Properties

Label 189.2.ba.a.38.16
Level $189$
Weight $2$
Character 189.38
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(5,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.ba (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 38.16
Character \(\chi\) \(=\) 189.38
Dual form 189.2.ba.a.5.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.10969 + 0.195669i) q^{2} +(1.47374 - 0.909998i) q^{3} +(-0.686257 - 0.249777i) q^{4} +(0.705645 + 4.00191i) q^{5} +(1.81345 - 0.721453i) q^{6} +(2.51373 - 0.825312i) q^{7} +(-2.66435 - 1.53826i) q^{8} +(1.34381 - 2.68220i) q^{9} +O(q^{10})\) \(q+(1.10969 + 0.195669i) q^{2} +(1.47374 - 0.909998i) q^{3} +(-0.686257 - 0.249777i) q^{4} +(0.705645 + 4.00191i) q^{5} +(1.81345 - 0.721453i) q^{6} +(2.51373 - 0.825312i) q^{7} +(-2.66435 - 1.53826i) q^{8} +(1.34381 - 2.68220i) q^{9} +4.57896i q^{10} +(-4.26189 - 0.751487i) q^{11} +(-1.23866 + 0.256386i) q^{12} +(0.646482 + 0.770447i) q^{13} +(2.95096 - 0.423983i) q^{14} +(4.68167 + 5.25563i) q^{15} +(-1.53673 - 1.28947i) q^{16} -2.69589 q^{17} +(2.01603 - 2.71347i) q^{18} -5.58170i q^{19} +(0.515332 - 2.92259i) q^{20} +(2.95355 - 3.50379i) q^{21} +(-4.58234 - 1.66784i) q^{22} +(2.40867 + 2.87054i) q^{23} +(-5.32637 + 0.157556i) q^{24} +(-10.8189 + 3.93776i) q^{25} +(0.566643 + 0.981454i) q^{26} +(-0.460374 - 5.17572i) q^{27} +(-1.93121 - 0.0614972i) q^{28} +(-0.209206 + 0.249322i) q^{29} +(4.16684 + 6.74819i) q^{30} +(0.235207 - 0.646225i) q^{31} +(2.50212 + 2.98191i) q^{32} +(-6.96477 + 2.77082i) q^{33} +(-2.99160 - 0.527501i) q^{34} +(5.07663 + 9.47737i) q^{35} +(-1.59215 + 1.50502i) q^{36} +(-1.72047 + 2.97994i) q^{37} +(1.09216 - 6.19396i) q^{38} +(1.65385 + 0.547140i) q^{39} +(4.27591 - 11.7480i) q^{40} +(-5.76056 + 4.83369i) q^{41} +(3.96311 - 3.31020i) q^{42} +(-3.15647 + 1.14886i) q^{43} +(2.73705 + 1.58024i) q^{44} +(11.6822 + 3.48512i) q^{45} +(2.11120 + 3.65671i) q^{46} +(-1.47767 + 0.537827i) q^{47} +(-3.43816 - 0.501921i) q^{48} +(5.63772 - 4.14923i) q^{49} +(-12.7761 + 2.25278i) q^{50} +(-3.97303 + 2.45325i) q^{51} +(-0.251212 - 0.690201i) q^{52} +(0.919027 + 0.530601i) q^{53} +(0.501851 - 5.83353i) q^{54} -17.5860i q^{55} +(-7.96702 - 1.66787i) q^{56} +(-5.07934 - 8.22596i) q^{57} +(-0.280939 + 0.235735i) q^{58} +(8.43834 - 7.08061i) q^{59} +(-1.90009 - 4.77609i) q^{60} +(2.79510 + 7.67947i) q^{61} +(0.387453 - 0.671088i) q^{62} +(1.16432 - 7.85139i) q^{63} +(4.19918 + 7.27319i) q^{64} +(-2.62707 + 3.13082i) q^{65} +(-8.27090 + 1.71197i) q^{66} +(0.201732 + 1.14408i) q^{67} +(1.85007 + 0.673371i) q^{68} +(6.16193 + 2.03854i) q^{69} +(3.77907 + 11.5103i) q^{70} +(8.98568 - 5.18788i) q^{71} +(-7.70630 + 5.07919i) q^{72} +(4.91412 - 2.83717i) q^{73} +(-2.49227 + 2.97017i) q^{74} +(-12.3609 + 15.6484i) q^{75} +(-1.39418 + 3.83048i) q^{76} +(-11.3335 + 1.62835i) q^{77} +(1.72820 + 0.930762i) q^{78} +(0.388313 - 2.20223i) q^{79} +(4.07597 - 7.05979i) q^{80} +(-5.38836 - 7.20871i) q^{81} +(-7.33824 + 4.23674i) q^{82} +(7.89183 + 6.62203i) q^{83} +(-2.90206 + 1.66677i) q^{84} +(-1.90234 - 10.7887i) q^{85} +(-3.72750 + 0.657259i) q^{86} +(-0.0814323 + 0.557813i) q^{87} +(10.1992 + 8.55815i) q^{88} +13.4427 q^{89} +(12.2817 + 6.15324i) q^{90} +(2.26094 + 1.40315i) q^{91} +(-0.935970 - 2.57156i) q^{92} +(-0.241430 - 1.16640i) q^{93} +(-1.74499 + 0.307689i) q^{94} +(22.3375 - 3.93870i) q^{95} +(6.40099 + 2.11763i) q^{96} +(-3.48085 - 9.56355i) q^{97} +(7.06800 - 3.50124i) q^{98} +(-7.74280 + 10.4214i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9} - 9 q^{11} - 9 q^{12} + 3 q^{14} - 24 q^{15} + 3 q^{16} - 18 q^{17} - 3 q^{18} + 18 q^{20} - 21 q^{21} - 12 q^{22} - 6 q^{23} - 9 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} + 51 q^{30} - 9 q^{31} + 3 q^{32} - 9 q^{33} - 18 q^{34} + 18 q^{35} + 3 q^{37} - 99 q^{38} - 36 q^{39} - 54 q^{40} - 45 q^{42} - 12 q^{43} - 9 q^{44} - 9 q^{45} + 3 q^{46} + 45 q^{47} - 24 q^{49} - 9 q^{50} - 48 q^{51} - 9 q^{52} - 45 q^{53} + 171 q^{54} + 3 q^{56} - 3 q^{58} + 36 q^{59} + 57 q^{60} - 9 q^{61} - 99 q^{62} - 33 q^{63} + 18 q^{64} + 69 q^{65} - 9 q^{66} - 3 q^{67} + 36 q^{68} + 108 q^{69} + 66 q^{70} + 18 q^{71} - 129 q^{72} - 9 q^{73} + 75 q^{74} + 36 q^{75} + 36 q^{76} + 15 q^{77} + 66 q^{78} - 21 q^{79} + 72 q^{80} - 33 q^{81} - 18 q^{82} - 90 q^{83} - 120 q^{84} + 9 q^{85} - 105 q^{86} - 54 q^{87} - 63 q^{88} - 18 q^{89} + 81 q^{90} + 6 q^{91} + 150 q^{92} + 21 q^{93} - 9 q^{94} + 45 q^{95} - 81 q^{96} + 27 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.10969 + 0.195669i 0.784670 + 0.138359i 0.551608 0.834103i \(-0.314014\pi\)
0.233062 + 0.972462i \(0.425125\pi\)
\(3\) 1.47374 0.909998i 0.850863 0.525388i
\(4\) −0.686257 0.249777i −0.343128 0.124889i
\(5\) 0.705645 + 4.00191i 0.315574 + 1.78971i 0.568982 + 0.822350i \(0.307337\pi\)
−0.253408 + 0.967360i \(0.581551\pi\)
\(6\) 1.81345 0.721453i 0.740339 0.294532i
\(7\) 2.51373 0.825312i 0.950102 0.311939i
\(8\) −2.66435 1.53826i −0.941991 0.543859i
\(9\) 1.34381 2.68220i 0.447936 0.894066i
\(10\) 4.57896i 1.44799i
\(11\) −4.26189 0.751487i −1.28501 0.226582i −0.510904 0.859638i \(-0.670689\pi\)
−0.774106 + 0.633056i \(0.781800\pi\)
\(12\) −1.23866 + 0.256386i −0.357570 + 0.0740124i
\(13\) 0.646482 + 0.770447i 0.179302 + 0.213683i 0.848208 0.529663i \(-0.177682\pi\)
−0.668906 + 0.743347i \(0.733237\pi\)
\(14\) 2.95096 0.423983i 0.788676 0.113314i
\(15\) 4.68167 + 5.25563i 1.20880 + 1.35700i
\(16\) −1.53673 1.28947i −0.384184 0.322368i
\(17\) −2.69589 −0.653849 −0.326925 0.945050i \(-0.606012\pi\)
−0.326925 + 0.945050i \(0.606012\pi\)
\(18\) 2.01603 2.71347i 0.475183 0.639571i
\(19\) 5.58170i 1.28053i −0.768154 0.640265i \(-0.778825\pi\)
0.768154 0.640265i \(-0.221175\pi\)
\(20\) 0.515332 2.92259i 0.115232 0.653512i
\(21\) 2.95355 3.50379i 0.644518 0.764589i
\(22\) −4.58234 1.66784i −0.976959 0.355584i
\(23\) 2.40867 + 2.87054i 0.502242 + 0.598548i 0.956287 0.292430i \(-0.0944640\pi\)
−0.454045 + 0.890979i \(0.650020\pi\)
\(24\) −5.32637 + 0.157556i −1.08724 + 0.0321611i
\(25\) −10.8189 + 3.93776i −2.16378 + 0.787552i
\(26\) 0.566643 + 0.981454i 0.111128 + 0.192479i
\(27\) −0.460374 5.17572i −0.0885991 0.996067i
\(28\) −1.93121 0.0614972i −0.364965 0.0116219i
