# Properties

 Label 189.2.ba.a.38.13 Level $189$ Weight $2$ Character 189.38 Analytic conductor $1.509$ Analytic rank $0$ Dimension $132$ Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [189,2,Mod(5,189)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(189, base_ring=CyclotomicField(18))

chi = DirichletCharacter(H, H._module([5, 15]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("189.5");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$189 = 3^{3} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 189.ba (of order $$18$$, degree $$6$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$1.50917259820$$ Analytic rank: $$0$$ Dimension: $$132$$ Relative dimension: $$22$$ over $$\Q(\zeta_{18})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

## Embedding invariants

 Embedding label 38.13 Character $$\chi$$ $$=$$ 189.38 Dual form 189.2.ba.a.5.13

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+(0.357086 + 0.0629638i) q^{2} +(-1.26279 + 1.18548i) q^{3} +(-1.75584 - 0.639073i) q^{4} +(-0.363271 - 2.06021i) q^{5} +(-0.525567 + 0.343807i) q^{6} +(1.11830 - 2.39779i) q^{7} +(-1.21478 - 0.701352i) q^{8} +(0.189288 - 2.99402i) q^{9} +O(q^{10})$$ $$q+(0.357086 + 0.0629638i) q^{2} +(-1.26279 + 1.18548i) q^{3} +(-1.75584 - 0.639073i) q^{4} +(-0.363271 - 2.06021i) q^{5} +(-0.525567 + 0.343807i) q^{6} +(1.11830 - 2.39779i) q^{7} +(-1.21478 - 0.701352i) q^{8} +(0.189288 - 2.99402i) q^{9} -0.758545i q^{10} +(1.41640 + 0.249750i) q^{11} +(2.97487 - 1.27449i) q^{12} +(-1.90689 - 2.27254i) q^{13} +(0.550303 - 0.785805i) q^{14} +(2.90107 + 2.17097i) q^{15} +(2.47313 + 2.07520i) q^{16} -4.77323 q^{17} +(0.256107 - 1.05720i) q^{18} -3.09743i q^{19} +(-0.678781 + 3.84956i) q^{20} +(1.43035 + 4.35363i) q^{21} +(0.490052 + 0.178364i) q^{22} +(-1.57013 - 1.87121i) q^{23} +(2.36545 - 0.554429i) q^{24} +(0.585952 - 0.213269i) q^{25} +(-0.537835 - 0.931558i) q^{26} +(3.31031 + 4.00522i) q^{27} +(-3.49592 + 3.49546i) q^{28} +(-4.37519 + 5.21415i) q^{29} +(0.899238 + 0.957885i) q^{30} +(-0.879617 + 2.41673i) q^{31} +(2.55574 + 3.04581i) q^{32} +(-2.08470 + 1.36373i) q^{33} +(-1.70445 - 0.300541i) q^{34} +(-5.34621 - 1.43289i) q^{35} +(-2.24576 + 5.13605i) q^{36} +(5.23320 - 9.06416i) q^{37} +(0.195026 - 1.10605i) q^{38} +(5.10206 + 0.609175i) q^{39} +(-1.00364 + 2.75748i) q^{40} +(-6.50393 + 5.45744i) q^{41} +(0.236635 + 1.64468i) q^{42} +(10.0808 - 3.66912i) q^{43} +(-2.32737 - 1.34371i) q^{44} +(-6.23709 + 0.697669i) q^{45} +(-0.442854 - 0.767045i) q^{46} +(0.563184 - 0.204982i) q^{47} +(-5.58315 + 0.311290i) q^{48} +(-4.49881 - 5.36290i) q^{49} +(0.222663 - 0.0392615i) q^{50} +(6.02759 - 5.65855i) q^{51} +(1.89587 + 5.20887i) q^{52} +(8.71769 + 5.03316i) q^{53} +(0.929881 + 1.63864i) q^{54} -3.00882i q^{55} +(-3.04018 + 2.12846i) q^{56} +(3.67194 + 3.91141i) q^{57} +(-1.89062 + 1.58642i) q^{58} +(11.0116 - 9.23981i) q^{59} +(-3.70641 - 5.66587i) q^{60} +(2.19799 + 6.03893i) q^{61} +(-0.466265 + 0.807595i) q^{62} +(-6.96736 - 3.80209i) q^{63} +(-2.50760 - 4.34329i) q^{64} +(-3.98921 + 4.75415i) q^{65} +(-0.830281 + 0.355709i) q^{66} +(0.588274 + 3.33627i) q^{67} +(8.38102 + 3.05044i) q^{68} +(4.20103 + 0.501595i) q^{69} +(-1.81883 - 0.848281i) q^{70} +(6.21996 - 3.59109i) q^{71} +(-2.32981 + 3.50432i) q^{72} +(1.53618 - 0.886916i) q^{73} +(2.43941 - 2.90718i) q^{74} +(-0.487110 + 0.963947i) q^{75} +(-1.97949 + 5.43860i) q^{76} +(2.18281 - 3.11695i) q^{77} +(1.78352 + 0.538773i) q^{78} +(-0.456953 + 2.59151i) q^{79} +(3.37694 - 5.84903i) q^{80} +(-8.92834 - 1.13346i) q^{81} +(-2.66608 + 1.53926i) q^{82} +(-5.95599 - 4.99767i) q^{83} +(0.270829 - 8.55838i) q^{84} +(1.73398 + 9.83386i) q^{85} +(3.83074 - 0.675463i) q^{86} +(-0.656298 - 11.7711i) q^{87} +(-1.54545 - 1.29679i) q^{88} -10.6703 q^{89} +(-2.27110 - 0.143583i) q^{90} +(-7.58157 + 2.03094i) q^{91} +(1.56106 + 4.28898i) q^{92} +(-1.75420 - 4.09459i) q^{93} +(0.214011 - 0.0377360i) q^{94} +(-6.38137 + 1.12521i) q^{95} +(-6.83810 - 0.816456i) q^{96} +(-2.10510 - 5.78373i) q^{97} +(-1.26879 - 2.19828i) q^{98} +(1.01587 - 4.19347i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9}+O(q^{10})$$ 132 * q - 3 * q^2 - 9 * q^3 - 3 * q^4 - 9 * q^5 - 18 * q^6 - 6 * q^7 - 18 * q^8 + 3 * q^9 $$132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9} - 9 q^{11} - 9 q^{12} + 3 q^{14} - 24 q^{15} + 3 q^{16} - 18 q^{17} - 3 q^{18} + 18 q^{20} - 21 q^{21} - 12 q^{22} - 6 q^{23} - 9 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} + 51 q^{30} - 9 q^{31} + 3 q^{32} - 9 q^{33} - 18 q^{34} + 18 q^{35} + 3 q^{37} - 99 q^{38} - 36 q^{39} - 54 q^{40} - 45 q^{42} - 12 q^{43} - 9 q^{44} - 9 q^{45} + 3 q^{46} + 45 q^{47} - 24 q^{49} - 9 q^{50} - 48 q^{51} - 9 q^{52} - 45 q^{53} + 171 q^{54} + 3 q^{56} - 3 q^{58} + 36 q^{59} + 57 q^{60} - 9 q^{61} - 99 q^{62} - 33 q^{63} + 18 q^{64} + 69 q^{65} - 9 q^{66} - 3 q^{67} + 36 q^{68} + 108 q^{69} + 66 q^{70} + 18 q^{71} - 129 q^{72} - 9 q^{73} + 75 q^{74} + 36 q^{75} + 36 q^{76} + 15 q^{77} + 66 q^{78} - 21 q^{79} + 72 q^{80} - 33 q^{81} - 18 q^{82} - 90 q^{83} - 120 q^{84} + 9 q^{85} - 105 q^{86} - 54 q^{87} - 63 q^{88} - 18 q^{89} + 81 q^{90} + 6 q^{91} + 150 q^{92} + 21 q^{93} - 9 q^{94} + 45 q^{95} - 81 q^{96} + 27 q^{98} + 96 q^{99}+O(q^{100})$$ 132 * q - 3 * q^2 - 9 * q^3 - 3 * q^4 - 9 * q^5 - 18 * q^6 - 6 * q^7 - 18 * q^8 + 