217 - 0.606302i) q^{15} +(-3.82506 - 3.20961i) q^{16} -5.22261 q^{17} +(3.82082 + 3.62491i) q^{18} +0.554345i q^{19} +(0.0662328 - 0.375625i) q^{20} +(-4.30627 - 1.56717i) q^{21} +(1.66167 + 0.604800i) q^{22} +(1.52594 + 1.81855i) q^{23} +(-1.91261 - 2.03290i) q^{24} +(4.58171 - 1.66761i) q^{25} +(-0.295641 - 0.512066i) q^{26} +(3.32338 + 3.99439i) q^{27} +(-2.63037 - 1.13018i) q^{28} +(0.750003 - 0.893819i) q^{29} +(0.308834 - 1.02638i) q^{30} +(-0.597247 + 1.64092i) q^{31} +(-3.56303 - 4.24626i) q^{32} +(1.55795 + 0.785149i) q^{33} +(-9.02943 - 1.59213i) q^{34} +(0.109591 + 0.926138i) q^{35} +(1.93126 + 2.60925i) q^{36} +(3.07080 - 5.31879i) q^{37} +(-0.168994 + 0.958414i) q^{38} +(-0.230310 - 0.535969i) q^{39} +(-0.194280 + 0.533779i) q^{40} +(-8.82053 + 7.40131i) q^{41} +(-6.96741 - 4.02229i) q^{42} +(5.78827 - 2.10676i) q^{43} +(0.943900 + 0.544961i) q^{44} +(0.421542 - 0.969816i) q^{45} +(2.08383 + 3.60930i) q^{46} +(5.19006 - 1.88903i) q^{47} +(-4.74242 - 7.23239i) q^{48} +(6.95496 + 0.792784i) q^{49} +(8.42975 - 1.48639i) q^{50} +(-8.66218 - 2.60642i) q^{51} +(-0.124647 - 0.342465i) q^{52} +(3.63746 + 2.10009i) q^{53} +(4.52813 + 7.91909i) q^{54} -0.355046i q^{55} +(3.56555 + 2.33781i) q^{56} +(-0.276655 + 0.919434i) q^{57} +(1.56917 - 1.31669i) q^{58} +(-10.1514 + 8.51803i) q^{59} +(0.297315 - 0.589955i) q^{60} +(-4.82679 - 13.2615i) q^{61} +(-1.53283 + 2.65494i) q^{62} +(-6.36023 - 4.74841i) q^{63} +(0.127580 + 0.220974i) q^{64} +(-0.0763111 + 0.0909440i) q^{65} +(2.45421 + 1.83240i) q^{66} +(1.45474 + 8.25023i) q^{67} +(-5.31043 - 1.93284i) q^{68} +(1.62335 + 3.77778i) q^{69} +(-0.0928631 + 1.63462i) q^{70} +(-9.96202 + 5.75157i) q^{71} +(-2.15769 - 4.32628i) q^{72} +(6.89023 - 3.97807i) q^{73} +(6.93060 - 8.25957i) q^{74} +(8.43144 - 0.479307i) q^{75} +(-0.205158 + 0.563667i) q^{76} +(-2.59398 - 0.610873i) q^{77} +(-0.234794 - 0.996854i) q^{78} +(2.05871 - 11.6755i) q^{79} +(-0.880037 + 1.52427i) q^{80} +(3.51868 + 8.28365i) q^{81} +(-17.5062 + 10.1072i) q^{82} +(2.81649 + 2.36332i) q^{83} +(-3.79869 - 3.18724i) q^{84} +(0.319671 + 1.81295i) q^{85} +(10.6497 - 1.87782i) q^{86} +(1.69003 - 1.10818i) q^{87} +(-1.24343 - 1.04336i) q^{88} +3.99054 q^{89} +(1.02446 - 1.54822i) q^{90} +(0.533144 + 0.714005i) q^{91} +(0.878576 + 2.41387i) q^{92} +(-1.80952 + 2.42356i) q^{93} +(9.54903 - 1.68375i) q^{94} +(0.192432 - 0.0339310i) q^{95} +(-3.79046 - 8.82101i) q^{96} +(5.45431 + 14.9856i) q^{97} +(11.7828 + 3.49090i) q^{98} +(2.19217 + 2.07976i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9} - 9 q^{11} - 9 q^{12} + 3 q^{14} - 24 q^{15} + 3 q^{16} - 18 q^{17} - 3 q^{18} + 18 q^{20} - 21 q^{21} - 12 q^{22} - 6 q^{23} - 9 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} + 51 q^{30} - 9 q^{31} + 3 q^{32} - 9 q^{33} - 18 q^{34} + 18 q^{35} + 3 q^{37} - 99 q^{38} - 36 q^{39} - 54 q^{40} - 45 q^{42} - 12 q^{43} - 9 q^{44} - 9 q^{45} + 3 q^{46} + 45 q^{47} - 24 q^{49} - 9 q^{50} - 48 q^{51} - 9 q^{52} - 45 q^{53} + 171 q^{54} + 3 q^{56} - 3 q^{58} + 36 q^{59} + 57 q^{60} - 9 q^{61} - 99 q^{62} - 33 q^{63} + 18 q^{64} + 69 q^{65} - 9 q^{66} - 3 q^{67} + 36 q^{68} + 108 q^{69} + 66 q^{70} + 18 q^{71} - 129 q^{72} - 9 q^{73} + 75 q^{74} + 36 q^{75} + 36 q^{76} + 15 q^{77} + 66 q^{78} - 21 q^{79} + 72 q^{80} - 33 q^{81} - 18 q^{82} - 90 q^{83} - 120 q^{84} + 9 q^{85} - 105 q^{86} - 54 q^{87} - 63 q^{88} - 18 q^{89} + 81 q^{90} + 6 q^{91} + 150 q^{92} + 21 q^{93} - 9 q^{94} + 45 q^{95} - 81 q^{96} + 27 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.72891 + 0.304854i 1.22253 + 0.215564i 0.747412 0.664360i \(-0.231296\pi\)
0.475113 + 0.879925i \(0.342407\pi\)
\(3\) 1.65859 + 0.499066i 0.957590 + 0.288136i
\(4\) 1.01682 + 0.370091i 0.508408 + 0.185045i
\(5\) −0.0612092 0.347134i −0.0273736 0.155243i 0.968057 0.250730i \(-0.0806705\pi\)
−0.995431 + 0.0954863i \(0.969559\pi\)
\(6\) 2.71542 + 1.36847i 1.10857 + 0.558675i
\(7\) −2.64149 0.150064i −0.998390 0.0567187i
\(8\) −1.39560 0.805749i −0.493418 0.284875i
\(9\) 2.50187 + 1.65549i 0.833956 + 0.551831i
\(10\) 0.618825i 0.195690i
\(11\) 0.991951 + 0.174908i 0.299084 + 0.0527366i 0.321177 0.947019i \(-0.395922\pi\)
−0.0220923 + 0.999756i \(0.507033\pi\)
\(12\) 1.50179 + 1.12129i 0.433528 + 0.323688i
\(13\) −0.216492 0.258005i −0.0600440 0.0715576i 0.735186 0.677865i \(-0.237095\pi\)
−0.795230 + 0.606307i \(0.792650\pi\)
\(14\) −4.52116 1.06472i −1.20833 0.284557i
\(15\) 0.0717217 0.606302i 0.0185185 0.156547i
\(16\) −3.82506 3.20961i −0.956266 0.802402i
\(17\) −5.22261 −1.26667 −0.633334 0.773879i \(-0.718314\pi\)
−0.633334 + 0.773879i \(0.718314\pi\)
\(18\) 3.82082 + 3.62491i 0.900577 + 0.854399i
\(19\) 0.554345i 0.127176i 0.997976 + 0.0635878i \(0.0202543\pi\)
−0.997976 + 0.0635878i \(0.979746\pi\)
\(20\) 0.0662328 0.375625i 0.0148101 0.0839923i
\(21\) −4.30627 1.56717i −0.939705 0.341985i
\(22\) 1.66167 + 0.604800i 0.354270 + 0.128944i
\(23\) 1.52594 + 1.81855i 0.318181 + 0.379194i 0.901302 0.433192i \(-0.142613\pi\)
−0.583120 + 0.812386i \(0.698168\pi\)
\(24\) −1.91261 2.03290i −0.390409 0.414965i
\(25\) 4.58171 1.66761i 0.916341 0.333521i
\(26\) −0.295641 0.512066i −0.0579800 0.100424i
\(27\) 3.32338 + 3.99439i 0.639585 + 0.768720i
\(28\) −2.63037 1.13018i −0.497094 0.213584i
\(29\) 0.750003 0.893819i 0.139272 0.165978i −0.691900 0.721994i \(-0.743226\pi\)
0.831172 + 0.556015i \(0.187670\pi\)
\(30\) 0.308834 1.02638i 0.0563852 0.187390i
\(31\) −0.597247 + 1.64092i −0.107269 + 0.294718i −0.981701 0.190429i \(-0.939012\pi\)
0.874432 + 0.485148i \(0.161234\pi\)
\(32\) −3.56303 4.24626i −0.629861 0.750640i
\(33\) 1.55795 + 0.785149i 0.271205 + 0.136677i
\(34\) −9.02943 1.59213i −1.54853 0.273048i
\(35\) 0.109591 + 0.926138i 0.0185243 + 0.156546i
\(36\) 1.93126 + 2.60925i 0.321876 + 0.434875i
\(37\) 3.07080 5.31879i 0.504837 0.874403i −0.495148 0.868809i \(-0.664886\pi\)
0.999984 0.00559410i \(-0.00178067\pi\)
\(38\) −0.168994 + 0.958414i −0.0274145 + 0.155475i
\(39\) −0.230310 0.535969i −0.0368792 0.0858237i
\(40\) −0.194280 + 0.533779i −0.0307183 + 0.0843979i
\(41\) −8.82053 + 7.40131i −1.37754 + 1.15589i −0.407422 + 0.913240i \(0.633572\pi\)