\(29\) −0.209206 + 0.249322i −0.0388486 + 0.0462979i −0.785119 0.619345i \(-0.787398\pi\)
0.746270 + 0.665643i \(0.231843\pi\)
\(30\) 4.16684 + 6.74819i 0.760758 + 1.23204i
\(31\) 0.235207 0.646225i 0.0422444 0.116065i −0.916777 0.399400i \(-0.869218\pi\)
0.959021 + 0.283335i \(0.0914407\pi\)
\(32\) 2.50212 + 2.98191i 0.442316 + 0.527132i
\(33\) −6.96477 + 2.77082i −1.21241 + 0.482338i
\(34\) −2.99160 0.527501i −0.513056 0.0904656i
\(35\) 5.07663 + 9.47737i 0.858107 + 1.60197i
\(36\) −1.59215 + 1.50502i −0.265358 + 0.250837i
\(37\) −1.72047 + 2.97994i −0.282843 + 0.489898i −0.972084 0.234634i \(-0.924611\pi\)
0.689241 + 0.724532i \(0.257944\pi\)
\(38\) 1.09216 6.19396i 0.177172 1.00479i
\(39\) 1.65385 + 0.547140i 0.264828 + 0.0876125i
\(40\) 4.27591 11.7480i 0.676081 1.85752i
\(41\) −5.76056 + 4.83369i −0.899649 + 0.754895i −0.970122 0.242619i \(-0.921994\pi\)
0.0704731 + 0.997514i \(0.477549\pi\)
\(42\) 3.96311 3.31020i 0.611522 0.510776i
\(43\) −3.15647 + 1.14886i −0.481357 + 0.175199i −0.571290 0.820748i \(-0.693557\pi\)
0.0899334 + 0.995948i \(0.471335\pi\)
\(44\) 2.73705 + 1.58024i 0.412626 + 0.238230i
\(45\) 11.6822 + 3.48512i 1.74147 + 0.519531i
\(46\) 2.11120 + 3.65671i 0.311280 + 0.539152i
\(47\) −1.47767 + 0.537827i −0.215540 + 0.0784501i −0.447533 0.894267i \(-0.647697\pi\)
0.231993 + 0.972717i \(0.425475\pi\)
\(48\) −3.43816 0.501921i −0.496256 0.0724460i
\(49\) 5.63772 4.14923i 0.805389 0.592747i
\(50\) −12.7761 + 2.25278i −1.80682 + 0.318591i
\(51\) −3.97303 + 2.45325i −0.556336 + 0.343524i
\(52\) −0.251212 0.690201i −0.0348369 0.0957136i
\(53\) 0.919027 + 0.530601i 0.126238 + 0.0728836i 0.561789 0.827280i \(-0.310113\pi\)
−0.435551 + 0.900164i \(0.643447\pi\)
\(54\) 0.501851 5.83353i 0.0682933 0.793843i
\(55\) 17.5860i 2.37130i
\(56\) −7.96702 1.66787i −1.06464 0.222878i
\(57\) −5.07934 8.22596i −0.672775 1.08956i
\(58\) −0.280939 + 0.235735i −0.0368890 + 0.0309536i
\(59\) 8.43834 7.08061i 1.09858 0.921816i 0.101249 0.994861i \(-0.467716\pi\)
0.997329 + 0.0730447i \(0.0232716\pi\)
\(60\) −1.90009 4.77609i −0.245301 0.616590i
\(61\) 2.79510 + 7.67947i 0.357876 + 0.983256i 0.979765 + 0.200151i \(0.0641431\pi\)
−0.621889 + 0.783105i \(0.713635\pi\)
\(62\) 0.387453 0.671088i 0.0492065 0.0852282i
\(63\) 1.16432 7.85139i 0.146691 0.989182i
\(64\) 4.19918 + 7.27319i 0.524897 + 0.909148i
\(65\) −2.62707 + 3.13082i −0.325848 + 0.388331i
\(66\) −8.27090 + 1.71197i −1.01808 + 0.210729i
\(67\) 0.201732 + 1.14408i 0.0246455 + 0.139772i 0.994648 0.103325i \(-0.0329480\pi\)
−0.970002 + 0.243096i \(0.921837\pi\)
\(68\) 1.85007 + 0.673371i 0.224354 + 0.0816583i
\(69\) 6.16193 + 2.03854i 0.741809 + 0.245411i
\(70\) 3.77907 + 11.5103i 0.451685 + 1.37574i
\(71\) 8.98568 5.18788i 1.06640 0.615688i 0.139207 0.990263i \(-0.455545\pi\)
0.927197 + 0.374575i \(0.122211\pi\)
\(72\) −7.70630 + 5.07919i −0.908197 + 0.598588i
\(73\) 4.91412 2.83717i 0.575154 0.332066i −0.184051 0.982917i \(-0.558921\pi\)
0.759205 + 0.650851i \(0.225588\pi\)
\(74\) −2.49227 + 2.97017i −0.289720 + 0.345275i
\(75\) −12.3609 + 15.6484i −1.42731 + 1.80692i
\(76\) −1.39418 + 3.83048i −0.159924 + 0.439386i
\(77\) −11.3335 + 1.62835i −1.29157 + 0.185568i
\(78\) 1.72820 + 0.930762i 0.195681 + 0.105388i
\(79\) 0.388313 2.20223i 0.0436886 0.247770i −0.955140 0.296154i \(-0.904296\pi\)
0.998829 + 0.0483836i \(0.0154070\pi\)
\(80\) 4.07597 7.05979i 0.455707 0.789308i
\(81\) −5.38836 7.20871i −0.598707 0.800968i
\(82\) −7.33824 + 4.23674i −0.810374 + 0.467869i
\(83\) 7.89183 + 6.62203i 0.866241 + 0.726863i 0.963303 0.268416i \(-0.0865001\pi\)
−0.0970620 + 0.995278i \(0.530945\pi\)
\(84\) −2.90206 + 1.66677i −0.316641 + 0.181859i
\(85\) −1.90234 10.7887i −0.206338 1.17020i
\(86\) −3.72750 + 0.657259i −0.401946 + 0.0708740i
\(87\) −0.0814323 + 0.557813i −0.00873046 + 0.0598038i
\(88\) 10.1992 + 8.55815i 1.08724 + 0.912301i
\(89\) 13.4427 1.42492 0.712462 0.701711i \(-0.247580\pi\)
0.712462 + 0.701711i \(0.247580\pi\)
\(90\) 12.2817 + 6.15324i 1.29460 + 0.648608i
\(91\) 2.26094 + 1.40315i 0.237011 + 0.147090i
\(92\) −0.935970 2.57156i −0.0975816 0.268103i
\(93\) −0.241430 1.16640i −0.0250352 0.120950i
\(94\) −1.74499 + 0.307689i −0.179982 + 0.0317357i
\(95\) 22.3375 3.93870i 2.29178 0.404102i
\(96\) 6.40099 + 2.11763i 0.653299 + 0.216130i
\(97\) −3.48085 9.56355i −0.353426 0.971031i −0.981261 0.192684i \(-0.938281\pi\)
0.627834 0.778347i \(-0.283942\pi\)
\(98\) 7.06800 3.50124i 0.713976 0.353679i
\(99\) −7.74280 + 10.4214i −0.778181 + 1.04739i
\(100\) 8.40811 0.840811
\(101\) −4.69272 3.93766i −0.466943 0.391812i 0.378735 0.925505i \(-0.376359\pi\)
−0.845678 + 0.533694i \(0.820804\pi\)
\(102\) −4.88887 + 1.94496i −0.484070 + 0.192579i
\(103\) 3.00575 0.529996i 0.296166 0.0522220i −0.0235910 0.999722i \(-0.507510\pi\)
0.319757 + 0.947500i \(0.396399\pi\)
\(104\) −0.537304 3.04720i −0.0526870 0.298803i
\(105\) 16.1060 + 9.34743i 1.57179 + 0.912216i
\(106\) 0.916014 + 0.768627i 0.0889712 + 0.0746557i
\(107\) −10.2649 + 5.92642i −0.992341 + 0.572929i −0.905973 0.423335i \(-0.860859\pi\)
−0.0863680 + 0.996263i \(0.527526\pi\)
\(108\) −0.976840 + 3.66686i −0.0939965 + 0.352844i
\(109\) −1.21625 + 2.10660i −0.116496 + 0.201776i −0.918377 0.395708i \(-0.870499\pi\)
0.801881 + 0.597484i \(0.203833\pi\)
\(110\) 3.44103 19.5150i 0.328089 1.86069i
\(111\) 0.176218 + 5.95726i 0.0167259 + 0.565439i
\(112\) −4.92716 1.97311i −0.465573 0.186441i
\(113\) 2.09463 5.75494i 0.197046 0.541379i −0.801338 0.598212i \(-0.795878\pi\)
0.998384 + 0.0568331i \(0.0181003\pi\)
\(114\) −4.02693 10.1221i −0.377157 0.948026i
\(115\) −9.78797 + 11.6649i −0.912733 + 1.08775i
\(116\) 0.205844 0.118844i 0.0191121 0.0110344i
\(117\) 2.93524 0.698659i 0.271363 0.0645911i
\(118\) 10.7494 6.20617i 0.989563 0.571324i
\(119\) −6.77675 + 2.22495i −0.621224 + 0.203961i
\(120\) −4.38906 21.2045i −0.400664 1.93570i
\(121\) 7.26239 + 2.64329i 0.660217 + 0.240300i
\(122\) 1.59907 + 9.06876i 0.144773 + 0.821047i
\(123\) −4.09091 + 12.3657i −0.368865 + 1.11498i
\(124\) −0.322824 + 0.384727i −0.0289905 + 0.0345495i
\(125\) −13.2338 22.9215i −1.18366 2.05016i
\(126\) 2.82831 8.48480i 0.251966 0.755886i
\(127\) −9.53129 + 16.5087i −0.845765 + 1.46491i 0.0391906 + 0.999232i \(0.487522\pi\)