3 * q^9 - 9 * q^11 - 9 * q^12 + 3 * q^14 - 24 * q^15 + 3 * q^16 - 18 * q^17 - 3 * q^18 + 18 * q^20 - 21 * q^21 - 12 * q^22 - 6 * q^23 - 9 * q^24 - 3 * q^25 - 12 * q^28 + 6 * q^29 + 51 * q^30 - 9 * q^31 + 3 * q^32 - 9 * q^33 - 18 * q^34 + 18 * q^35 + 3 * q^37 - 99 * q^38 - 36 * q^39 - 54 * q^40 - 45 * q^42 - 12 * q^43 - 9 * q^44 - 9 * q^45 + 3 * q^46 + 45 * q^47 - 24 * q^49 - 9 * q^50 - 48 * q^51 - 9 * q^52 - 45 * q^53 + 171 * q^54 + 3 * q^56 - 3 * q^58 + 36 * q^59 + 57 * q^60 - 9 * q^61 - 99 * q^62 - 33 * q^63 + 18 * q^64 + 69 * q^65 - 9 * q^66 - 3 * q^67 + 36 * q^68 + 108 * q^69 + 66 * q^70 + 18 * q^71 - 129 * q^72 - 9 * q^73 + 75 * q^74 + 36 * q^75 + 36 * q^76 + 15 * q^77 + 66 * q^78 - 21 * q^79 + 72 * q^80 - 33 * q^81 - 18 * q^82 - 90 * q^83 - 120 * q^84 + 9 * q^85 - 105 * q^86 - 54 * q^87 - 63 * q^88 - 18 * q^89 + 81 * q^90 + 6 * q^91 + 150 * q^92 + 21 * q^93 - 9 * q^94 + 45 * q^95 - 81 * q^96 + 27 * q^98 + 96 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/189\mathbb{Z}\right)^\times$$.

 $$n$$ $$29$$ $$136$$ $$\chi(n)$$ $$e\left(\frac{13}{18}\right)$$ $$e\left(\frac{1}{6}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.357086 + 0.0629638i 0.252498 + 0.0445221i 0.298464 0.954421i $$-0.403526\pi$$
−0.0459666 + 0.998943i $$0.514637\pi$$
$$3$$ −1.26279 + 1.18548i −0.729073 + 0.684436i
$$4$$ −1.75584 0.639073i −0.877920 0.319537i
$$5$$ −0.363271 2.06021i −0.162460 0.921355i −0.951645 0.307200i $$-0.900608\pi$$
0.789185 0.614155i $$-0.210503\pi$$
$$6$$ −0.525567 + 0.343807i −0.214562 + 0.140358i
$$7$$ 1.11830 2.39779i 0.422678 0.906280i
$$8$$ −1.21478 0.701352i −0.429489 0.247966i
$$9$$ 0.189288 2.99402i 0.0630959 0.998007i
$$10$$ 0.758545i 0.239873i
$$11$$ 1.41640 + 0.249750i 0.427062 + 0.0753026i 0.383048 0.923728i $$-0.374874\pi$$
0.0440139 + 0.999031i $$0.485985\pi$$
$$12$$ 2.97487 1.27449i 0.858770 0.367914i
$$13$$ −1.90689 2.27254i −0.528877 0.630291i 0.433779 0.901019i $$-0.357180\pi$$
−0.962656 + 0.270729i $$0.912735\pi$$
$$14$$ 0.550303 0.785805i 0.147075 0.210015i
$$15$$ 2.90107 + 2.17097i 0.749053 + 0.560542i
$$16$$ 2.47313 + 2.07520i 0.618282 + 0.518800i
$$17$$ −4.77323 −1.15768 −0.578839 0.815442i $$-0.696494\pi$$
−0.578839 + 0.815442i $$0.696494\pi$$
$$18$$ 0.256107 1.05720i 0.0603650 0.249185i
$$19$$ 3.09743i 0.710600i −0.934752 0.355300i $$-0.884379\pi$$
0.934752 0.355300i $$-0.115621\pi$$
$$20$$ −0.678781 + 3.84956i −0.151780 + 0.860788i
$$21$$ 1.43035 + 4.35363i 0.312127 + 0.950040i
$$22$$ 0.490052 + 0.178364i 0.104480 + 0.0380274i
$$23$$ −1.57013 1.87121i −0.327396 0.390175i 0.577089 0.816681i $$-0.304189\pi$$
−0.904485 + 0.426506i $$0.859744\pi$$
$$24$$ 2.36545 0.554429i 0.482845 0.113172i