−0.970114 + 0.242650i \(0.921983\pi\)
\(42\) −6.96741 4.02229i −1.07509 0.620652i
\(43\) 5.78827 2.10676i 0.882703 0.321278i 0.139403 0.990236i \(-0.455482\pi\)
0.743300 + 0.668958i \(0.233259\pi\)
\(44\) 0.943900 + 0.544961i 0.142298 + 0.0821559i
\(45\) 0.421542 0.969816i 0.0628398 0.144572i
\(46\) 2.08383 + 3.60930i 0.307244 + 0.532162i
\(47\) 5.19006 1.88903i 0.757047 0.275543i 0.0654793 0.997854i \(-0.479142\pi\)
0.691568 + 0.722311i \(0.256920\pi\)
\(48\) −4.74242 7.23239i −0.684509 1.04391i
\(49\) 6.95496 + 0.792784i 0.993566 + 0.113255i
\(50\) 8.42975 1.48639i 1.19215 0.210208i
\(51\) −8.66218 2.60642i −1.21295 0.364972i
\(52\) −0.124647 0.342465i −0.0172854 0.0474913i
\(53\) 3.63746 + 2.10009i 0.499644 + 0.288469i 0.728566 0.684975i \(-0.240187\pi\)
−0.228923 + 0.973445i \(0.573520\pi\)
\(54\) 4.52813 + 7.91909i 0.616200 + 1.07765i
\(55\) 0.355046i 0.0478744i
\(56\) 3.56555 + 2.33781i 0.476466 + 0.312403i
\(57\) −0.276655 + 0.919434i −0.0366438 + 0.121782i
\(58\) 1.56917 1.31669i 0.206043 0.172890i
\(59\) −10.1514 + 8.51803i −1.32160 + 1.10895i −0.335634 + 0.941992i \(0.608951\pi\)
−0.985964 + 0.166960i \(0.946605\pi\)
\(60\) 0.297315 0.589955i 0.0383832 0.0761628i
\(61\) −4.82679 13.2615i −0.618007 1.69796i −0.711813 0.702369i \(-0.752126\pi\)
0.0938065 0.995590i \(-0.470096\pi\)
\(62\) −1.53283 + 2.65494i −0.194669 + 0.337177i
\(63\) −6.36023 4.74841i −0.801314 0.598244i
\(64\) 0.127580 + 0.220974i 0.0159475 + 0.0276218i
\(65\) −0.0763111 + 0.0909440i −0.00946522 + 0.0112802i
\(66\) 2.45421 + 1.83240i 0.302092 + 0.225553i
\(67\) 1.45474 + 8.25023i 0.177724 + 1.00793i 0.934952 + 0.354774i \(0.115442\pi\)
−0.757227 + 0.653151i \(0.773447\pi\)
\(68\) −5.31043 1.93284i −0.643984 0.234391i
\(69\) 1.62335 + 3.77778i 0.195428 + 0.454791i
\(70\) −0.0928631 + 1.63462i −0.0110993 + 0.195375i
\(71\) −9.96202 + 5.75157i −1.18227 + 0.682586i −0.956540 0.291603i \(-0.905811\pi\)
−0.225734 + 0.974189i \(0.572478\pi\)
\(72\) −2.15769 4.32628i −0.254286 0.509857i
\(73\) 6.89023 3.97807i 0.806440 0.465598i −0.0392780 0.999228i \(-0.512506\pi\)
0.845718 + 0.533630i \(0.179172\pi\)
\(74\) 6.93060 8.25957i 0.805666 0.960155i
\(75\) 8.43144 0.479307i 0.973578 0.0553456i
\(76\) −0.205158 + 0.563667i −0.0235332 + 0.0646571i
\(77\) −2.59398 0.610873i −0.295612 0.0696154i
\(78\) −0.234794 0.996854i −0.0265852 0.112871i
\(79\) 2.05871 11.6755i 0.231623 1.31360i −0.617986 0.786189i \(-0.712051\pi\)
0.849610 0.527412i \(-0.176838\pi\)
\(80\) −0.880037 + 1.52427i −0.0983911 + 0.170418i
\(81\) 3.51868 + 8.28365i 0.390964 + 0.920406i
\(82\) −17.5062 + 10.1072i −1.93324 + 1.11616i
\(83\) 2.81649 + 2.36332i 0.309150 + 0.259408i 0.784141 0.620583i \(-0.213104\pi\)
−0.474991 + 0.879991i \(0.657549\pi\)
\(84\) −3.79869 3.18724i −0.414471 0.347756i
\(85\) 0.319671 + 1.81295i 0.0346732 + 0.196642i
\(86\) 10.6497 1.87782i 1.14838 0.202491i
\(87\) 1.69003 1.10818i 0.181190 0.118810i
\(88\) −1.24343 1.04336i −0.132550 0.111223i
\(89\) 3.99054 0.422997 0.211498 0.977378i \(-0.432166\pi\)
0.211498 + 0.977378i \(0.432166\pi\)
\(90\) 1.02446 1.54822i 0.107988 0.163196i
\(91\) 0.533144 + 0.714005i 0.0558887 + 0.0748481i
\(92\) 0.878576 + 2.41387i 0.0915979 + 0.251663i
\(93\) −1.80952 + 2.42356i −0.187638 + 0.251311i
\(94\) 9.54903 1.68375i 0.984907 0.173666i
\(95\) 0.192432 0.0339310i 0.0197431 0.00348125i
\(96\) −3.79046 8.82101i −0.386863 0.900290i
\(97\) 5.45431 + 14.9856i 0.553801 + 1.52156i 0.828480 + 0.560019i \(0.189206\pi\)
−0.274679 + 0.961536i \(0.588571\pi\)
\(98\) 11.7828 + 3.49090i 1.19025 + 0.352634i
\(99\) 2.19217 + 2.07976i 0.220321 + 0.209024i
\(100\) 5.27592 0.527592
\(101\) −5.76945 4.84114i −0.574082 0.481712i 0.308916 0.951089i \(-0.400034\pi\)
−0.882998 + 0.469378i \(0.844478\pi\)
\(102\) −14.1816 7.14698i −1.40419 0.707656i
\(103\) 0.677559 0.119472i 0.0667619 0.0117719i −0.140167 0.990128i \(-0.544764\pi\)
0.206929 + 0.978356i \(0.433653\pi\)
\(104\) 0.0942483 + 0.534509i 0.00924181 + 0.0524129i
\(105\) −0.280436 + 1.59078i −0.0273678 + 0.155244i
\(106\) 5.64863 + 4.73976i 0.548643 + 0.460366i
\(107\) 11.1522 6.43871i 1.07812 0.622454i 0.147733 0.989027i \(-0.452803\pi\)
0.930389 + 0.366574i \(0.119469\pi\)
\(108\) 1.90098 + 5.29151i 0.182922 + 0.509176i
\(109\) 1.25012 2.16528i 0.119740 0.207396i −0.799924 0.600101i \(-0.795127\pi\)
0.919665 + 0.392705i \(0.128460\pi\)
\(110\) 0.108237 0.613844i 0.0103200 0.0585277i
\(111\) 7.74764 7.28917i 0.735373 0.691858i
\(112\) 9.62223 + 9.05216i 0.909215 + 0.855349i
\(113\) −1.54656 + 4.24914i −0.145488 + 0.399726i −0.990936 0.134332i \(-0.957111\pi\)
0.845448 + 0.534058i \(0.179333\pi\)
\(114\) −0.758605 + 1.50528i −0.0710498 + 0.140982i
\(115\) 0.537879 0.641020i 0.0501575 0.0597754i
\(116\) 1.09341 0.631280i 0.101521 0.0586129i
\(117\) −0.114508 1.00389i −0.0105863 0.0928101i
\(118\) −20.1476 + 11.6322i −1.85474 + 1.07083i
\(119\) 13.7955 + 0.783723i 1.26463 + 0.0718438i
\(120\) −0.588622 + 0.788365i −0.0537336 + 0.0719675i
\(121\) −9.38325 3.41522i −0.853022 0.310475i
\(122\) −4.30227 24.3994i −0.389510 2.20902i
\(123\) −18.3234 + 7.87374i −1.65217 + 0.709951i
\(124\) −1.21458 + 1.44748i −0.109073 + 0.129988i
\(125\) −1.74055 3.01472i −0.155679 0.269645i
\(126\) −9.54871 10.1485i −0.850667 0.904103i
\(127\) −9.46933 + 16.4014i −0.840267 + 1.45539i 0.0494015 + 0.998779i \(0.484269\pi\)
−0.889669 + 0.456607i \(0.849065\pi\)
\(128\) 3.94491 + 10.8386i 0.348684 + 0.958002i
\(129\) 10.6518 0.605529i 0.937839 0.0533139i
\(130\) −0.159660 + 0.133970i −0.0140031 + 0.0117500i
\(131\) 6.86346 5.75913i 0.599664 0.503178i −0.291674 0.956518i \(-0.594212\pi\)
0.891338 + 0.453340i \(0.149768\pi\)
\(132\) 1.29358 + 1.37494i 0.112591 + 0.119673i
\(133\) 0.0831871 1.46430i 0.00721323 0.126971i
\(134\) 14.7074i 1.27053i
\(135\) 1.18317 1.39815i 0.101831 0.120334i
\(136\) 7.28866 + 4.20811i 0.624997 + 0.360842i
\(137\) −6.52800 17.9355i −0.557725 1.53234i −0.822929 0.568144i \(-0.807662\pi\)
0.265204 0.964192i \(-0.414561\pi\)
\(138\) 1.65495 + 7.02633i 0.140879 + 0.598121i
\(139\) 5.33535 0.940766i 0.452538 0.0797947i 0.0572665 0.998359i \(-0.481762\pi\)