−0.884955 + 0.465676i \(0.845811\pi\)
\(128\) 0.573958 + 1.57694i 0.0507312 + 0.139383i
\(129\) −3.60634 + 4.56550i −0.317521 + 0.401970i
\(130\) −3.52784 + 2.96021i −0.309412 + 0.259628i
\(131\) −6.92439 + 5.81025i −0.604987 + 0.507644i −0.893044 0.449969i \(-0.851435\pi\)
0.288057 + 0.957613i \(0.406991\pi\)
\(132\) 5.47171 0.161855i 0.476251 0.0140877i
\(133\) −4.60664 14.0309i −0.399447 1.21663i
\(134\) 1.30905i 0.113085i
\(135\) 20.3879 5.49460i 1.75471 0.472900i
\(136\) 7.18280 + 4.14699i 0.615920 + 0.355601i
\(137\) −0.385709 1.05973i −0.0329534 0.0905387i 0.922125 0.386892i \(-0.126452\pi\)
−0.955078 + 0.296354i \(0.904229\pi\)
\(138\) 6.43896 + 3.46784i 0.548120 + 0.295202i
\(139\) 6.67617 1.17719i 0.566265 0.0998478i 0.116816 0.993154i \(-0.462731\pi\)
0.449449 + 0.893306i \(0.351620\pi\)
\(140\) −1.11664 7.77193i −0.0943736 0.656848i
\(141\) −1.68827 + 2.13729i −0.142178 + 0.179992i
\(142\) 10.9864 3.99873i 0.921961 0.335566i
\(143\) −2.17626 3.76939i −0.181988 0.315212i
\(144\) −5.52370 + 2.38902i −0.460308 + 0.199085i
\(145\) −1.14539 0.661291i −0.0951195 0.0549173i
\(146\) 6.00830 2.18684i 0.497251 0.180984i
\(147\) 4.53273 11.2452i 0.373853 0.927488i
\(148\) 1.92500 1.61527i 0.158234 0.132774i
\(149\) −5.80930 + 15.9609i −0.475917 + 1.30757i 0.437014 + 0.899455i \(0.356036\pi\)
−0.912930 + 0.408115i \(0.866186\pi\)
\(150\) −16.7787 + 14.9463i −1.36997 + 1.22036i
\(151\) 1.65537 9.38806i 0.134712 0.763990i −0.840348 0.542048i \(-0.817649\pi\)
0.975060 0.221942i \(-0.0712396\pi\)
\(152\) −8.58613 + 14.8716i −0.696427 + 1.20625i
\(153\) −3.62276 + 7.23091i −0.292882 + 0.584584i
\(154\) −12.8953 0.410635i −1.03913 0.0330899i
\(155\) 2.75211 + 0.485271i 0.221055 + 0.0389779i
\(156\) −0.998303 0.788572i −0.0799282 0.0631363i
\(157\) 12.7308 + 15.1719i 1.01603 + 1.21085i 0.977356 + 0.211601i \(0.0678677\pi\)
0.0386700 + 0.999252i \(0.487688\pi\)
\(158\) 0.861814 2.36782i 0.0685623 0.188373i
\(159\) 1.83725 0.0543467i 0.145703 0.00430997i
\(160\) −10.1677 + 12.1174i −0.803829 + 0.957966i
\(161\) 8.42384 + 5.22787i 0.663891 + 0.412014i
\(162\) −4.56890 9.05378i −0.358967 0.711332i
\(163\) 11.2716 + 19.5229i 0.882856 + 1.52915i 0.848151 + 0.529755i \(0.177716\pi\)
0.0347055 + 0.999398i \(0.488951\pi\)
\(164\) 5.16057 1.87829i 0.402973 0.146670i
\(165\) −16.0032 25.9172i −1.24585 2.01765i
\(166\) 7.46177 + 8.89260i 0.579146 + 0.690199i
\(167\) −11.0484 4.02130i −0.854954 0.311178i −0.122896 0.992420i \(-0.539218\pi\)
−0.732059 + 0.681242i \(0.761440\pi\)
\(168\) −13.2591 + 4.79198i −1.02296 + 0.369709i
\(169\) 2.08178 11.8063i 0.160137 0.908180i
\(170\) 12.3444i 0.946770i
\(171\) −14.9712 7.50073i −1.14488 0.573595i
\(172\) 2.45311 0.187048
\(173\) −14.8669 12.4748i −1.13031 0.948440i −0.131228 0.991352i \(-0.541892\pi\)
−0.999079 + 0.0429125i \(0.986336\pi\)
\(174\) −0.199511 + 0.603066i −0.0151249 + 0.0457183i
\(175\) −23.9460 + 18.8274i −1.81015 + 1.42322i
\(176\) 5.58038 + 6.65044i 0.420637 + 0.501295i
\(177\) 5.99256 18.1138i 0.450428 1.36152i
\(178\) 14.9172 + 2.63031i 1.11809 + 0.197150i
\(179\) 5.26843i 0.393781i 0.980425 + 0.196891i \(0.0630844\pi\)
−0.980425 + 0.196891i \(0.936916\pi\)
\(180\) −7.14647 5.30962i −0.532666 0.395756i
\(181\) 6.42639 + 3.71028i 0.477670 + 0.275783i 0.719445 0.694550i \(-0.244396\pi\)
−0.241775 + 0.970332i \(0.577730\pi\)
\(182\) 2.23440 + 1.99946i 0.165624 + 0.148210i
\(183\) 11.1075 + 8.77399i 0.821094 + 0.648592i
\(184\) −2.00189 11.3533i −0.147581 0.836975i
\(185\) −13.1395 4.78238i −0.966034 0.351607i
\(186\) −0.0396848 1.34159i −0.00290983 0.0983700i
\(187\) 11.4896 + 2.02593i 0.840202 + 0.148150i
\(188\) 1.14840 0.0837554
\(189\) −5.42884 12.6304i −0.394890 0.918728i
\(190\) 25.5584 1.85420
\(191\) −18.2591 3.21958i −1.32118 0.232960i −0.531805 0.846867i \(-0.678486\pi\)
−0.789379 + 0.613906i \(0.789597\pi\)
\(192\) 12.8071 + 6.89753i 0.924271 + 0.497786i
\(193\) −20.4044 7.42660i −1.46874 0.534578i −0.520983 0.853567i \(-0.674435\pi\)
−0.947759 + 0.318988i \(0.896657\pi\)
\(194\) −1.99138 11.2937i −0.142973 0.810839i
\(195\) −1.02257 + 7.00465i −0.0732281 + 0.501613i
\(196\) −4.90531 + 1.43926i −0.350379 + 0.102805i
\(197\) −12.3676 7.14043i −0.881155 0.508735i −0.0101156 0.999949i \(-0.503220\pi\)
−0.871039 + 0.491214i \(0.836553\pi\)
\(198\) −10.6313 + 10.0495i −0.755530 + 0.714187i
\(199\) 5.19839i 0.368504i −0.982879 0.184252i \(-0.941014\pi\)
0.982879 0.184252i \(-0.0589863\pi\)
\(200\) 34.8827 + 6.15076i 2.46658 + 0.434924i
\(201\) 1.33841 + 1.50250i 0.0944043 + 0.105978i
\(202\) −4.43699 5.28780i −0.312186 0.372048i
\(203\) −0.320120 + 0.799390i −0.0224680 + 0.0561062i
\(204\) 3.33929 0.691189i 0.233797 0.0483929i
\(205\) −23.4089 19.6424i −1.63495 1.37188i
\(206\) 3.43916 0.239618
\(207\) 10.9361 2.60307i 0.760114 0.180926i
\(208\) 2.01759i 0.139895i
\(209\) −4.19458 + 23.7886i −0.290145 + 1.64549i
\(210\) 16.0437 + 13.5242i 1.10712 + 0.933259i
\(211\) −6.35545 2.31320i −0.437527 0.159247i 0.113859 0.993497i \(-0.463679\pi\)
−0.551386 + 0.834250i \(0.685901\pi\)
\(212\) −0.498157 0.593680i −0.0342135 0.0407741i
\(213\) 8.52157 15.8225i 0.583888 1.08414i
\(214\) −12.5504 + 4.56799i −0.857930 + 0.312261i
\(215\) −6.82498 11.8212i −0.465460 0.806200i
\(216\) −6.73502 + 14.4981i −0.458260 + 0.986471i
\(217\) 0.0579098 1.81856i 0.00393117 0.123452i
\(218\) −1.76186 + 2.09970i −0.119328 + 0.142210i
\(219\) 4.66031 8.65309i 0.314915 0.584721i
\(220\) −4.39258 + 12.0685i −0.296148 + 0.813659i
\(221\) −1.74284 2.07704i −0.117236 0.139717i
\(222\) −0.970101 + 6.64520i −0.0651089 + 0.445997i
\(223\) 5.39616 + 0.951488i 0.361353 + 0.0637163i 0.351377 0.936234i \(-0.385713\pi\)
0.00997589 + 0.999950i \(0.496825\pi\)
\(224\) 8.75066 + 5.43069i 0.584678 + 0.362854i
\(225\) −3.97667 + 34.3100i −0.265112 + 2.28733i
\(226\) 3.45045 5.97635i 0.229520 0.397541i
\(227\) 0.805662 4.56913i 0.0534736 0.303264i −0.946327 0.323210i \(-0.895238\pi\)
0.999801 + 0.0199454i \(0.00634925\pi\)
\(228\) 1.43107 + 6.91383i 0.0947751 + 0.457879i
\(229\) −1.69286 + 4.65111i −0.111868 + 0.307354i −0.982975 0.183739i \(-0.941180\pi\)
0.871107 + 0.491092i \(0.163402\pi\)
\(230\) −13.1441 + 11.0292i −0.866694 + 0.727243i
\(231\) −15.2208 + 12.7132i −1.00145 + 0.836468i