$$25$$ 0.585952 0.213269i 0.117190 0.0426538i
$$26$$ −0.537835 0.931558i −0.105478 0.182694i
$$27$$ 3.31031 + 4.00522i 0.637070 + 0.770806i
$$28$$ −3.49592 + 3.49546i −0.660667 + 0.660580i
$$29$$ −4.37519 + 5.21415i −0.812452 + 0.968243i −0.999902 0.0140317i $$-0.995533\pi$$
0.187450 + 0.982274i $$0.439978\pi$$
$$30$$ 0.899238 + 0.957885i 0.164178 + 0.174885i
$$31$$ −0.879617 + 2.41673i −0.157984 + 0.434057i −0.993279 0.115745i $$-0.963075\pi$$
0.835295 + 0.549802i $$0.185297\pi$$
$$32$$ 2.55574 + 3.04581i 0.451795 + 0.538428i
$$33$$ −2.08470 + 1.36373i −0.362899 + 0.237395i
$$34$$ −1.70445 0.300541i −0.292311 0.0515423i
$$35$$ −5.34621 1.43289i −0.903674 0.242202i
$$36$$ −2.24576 + 5.13605i −0.374293 + 0.856009i
$$37$$ 5.23320 9.06416i 0.860332 1.49014i −0.0112767 0.999936i $$-0.503590\pi$$
0.871609 0.490202i $$-0.163077\pi$$
$$38$$ 0.195026 1.10605i 0.0316374 0.179425i
$$39$$ 5.10206 + 0.609175i 0.816983 + 0.0975461i
$$40$$ −1.00364 + 2.75748i −0.158690 + 0.435996i
$$41$$ −6.50393 + 5.45744i −1.01574 + 0.852310i −0.989087 0.147335i $$-0.952930\pi$$
−0.0266565 + 0.999645i $$0.508486\pi$$
$$42$$ 0.236635 + 1.64468i 0.0365136 + 0.253780i
$$43$$ 10.0808 3.66912i 1.53731 0.559535i 0.571913 0.820315i $$-0.306202\pi$$
0.965398 + 0.260779i $$0.0839794\pi$$
$$44$$ −2.32737 1.34371i −0.350864 0.202572i
$$45$$ −6.23709 + 0.697669i −0.929770 + 0.104002i
$$46$$ −0.442854 0.767045i −0.0652952 0.113095i
$$47$$ 0.563184 0.204982i 0.0821488 0.0298997i −0.300619 0.953744i $$-0.597193\pi$$
0.382768 + 0.923845i $$0.374971\pi$$
$$48$$ −5.58315 + 0.311290i −0.805858 + 0.0449308i
$$49$$ −4.49881 5.36290i −0.642687 0.766129i
$$50$$ 0.222663 0.0392615i 0.0314893 0.00555242i
$$51$$ 6.02759 5.65855i 0.844032 0.792356i
$$52$$ 1.89587 + 5.20887i 0.262910 + 0.722340i
$$53$$ 8.71769 + 5.03316i 1.19747 + 0.691358i 0.959990 0.280036i $$-0.0903462\pi$$
0.237477 + 0.971393i $$0.423680\pi$$
$$54$$ 0.929881 + 1.63864i 0.126541 + 0.222990i
$$55$$ 3.00882i 0.405709i
$$56$$ −3.04018 + 2.12846i −0.406262 + 0.284428i
$$57$$ 3.67194 + 3.91141i 0.486360 + 0.518079i
$$58$$ −1.89062 + 1.58642i −0.248250 + 0.208307i
$$59$$ 11.0116 9.23981i 1.43359 1.20292i 0.490030 0.871706i $$-0.336986\pi$$
0.943555 0.331215i $$-0.107459\pi$$
$$60$$ −3.70641 5.66587i −0.478495 0.731461i
$$61$$ 2.19799 + 6.03893i 0.281424 + 0.773206i 0.997193 + 0.0748693i $$0.0238540\pi$$
−0.715769 + 0.698337i $$0.753924\pi$$
$$62$$ −0.466265 + 0.807595i −0.0592157 + 0.102565i
$$63$$ −6.96736 3.80209i −0.877805 0.479018i
$$64$$ −2.50760 4.34329i −0.313450 0.542911i
$$65$$ −3.98921 + 4.75415i −0.494800 + 0.589680i
$$66$$ −0.830281 + 0.355709i −0.102201 + 0.0437847i