0.395272 + 0.918564i \(0.370650\pi\)
\(140\) −0.231321 + 0.982271i −0.0195502 + 0.0830171i
\(141\) 9.55094 0.542948i 0.804334 0.0457245i
\(142\) −18.9768 + 6.90701i −1.59250 + 0.579623i
\(143\) −0.169622 0.293794i −0.0141845 0.0245683i
\(144\) −4.25631 14.3624i −0.354692 1.19687i
\(145\) −0.356183 0.205642i −0.0295793 0.0170776i
\(146\) 13.1253 4.77723i 1.08626 0.395366i
\(147\) 11.1398 + 4.78589i 0.918796 + 0.394733i
\(148\) 5.09087 4.27175i 0.418467 0.351136i
\(149\) 2.77285 7.61835i 0.227161 0.624120i −0.772783 0.634670i \(-0.781136\pi\)
0.999944 + 0.0105501i \(0.00335828\pi\)
\(150\) 14.7233 + 1.74168i 1.20215 + 0.142207i
\(151\) −1.97099 + 11.1780i −0.160397 + 0.909656i 0.793287 + 0.608847i \(0.208368\pi\)
−0.953684 + 0.300809i \(0.902743\pi\)
\(152\) 0.446663 0.773643i 0.0362292 0.0627507i
\(153\) −13.0663 8.64599i −1.05635 0.698987i
\(154\) −4.29854 1.84693i −0.346386 0.148830i
\(155\) 0.606177 + 0.106885i 0.0486893 + 0.00858525i
\(156\) −0.0358263 0.630217i −0.00286840 0.0504578i
\(157\) −6.57819 7.83958i −0.524997 0.625667i 0.436758 0.899579i \(-0.356127\pi\)
−0.961755 + 0.273912i \(0.911682\pi\)
\(158\) 7.11867 19.5584i 0.566331 1.55598i
\(159\) 4.98499 + 5.29852i 0.395335 + 0.420200i
\(160\) −1.25593 + 1.49676i −0.0992902 + 0.118329i
\(161\) −3.75787 5.03267i −0.296162 0.396630i
\(162\) 3.55818 + 15.3944i 0.279557 + 1.20950i
\(163\) 7.70976 + 13.3537i 0.603875 + 1.04594i 0.992228 + 0.124431i \(0.0397106\pi\)
−0.388353 + 0.921510i \(0.626956\pi\)
\(164\) −11.7080 + 4.26137i −0.914242 + 0.332757i
\(165\) 0.177191 0.588878i 0.0137943 0.0458441i
\(166\) 4.14900 + 4.94458i 0.322025 + 0.383774i
\(167\) 2.06205 + 0.750523i 0.159566 + 0.0580773i 0.420568 0.907261i \(-0.361831\pi\)
−0.261002 + 0.965338i \(0.584053\pi\)
\(168\) 4.74707 + 5.65691i 0.366245 + 0.436440i
\(169\) 2.23773 12.6908i 0.172133 0.976215i
\(170\) 3.23188i 0.247874i
\(171\) −0.917716 + 1.38690i −0.0701795 + 0.106059i
\(172\) 6.66530 0.508224
\(173\) −9.56241 8.02381i −0.727016 0.610039i 0.202300 0.979324i \(-0.435158\pi\)
−0.929316 + 0.369284i \(0.879603\pi\)
\(174\) 3.25974 1.40074i 0.247120 0.106190i
\(175\) −12.3528 + 3.71742i −0.933783 + 0.281010i
\(176\) −3.23289 3.85281i −0.243688 0.290416i
\(177\) −21.0881 + 9.06174i −1.58508 + 0.681122i
\(178\) 6.89930 + 1.21653i 0.517124 + 0.0911830i
\(179\) 13.3256i 0.996000i 0.867177 + 0.498000i \(0.165932\pi\)
−0.867177 + 0.498000i \(0.834068\pi\)
\(180\) 0.787550 0.830115i 0.0587005 0.0618732i
\(181\) −17.6147 10.1698i −1.30929 0.755918i −0.327312 0.944916i \(-0.606143\pi\)
−0.981977 + 0.188998i \(0.939476\pi\)
\(182\) 0.704092 + 1.39698i 0.0521908 + 0.103551i
\(183\) −1.38733 24.4043i −0.102554 1.80402i
\(184\) −0.664310 3.76749i −0.0489736 0.277743i
\(185\) −2.03430 0.740423i −0.149564 0.0544370i
\(186\) −3.86733 + 3.63848i −0.283566 + 0.266786i
\(187\) −5.18057 0.913474i −0.378841 0.0667998i
\(188\) 5.97644 0.435877
\(189\) −8.17927 11.0499i −0.594955 0.803759i
\(190\) 0.343043 0.0248869
\(191\) −22.4018 3.95004i −1.62094 0.285815i −0.711822 0.702360i \(-0.752130\pi\)
−0.909115 + 0.416545i \(0.863241\pi\)
\(192\) 0.101322 + 0.430177i 0.00731229 + 0.0310454i
\(193\) −13.4458 4.89388i −0.967851 0.352269i −0.190746 0.981639i \(-0.561091\pi\)
−0.777105 + 0.629370i \(0.783313\pi\)
\(194\) 4.86160 + 27.5715i 0.349043 + 1.97952i
\(195\) −0.171956 + 0.112755i −0.0123140 + 0.00807455i
\(196\) 6.77851 + 3.38008i 0.484180 + 0.241434i
\(197\) −18.0576 10.4256i −1.28655 0.742791i −0.308515 0.951220i \(-0.599832\pi\)
−0.978038 + 0.208428i \(0.933165\pi\)
\(198\) 3.15605 + 4.26402i 0.224290 + 0.303031i
\(199\) 10.3013i 0.730240i −0.930961 0.365120i \(-0.881028\pi\)
0.930961 0.365120i \(-0.118972\pi\)
\(200\) −7.73789 1.36440i −0.547151 0.0964776i
\(201\) −1.70459 + 14.4098i −0.120232 + 1.01639i
\(202\) −8.49903 10.1288i −0.597990 0.712656i
\(203\) −2.11526 + 2.24847i −0.148462 + 0.157812i
\(204\) −7.84323 5.85605i −0.549136 0.410005i
\(205\) 3.10915 + 2.60888i 0.217152 + 0.182212i
\(206\) 1.20786 0.0841557
\(207\) 0.807111 + 7.07596i 0.0560981 + 0.491813i
\(208\) 1.68174i 0.116608i
\(209\) −0.0969593 + 0.549883i −0.00670681 + 0.0380362i
\(210\) −0.969805 + 2.66483i −0.0669229 + 0.183891i
\(211\) −21.6090 7.86503i −1.48762 0.541451i −0.534801 0.844978i \(-0.679613\pi\)
−0.952823 + 0.303527i \(0.901836\pi\)
\(212\) 2.92140 + 3.48159i 0.200643 + 0.239117i
\(213\) −19.3934 + 4.56782i −1.32881 + 0.312982i
\(214\) 21.2440 7.73218i 1.45221 0.528561i
\(215\) −1.08562 1.88036i −0.0740389 0.128239i
\(216\) −1.41963 8.25237i −0.0965935 0.561503i
\(217\) 1.82387 4.24486i 0.123812 0.288160i
\(218\) 2.82145 3.36247i 0.191093 0.227735i
\(219\) 13.4134 3.15933i 0.906394 0.213488i
\(220\) 0.131399 0.361017i 0.00885894 0.0243397i
\(221\) 1.13065 + 1.34746i 0.0760558 + 0.0906398i
\(222\) 15.6171 10.2404i 1.04815 0.687294i
\(223\) 16.7430 + 2.95225i 1.12120 + 0.197697i 0.703366 0.710827i \(-0.251679\pi\)
0.417831 + 0.908525i \(0.362790\pi\)
\(224\) 8.77452 + 11.7511i 0.586272 + 0.785156i
\(225\) 14.2235 + 3.41286i 0.948236 + 0.227524i
\(226\) −3.96924 + 6.87492i −0.264030 + 0.457313i
\(227\) −2.38659 + 13.5350i −0.158404 + 0.898352i 0.797204 + 0.603710i \(0.206312\pi\)
−0.955608 + 0.294642i \(0.904800\pi\)
\(228\) −0.621581 + 0.832508i −0.0411652 + 0.0551342i
\(229\) 4.56384 12.5390i 0.301587 0.828603i −0.692638 0.721285i \(-0.743552\pi\)
0.994225 0.107317i \(-0.0342261\pi\)
\(230\) 1.12536 0.944292i 0.0742043 0.0622648i
\(231\) −3.99750 2.30776i −0.263016 0.151839i
\(232\) −1.76690 + 0.643098i −0.116002 + 0.0422214i
\(233\) 9.91253 + 5.72300i 0.649391 + 0.374926i 0.788223 0.615390i \(-0.211001\pi\)
−0.138832 + 0.990316i \(0.544335\pi\)
\(234\) 0.108067 1.77055i 0.00706454 0.115745i
\(235\) −0.973425 1.68602i −0.0634992 0.109984i
\(236\) −13.4745 + 4.90433i −0.877118 + 0.319245i
\(237\) 9.24143 18.3375i 0.600295 1.19115i
\(238\) 23.6122 + 5.56059i 1.53055 + 0.360440i
\(239\) 23.1955 4.08999i 1.50039 0.264559i 0.637698 0.770287i \(-0.279887\pi\)
0.862693 + 0.505728i \(0.168776\pi\)
\(240\) −2.22033 + 2.08895i −0.143322 + 0.134841i
\(241\) −0.783861 2.15364i −0.0504929 0.138728i 0.911883 0.410451i \(-0.134629\pi\)