\(232\) 0.940922 0.342468i 0.0617745 0.0224841i
\(233\) 5.38598 + 3.10960i 0.352848 + 0.203717i 0.665939 0.746006i \(-0.268031\pi\)
−0.313091 + 0.949723i \(0.601365\pi\)
\(234\) 3.39391 0.200963i 0.221867 0.0131373i
\(235\) −3.19504 5.53398i −0.208422 0.360997i
\(236\) −7.55944 + 2.75141i −0.492078 + 0.179102i
\(237\) −1.43175 3.59888i −0.0930025 0.233772i
\(238\) −7.95545 + 1.14301i −0.515675 + 0.0740904i
\(239\) 9.36770 1.65178i 0.605946 0.106845i 0.137747 0.990467i \(-0.456014\pi\)
0.468199 + 0.883623i \(0.344903\pi\)
\(240\) −0.417481 14.1134i −0.0269483 0.911016i
\(241\) −7.59759 20.8742i −0.489404 1.34463i −0.901221 0.433360i \(-0.857328\pi\)
0.411817 0.911267i \(-0.364894\pi\)
\(242\) 7.54180 + 4.35426i 0.484805 + 0.279903i
\(243\) −14.5010 5.72035i −0.930236 0.366961i
\(244\) 5.96824i 0.382078i
\(245\) 20.5831 + 19.6338i 1.31501 + 1.25436i
\(246\) −6.95923 + 12.9216i −0.443704 + 0.823853i
\(247\) 4.30040 3.60847i 0.273628 0.229601i
\(248\) −1.62074 + 1.35996i −0.102917 + 0.0863576i
\(249\) 17.6565 + 2.57759i 1.11894 + 0.163348i
\(250\) −10.2004 28.0252i −0.645127 1.77247i
\(251\) 0.170636 0.295550i 0.0107704 0.0186550i −0.860590 0.509298i \(-0.829905\pi\)
0.871360 + 0.490644i \(0.163238\pi\)
\(252\) −2.76012 + 5.09725i −0.173871 + 0.321097i
\(253\) −8.10831 14.0440i −0.509765 0.882939i
\(254\) −13.8070 + 16.4546i −0.866329 + 1.03245i
\(255\) −12.6213 14.1686i −0.790374 0.887273i
\(256\) −2.58836 14.6793i −0.161772 0.917457i
\(257\) 10.5726 + 3.84813i 0.659503 + 0.240040i 0.650022 0.759915i \(-0.274760\pi\)
0.00948151 + 0.999955i \(0.496982\pi\)
\(258\) −4.89525 + 4.36064i −0.304765 + 0.271482i
\(259\) −1.86542 + 8.91069i −0.115911 + 0.553683i
\(260\) 2.58486 1.49237i 0.160306 0.0925527i
\(261\) 0.387598 + 0.896173i 0.0239917 + 0.0554717i
\(262\) −8.82082 + 5.09270i −0.544952 + 0.314628i
\(263\) 10.9554 13.0562i 0.675541 0.805079i −0.313985 0.949428i \(-0.601664\pi\)
0.989527 + 0.144349i \(0.0461088\pi\)
\(264\) 22.8188 + 3.33121i 1.40440 + 0.205022i
\(265\) −1.47491 + 4.05228i −0.0906030 + 0.248930i
\(266\) −2.36655 16.4714i −0.145102 1.00992i
\(267\) 19.8110 12.2328i 1.21241 0.748637i
\(268\) 0.147325 0.835522i 0.00899931 0.0510376i
\(269\) 4.50153 7.79687i 0.274463 0.475384i −0.695537 0.718491i \(-0.744833\pi\)
0.969999 + 0.243107i \(0.0781666\pi\)
\(270\) 23.6994 2.10804i 1.44230 0.128291i
\(271\) −12.8153 + 7.39893i −0.778475 + 0.449453i −0.835890 0.548898i \(-0.815048\pi\)
0.0574144 + 0.998350i \(0.481714\pi\)
\(272\) 4.14287 + 3.47628i 0.251198 + 0.210780i
\(273\) 4.60890 + 0.0104219i 0.278943 + 0.000630764i
\(274\) −0.220663 1.25144i −0.0133307 0.0756024i
\(275\) 49.0682 8.65205i 2.95892 0.521738i
\(276\) −3.71948 2.93807i −0.223887 0.176851i
\(277\) 23.5086 + 19.7261i 1.41250 + 1.18523i 0.955219 + 0.295901i \(0.0956199\pi\)
0.457278 + 0.889324i \(0.348825\pi\)
\(278\) 7.63882 0.458146
\(279\) −1.41723 1.49927i −0.0848474 0.0897591i
\(280\) 1.05276 33.0602i 0.0629147 1.97573i
\(281\) 5.06196 + 13.9076i 0.301971 + 0.829659i 0.994157 + 0.107940i \(0.0344254\pi\)
−0.692186 + 0.721719i \(0.743352\pi\)
\(282\) −2.29166 + 2.04139i −0.136467 + 0.121563i
\(283\) 31.0263 5.47077i 1.84432 0.325204i 0.861215 0.508240i \(-0.169704\pi\)
0.983106 + 0.183037i \(0.0585928\pi\)
\(284\) −7.46230 + 1.31580i −0.442806 + 0.0780786i
\(285\) 29.3354 26.1317i 1.73768 1.54791i
\(286\) −1.67742 4.60868i −0.0991880 0.272517i
\(287\) −10.4912 + 16.9049i −0.619277 + 0.997862i
\(288\) 11.3604 2.70406i 0.669420 0.159338i
\(289\) −9.73218 −0.572481
\(290\) −1.14164 0.957946i −0.0670392 0.0562525i
\(291\) −13.8327 10.9266i −0.810885 0.640529i
\(292\) −4.08101 + 0.719592i −0.238823 + 0.0421109i
\(293\) 2.47194 + 14.0191i 0.144412 + 0.819002i 0.967837 + 0.251577i \(0.0809491\pi\)
−0.823425 + 0.567425i \(0.807940\pi\)
\(294\) 7.23026 11.5918i 0.421677 0.676046i
\(295\) 34.2904 + 28.7731i 1.99647 + 1.67523i
\(296\) 9.16785 5.29306i 0.532871 0.307653i
\(297\) −1.92742 + 22.4043i −0.111840 + 1.30003i
\(298\) −9.56958 + 16.5750i −0.554351 + 0.960164i
\(299\) −0.654437 + 3.71150i −0.0378471 + 0.214642i
\(300\) 12.3913 7.65136i 0.715415 0.441752i
\(301\) −6.98635 + 5.49300i −0.402686 + 0.316611i
\(302\) 3.67390 10.0939i 0.211409 0.580841i
\(303\) −10.4991 1.53271i −0.603157 0.0880520i
\(304\) −7.19746 + 8.57759i −0.412802 + 0.491959i
\(305\) −28.7602 + 16.6047i −1.64681 + 0.950784i
\(306\) −5.43500 + 7.31521i −0.310698 + 0.418183i
\(307\) −18.6376 + 10.7604i −1.06371 + 0.614131i −0.926455 0.376406i \(-0.877160\pi\)
−0.137251 + 0.990536i \(0.543827\pi\)
\(308\) 8.18440 + 1.71337i 0.466350 + 0.0976286i
\(309\) 3.94740 3.51630i 0.224560 0.200036i
\(310\) 2.95904 + 1.07700i 0.168062 + 0.0611696i
\(311\) −2.70366 15.3332i −0.153310 0.869467i −0.960314 0.278920i \(-0.910023\pi\)
0.807004 0.590546i \(-0.201088\pi\)
\(312\) −3.56479 4.00183i −0.201817 0.226559i
\(313\) 19.3149 23.0185i 1.09174 1.30108i 0.141372 0.989957i \(-0.454849\pi\)
0.950368 0.311128i \(-0.100707\pi\)
\(314\) 11.1586 + 19.3272i 0.629714 + 1.09070i
\(315\) 32.2422 0.880771i 1.81664 0.0496258i
\(316\) −0.816549 + 1.41430i −0.0459345 + 0.0795608i
\(317\) −7.02142 19.2912i −0.394362 1.08350i −0.964989 0.262291i \(-0.915522\pi\)
0.570627 0.821210i \(-0.306700\pi\)
\(318\) 2.04941 + 0.299184i 0.114925 + 0.0167774i
\(319\) 1.07898 0.905369i 0.0604111 0.0506909i
\(320\) −26.1435 + 21.9370i −1.46147 + 1.22632i
\(321\) −9.73468 + 18.0750i −0.543337 + 1.00885i
\(322\) 8.32493 + 7.44960i 0.463930 + 0.415150i
\(323\) 15.0476i 0.837274i
\(324\) 1.89723 + 6.29292i 0.105402 + 0.349607i
\(325\) −10.0281 5.78970i −0.556256 0.321155i
\(326\) 8.68793 + 23.8699i 0.481180 + 1.32203i
\(327\) 0.124574 + 4.21137i 0.00688896 + 0.232889i
\(328\) 22.7836 4.01737i 1.25802 0.221822i
\(329\) −3.27059 + 2.57149i −0.180313 + 0.141771i
\(330\) −12.6875 31.8914i −0.698422 1.75556i
\(331\) −23.5871 + 8.58501i −1.29647 + 0.471875i −0.895844 0.444369i \(-0.853428\pi\)
−0.400622 + 0.916244i \(0.631206\pi\)
\(332\) −3.76179 6.51561i −0.206455 0.357591i
\(333\) 5.68080 + 8.61909i 0.311306 + 0.472323i
\(334\) −11.4735 6.62424i −0.627803 0.362462i
\(335\) −4.43616 + 1.61463i −0.242373 + 0.0882167i
\(336\) −9.05687 + 1.57586i −0.494093 + 0.0859703i