$$67$$ 0.588274 + 3.33627i 0.0718691 + 0.407590i 0.999425 + 0.0339055i $$0.0107945\pi$$
−0.927556 + 0.373684i $$0.878094\pi$$
$$68$$ 8.38102 + 3.05044i 1.01635 + 0.369920i
$$69$$ 4.20103 + 0.501595i 0.505745 + 0.0603849i
$$70$$ −1.81883 0.848281i −0.217392 0.101389i
$$71$$ 6.21996 3.59109i 0.738173 0.426184i −0.0832317 0.996530i $$-0.526524\pi$$
0.821405 + 0.570346i $$0.193191\pi$$
$$72$$ −2.32981 + 3.50432i −0.274570 + 0.412988i
$$73$$ 1.53618 0.886916i 0.179797 0.103806i −0.407400 0.913250i $$-0.633565\pi$$
0.587197 + 0.809444i $$0.300231\pi$$
$$74$$ 2.43941 2.90718i 0.283576 0.337953i
$$75$$ −0.487110 + 0.963947i −0.0562466 + 0.111307i
$$76$$ −1.97949 + 5.43860i −0.227063 + 0.623850i
$$77$$ 2.18281 3.11695i 0.248755 0.355209i
$$78$$ 1.78352 + 0.538773i 0.201943 + 0.0610040i
$$79$$ −0.456953 + 2.59151i −0.0514112 + 0.291568i −0.999663 0.0259512i $$-0.991739\pi$$
0.948252 + 0.317519i $$0.102850\pi$$
$$80$$ 3.37694 5.84903i 0.377553 0.653941i
$$81$$ −8.92834 1.13346i −0.992038 0.125940i
$$82$$ −2.66608 + 1.53926i −0.294419 + 0.169983i
$$83$$ −5.95599 4.99767i −0.653754 0.548565i 0.254453 0.967085i $$-0.418105\pi$$
−0.908208 + 0.418520i $$0.862549\pi$$
$$84$$ 0.270829 8.55838i 0.0295498 0.933795i
$$85$$ 1.73398 + 9.83386i 0.188076 + 1.06663i
$$86$$ 3.83074 0.675463i 0.413079 0.0728370i
$$87$$ −0.656298 11.7711i −0.0703626 1.26199i
$$88$$ −1.54545 1.29679i −0.164746 0.138238i
$$89$$ −10.6703 −1.13105 −0.565523 0.824733i $$-0.691326\pi$$
−0.565523 + 0.824733i $$0.691326\pi$$
$$90$$ −2.27110 0.143583i −0.239395 0.0151350i
$$91$$ −7.58157 + 2.03094i −0.794764 + 0.212901i
$$92$$ 1.56106 + 4.28898i 0.162752 + 0.447157i
$$93$$ −1.75420 4.09459i −0.181902 0.424589i
$$94$$ 0.214011 0.0377360i 0.0220736 0.00389217i
$$95$$ −6.38137 + 1.12521i −0.654715 + 0.115444i
$$96$$ −6.83810 0.816456i −0.697911 0.0833291i
$$97$$ −2.10510 5.78373i −0.213741 0.587249i 0.785770 0.618519i $$-0.212267\pi$$
−0.999511 + 0.0312702i $$0.990045\pi$$
$$98$$ −1.26879 2.19828i −0.128167 0.222059i
$$99$$ 1.01587 4.19347i 0.102098 0.421460i
$$100$$ −1.16513 −0.116513
$$101$$ 6.27782 + 5.26772i 0.624666 + 0.524157i 0.899266 0.437401i $$-0.144101\pi$$
−0.274600 + 0.961558i $$0.588545\pi$$
$$102$$ 2.50865 1.64107i 0.248393 0.162490i
$$103$$ 8.19725 1.44540i 0.807699 0.142419i 0.245474 0.969403i $$-0.421056\pi$$
0.562225 + 0.826984i $$0.309945\pi$$
$$104$$ 0.722595 + 4.09804i 0.0708563 + 0.401846i
$$105$$ 8.44980 4.52837i 0.824616 0.441924i
$$106$$ 2.79605 + 2.34617i 0.271577 + 0.227880i
$$107$$ −0.321004 + 0.185331i −0.0310326 + 0.0179167i −0.515436 0.856928i $$-0.672370\pi$$
0.484403 + 0.874845i $$0.339037\pi$$
$$108$$ −3.25275 9.14806i −0.312996 0.880273i