−0.962376 + 0.271723i \(0.912407\pi\)
\(242\) −15.1817 8.76514i −0.975914 0.563444i
\(243\) 1.70197 + 15.4953i 0.109181 + 0.994022i
\(244\) 15.2708i 0.977615i
\(245\) −0.150505 2.46283i −0.00961540 0.157345i
\(246\) −34.0799 + 8.02703i −2.17286 + 0.511785i
\(247\) 0.143024 0.120011i 0.00910038 0.00763613i
\(248\) 2.15569 1.80884i 0.136886 0.114861i
\(249\) 3.49196 + 5.32540i 0.221294 + 0.337483i
\(250\) −2.09021 5.74280i −0.132196 0.363207i
\(251\) −1.67631 + 2.90345i −0.105807 + 0.183264i −0.914068 0.405561i \(-0.867076\pi\)
0.808260 + 0.588825i \(0.200409\pi\)
\(252\) −4.70984 7.18213i −0.296692 0.452432i
\(253\) 1.19558 + 2.07081i 0.0751656 + 0.130191i
\(254\) −21.3717 + 25.4698i −1.34098 + 1.59811i
\(255\) −0.374574 + 3.16648i −0.0234568 + 0.198293i
\(256\) 3.42761 + 19.4390i 0.214226 + 1.21494i
\(257\) −9.21288 3.35321i −0.574684 0.209168i 0.0382960 0.999266i \(-0.487807\pi\)
−0.612980 + 0.790099i \(0.710029\pi\)
\(258\) 18.6006 + 2.20034i 1.15802 + 0.136987i
\(259\) −8.90966 + 13.5887i −0.553619 + 0.844362i
\(260\) −0.111252 + 0.0642313i −0.00689955 + 0.00398345i
\(261\) 3.35612 0.994590i 0.207739 0.0615636i
\(262\) 13.6220 7.86468i 0.841571 0.485881i
\(263\) −0.215855 + 0.257246i −0.0133102 + 0.0158625i −0.772658 0.634822i \(-0.781073\pi\)
0.759348 + 0.650684i \(0.225518\pi\)
\(264\) −1.54164 2.35107i −0.0948815 0.144698i
\(265\) 0.506367 1.39123i 0.0311059 0.0854627i
\(266\) 0.590220 2.50628i 0.0361887 0.153670i
\(267\) 6.61869 + 1.99154i 0.405057 + 0.121880i
\(268\) −1.57413 + 8.92735i −0.0961554 + 0.545325i
\(269\) −1.95505 + 3.38625i −0.119202 + 0.206463i −0.919452 0.393203i \(-0.871367\pi\)
0.800250 + 0.599667i \(0.204700\pi\)
\(270\) 2.47183 2.05659i 0.150431 0.125160i
\(271\) 9.90664 5.71960i 0.601785 0.347441i −0.167958 0.985794i \(-0.553717\pi\)
0.769744 + 0.638353i \(0.220384\pi\)
\(272\) 19.9768 + 16.7625i 1.21127 + 1.01638i
\(273\) 0.527934 + 1.45032i 0.0319520 + 0.0877772i
\(274\) −5.81862 32.9991i −0.351516 1.99355i
\(275\) 4.83650 0.852806i 0.291652 0.0514262i
\(276\) 0.252522 + 4.44209i 0.0152001 + 0.267383i
\(277\) 16.5369 + 13.8761i 0.993606 + 0.833735i 0.986086 0.166237i \(-0.0531617\pi\)
0.00752053 + 0.999972i \(0.497606\pi\)
\(278\) 9.51114 0.570440
\(279\) −4.21077 + 3.11663i −0.252092 + 0.186588i
\(280\) 0.593289 1.38082i 0.0354558 0.0825197i
\(281\) −5.27604 14.4958i −0.314742 0.864746i −0.991682 0.128709i \(-0.958917\pi\)
0.676941 0.736038i \(-0.263305\pi\)
\(282\) 16.6783 + 1.97293i 0.993176 + 0.117486i
\(283\) 5.94417 1.04812i 0.353344 0.0623041i 0.00584108 0.999983i \(-0.498141\pi\)
0.347503 + 0.937679i \(0.387030\pi\)
\(284\) −12.2581 + 2.16144i −0.727387 + 0.128258i
\(285\) 0.336101 + 0.0397586i 0.0199089 + 0.00235510i
\(286\) −0.203697 0.559654i −0.0120449 0.0330930i
\(287\) 24.4100 18.2269i 1.44088 1.07590i
\(288\) −1.88458 16.5222i −0.111050 0.973577i
\(289\) 10.2756 0.604448
\(290\) −0.553118 0.464121i −0.0324802 0.0272541i
\(291\) 1.56769 + 27.5771i 0.0918996 + 1.61660i
\(292\) 8.47834 1.49496i 0.496157 0.0874859i
\(293\) 3.30078 + 18.7197i 0.192834 + 1.09361i 0.915470 + 0.402386i \(0.131819\pi\)
−0.722636 + 0.691228i \(0.757070\pi\)
\(294\) 17.8007 + 11.6704i 1.03816 + 0.680631i
\(295\) 3.57826 + 3.00252i 0.208334 + 0.174813i
\(296\) −8.57121 + 4.94859i −0.498191 + 0.287631i
\(297\) 2.59798 + 4.54352i 0.150750 + 0.263642i
\(298\) 7.11650 12.3261i 0.412248 0.714035i
\(299\) 0.138840 0.787401i 0.00802933 0.0455366i
\(300\) 8.75061 + 2.63303i 0.505217 + 0.152018i
\(301\) −15.6058 + 4.69638i −0.899505 + 0.270695i
\(302\) −6.81534 + 18.7250i −0.392179 + 1.07750i
\(303\) −7.15313 10.9088i −0.410936 0.626696i
\(304\) 1.77923 2.12041i 0.102046 0.121614i
\(305\) −4.30808 + 2.48727i −0.246680 + 0.142421i
\(306\) −19.9547 18.9315i −1.14073 1.08224i
\(307\) 11.6881 6.74813i 0.667076 0.385136i −0.127892 0.991788i \(-0.540821\pi\)
0.794968 + 0.606652i \(0.207488\pi\)
\(308\) −2.41152 1.58115i −0.137409 0.0900946i
\(309\) 1.18342 + 0.139991i 0.0673224 + 0.00796381i
\(310\) 1.01544 + 0.369591i 0.0576733 + 0.0209914i
\(311\) 3.46830 + 19.6697i 0.196669 + 1.11537i 0.910022 + 0.414561i \(0.136065\pi\)
−0.713352 + 0.700806i \(0.752824\pi\)
\(312\) −0.110435 + 0.933569i −0.00625216 + 0.0528529i
\(313\) 15.5687 18.5541i 0.879996 1.04874i −0.118448 0.992960i \(-0.537792\pi\)
0.998443 0.0557776i \(-0.0177638\pi\)
\(314\) −8.98318 15.5593i −0.506950 0.878064i
\(315\) −1.25903 + 2.49850i −0.0709385 + 0.140775i
\(316\) 6.41434 11.1100i 0.360835 0.624984i
\(317\) 6.11357 + 16.7969i 0.343373 + 0.943408i 0.984409 + 0.175897i \(0.0562827\pi\)
−0.641036 + 0.767511i \(0.721495\pi\)
\(318\) 7.00333 + 10.6804i 0.392727 + 0.598926i
\(319\) 0.900302 0.755443i 0.0504072 0.0422967i
\(320\) 0.0688988 0.0578130i 0.00385156 0.00323184i
\(321\) 21.7103 5.11354i 1.21175 0.285410i
\(322\) −4.96280 9.84665i −0.276566 0.548732i
\(323\) 2.89513i 0.161089i
\(324\) 0.512144 + 9.72518i 0.0284524 + 0.540288i
\(325\) −1.42215 0.821079i −0.0788868 0.0455453i
\(326\) 9.25857 + 25.4377i 0.512785 + 1.40886i
\(327\) 3.15407 2.96743i 0.174420 0.164099i
\(328\) 18.2735 3.22211i 1.00899 0.177911i
\(329\) −13.9930 + 4.21101i −0.771457 + 0.232160i
\(330\) 0.485870 0.964100i 0.0267463 0.0530720i
\(331\) −7.47167 + 2.71947i −0.410680 + 0.149475i −0.539095 0.842245i \(-0.681233\pi\)
0.128414 + 0.991721i \(0.459011\pi\)
\(332\) 1.98921 + 3.44542i 0.109172 + 0.189092i
\(333\) 16.4880 8.22320i 0.903535 0.450629i
\(334\) 3.33630 + 1.92621i 0.182554 + 0.105398i
\(335\) 2.77489 1.00998i 0.151609 0.0551811i
\(336\) 11.4417 + 19.8160i 0.624198 + 1.08105i
\(337\) −3.13485 + 2.63046i −0.170766 + 0.143290i −0.724166 0.689626i \(-0.757775\pi\)
0.553399 + 0.832916i \(0.313330\pi\)
\(338\) 7.73767 21.2591i 0.420874 1.15634i
\(339\) −4.68572 + 6.27577i −0.254493 + 0.340853i
\(340\) −0.345908 + 1.96174i −0.0187595 + 0.106390i
\(341\) −0.879449 + 1.52325i −0.0476248 + 0.0824886i
\(342\) −2.00945 + 2.11806i −0.108659 + 0.114531i
\(343\) −18.2525 3.13782i −0.985543 0.169426i
\(344\) −9.77562 1.72370i −0.527066 0.0929359i
\(345\) 1.21203 0.794754i 0.0652537 0.0427881i
\(346\) −14.0865 16.7876i −0.757294 0.902507i