\(337\) 8.08743 6.78616i 0.440550 0.369665i −0.395365 0.918524i \(-0.629382\pi\)
0.835915 + 0.548859i \(0.184937\pi\)
\(338\) 4.62026 12.6941i 0.251309 0.690466i
\(339\) −2.15005 10.3874i −0.116775 0.564165i
\(340\) −1.38928 + 7.87899i −0.0753442 + 0.427298i
\(341\) −1.48806 + 2.57739i −0.0805827 + 0.139573i
\(342\) −15.1458 11.2529i −0.818990 0.608487i
\(343\) 10.7473 15.0829i 0.580301 0.814402i
\(344\) 10.1772 + 1.79451i 0.548717 + 0.0967536i
\(345\) −3.80992 + 26.0980i −0.205119 + 1.40507i
\(346\) −14.0567 16.7521i −0.755693 0.900600i
\(347\) 5.26419 14.4632i 0.282597 0.776428i −0.714454 0.699682i \(-0.753325\pi\)
0.997051 0.0767453i \(-0.0244528\pi\)
\(348\) 0.195212 0.362463i 0.0104645 0.0194300i
\(349\) 0.652102 0.777145i 0.0349062 0.0415996i −0.748309 0.663350i \(-0.769134\pi\)
0.783215 + 0.621751i \(0.213578\pi\)
\(350\) −30.2566 + 16.2072i −1.61728 + 0.866310i
\(351\) 3.68999 3.70070i 0.196957 0.197529i
\(352\) −8.42289 14.5889i −0.448942 0.777590i
\(353\) −23.8037 + 8.66383i −1.26694 + 0.461129i −0.886093 0.463508i \(-0.846590\pi\)
−0.380849 + 0.924637i \(0.624368\pi\)
\(354\) 10.1942 18.9282i 0.541815 1.00602i
\(355\) 27.1022 + 32.2991i 1.43843 + 1.71426i
\(356\) −9.22515 3.35768i −0.488932 0.177957i
\(357\) −7.96245 + 9.44582i −0.421418 + 0.499926i
\(358\) −1.03087 + 5.84633i −0.0544830 + 0.308988i
\(359\) 1.81868i 0.0959862i 0.998848 + 0.0479931i \(0.0152826\pi\)
−0.998848 + 0.0479931i \(0.984717\pi\)
\(360\) −25.7644 27.2558i −1.35790 1.43651i
\(361\) −12.1554 −0.639757
\(362\) 6.40532 + 5.37470i 0.336656 + 0.282488i
\(363\) 13.1083 2.71324i 0.688005 0.142408i
\(364\) −1.20111 1.52765i −0.0629554 0.0800707i
\(365\) 14.8217 + 17.6639i 0.775805 + 0.924568i
\(366\) 10.6092 + 11.9098i 0.554549 + 0.622536i
\(367\) 35.2784 + 6.22053i 1.84152 + 0.324709i 0.982359 0.187004i \(-0.0598778\pi\)
0.859156 + 0.511713i \(0.170989\pi\)
\(368\) 7.51716i 0.391859i
\(369\) 5.22381 + 21.9465i 0.271941 + 1.14249i
\(370\) −13.6450 7.87795i −0.709370 0.409555i
\(371\) 2.74810 + 0.575305i 0.142674 + 0.0298683i
\(372\) −0.125658 + 0.860756i −0.00651504 + 0.0446281i
\(373\) −0.877998 4.97938i −0.0454610 0.257822i 0.953604 0.301065i \(-0.0973422\pi\)
−0.999065 + 0.0432429i \(0.986231\pi\)
\(374\) 12.3535 + 4.49630i 0.638784 + 0.232498i
\(375\) −40.3616 21.7376i −2.08427 1.12253i
\(376\) 4.76435 + 0.840083i 0.245702 + 0.0433240i
\(377\) −0.327337 −0.0168587
\(378\) −3.55296 15.0781i −0.182745 0.775535i
\(379\) −29.1103 −1.49530 −0.747648 0.664095i \(-0.768817\pi\)
−0.747648 + 0.664095i \(0.768817\pi\)
\(380\) −16.3130 2.87643i −0.836841 0.147558i
\(381\) 0.976240 + 33.0029i 0.0500143 + 1.69079i
\(382\) −19.6320 7.14547i −1.00446 0.365594i
\(383\) −0.923428 5.23702i −0.0471849 0.267599i 0.952084 0.305838i \(-0.0989365\pi\)
−0.999269 + 0.0382385i \(0.987825\pi\)
\(384\) 2.28087 + 1.80169i 0.116395 + 0.0919422i
\(385\) −14.5139 44.2066i −0.739699 2.25297i
\(386\) −21.1894 12.2337i −1.07851 0.622681i
\(387\) −1.16021 + 10.0101i −0.0589770 + 0.508843i
\(388\) 7.43249i 0.377327i
\(389\) −9.69769 1.70996i −0.491692 0.0866986i −0.0776959 0.996977i \(-0.524756\pi\)
−0.413997 + 0.910278i \(0.635867\pi\)
\(390\) −2.50533 + 7.57291i −0.126862 + 0.383469i
\(391\) −6.49350 7.73865i −0.328390 0.391360i
\(392\) −21.4035 + 2.38271i −1.08104 + 0.120345i
\(393\) −4.91742 + 14.8640i −0.248051 + 0.749788i
\(394\) −12.3271 10.3436i −0.621028 0.521104i
\(395\) 9.08715 0.457224
\(396\) 7.91657 5.21777i 0.397823 0.262203i
\(397\) 3.19622i 0.160414i 0.996778 + 0.0802069i \(0.0255581\pi\)
−0.996778 + 0.0802069i \(0.974442\pi\)
\(398\) 1.01716 5.76861i 0.0509857 0.289154i
\(399\) −19.5571 16.4859i −0.979079 0.825325i
\(400\) 21.7034 + 7.89940i 1.08517 + 0.394970i
\(401\) −9.96904 11.8806i −0.497830 0.593291i 0.457361 0.889281i \(-0.348795\pi\)
−0.955191 + 0.295990i \(0.904350\pi\)
\(402\) 1.19123 + 1.92920i 0.0594133 + 0.0962195i
\(403\) 0.649939 0.236558i 0.0323758 0.0117838i
\(404\) 2.23687 + 3.87438i 0.111289 + 0.192757i
\(405\) 25.0464 26.6506i 1.24456 1.32428i
\(406\) −0.511650 + 0.824438i −0.0253927 + 0.0409162i
\(407\) 9.57183 11.4073i 0.474458 0.565437i
\(408\) 14.3593 0.424755i 0.710892 0.0210285i
\(409\) −1.43725 + 3.94882i −0.0710676 + 0.195257i −0.970141 0.242541i \(-0.922019\pi\)
0.899074 + 0.437798i \(0.144241\pi\)
\(410\) −22.1332 26.3774i −1.09308 1.30269i
\(411\) −1.53278 1.21077i −0.0756067 0.0597227i
\(412\) −2.19510 0.387055i −0.108145 0.0190688i
\(413\) 15.3680 24.7630i 0.756211 1.21851i
\(414\) 12.6451 0.748748i 0.621471 0.0367990i
\(415\) −20.9320 + 36.2552i −1.02751 + 1.77970i
\(416\) −0.679828 + 3.85550i −0.0333313 + 0.189031i
\(417\) 8.76768 7.81016i 0.429355 0.382465i
\(418\) −9.30937 + 25.5773i −0.455336 + 1.25103i
\(419\) 15.7288 13.1980i 0.768400 0.644764i −0.171899 0.985115i \(-0.554990\pi\)
0.940299 + 0.340350i \(0.110546\pi\)
\(420\) −8.71808 10.4376i −0.425399 0.509305i
\(421\) −22.2876 + 8.11201i −1.08623 + 0.395355i −0.822223 0.569165i \(-0.807266\pi\)
−0.264007 + 0.964521i \(0.585044\pi\)
\(422\) −6.59997 3.81050i −0.321282 0.185492i
\(423\) −0.543142 + 4.68613i −0.0264085 + 0.227847i
\(424\) −1.63241 2.82741i −0.0792767 0.137311i
\(425\) 29.1666 10.6158i 1.41479 0.514940i
\(426\) 12.5523 15.8907i 0.608160 0.769908i
\(427\) 13.3641 + 16.9973i 0.646734 + 0.822558i
\(428\) 8.52461 1.50312i 0.412053 0.0726560i
\(429\) −6.63736 3.57470i −0.320455 0.172588i
\(430\) −5.26058 14.4533i −0.253688 0.697001i
\(431\) −30.4481 17.5792i −1.46663 0.846761i −0.467329 0.884083i \(-0.654784\pi\)
−0.999303 + 0.0373228i \(0.988117\pi\)
\(432\) −5.96648 + 8.54735i −0.287062 + 0.411234i
\(433\) 9.29552i 0.446714i 0.974737 + 0.223357i \(0.0717016\pi\)
−0.974737 + 0.223357i \(0.928298\pi\)
\(434\) 0.420096 2.00671i 0.0201653 0.0963249i
\(435\) −2.28978 + 0.0677327i −0.109787 + 0.00324753i
\(436\) 1.36084 1.14188i 0.0651725 0.0546862i
\(437\) 16.0225 13.4445i 0.766459 0.643136i
\(438\) 6.86464 8.69038i 0.328005 0.415242i
\(439\) −5.20092 14.2894i −0.248226 0.681996i −0.999752 0.0222915i \(-0.992904\pi\)
0.751525 0.659704i \(-0.229318\pi\)
\(440\) −27.0519 + 46.8553i −1.28965 + 2.23374i
\(441\) −3.55304 20.6972i −0.169193 0.985583i
\(442\) −1.52761 2.64589i −0.0726608 0.125852i
\(443\) −2.83111 + 3.37398i −0.134510 + 0.160303i −0.829095 0.559108i \(-0.811144\pi\)