$$109$$ −1.58351 + 2.74272i −0.151673 + 0.262705i −0.931843 0.362863i $$-0.881799\pi$$
0.780170 + 0.625568i $$0.215133\pi$$
$$110$$ 0.189447 1.07441i 0.0180631 0.102441i
$$111$$ 4.13692 + 17.6500i 0.392659 + 1.67526i
$$112$$ 7.74160 3.60935i 0.731512 0.341051i
$$113$$ 4.79907 13.1853i 0.451459 1.24037i −0.480239 0.877138i $$-0.659450\pi$$
0.931698 0.363235i $$-0.118328\pi$$
$$114$$ 1.06492 + 1.62791i 0.0997387 + 0.152468i
$$115$$ −3.28471 + 3.91457i −0.306301 + 0.365035i
$$116$$ 11.0143 6.35914i 1.02266 0.590431i
$$117$$ −7.16500 + 5.27911i −0.662405 + 0.488054i
$$118$$ 4.51385 2.60607i 0.415533 0.239908i
$$119$$ −5.33790 + 11.4452i −0.489324 + 1.04918i
$$120$$ −2.00154 4.67192i −0.182715 0.426486i
$$121$$ −8.39279 3.05473i −0.762981 0.277702i
$$122$$ 0.404637 + 2.29481i 0.0366341 + 0.207762i
$$123$$ 1.74343 14.6019i 0.157200 1.31661i
$$124$$ 3.08893 3.68125i 0.277394 0.330586i
$$125$$ −5.88223 10.1883i −0.526122 0.911271i
$$126$$ −2.24855 1.79636i −0.200317 0.160033i
$$127$$ −3.55817 + 6.16293i −0.315737 + 0.546872i −0.979594 0.200987i $$-0.935585\pi$$
0.663857 + 0.747859i $$0.268918\pi$$
$$128$$ −3.34172 9.18129i −0.295369 0.811519i
$$129$$ −8.38033 + 16.5839i −0.737847 + 1.46013i
$$130$$ −1.72383 + 1.44646i −0.151190 + 0.126863i
$$131$$ 10.8232 9.08173i 0.945626 0.793475i −0.0329293 0.999458i $$-0.510484\pi$$
0.978556 + 0.205983i $$0.0660392\pi$$
$$132$$ 4.53192 1.06222i 0.394453 0.0924545i
$$133$$ −7.42700 3.46386i −0.644003 0.300355i
$$134$$ 1.22837i 0.106115i
$$135$$ 7.04907 8.27493i 0.606688 0.712193i
$$136$$ 5.79841 + 3.34771i 0.497210 + 0.287064i
$$137$$ −1.33298 3.66233i −0.113884 0.312894i 0.869636 0.493694i $$-0.164354\pi$$
−0.983520 + 0.180800i $$0.942131\pi$$
$$138$$ 1.46855 + 0.443625i 0.125011 + 0.0377639i
$$139$$ 1.21493 0.214226i 0.103049 0.0181704i −0.121886 0.992544i $$-0.538894\pi$$
0.224935 + 0.974374i $$0.427783\pi$$
$$140$$ 8.47136 + 5.93254i 0.715961 + 0.501391i
$$141$$ −0.468182 + 0.926491i −0.0394281 + 0.0780246i
$$142$$ 2.44717 0.890695i 0.205362 0.0747455i
$$143$$ −2.13336 3.69509i −0.178401 0.308999i
$$144$$ 6.68133 7.01179i 0.556777 0.584316i
$$145$$ 12.3316 + 7.11967i 1.02409 + 0.591256i
$$146$$ 0.604393 0.219981i 0.0500199 0.0182058i
$$147$$ 12.0387 + 1.43899i 0.992932 + 0.118686i
$$148$$ −14.9813 + 12.5708i −1.23146 + 1.03331i
$$149$$ −4.67221 + 12.8368i −0.382763 + 1.05163i 0.587425 + 0.809278i $$0.300142\pi$$
−0.970188 + 0.242353i $$0.922081\pi$$
$$150$$ −0.234634 + 0.313541i −0.0191578 + 0.0256005i
$$151$$ −2.96917 + 16.8390i −0.241628 + 1.37034i 0.586568 + 0.809900i $$0.300479\pi$$
−0.828196 + 0.560439i $$0.810632\pi$$
$$152$$ −2.17239 + 3.76269i −0.176204 + 0.305195i