\(347\) 4.11621 11.3092i 0.220970 0.607109i −0.778828 0.627238i \(-0.784185\pi\)
0.999797 + 0.0201286i \(0.00640755\pi\)
\(348\) 2.12857 0.501355i 0.114103 0.0268754i
\(349\) −5.51788 + 6.57596i −0.295365 + 0.352003i −0.893235 0.449591i \(-0.851570\pi\)
0.597869 + 0.801594i \(0.296014\pi\)
\(350\) −22.4902 + 2.66129i −1.20215 + 0.142252i
\(351\) 0.311087 1.72220i 0.0166046 0.0919242i
\(352\) −2.79165 4.83528i −0.148795 0.257721i
\(353\) 13.8371 5.03630i 0.736476 0.268055i 0.0535724 0.998564i \(-0.482939\pi\)
0.682903 + 0.730509i \(0.260717\pi\)
\(354\) −39.2219 + 9.23816i −2.08462 + 0.491003i
\(355\) 2.60634 + 3.10611i 0.138330 + 0.164855i
\(356\) 4.05765 + 1.47686i 0.215055 + 0.0782736i
\(357\) 22.4900 + 8.18472i 1.19029 + 0.433182i
\(358\) −4.06235 + 23.0388i −0.214702 + 1.21764i
\(359\) 10.8370i 0.571954i −0.958236 0.285977i \(-0.907682\pi\)
0.958236 0.285977i \(-0.0923181\pi\)
\(360\) −1.36973 + 1.01382i −0.0721911 + 0.0534328i
\(361\) 18.6927 0.983826
\(362\) −27.3539 22.9527i −1.43769 1.20637i
\(363\) −13.8586 10.3473i −0.727386 0.543094i
\(364\) 0.277863 + 0.923323i 0.0145640 + 0.0483953i
\(365\) −1.80267 2.14834i −0.0943562 0.112449i
\(366\) 5.04118 42.6158i 0.263507 2.22756i
\(367\) −30.0382 5.29655i −1.56798 0.276478i −0.678903 0.734228i \(-0.737544\pi\)
−0.889081 + 0.457751i \(0.848655\pi\)
\(368\) 11.8537i 0.617919i
\(369\) −34.3206 + 3.91474i −1.78666 + 0.203793i
\(370\) −3.29140 1.90029i −0.171112 0.0987913i
\(371\) −9.29317 6.09322i −0.482478 0.316344i
\(372\) −2.73688 + 1.79463i −0.141901 + 0.0930470i
\(373\) 5.56925 + 31.5848i 0.288365 + 1.63540i 0.693013 + 0.720925i \(0.256283\pi\)
−0.404649 + 0.914472i \(0.632606\pi\)
\(374\) −8.67827 3.15863i −0.448743 0.163329i
\(375\) −1.38232 5.86885i −0.0713828 0.303066i
\(376\) −8.76531 1.54556i −0.452036 0.0797062i
\(377\) −0.392979 −0.0202394
\(378\) −10.7726 21.5977i −0.554085 1.11087i
\(379\) 3.24554 0.166712 0.0833561 0.996520i \(-0.473436\pi\)
0.0833561 + 0.996520i \(0.473436\pi\)
\(380\) 0.208226 + 0.0367158i 0.0106818 + 0.00188348i
\(381\) −23.8911 + 22.4774i −1.22398 + 1.15155i
\(382\) −37.5265 13.6585i −1.92002 0.698832i
\(383\) 5.53425 + 31.3863i 0.282787 + 1.60376i 0.713085 + 0.701077i \(0.247297\pi\)
−0.430299 + 0.902687i \(0.641592\pi\)
\(384\) 1.13386 + 19.9455i 0.0578618 + 1.01784i
\(385\) −0.0532795 + 0.937852i −0.00271538 + 0.0477974i
\(386\) −21.7547 12.5601i −1.10729 0.639292i
\(387\) 17.9692 + 4.31162i 0.913426 + 0.219172i
\(388\) 17.2562i 0.876049i
\(389\) 13.0170 + 2.29524i 0.659987 + 0.116374i 0.493603 0.869687i \(-0.335680\pi\)
0.166384 + 0.986061i \(0.446791\pi\)
\(390\) −0.331671 + 0.142522i −0.0167948 + 0.00721687i
\(391\) −7.96940 9.49756i −0.403030 0.480312i
\(392\) −9.06754 6.71036i −0.457980 0.338924i
\(393\) 14.2579 6.12674i 0.719215 0.309053i
\(394\) −28.0418 23.5298i −1.41272 1.18542i
\(395\) −4.17899 −0.210268
\(396\) 1.45933 + 2.92604i 0.0733342 + 0.147039i
\(397\) 8.35393i 0.419272i 0.977780 + 0.209636i \(0.0672279\pi\)
−0.977780 + 0.209636i \(0.932772\pi\)
\(398\) 3.14039 17.8100i 0.157414 0.892737i
\(399\) 0.868755 2.38716i 0.0434921 0.119508i
\(400\) −22.8777 8.32679i −1.14388 0.416340i
\(401\) −0.802776 0.956711i −0.0400887 0.0477759i 0.745628 0.666363i \(-0.232150\pi\)
−0.785716 + 0.618587i \(0.787705\pi\)
\(402\) −7.33996 + 24.3936i −0.366084 + 1.21664i
\(403\) 0.552664 0.201153i 0.0275302 0.0100202i
\(404\) −4.07481 7.05777i −0.202729 0.351137i
\(405\) 2.66017 1.72849i 0.132185 0.0858893i
\(406\) −4.34255 + 3.24256i −0.215517 + 0.160926i
\(407\) 3.97638 4.73887i 0.197102 0.234897i
\(408\) 9.98880 + 10.6171i 0.494519 + 0.525623i
\(409\) −9.83425 + 27.0194i −0.486272 + 1.33602i 0.417760 + 0.908557i \(0.362815\pi\)
−0.904032 + 0.427464i \(0.859407\pi\)
\(410\) 4.58011 + 5.45837i 0.226196 + 0.269569i
\(411\) −1.87629 33.0057i −0.0925507 1.62805i
\(412\) 0.733169 + 0.129277i 0.0361206 + 0.00636904i
\(413\) 28.0931 20.9769i 1.38237 1.03221i
\(414\) −0.761710 + 12.4798i −0.0374360 + 0.613347i
\(415\) 0.647994 1.12236i 0.0318088 0.0550944i
\(416\) −0.324188 + 1.83856i −0.0158946 + 0.0901428i
\(417\) 9.31868 + 1.10234i 0.456338 + 0.0539818i
\(418\) −0.335268 + 0.921141i −0.0163985 + 0.0450545i
\(419\) −17.9352 + 15.0494i −0.876194 + 0.735214i −0.965393 0.260800i \(-0.916014\pi\)
0.0891993 + 0.996014i \(0.471569\pi\)
\(420\) −0.873885 + 1.51374i −0.0426412 + 0.0738632i
\(421\) 19.5384 7.11141i 0.952246 0.346589i 0.181255 0.983436i \(-0.441984\pi\)
0.770990 + 0.636847i \(0.219762\pi\)
\(422\) −34.9623 20.1855i −1.70194 0.982616i
\(423\) 16.1121 + 3.86602i 0.783397 + 0.187972i
\(424\) −3.38429 5.86176i −0.164355 0.284672i
\(425\) −23.9285 + 8.70924i −1.16070 + 0.422460i
\(426\) −34.9219 + 1.98523i −1.69197 + 0.0961846i
\(427\) 10.7599 + 35.7544i 0.520706 + 1.73028i
\(428\) 13.7226 2.41967i 0.663308 0.116959i
\(429\) −0.134712 0.571937i −0.00650394 0.0276134i
\(430\) −1.30371 3.58193i −0.0628707 0.172736i
\(431\) 6.13033 + 3.53935i 0.295288 + 0.170484i 0.640324 0.768105i \(-0.278800\pi\)
−0.345036 + 0.938589i \(0.612133\pi\)
\(432\) 0.108284 25.9455i 0.00520980 1.24831i
\(433\) 27.8368i 1.33775i −0.743374 0.668876i \(-0.766776\pi\)
0.743374 0.668876i \(-0.233224\pi\)
\(434\) 4.44736 6.78297i 0.213480 0.325593i
\(435\) −0.488133 0.518835i −0.0234042 0.0248762i
\(436\) 2.07250 1.73903i 0.0992546 0.0832845i
\(437\) −1.00810 + 0.845900i −0.0482242 + 0.0404649i
\(438\) 24.1537 1.37308i 1.15411 0.0656084i
\(439\) 2.08561 + 5.73016i 0.0995406 + 0.273486i 0.979460 0.201637i \(-0.0646260\pi\)
−0.879920 + 0.475122i \(0.842404\pi\)
\(440\) −0.286078 + 0.495502i −0.0136382 + 0.0236221i
\(441\) 16.0879 + 13.4973i 0.766092 + 0.642730i
\(442\) 1.54402 + 2.67432i 0.0734415 + 0.127204i
\(443\) 5.75422 6.85761i 0.273391 0.325815i −0.611826 0.790992i \(-0.709565\pi\)
0.885218 + 0.465177i \(0.154009\pi\)
\(444\) 10.5756 4.54442i 0.501895 0.215669i
\(445\) −0.244258 1.38525i −0.0115789 0.0656674i
\(446\) 28.0473 + 10.2084i 1.32808 + 0.483380i
\(447\) 8.40110 11.2519i 0.397358 0.532197i
\(448\) −0.303840 0.602847i −0.0143551 0.0284819i
\(449\) 13.4361 7.75732i 0.634087 0.366090i −0.148246 0.988951i \(-0.547363\pi\)
0.782333 + 0.622860i \(0.214029\pi\)