0.694585 + 0.719411i \(0.255588\pi\)
\(444\) 1.36706 4.13223i 0.0648776 0.196107i
\(445\) 9.48578 + 53.7965i 0.449669 + 2.55020i
\(446\) 5.80189 + 2.11172i 0.274727 + 0.0999926i
\(447\) 5.96302 + 28.8087i 0.282041 + 1.36260i
\(448\) 16.5583 + 14.8172i 0.782304 + 0.700048i
\(449\) −20.2360 + 11.6833i −0.954997 + 0.551368i −0.894630 0.446808i \(-0.852561\pi\)
−0.0603675 + 0.998176i \(0.519227\pi\)
\(450\) −11.1263 + 37.2954i −0.524497 + 1.75812i
\(451\) 28.1834 16.2717i 1.32710 0.766203i
\(452\) −2.87490 + 3.42617i −0.135224 + 0.161154i
\(453\) −6.10354 15.3419i −0.286769 0.720827i
\(454\) 1.78807 4.91269i 0.0839183 0.230564i
\(455\) −4.01986 + 10.0382i −0.188454 + 0.470599i
\(456\) 0.879433 + 29.7302i 0.0411832 + 1.39225i
\(457\) 0.593282 3.36467i 0.0277526 0.157393i −0.967782 0.251789i \(-0.918981\pi\)
0.995535 + 0.0943965i \(0.0300921\pi\)
\(458\) −2.78863 + 4.83005i −0.130304 + 0.225694i
\(459\) 1.24112 + 13.9532i 0.0579305 + 0.651278i
\(460\) 9.63068 5.56027i 0.449033 0.259249i
\(461\) −11.0867 9.30284i −0.516359 0.433276i 0.347002 0.937865i \(-0.387200\pi\)
−0.863360 + 0.504588i \(0.831644\pi\)
\(462\) −19.3779 + 11.1295i −0.901544 + 0.517792i
\(463\) −0.365037 2.07023i −0.0169647 0.0962116i 0.975150 0.221547i \(-0.0711105\pi\)
−0.992114 + 0.125335i \(0.959999\pi\)
\(464\) 0.642988 0.113376i 0.0298500 0.00526336i
\(465\) 4.49748 1.78925i 0.208566 0.0829745i
\(466\) 5.36833 + 4.50456i 0.248683 + 0.208670i
\(467\) 17.1162 0.792044 0.396022 0.918241i \(-0.370390\pi\)
0.396022 + 0.918241i \(0.370390\pi\)
\(468\) −2.18884 0.253695i −0.101179 0.0117271i
\(469\) 1.45133 + 2.70942i 0.0670160 + 0.125110i
\(470\) −2.46269 6.76618i −0.113595 0.312101i
\(471\) 32.5683 + 10.7745i 1.50067 + 0.496462i
\(472\) −33.3745 + 5.88483i −1.53619 + 0.270871i
\(473\) 14.3159 2.52428i 0.658245 0.116066i
\(474\) −0.884619 4.27379i −0.0406319 0.196302i
\(475\) 21.9794 + 60.3879i 1.00848 + 2.77079i
\(476\) 5.20633 + 0.165790i 0.238632 + 0.00759895i
\(477\) 2.65817 1.75199i 0.121709 0.0802180i
\(478\) 10.7185 0.490251
\(479\) 18.0812 + 15.1719i 0.826149 + 0.693221i 0.954403 0.298520i \(-0.0964930\pi\)
−0.128254 + 0.991741i \(0.540937\pi\)
\(480\) −3.95773 + 27.1105i −0.180645 + 1.23742i
\(481\) −3.40813 + 0.600945i −0.155397 + 0.0274008i
\(482\) −4.34656 24.6505i −0.197980 1.12280i
\(483\) 17.1719 + 0.0388301i 0.781347 + 0.00176683i
\(484\) −4.32363 3.62796i −0.196529 0.164907i
\(485\) 35.8162 20.6785i 1.62633 0.938963i
\(486\) −14.9723 9.18520i −0.679157 0.416649i
\(487\) 20.3632 35.2702i 0.922747 1.59824i 0.127602 0.991825i \(-0.459272\pi\)
0.795145 0.606419i \(-0.207395\pi\)
\(488\) 4.36593 24.7604i 0.197636 1.12085i
\(489\) 34.3771 + 18.5146i 1.55459 + 0.837257i
\(490\) 18.9992 + 25.8149i 0.858294 + 1.16620i
\(491\) 2.12792 5.84641i 0.0960316 0.263845i −0.882371 0.470555i \(-0.844054\pi\)
0.978402 + 0.206711i \(0.0662759\pi\)
\(492\) 5.89608 7.46422i 0.265816 0.336513i
\(493\) 0.563996 0.672145i 0.0254011 0.0302719i
\(494\) 5.47818 3.16283i 0.246475 0.142302i
\(495\) −47.1691 23.6322i −2.12010 1.06219i
\(496\) −1.19474 + 0.689784i −0.0536454 + 0.0309722i
\(497\) 18.3060 20.4569i 0.821136 0.917620i
\(498\) 19.0889 + 6.31516i 0.855396 + 0.282989i
\(499\) −25.8870 9.42209i −1.15886 0.421791i −0.310170 0.950681i \(-0.600386\pi\)
−0.848690 + 0.528890i \(0.822608\pi\)
\(500\) 3.35648 + 19.0355i 0.150106 + 0.851295i
\(501\) −19.9419 + 4.12771i −0.890938 + 0.184413i
\(502\) 0.247183 0.294581i 0.0110323 0.0131478i
\(503\) −16.2335 28.1172i −0.723815 1.25368i −0.959460 0.281845i \(-0.909053\pi\)
0.235645 0.971839i \(-0.424280\pi\)
\(504\) −15.1797 + 19.1278i −0.676157 + 0.852021i
\(505\) 12.4468 21.5584i 0.553874 0.959338i
\(506\) −6.24975 17.1711i −0.277835 0.763346i
\(507\) −7.67575 19.2939i −0.340892 0.856871i
\(508\) 10.6644 8.94849i 0.473156 0.397025i
\(509\) −5.15763 + 4.32776i −0.228608 + 0.191825i −0.749896 0.661556i \(-0.769896\pi\)
0.521288 + 0.853381i \(0.325452\pi\)
\(510\) −11.2333 18.1924i −0.497421 0.805571i
\(511\) 10.0112 11.1876i 0.442872 0.494909i
\(512\) 20.1522i 0.890612i
\(513\) −28.8893 + 2.56967i −1.27549 + 0.113454i
\(514\) 10.9794 + 6.33897i 0.484281 + 0.279600i
\(515\) 4.24199 + 11.6548i 0.186924 + 0.513571i
\(516\) 3.61523 2.23232i 0.159152 0.0982724i
\(517\) 6.70183 1.18171i 0.294746 0.0519717i
\(518\) −3.81358 + 9.52311i −0.167559 + 0.418421i
\(519\) −33.2619 4.85574i −1.46003 0.213143i
\(520\) 11.8155 4.30048i 0.518143 0.188589i
\(521\) 6.29718 + 10.9070i 0.275885 + 0.477846i 0.970358 0.241672i \(-0.0776959\pi\)
−0.694473 + 0.719518i \(0.744363\pi\)
\(522\) 0.254762 + 1.07032i 0.0111506 + 0.0468465i
\(523\) 9.44997 + 5.45594i 0.413218 + 0.238572i 0.692172 0.721733i \(-0.256654\pi\)
−0.278953 + 0.960305i \(0.589987\pi\)
\(524\) 6.20318 2.25777i 0.270987 0.0986312i
\(525\) −18.1571 + 49.5375i −0.792443 + 2.16199i
\(526\) 14.7118 12.3447i 0.641467 0.538254i
\(527\) −0.634091 + 1.74215i −0.0276214 + 0.0758893i
\(528\) 14.2759 + 4.72287i 0.621279 + 0.205536i
\(529\) 1.55560 8.82225i 0.0676348 0.383576i
\(530\) −2.42960 + 4.20819i −0.105535 + 0.182792i
\(531\) −7.65208 32.1483i −0.332072 1.39512i
\(532\) −0.343259 + 10.7794i −0.0148822 + 0.467348i
\(533\) −7.44819 1.31332i −0.322617 0.0568861i
\(534\) 24.3777 9.69827i 1.05493 0.419685i
\(535\) −30.9604 36.8971i −1.33853 1.59520i
\(536\) 1.22241 3.35855i 0.0528002 0.145067i
\(537\) 4.79426 + 7.76429i 0.206888 + 0.335054i
\(538\) 6.52091 7.77132i 0.281136 0.335045i
\(539\) −27.1455 + 13.4469i −1.16924 + 0.579199i
\(540\) −15.3638 1.32173i −0.661151 0.0568780i
\(541\) 5.23639 + 9.06969i 0.225130 + 0.389936i 0.956358 0.292196i \(-0.0943860\pi\)
−0.731229 + 0.682133i \(0.761053\pi\)
\(542\) −15.6688 + 5.70297i −0.673032 + 0.244964i
\(543\) 12.8472 0.380024i 0.551324 0.0163084i
\(544\) −6.74543 8.03889i −0.289208 0.344665i
\(545\) −9.28869 3.38081i −0.397884 0.144818i
\(546\) 5.11242 + 0.913382i 0.218791 + 0.0390891i
\(547\) −0.339966 + 1.92804i −0.0145359 + 0.0824371i −0.991213 0.132277i \(-0.957771\pi\)
0.976677 + 0.214715i \(0.0688821\pi\)
\(548\) 0.823587i 0.0351819i
\(549\) 24.3539 + 2.82272i 1.03940 + 0.120471i
\(550\) 56.1435 2.39397
\(551\) 1.39164 + 1.16773i 0.0592859 + 0.0497468i