$$153$$ −0.903513 + 14.2911i −0.0730447 + 1.15537i
$$154$$ 0.975706 0.975579i 0.0786247 0.0786144i
$$155$$ 5.29851 + 0.934271i 0.425587 + 0.0750424i
$$156$$ −8.56909 4.33020i −0.686076 0.346694i
$$157$$ 0.430058 + 0.512523i 0.0343224 + 0.0409038i 0.782933 0.622107i $$-0.213723\pi$$
−0.748610 + 0.663010i $$0.769279\pi$$
$$158$$ −0.326343 + 0.896619i −0.0259624 + 0.0713312i
$$159$$ −16.9753 + 3.97879i −1.34623 + 0.315538i
$$160$$ 5.34659 6.37182i 0.422685 0.503737i
$$161$$ −6.24266 + 1.67228i −0.491991 + 0.131794i
$$162$$ −3.11681 0.966906i −0.244880 0.0759673i
$$163$$ −8.63700 14.9597i −0.676502 1.17174i −0.976027 0.217648i $$-0.930162\pi$$
0.299525 0.954088i $$-0.403172\pi$$
$$164$$ 14.9076 5.42591i 1.16409 0.423692i
$$165$$ 3.56689 + 3.79952i 0.277682 + 0.295792i
$$166$$ −1.81212 2.15961i −0.140648 0.167618i
$$167$$ 0.153614 + 0.0559108i 0.0118870 + 0.00432651i 0.347957 0.937511i $$-0.386876\pi$$
−0.336070 + 0.941837i $$0.609098\pi$$
$$168$$ 1.31587 6.29187i 0.101522 0.485429i
$$169$$ 0.729201 4.13551i 0.0560924 0.318116i
$$170$$ 3.62071i 0.277696i
$$171$$ −9.27379 0.586306i −0.709184 0.0448359i
$$172$$ −20.0451 −1.52843
$$173$$ 10.0769 + 8.45551i 0.766131 + 0.642861i 0.939715 0.341959i $$-0.111090\pi$$
−0.173584 + 0.984819i $$0.555535\pi$$
$$174$$ 0.506797 4.24460i 0.0384202 0.321782i
$$175$$ 0.143895 1.64349i 0.0108774 0.124236i
$$176$$ 2.98467 + 3.55699i 0.224978 + 0.268118i
$$177$$ −2.95175 + 24.7219i −0.221867 + 1.85821i
$$178$$ −3.81020 0.671840i −0.285586 0.0503566i
$$179$$ 20.5293i 1.53443i 0.641390 + 0.767215i $$0.278358\pi$$
−0.641390 + 0.767215i $$0.721642\pi$$
$$180$$ 11.3972 + 2.76096i 0.849496 + 0.205790i
$$181$$ 12.6686 + 7.31419i 0.941646 + 0.543660i 0.890476 0.455030i $$-0.150372\pi$$
0.0511701 + 0.998690i $$0.483705\pi$$
$$182$$ −2.83514 + 0.247856i −0.210155 + 0.0183723i
$$183$$ −9.93462 5.02025i −0.734388 0.371107i
$$184$$ 0.594985 + 3.37433i 0.0438629 + 0.248759i
$$185$$ −20.5752 7.48875i −1.51272 0.550584i
$$186$$ −0.368589 1.57257i −0.0270263 0.115306i
$$187$$ −6.76082 1.19212i −0.494400 0.0871761i
$$188$$ −1.11986 −0.0816741
$$189$$ 13.3056 3.45840i 0.967841 0.251562i
$$190$$ −2.34954 −0.170454
$$191$$ 22.3928 + 3.94845i 1.62029 + 0.285700i 0.908873 0.417074i $$-0.136944\pi$$
0.711413 + 0.702774i $$0.248055\pi$$
$$192$$ 8.31544 + 2.51197i 0.600115 + 0.181286i
$$193$$ −3.63612 1.32344i −0.261734 0.0952633i 0.207820 0.978167i $$-0.433363\pi$$
−0.469554 + 0.882904i $$0.655585\pi$$
$$194$$ −0.387537 2.19783i −0.0278235 0.157795i
$$195$$ −0.598400 10.7326i −0.0428523 0.768579i
$$196$$ 4.47191 + 12.2915i 0.319422 + 0.877962i
$$197$$ 1.51459 + 0.874452i 0.107910 + 0.0623021i 0.552984 0.833192i $$-0.313489\pi$$