\(450\) 23.5508 + 10.2366i 1.11020 + 0.482560i
\(451\) −10.0441 + 5.79895i −0.472957 + 0.273062i
\(452\) −3.14514 + 3.74823i −0.147935 + 0.176302i
\(453\) −8.84765 + 17.5562i −0.415699 + 0.824861i
\(454\) −8.25242 + 22.6733i −0.387305 + 1.06411i
\(455\) 0.215222 0.228776i 0.0100898 0.0107252i
\(456\) 1.12693 1.06025i 0.0527734 0.0496505i
\(457\) −5.85428 + 33.2012i −0.273851 + 1.55309i 0.468735 + 0.883339i \(0.344710\pi\)
−0.742587 + 0.669750i \(0.766401\pi\)
\(458\) 11.7130 20.2876i 0.547315 0.947977i
\(459\) −17.3567 20.8611i −0.810142 0.973714i
\(460\) 0.784160 0.452735i 0.0365616 0.0211089i
\(461\) 6.66457 + 5.59224i 0.310400 + 0.260457i 0.784657 0.619930i \(-0.212839\pi\)
−0.474257 + 0.880386i \(0.657283\pi\)
\(462\) −6.20779 5.20856i −0.288813 0.242324i
\(463\) 0.286128 + 1.62271i 0.0132975 + 0.0754139i 0.990734 0.135814i \(-0.0433649\pi\)
−0.977437 + 0.211228i \(0.932254\pi\)
\(464\) −5.73762 + 1.01170i −0.266362 + 0.0469669i
\(465\) 0.952059 + 0.479802i 0.0441507 + 0.0222503i
\(466\) 15.3932 + 12.9164i 0.713077 + 0.598342i
\(467\) 19.2441 0.890513 0.445256 0.895403i \(-0.353113\pi\)
0.445256 + 0.895403i \(0.353113\pi\)
\(468\) 0.255098 1.06315i 0.0117919 0.0491443i
\(469\) −2.60462 22.0112i −0.120270 1.01638i
\(470\) −1.16898 3.21174i −0.0539208 0.148146i
\(471\) −6.99808 16.2856i −0.322454 0.750402i
\(472\) 21.0306 3.70827i 0.968014 0.170687i
\(473\) 6.11017 1.07739i 0.280946 0.0495383i
\(474\) 21.5679 28.8867i 0.990646 1.32681i
\(475\) 0.924429 + 2.53985i 0.0424157 + 0.116536i
\(476\) 13.7374 + 5.90248i 0.629653 + 0.270540i
\(477\) 5.62376 + 11.2759i 0.257494 + 0.516290i
\(478\) 41.3498 1.89130
\(479\) 1.74613 + 1.46518i 0.0797829 + 0.0669458i 0.681807 0.731532i \(-0.261194\pi\)
−0.602024 + 0.798478i \(0.705639\pi\)
\(480\) −2.83006 + 1.85573i −0.129174 + 0.0847020i
\(481\) −2.03707 + 0.359191i −0.0928826 + 0.0163777i
\(482\) −0.698682 3.96242i −0.0318241 0.180483i
\(483\) −3.72115 10.2226i −0.169318 0.465144i
\(484\) −8.27709 6.94531i −0.376231 0.315696i
\(485\) 4.86816 2.81063i 0.221052 0.127624i
\(486\) −1.78124 + 27.3088i −0.0807985 + 1.23875i
\(487\) −2.87457 + 4.97890i −0.130259 + 0.225615i −0.923776 0.382932i \(-0.874914\pi\)
0.793517 + 0.608548i \(0.208248\pi\)
\(488\) −3.94917 + 22.3969i −0.178771 + 1.01386i
\(489\) 6.12299 + 25.9960i 0.276891 + 1.17558i
\(490\) 0.490594 4.30390i 0.0221628 0.194431i
\(491\) 10.3834 28.5281i 0.468596 1.28746i −0.450272 0.892892i \(-0.648673\pi\)
0.918868 0.394566i \(-0.129105\pi\)
\(492\) −21.5455 + 1.22481i −0.971348 + 0.0552188i
\(493\) −3.91697 + 4.66807i −0.176412 + 0.210239i
\(494\) 0.283861 0.163887i 0.0127715 0.00737364i
\(495\) 0.587777 0.888278i 0.0264186 0.0399251i
\(496\) 7.55122 4.35970i 0.339060 0.195756i
\(497\) 27.1777 13.6978i 1.21909 0.614430i
\(498\) 4.41383 + 10.2717i 0.197789 + 0.460285i
\(499\) 8.75777 + 3.18757i 0.392052 + 0.142695i 0.530522 0.847671i \(-0.321996\pi\)
−0.138470 + 0.990367i \(0.544218\pi\)
\(500\) −0.654099 3.70958i −0.0292522 0.165897i
\(501\) 3.04554 + 2.27391i 0.136065 + 0.101591i
\(502\) −3.78331 + 4.50877i −0.168857 + 0.201236i
\(503\) −10.1934 17.6555i −0.454501 0.787219i 0.544158 0.838983i \(-0.316849\pi\)
−0.998659 + 0.0517635i \(0.983516\pi\)
\(504\) 5.05030 + 11.7516i 0.224958 + 0.523459i
\(505\) −1.32738 + 2.29910i −0.0590678 + 0.102308i
\(506\) 1.43576 + 3.94473i 0.0638275 + 0.175364i
\(507\) 10.0450 19.9321i 0.446115 0.885215i
\(508\) −15.6986 + 13.1727i −0.696511 + 0.584442i
\(509\) −21.8187 + 18.3080i −0.967096 + 0.811489i −0.982093 0.188398i \(-0.939670\pi\)
0.0149972 + 0.999888i \(0.495226\pi\)
\(510\) −1.61292 + 5.36037i −0.0714213 + 0.237361i
\(511\) −18.7974 + 9.47408i −0.831550 + 0.419109i
\(512\) 11.5849i 0.511984i
\(513\) −2.21427 + 1.84230i −0.0977624 + 0.0813396i
\(514\) −14.9060 8.60600i −0.657476 0.379594i
\(515\) −0.0829457 0.227891i −0.00365502 0.0100421i
\(516\) 11.0550 + 3.32642i 0.486670 + 0.146438i
\(517\) 5.47868 0.966040i 0.240952 0.0424864i
\(518\) −19.5466 + 20.7776i −0.858828 + 0.912913i
\(519\) −11.8557 18.0805i −0.520409 0.793647i
\(520\) 0.179778 0.0654337i 0.00788377 0.00286946i
\(521\) 3.14855 + 5.45344i 0.137940 + 0.238920i 0.926717 0.375760i \(-0.122618\pi\)
−0.788776 + 0.614680i \(0.789285\pi\)
\(522\) 6.10564 0.696433i 0.267237 0.0304820i
\(523\) −1.26823 0.732214i −0.0554559 0.0320175i 0.472016 0.881590i \(-0.343527\pi\)
−0.527472 + 0.849573i \(0.676860\pi\)
\(524\) 9.11028 3.31587i 0.397985 0.144855i
\(525\) −22.3435 0.000833624i −0.975150 3.63823e-5i
\(526\) −0.451618 + 0.378952i −0.0196915 + 0.0165231i
\(527\) 3.11918 8.56989i 0.135874 0.373310i
\(528\) −3.43925 8.00366i −0.149674 0.348315i
\(529\) 3.01529 17.1006i 0.131100 0.743503i
\(530\) 1.29959 2.25095i 0.0564504 0.0977750i
\(531\) −39.4990 + 4.50540i −1.71411 + 0.195518i
\(532\) 0.626509 1.45814i 0.0271626 0.0632182i
\(533\) 3.81914 + 0.673418i 0.165425 + 0.0291690i
\(534\) 10.8360 + 5.46094i 0.468920 + 0.236318i
\(535\) −2.91771 3.47720i −0.126144 0.150332i
\(536\) 4.61738 12.6862i 0.199440 0.547958i
\(537\) −6.65034 + 22.1017i −0.286983 + 0.953760i
\(538\) −4.41243 + 5.25853i −0.190233 + 0.226711i
\(539\) 6.76032 + 2.00288i 0.291187 + 0.0862701i
\(540\) 1.72051 0.983785i 0.0740389 0.0423354i
\(541\) 18.0276 + 31.2248i 0.775068 + 1.34246i 0.934756 + 0.355290i \(0.115618\pi\)
−0.159688 + 0.987168i \(0.551049\pi\)
\(542\) 18.8713 6.86861i 0.810594 0.295032i
\(543\) −24.1402 25.6585i −1.03595 1.10111i
\(544\) 18.6083 + 22.1765i 0.797825 + 0.950811i
\(545\) −0.828162 0.301426i −0.0354746 0.0129117i
\(546\) 0.470616 + 2.66842i 0.0201405 + 0.114198i
\(547\) −4.12524 + 23.3954i −0.176383 + 1.00032i 0.760153 + 0.649744i \(0.225124\pi\)
−0.936536 + 0.350572i \(0.885987\pi\)
\(548\) 20.6531i 0.882256i
\(549\) 9.87834 41.1692i 0.421597 1.75706i
\(550\) 8.62187 0.367638
\(551\) 0.495484 + 0.415761i 0.0211083 + 0.0177120i
\(552\) 0.778404 6.58027i 0.0331311 0.280075i
\(553\) −7.19015 + 30.5319i −0.305756 + 1.29835i
\(554\) 24.3607 + 29.0319i 1.03499 + 1.23345i
\(555\) −3.00455 2.24331i −0.127536 0.0952231i
\(556\) 5.77324 + 1.01798i 0.244840 + 0.0431718i
\(557\) 30.4386i 1.28973i 0.764298 + 0.644863i \(0.223086\pi\)