\(552\) −13.2817 14.9101i −0.565308 0.634614i
\(553\) −0.841413 5.85630i −0.0357805 0.249035i
\(554\) 22.2275 + 26.4897i 0.944358 + 1.12544i
\(555\) −23.7161 + 4.90893i −1.00669 + 0.208372i
\(556\) −4.87560 0.859700i −0.206771 0.0364594i
\(557\) 23.4292i 0.992725i 0.868115 + 0.496362i \(0.165331\pi\)
−0.868115 + 0.496362i \(0.834669\pi\)
\(558\) −1.27933 1.94104i −0.0541583 0.0821706i
\(559\) −2.92573 1.68917i −0.123745 0.0714444i
\(560\) 4.41938 21.1104i 0.186753 0.892076i
\(561\) 18.7762 7.46983i 0.792734 0.315376i
\(562\) 2.89593 + 16.4236i 0.122157 + 0.692789i
\(563\) −6.83228 2.48675i −0.287946 0.104804i 0.194009 0.981000i \(-0.437851\pi\)
−0.481955 + 0.876196i \(0.660073\pi\)
\(564\) 1.69244 1.04504i 0.0712644 0.0440040i
\(565\) 24.5088 + 4.32156i 1.03109 + 0.181810i
\(566\) 35.5001 1.49218
\(567\) −19.4944 13.6737i −0.818686 0.574242i
\(568\) −31.9213 −1.33939
\(569\) 15.3756 + 2.71113i 0.644578 + 0.113656i 0.486375 0.873750i \(-0.338319\pi\)
0.158203 + 0.987407i \(0.449430\pi\)
\(570\) 37.6664 23.2581i 1.57767 0.974174i
\(571\) 7.78348 + 2.83296i 0.325729 + 0.118556i 0.499708 0.866194i \(-0.333440\pi\)
−0.173980 + 0.984749i \(0.555663\pi\)
\(572\) 0.551964 + 3.13034i 0.0230788 + 0.130886i
\(573\) −29.8390 + 11.8710i −1.24654 + 0.495916i
\(574\) −14.9498 + 16.7064i −0.623991 + 0.697311i
\(575\) −37.3626 21.5713i −1.55813 0.899586i
\(576\) 25.1510 1.48926i 1.04796 0.0620524i
\(577\) 29.9556i 1.24707i 0.781797 + 0.623533i \(0.214303\pi\)
−0.781797 + 0.623533i \(0.785697\pi\)
\(578\) −10.7997 1.90428i −0.449209 0.0792077i
\(579\) −36.8290 + 7.62312i −1.53056 + 0.316806i
\(580\) 0.620856 + 0.739908i 0.0257797 + 0.0307230i
\(581\) 25.3032 + 10.1328i 1.04975 + 0.420380i
\(582\) −13.2120 14.8318i −0.547655 0.614797i
\(583\) −3.51806 2.95200i −0.145703 0.122259i
\(584\) −17.4573 −0.722387
\(585\) 4.86721 + 11.2536i 0.201234 + 0.465277i
\(586\) 16.0405i 0.662627i
\(587\) 1.70034 9.64312i 0.0701806 0.398014i −0.929401 0.369073i \(-0.879675\pi\)
0.999581 0.0289412i \(-0.00921356\pi\)
\(588\) −5.91941 + 6.58492i −0.244112 + 0.271557i
\(589\) −3.60703 1.31285i −0.148625 0.0540952i
\(590\) 32.4218 + 38.6388i 1.33478 + 1.59073i
\(591\) −24.7244 + 0.731358i −1.01702 + 0.0300840i
\(592\) 6.48645 2.36087i 0.266591 0.0970313i
\(593\) 2.54164 + 4.40224i 0.104372 + 0.180778i 0.913482 0.406880i \(-0.133383\pi\)
−0.809109 + 0.587658i \(0.800050\pi\)
\(594\) −6.52266 + 24.4848i −0.267628 + 1.00462i
\(595\) −13.6860 25.5499i −0.561073 1.04745i
\(596\) 7.97335 9.50226i 0.326601 0.389228i
\(597\) −4.73052 7.66106i −0.193607 0.313547i
\(598\) −1.45245 + 3.99056i −0.0593950 + 0.163186i
\(599\) 15.6458 + 18.6459i 0.639268 + 0.761850i 0.984254 0.176758i \(-0.0565608\pi\)
−0.344986 + 0.938608i \(0.612116\pi\)
\(600\) 57.0051 22.6786i 2.32722 0.925848i
\(601\) 30.7674 + 5.42513i 1.25503 + 0.221295i 0.761346 0.648346i \(-0.224539\pi\)
0.493683 + 0.869642i \(0.335650\pi\)
\(602\) −8.82750 + 4.72852i −0.359782 + 0.192720i
\(603\) 3.33974 + 0.996338i 0.136005 + 0.0405740i
\(604\) −3.48093 + 6.02915i −0.141637 + 0.245323i
\(605\) −5.45356 + 30.9287i −0.221719 + 1.25743i
\(606\) −11.3509 3.75518i −0.461097 0.152544i
\(607\) −8.19540 + 22.5167i −0.332641 + 0.913924i 0.654781 + 0.755818i \(0.272761\pi\)
−0.987422 + 0.158105i \(0.949461\pi\)
\(608\) 16.6441 13.9661i 0.675008 0.566399i
\(609\) 0.255670 + 1.46940i 0.0103603 + 0.0595431i
\(610\) −35.1640 + 12.7986i −1.42375 + 0.518202i
\(611\) −1.36965 0.790769i −0.0554102 0.0319911i
\(612\) 4.29226 4.05738i 0.173504 0.164010i
\(613\) 12.6996 + 21.9963i 0.512931 + 0.888422i 0.999888 + 0.0149962i \(0.00477363\pi\)
−0.486957 + 0.873426i \(0.661893\pi\)
\(614\) −22.7875 + 8.29397i −0.919628 + 0.334717i
\(615\) −52.3731 7.64570i −2.11189 0.308304i
\(616\) 32.7012 + 13.0954i 1.31757 + 0.527628i
\(617\) 12.5023 2.20449i 0.503324 0.0887495i 0.0837791 0.996484i \(-0.473301\pi\)
0.419544 + 0.907735i \(0.362190\pi\)
\(618\) 5.06842 3.12963i 0.203882 0.125892i
\(619\) 0.171762 + 0.471912i 0.00690370 + 0.0189678i 0.943097 0.332519i \(-0.107899\pi\)
−0.936193 + 0.351487i \(0.885676\pi\)
\(620\) −1.76744 1.02043i −0.0709822 0.0409816i
\(621\) 13.7482 13.7881i 0.551696 0.553297i
\(622\) 17.5441i 0.703456i
\(623\) 33.7914 11.0944i 1.35382 0.444489i
\(624\) −1.83601 2.97340i −0.0734990 0.119031i
\(625\) 38.2934 32.1319i 1.53173 1.28528i
\(626\) 25.9375 21.7642i 1.03667 0.869871i
\(627\) 15.4659 + 38.8752i 0.617648 + 1.55253i
\(628\) −4.94698 13.5917i −0.197406 0.542368i
\(629\) 4.63819 8.03357i 0.184937 0.320320i
\(630\) 35.9512 + 5.33140i 1.43233 + 0.212408i
\(631\) −2.95212 5.11322i −0.117522 0.203554i 0.801263 0.598312i \(-0.204162\pi\)
−0.918785 + 0.394758i \(0.870828\pi\)
\(632\) −4.42221 + 5.27019i −0.175906 + 0.209637i
\(633\) −11.4713 + 2.37441i −0.455942 + 0.0943741i
\(634\) −4.01693 22.7811i −0.159533 0.904754i
\(635\) −72.7920 26.4941i −2.88866 1.05139i
\(636\) −1.27440 0.421607i −0.0505333 0.0167178i
\(637\) 6.84144 + 1.66116i 0.271068 + 0.0658176i
\(638\) 1.37448 0.793558i 0.0544163 0.0314173i
\(639\) −1.83991 31.0729i −0.0727856 1.22922i
\(640\) −5.90575 + 3.40969i −0.233445 + 0.134780i
\(641\) −6.06084 + 7.22302i −0.239389 + 0.285292i −0.872340 0.488899i \(-0.837399\pi\)
0.632952 + 0.774191i \(0.281843\pi\)
\(642\) −14.3392 + 18.1529i −0.565923 + 0.716437i
\(643\) −3.08722 + 8.48206i −0.121748 + 0.334500i −0.985563 0.169309i \(-0.945846\pi\)
0.863815 + 0.503809i \(0.168069\pi\)
\(644\) −4.47511 5.69174i −0.176344 0.224286i
\(645\) −20.8155 11.2107i −0.819610 0.441419i
\(646\) −2.94435 + 16.6982i −0.115844 + 0.656984i
\(647\) −12.1970 + 21.1259i −0.479514 + 0.830543i −0.999724 0.0234953i \(-0.992521\pi\)
0.520210 + 0.854039i \(0.325854\pi\)
\(648\) 3.26759 + 27.4953i 0.128363 + 1.08012i
\(649\) −41.2843 + 23.8355i −1.62055 + 0.935625i
\(650\) −9.99518 8.38695i −0.392043 0.328963i
\(651\) −1.56954 2.73277i −0.0615151 0.107106i
\(652\) −2.85881 16.2131i −0.111960 0.634954i
\(653\) −30.9401 + 5.45557i −1.21078 + 0.213493i −0.742353 0.670009i \(-0.766290\pi\)
−0.468427 + 0.883502i \(0.655179\pi\)
\(654\) −0.685793 + 4.69769i −0.0268166 + 0.183694i
\(655\) −28.1383 23.6108i −1.09945 0.922551i
\(656\) 15.0854 0.588984
\(657\) −1.00622 16.9933i −0.0392562 0.662970i