−0.764298 + 0.644863i \(0.776914\pi\)
\(558\) −8.23016 + 4.10471i −0.348411 + 0.173766i
\(559\) −1.79667 1.03731i −0.0759909 0.0438734i
\(560\) 2.55335 3.89428i 0.107899 0.164563i
\(561\) −8.13657 4.10053i −0.343526 0.173124i
\(562\) −4.70271 26.6704i −0.198372 1.12502i
\(563\) 42.5760 + 15.4964i 1.79436 + 0.653095i 0.998890 + 0.0471073i \(0.0150003\pi\)
0.795474 + 0.605988i \(0.207222\pi\)
\(564\) 9.91249 + 2.98264i 0.417391 + 0.125592i
\(565\) 1.56969 + 0.276778i 0.0660373 + 0.0116442i
\(566\) 10.5965 0.445403
\(567\) −8.05148 22.4092i −0.338131 0.941099i
\(568\) 18.5373 0.777807
\(569\) −30.0751 5.30306i −1.26082 0.222316i −0.497000 0.867751i \(-0.665565\pi\)
−0.763815 + 0.645435i \(0.776676\pi\)
\(570\) 0.568968 + 0.171201i 0.0238315 + 0.00717081i
\(571\) −25.2313 9.18343i −1.05590 0.384315i −0.245011 0.969520i \(-0.578792\pi\)
−0.810885 + 0.585206i \(0.801014\pi\)
\(572\) −0.0637440 0.361510i −0.00266527 0.0151155i
\(573\) −35.1841 17.7315i −1.46984 0.740743i
\(574\) 47.7593 24.0711i 1.99344 1.00471i
\(575\) 10.0240 + 5.78739i 0.418032 + 0.241351i
\(576\) −0.0466346 + 0.764056i −0.00194311 + 0.0318357i
\(577\) 41.1612i 1.71356i −0.515679 0.856782i \(-0.672460\pi\)
0.515679 0.856782i \(-0.327540\pi\)
\(578\) 17.7656 + 3.13256i 0.738953 + 0.130297i
\(579\) −19.8588 14.8273i −0.825303 0.616202i
\(580\) −0.286066 0.340920i −0.0118782 0.0141559i
\(581\) −7.08509 6.66533i −0.293939 0.276525i
\(582\) −5.69657 + 48.1562i −0.236131 + 1.99614i
\(583\) 3.24086 + 2.71940i 0.134223 + 0.112626i
\(584\) −12.8213 −0.530550
\(585\) −0.341477 + 0.101197i −0.0141184 + 0.00418399i
\(586\) 33.3709i 1.37854i
\(587\) −3.64875 + 20.6931i −0.150600 + 0.854096i 0.812099 + 0.583520i \(0.198325\pi\)
−0.962699 + 0.270575i \(0.912786\pi\)
\(588\) 9.55592 + 8.98911i 0.394080 + 0.370705i
\(589\) −0.909637 0.331081i −0.0374810 0.0136420i
\(590\) 5.27117 + 6.28193i 0.217010 + 0.258623i
\(591\) −24.7472 26.3037i −1.01796 1.08199i
\(592\) −28.8172 + 10.4886i −1.18438 + 0.431079i
\(593\) −2.06936 3.58423i −0.0849783 0.147187i 0.820404 0.571785i \(-0.193749\pi\)
−0.905382 + 0.424598i \(0.860415\pi\)
\(594\) 3.10657 + 8.64735i 0.127464 + 0.354805i
\(595\) −0.572352 4.83686i −0.0234642 0.198292i
\(596\) 5.63896 6.72026i 0.230981 0.275272i
\(597\) 5.14102 17.0857i 0.210408 0.699270i
\(598\) 0.480085 1.31902i 0.0196321 0.0539388i
\(599\) −4.25619 5.07233i −0.173903 0.207250i 0.672052 0.740504i \(-0.265413\pi\)
−0.845955 + 0.533254i \(0.820969\pi\)
\(600\) −12.1531 6.12470i −0.496148 0.250040i
\(601\) 31.9246 + 5.62916i 1.30223 + 0.229618i 0.781394 0.624038i \(-0.214509\pi\)
0.520836 + 0.853657i \(0.325620\pi\)
\(602\) −28.4128 + 3.36213i −1.15802 + 0.137030i
\(603\) −10.0186 + 23.0493i −0.407991 + 0.938639i
\(604\) −6.14103 + 10.6366i −0.249875 + 0.432796i
\(605\) −0.611201 + 3.46629i −0.0248488 + 0.140925i
\(606\) −9.04153 21.0411i −0.367287 0.854735i
\(607\) 8.65290 23.7736i 0.351210 0.964943i −0.630772 0.775968i \(-0.717262\pi\)
0.981982 0.188974i \(-0.0605162\pi\)
\(608\) 2.35389 1.97515i 0.0954630 0.0801030i
\(609\) −4.63049 + 2.67364i −0.187637 + 0.108341i
\(610\) −8.20654 + 2.98694i −0.332273 + 0.120937i
\(611\) −1.61098 0.930101i −0.0651733 0.0376278i
\(612\) −10.0862 13.6271i −0.407710 0.550843i
\(613\) −11.2436 19.4745i −0.454126 0.786570i 0.544511 0.838753i \(-0.316715\pi\)
−0.998637 + 0.0521839i \(0.983382\pi\)
\(614\) 22.2649 8.10376i 0.898539 0.327041i
\(615\) 3.85481 + 5.87875i 0.155441 + 0.237054i
\(616\) 3.12795 + 2.94263i 0.126029 + 0.118562i
\(617\) −34.4853 + 6.08069i −1.38833 + 0.244799i −0.817337 0.576159i \(-0.804551\pi\)
−0.570988 + 0.820958i \(0.693440\pi\)
\(618\) 2.00335 + 0.602802i 0.0805867 + 0.0242483i
\(619\) 0.0108626 + 0.0298448i 0.000436606 + 0.00119956i 0.939911 0.341420i \(-0.110908\pi\)
−0.939474 + 0.342620i \(0.888686\pi\)
\(620\) 0.576814 + 0.333024i 0.0231654 + 0.0133745i
\(621\) −2.19270 + 12.1389i −0.0879900 + 0.487119i
\(622\) 35.0645i 1.40596i
\(623\) −10.5410 0.598835i −0.422316 0.0239918i
\(624\) −0.839297 + 2.78932i −0.0335988 + 0.111662i
\(625\) 17.7352 14.8816i 0.709409 0.595265i
\(626\) 32.5732 27.3322i 1.30189 1.09241i
\(627\) −0.435244 + 0.863644i −0.0173820 + 0.0344906i
\(628\) −3.78745 10.4059i −0.151136 0.415242i
\(629\) −16.0376 + 27.7779i −0.639461 + 1.10758i
\(630\) −2.93844 + 3.93587i −0.117070 + 0.156809i
\(631\) 12.1382 + 21.0239i 0.483213 + 0.836949i 0.999814 0.0192769i \(-0.00613639\pi\)
−0.516601 + 0.856226i \(0.672803\pi\)
\(632\) −12.2807 + 14.6356i −0.488499 + 0.582171i
\(633\) −31.9154 23.8292i −1.26852 0.947125i
\(634\) 5.44923 + 30.9041i 0.216417 + 1.22736i
\(635\) 6.27309 + 2.28322i 0.248940 + 0.0906067i
\(636\) 3.10788 + 7.23252i 0.123235 + 0.286788i
\(637\) −1.30115 1.96604i −0.0515534 0.0778975i
\(638\) 1.78684 1.03163i 0.0707418 0.0408428i
\(639\) −34.4453 2.10239i −1.36264 0.0831693i
\(640\) 3.52097 2.03283i 0.139179 0.0803548i
\(641\) 10.9365 13.0336i 0.431965 0.514796i −0.505523 0.862813i \(-0.668700\pi\)
0.937488 + 0.348017i \(0.113145\pi\)
\(642\) 39.0940 2.22240i 1.54292 0.0877112i
\(643\) −4.55599 + 12.5175i −0.179671 + 0.493641i −0.996534 0.0831906i \(-0.973489\pi\)
0.816863 + 0.576832i \(0.195711\pi\)
\(644\) −1.95852 6.50805i −0.0771764 0.256453i
\(645\) −0.862188 3.66054i −0.0339486 0.144134i
\(646\) 0.882591 5.00542i 0.0347251 0.196936i
\(647\) 14.3125 24.7899i 0.562681 0.974593i −0.434580 0.900633i \(-0.643103\pi\)
0.997261 0.0739595i \(-0.0235635\pi\)
\(648\) 1.76389 14.3958i 0.0692920 0.565521i
\(649\) −11.5595 + 6.67391i −0.453752 + 0.261974i
\(650\) −2.20847 1.85312i −0.0866231 0.0726854i
\(651\) 5.14351 6.13027i 0.201590 0.240264i
\(652\) 2.89733 + 16.4316i 0.113468 + 0.643509i
\(653\) 13.7897 2.43150i 0.539634 0.0951520i 0.102813 0.994701i \(-0.467216\pi\)
0.436821 + 0.899549i \(0.356104\pi\)
\(654\) 6.35773 4.16889i 0.248607 0.163016i
\(655\) −2.41930 2.03003i −0.0945299 0.0793200i
\(656\) 57.4944 2.24478
\(657\) 23.8241 + 1.45412i 0.929467 + 0.0567306i
\(658\) −25.4764 + 3.01465i −0.993172 + 0.117523i
\(659\) 13.4707 + 37.0105i 0.524745 + 1.44173i 0.865182 + 0.501458i \(0.167203\pi\)