\(658\) −4.13250 + 2.21361i −0.161102 + 0.0862955i
\(659\) −4.14303 11.3829i −0.161390 0.443415i 0.832469 0.554072i \(-0.186927\pi\)
−0.993859 + 0.110657i \(0.964704\pi\)
\(660\) 4.50881 + 21.7831i 0.175505 + 0.847905i
\(661\) 39.7487 7.00877i 1.54605 0.272610i 0.665437 0.746454i \(-0.268245\pi\)
0.880609 + 0.473844i \(0.157134\pi\)
\(662\) −27.8542 + 4.91146i −1.08259 + 0.190889i
\(663\) −4.45860 1.47503i −0.173157 0.0572853i
\(664\) −10.8402 29.7832i −0.420681 1.15581i
\(665\) 52.8998 28.3362i 2.05137 1.09883i
\(666\) 4.61745 + 10.6761i 0.178922 + 0.413690i
\(667\) −1.21960 −0.0472229
\(668\) 6.57764 + 5.51929i 0.254496 + 0.213548i
\(669\) 8.81837 3.50825i 0.340938 0.135637i
\(670\) −5.23870 + 0.923724i −0.202389 + 0.0356866i
\(671\) −6.14139 34.8296i −0.237086 1.34458i
\(672\) 17.8381 + 0.0403366i 0.688120 + 0.00155602i
\(673\) 2.82302 + 2.36879i 0.108819 + 0.0913103i 0.695574 0.718455i \(-0.255150\pi\)
−0.586755 + 0.809765i \(0.699595\pi\)
\(674\) 10.3024 5.94808i 0.396833 0.229112i
\(675\) 25.3615 + 54.1827i 0.976164 + 2.08549i
\(676\) −4.37759 + 7.58220i −0.168369 + 0.291623i
\(677\) −0.487731 + 2.76606i −0.0187450 + 0.106308i −0.992745 0.120241i \(-0.961633\pi\)
0.974000 + 0.226549i \(0.0727444\pi\)
\(678\) −0.353411 11.9475i −0.0135727 0.458840i
\(679\) −16.6428 21.1674i −0.638693 0.812332i
\(680\) −11.5274 + 31.6712i −0.442055 + 1.21454i
\(681\) −2.97057 7.46686i −0.113832 0.286131i
\(682\) −2.15560 + 2.56894i −0.0825420 + 0.0983698i
\(683\) 25.8376 14.9173i 0.988648 0.570796i 0.0837778 0.996484i \(-0.473301\pi\)
0.904870 + 0.425689i \(0.139968\pi\)
\(684\) 8.40059 + 8.88690i 0.321205 + 0.339799i
\(685\) 3.96876 2.29137i 0.151639 0.0875486i
\(686\) 14.8775 14.6345i 0.568024 0.558748i
\(687\) 1.73766 + 8.39502i 0.0662959 + 0.320290i
\(688\) 6.33207 + 2.30469i 0.241408 + 0.0878654i
\(689\) 0.185335 + 1.05108i 0.00706069 + 0.0400431i
\(690\) −9.33438 + 28.2152i −0.355354 + 1.07413i
\(691\) −1.09694 + 1.30729i −0.0417297 + 0.0497315i −0.786506 0.617583i \(-0.788112\pi\)
0.744776 + 0.667315i \(0.232556\pi\)
\(692\) 7.08657 + 12.2743i 0.269391 + 0.466599i
\(693\) −10.8624 + 32.5868i −0.412630 + 1.23787i
\(694\) 8.67163 15.0197i 0.329170 0.570140i
\(695\) 9.42201 + 25.8867i 0.357397 + 0.981940i
\(696\) 1.07503 1.36094i 0.0407488 0.0515865i
\(697\) 15.5298 13.0311i 0.588234 0.493587i
\(698\) 0.875694 0.734795i 0.0331455 0.0278124i
\(699\) 10.7673 0.318500i 0.407255 0.0120468i
\(700\) 21.1357 6.93931i 0.798856 0.262281i
\(701\) 10.1720i 0.384193i 0.981376 + 0.192096i \(0.0615287\pi\)
−0.981376 + 0.192096i \(0.938471\pi\)
\(702\) 4.81886 3.38462i 0.181876 0.127744i
\(703\) 16.6331 + 9.60313i 0.627329 + 0.362189i
\(704\) −12.4307 34.1532i −0.468501 1.28720i
\(705\) −9.74457 5.24815i −0.367002 0.197657i
\(706\) −28.1100 + 4.95655i −1.05793 + 0.186542i
\(707\) −15.0460 6.02527i −0.565865 0.226604i
\(708\) −8.63685 + 10.9339i −0.324593 + 0.410922i
\(709\) −1.72281 + 0.627053i −0.0647017 + 0.0235495i −0.374168 0.927361i \(-0.622072\pi\)
0.309467 + 0.950910i \(0.399850\pi\)
\(710\) 23.7551 + 41.1451i 0.891513 + 1.54415i
\(711\) −5.38500 4.00091i −0.201953 0.150046i
\(712\) −35.8161 20.6784i −1.34226 0.774957i
\(713\) 2.42155 0.881371i 0.0906877 0.0330076i
\(714\) −10.6841 + 8.92394i −0.399843 + 0.333970i
\(715\) 13.5491 11.3690i 0.506707 0.425178i
\(716\) 1.31593 3.61550i 0.0491787 0.135117i
\(717\) 12.3024 10.9589i 0.459442 0.409267i
\(718\) −0.355858 + 2.01817i −0.0132805 + 0.0753175i
\(719\) 21.2752 36.8498i 0.793432 1.37427i −0.130397 0.991462i \(-0.541625\pi\)
0.923830 0.382803i \(-0.125041\pi\)
\(720\) −13.4584 20.4195i −0.501566 0.760992i
\(721\) 7.11826 3.81295i 0.265098 0.142002i
\(722\) −13.4887 2.37843i −0.501998 0.0885159i
\(723\) −30.1924 23.8493i −1.12287 0.886966i
\(724\) −3.48341 4.15137i −0.129460 0.154284i
\(725\) 1.28161 3.52119i 0.0475978 0.130774i
\(726\) 15.0770 0.445985i 0.559560 0.0165520i
\(727\) −5.61173 + 6.68779i −0.208127 + 0.248037i −0.860003 0.510290i \(-0.829538\pi\)
0.651875 + 0.758326i \(0.273983\pi\)
\(728\) −3.86553 7.21641i −0.143266 0.267458i
\(729\) −26.5761 + 4.76554i −0.984300 + 0.176501i
\(730\) 12.9913 + 22.5016i 0.480829 + 0.832820i
\(731\) 8.50948 3.09720i 0.314735 0.114554i
\(732\) −5.43109 8.79562i −0.200739 0.325096i
\(733\) −6.17903 7.36388i −0.228228 0.271991i 0.639762 0.768573i \(-0.279033\pi\)
−0.867990 + 0.496582i \(0.834588\pi\)
\(734\) 37.9309 + 13.8057i 1.40006 + 0.509579i
\(735\) 48.2008 + 10.2045i 1.77791 + 0.376398i
\(736\) −2.53291 + 14.3648i −0.0933643 + 0.529495i
\(737\) 5.02755i 0.185192i
\(738\) 1.50258 + 25.3760i 0.0553107 + 0.934103i
\(739\) 6.95825 0.255963 0.127982 0.991777i \(-0.459150\pi\)
0.127982 + 0.991777i \(0.459150\pi\)
\(740\) 7.82253 + 6.56388i 0.287562 + 0.241293i
\(741\) 3.05397 9.23129i 0.112190 0.339120i
\(742\) 2.93697 + 1.17613i 0.107820 + 0.0431770i
\(743\) −25.6686 30.5906i −0.941688 1.12226i −0.992339 0.123544i \(-0.960574\pi\)
0.0506507 0.998716i \(-0.483870\pi\)
\(744\) −1.15098 + 3.47909i −0.0421970 + 0.127550i
\(745\) −67.9735 11.9856i −2.49036 0.439117i
\(746\) 5.69737i 0.208595i
\(747\) 28.3667 12.2687i 1.03788 0.448889i
\(748\) −7.37878 4.26014i −0.269795 0.155766i
\(749\) −20.9120 + 23.3692i −0.764107 + 0.853890i
\(750\) −40.5356 32.0196i −1.48015 1.16919i
\(751\) 5.28500 + 29.9727i 0.192852 + 1.09372i 0.915444 + 0.402445i \(0.131839\pi\)
−0.722592 + 0.691275i \(0.757049\pi\)
\(752\) 2.96430 + 1.07892i 0.108097 + 0.0393440i
\(753\) −0.0174774 0.590842i −0.000636910 0.0215315i
\(754\) −0.363243 0.0640496i −0.0132285 0.00233255i
\(755\) 38.7383 1.40983
\(756\) 0.570788 + 10.0237i 0.0207594 + 0.364559i
\(757\) 31.9836 1.16246 0.581232 0.813738i \(-0.302571\pi\)
0.581232 + 0.813738i \(0.302571\pi\)
\(758\) −32.3035 5.69597i −1.17331 0.206887i
\(759\) −24.7295 13.3186i −0.897626 0.483436i
\(760\) −65.5737 23.8669i −2.37861 0.865742i
\(761\) 4.85956 + 27.5599i 0.176159 + 0.999047i 0.936798 + 0.349872i \(0.113775\pi\)
−0.760639 + 0.649175i \(0.775114\pi\)
\(762\) −5.37430 + 36.8141i −0.194690 + 1.33363i
\(763\) −1.31872 + 6.29923i −0.0477409 + 0.228047i
\(764\) 11.7263 + 6.77017i 0.424242 + 0.244936i
\(765\) −31.4938 9.39550i −1.13866 0.339695i
\(766\) 5.99216i 0.216505i
\(767\) 10.9105 + 1.92381i 0.393954