−0.340437 + 0.940267i \(0.610575\pi\)
\(660\) 0.398109 0.533203i 0.0154964 0.0207549i
\(661\) 26.2416 4.62710i 1.02068 0.179973i 0.361827 0.932245i \(-0.382153\pi\)
0.658852 + 0.752272i \(0.271042\pi\)
\(662\) −13.7469 + 2.42395i −0.534288 + 0.0942095i
\(663\) 1.20282 + 2.79915i 0.0467137 + 0.108710i
\(664\) −2.02645 5.56762i −0.0786415 0.216066i
\(665\) −0.513400 + 0.0607514i −0.0199088 + 0.00235584i
\(666\) 31.0131 9.19077i 1.20173 0.356135i
\(667\) 2.76992 0.107252
\(668\) 1.81896 + 1.52629i 0.0703777 + 0.0590539i
\(669\) 26.2965 + 13.2525i 1.01668 + 0.512370i
\(670\) 5.10545 0.900228i 0.197241 0.0347788i
\(671\) −2.46840 13.9990i −0.0952915 0.540425i
\(672\) 8.68877 + 23.8694i 0.335177 + 0.920783i
\(673\) 15.2986 + 12.8371i 0.589718 + 0.494832i 0.888122 0.459608i \(-0.152010\pi\)
−0.298404 + 0.954440i \(0.596454\pi\)
\(674\) −6.22179 + 3.59215i −0.239654 + 0.138365i
\(675\) 21.8878 + 12.7590i 0.842463 + 0.491095i
\(676\) 6.97210 12.0760i 0.268158 0.464463i
\(677\) 2.13401 12.1026i 0.0820168 0.465140i −0.915944 0.401307i \(-0.868556\pi\)
0.997961 0.0638337i \(-0.0203327\pi\)
\(678\) −10.0144 + 9.42179i −0.384600 + 0.361842i
\(679\) −12.1587 40.4028i −0.466609 1.55052i
\(680\) 1.01465 2.78772i 0.0389099 0.106904i
\(681\) −10.7133 + 21.2581i −0.410533 + 0.814611i
\(682\) −1.98486 + 2.36546i −0.0760042 + 0.0905783i
\(683\) −36.4854 + 21.0649i −1.39608 + 0.806024i −0.993979 0.109573i \(-0.965052\pi\)
−0.402096 + 0.915597i \(0.631718\pi\)
\(684\) −1.44643 + 1.07058i −0.0553055 + 0.0409347i
\(685\) −5.82647 + 3.36391i −0.222618 + 0.128529i
\(686\) −30.6004 10.9894i −1.16833 0.419576i
\(687\) 13.8274 18.5195i 0.527546 0.706563i
\(688\) −28.9024 10.5196i −1.10189 0.401056i
\(689\) −0.245647 1.39313i −0.00935841 0.0530742i
\(690\) 2.33778 1.00457i 0.0889979 0.0382432i
\(691\) 17.1500 20.4386i 0.652417 0.777520i −0.333859 0.942623i \(-0.608351\pi\)
0.986276 + 0.165103i \(0.0527955\pi\)
\(692\) −6.75367 11.6977i −0.256736 0.444680i
\(693\) −5.47850 5.82265i −0.208111 0.221184i
\(694\) 10.5642 18.2978i 0.401012 0.694574i
\(695\) −0.653144 1.79450i −0.0247752 0.0680692i
\(696\) −3.25151 + 0.184841i −0.123248 + 0.00700637i
\(697\) 46.0662 38.6541i 1.74488 1.46413i
\(698\) −11.5446 + 9.68710i −0.436971 + 0.366662i
\(699\) 13.5847 + 14.4391i 0.513821 + 0.546138i
\(700\) −13.9363 0.791724i −0.526743 0.0299243i
\(701\) 51.3062i 1.93781i 0.247434 + 0.968905i \(0.420413\pi\)
−0.247434 + 0.968905i \(0.579587\pi\)
\(702\) 1.06286 2.88270i 0.0401151 0.108800i
\(703\) 2.94844 + 1.70228i 0.111203 + 0.0642029i
\(704\) 0.0879026 + 0.241510i 0.00331295 + 0.00910227i
\(705\) −0.773081 3.28223i −0.0291159 0.123616i
\(706\) 25.4585 4.48902i 0.958143 0.168947i
\(707\) 14.5135 + 13.6536i 0.545836 + 0.513498i
\(708\) −24.7964 + 1.40961i −0.931905 + 0.0529765i
\(709\) −11.6315 + 4.23352i −0.436830 + 0.158993i −0.551068 0.834460i \(-0.685780\pi\)
0.114238 + 0.993453i \(0.463557\pi\)
\(710\) 3.55922 + 6.16474i 0.133575 + 0.231359i
\(711\) 24.4794 25.8025i 0.918050 0.967668i
\(712\) −5.56919 3.21537i −0.208714 0.120501i
\(713\) −3.89546 + 1.41783i −0.145886 + 0.0530982i
\(714\) 36.3880 + 21.0068i 1.36179 + 0.786161i
\(715\) −0.0916036 + 0.0768646i −0.00342578 + 0.00287457i
\(716\) −4.93167 + 13.5497i −0.184305 + 0.506375i
\(717\) 40.5131 + 4.79244i 1.51299 + 0.178977i
\(718\) 3.30370 18.7362i 0.123293 0.699229i
\(719\) −3.36102 + 5.82146i −0.125345 + 0.217104i −0.921868 0.387505i \(-0.873337\pi\)
0.796523 + 0.604609i \(0.206670\pi\)
\(720\) −4.72515 + 2.35662i −0.176096 + 0.0878261i
\(721\) −1.80770 + 0.213907i −0.0673221 + 0.00796632i
\(722\) 32.3180 + 5.69854i 1.20275 + 0.212078i
\(723\) −0.225299 3.96321i −0.00837897 0.147394i
\(724\) −14.1471 16.8599i −0.525774 0.626593i
\(725\) 1.94576 5.34593i 0.0722637 0.198543i
\(726\) −20.8058 22.1144i −0.772177 0.820744i
\(727\) 0.661805 0.788708i 0.0245450 0.0292516i −0.753632 0.657296i \(-0.771700\pi\)
0.778177 + 0.628045i \(0.216144\pi\)
\(728\) −0.168746 1.42604i −0.00625414 0.0528527i
\(729\) −4.91028 + 26.5497i −0.181862 + 0.983324i
\(730\) −2.46173 4.26384i −0.0911128 0.157812i
\(731\) −30.2299 + 11.0028i −1.11809 + 0.406952i
\(732\) 7.62115 25.3281i 0.281686 0.936154i
\(733\) 21.4478 + 25.5605i 0.792194 + 0.944100i 0.999415 0.0341942i \(-0.0108865\pi\)
−0.207221 + 0.978294i \(0.566442\pi\)
\(734\) −50.3188 18.3145i −1.85730 0.676002i
\(735\) 0.979489 4.15995i 0.0361290 0.153442i
\(736\) 2.28504 12.9591i 0.0842277 0.477679i
\(737\) 8.43826i 0.310827i
\(738\) −60.5308 3.69453i −2.22817 0.135998i
\(739\) −39.6066 −1.45695 −0.728476 0.685072i \(-0.759771\pi\)
−0.728476 + 0.685072i \(0.759771\pi\)
\(740\) −1.79448 1.50575i −0.0659664 0.0553524i
\(741\) 0.297112 0.127672i 0.0109147 0.00469013i
\(742\) −14.2095 13.3677i −0.521649 0.490744i
\(743\) −27.9888 33.3557i −1.02681 1.22370i −0.974340 0.225080i \(-0.927736\pi\)
−0.0524680 0.998623i \(-0.516709\pi\)
\(744\) 4.47814 1.92429i 0.164176 0.0705481i
\(745\) −2.81432 0.496240i −0.103109 0.0181808i
\(746\) 56.3051i 2.06148i
\(747\) 3.13403 + 10.5754i 0.114668 + 0.386933i
\(748\) −4.92962 2.84612i −0.180245 0.104064i
\(749\) −30.4246 + 15.3343i −1.11169 + 0.560302i
\(750\) −0.600773 10.5681i −0.0219371 0.385893i
\(751\) −7.79001 44.1793i −0.284261 1.61213i −0.707912 0.706301i \(-0.750363\pi\)
0.423650 0.905826i \(-0.360749\pi\)
\(752\) −25.9153 9.43240i −0.945034 0.343964i
\(753\) −4.22932 + 3.97905i −0.154125 + 0.145005i
\(754\) −0.679426 0.119801i −0.0247432 0.00436290i
\(755\) 4.00093 0.145609
\(756\) −4.22736 14.2628i −0.153748 0.518731i
\(757\) −17.5926 −0.639414 −0.319707 0.947516i \(-0.603585\pi\)
−0.319707 + 0.947516i \(0.603585\pi\)
\(758\) 5.61125 + 0.989415i 0.203810 + 0.0359372i
\(759\) 0.949516 + 4.03131i 0.0344653 + 0.146327i
\(760\) −0.295898 0.107698i −0.0107333 0.00390662i
\(761\) −6.81865 38.6705i −0.247176 1.40180i −0.815384 0.578920i \(-0.803474\pi\)
0.568208 0.822885i \(-0.307637\pi\)
\(762\) −48.1580 + 31.5781i −1.74458 + 1.14395i
\(763\) −3.62713 + 5.53197i −0.131311 + 0.200271i
\(764\) −21.3166 12.3072i −0.771208 0.445257i
\(765\) −2.20155 + 5.06497i −0.0795971 + 0.183124i
\(766\) 55.9513i 2.02160i
\(767\) 4.39538 + 0.775024i