−0.445073 + 0.895494i $$0.646822\pi$$
$$198$$ 0.626788 1.43347i 0.0445439 0.101872i
$$199$$ 10.4887i 0.743522i 0.928329 + 0.371761i $$0.121246\pi$$
−0.928329 + 0.371761i $$0.878754\pi$$
$$200$$ −0.861379 0.151884i −0.0609087 0.0107398i
$$201$$ −4.69793 3.51563i −0.331367 0.247973i
$$202$$ 1.91004 + 2.27630i 0.134390 + 0.160160i
$$203$$ 7.60967 + 16.3218i 0.534094 + 1.14556i
$$204$$ −14.1997 + 6.08344i −0.994179 + 0.425926i
$$205$$ 13.6062 + 11.4169i 0.950297 + 0.797394i
$$206$$ 3.01813 0.210283
$$207$$ −5.89966 + 4.34682i −0.410055 + 0.302125i
$$208$$ 9.57747i 0.664078i
$$209$$ 0.773585 4.38722i 0.0535100 0.303470i
$$210$$ 3.30243 1.08498i 0.227889 0.0748710i
$$211$$ −1.23759 0.450445i −0.0851990 0.0310099i 0.299069 0.954231i $$-0.403324\pi$$
−0.384268 + 0.923222i $$0.625546\pi$$
$$212$$ −12.0903 14.4087i −0.830365 0.989591i
$$213$$ −3.59735 + 11.9084i −0.246486 + 0.815951i
$$214$$ −0.126295 + 0.0459676i −0.00863334 + 0.00314228i
$$215$$ −11.2212 19.4358i −0.765282 1.32551i
$$216$$ −1.21222 7.18716i −0.0824814 0.489024i
$$217$$ 4.81113 + 4.81176i 0.326601 + 0.326644i
$$218$$ −0.738141 + 0.879683i −0.0499932 + 0.0595796i
$$219$$ −0.888462 + 2.94110i −0.0600367 + 0.198741i
$$220$$ −1.92286 + 5.28301i −0.129639 + 0.356180i
$$221$$ 9.10203 + 10.8474i 0.612269 + 0.729673i
$$222$$ 0.365923 + 6.56303i 0.0245592 + 0.440482i
$$223$$ 7.05477 + 1.24395i 0.472422 + 0.0833008i 0.404790 0.914410i $$-0.367345\pi$$
0.0676319 + 0.997710i $$0.478456\pi$$
$$224$$ 10.1613 2.72200i 0.678930 0.181871i
$$225$$ −0.527619 1.79472i −0.0351746 0.119648i
$$226$$ 2.54388 4.40613i 0.169216 0.293091i
$$227$$ 3.71230 21.0535i 0.246394 1.39737i −0.570839 0.821062i $$-0.693382\pi$$
0.817233 0.576308i $$-0.195507\pi$$
$$228$$ −3.94765 9.21445i −0.261440 0.610242i
$$229$$ 8.14786 22.3861i 0.538426 1.47931i −0.310382 0.950612i $$-0.600457\pi$$
0.848808 0.528701i $$-0.177321\pi$$
$$230$$ −1.41940 + 1.19102i −0.0935925 + 0.0785334i
$$231$$ 0.938630 + 6.52373i 0.0617573 + 0.429230i
$$232$$ 8.97184 3.26548i 0.589030 0.214389i
$$233$$ −1.02981 0.594562i −0.0674652 0.0389511i 0.465888 0.884844i $$-0.345735\pi$$
−0.533353 + 0.845893i $$0.679068\pi$$
$$234$$ −2.89091 + 1.43396i −0.188985 + 0.0937408i
$$235$$ −0.626895 1.08581i −0.0408941 0.0708307i
$$236$$ −25.2395 + 9.18642i −1.64295 + 0.597985i
$$237$$ −2.49514 3.81424i −0.162077 0.247762i
$$238$$ −2.62672 + 3.75082i −0.170265 + 0.243130i
$$239$$ −19.6976 + 3.47322i −1.27413 + 0.224664i −0.769487 0.638663i $$-0.779488\pi$$
−0.504646 + 0.863327i $$0.668377\pi$$
$$240$$ 2.66952 + 11.3894i 0.172317 + 0.735182i
$$241$$ 6.53121 + 17.9443i 0.420712 + 1.15590i 0.951300 + 0.308267i $$0.0997491\pi$$
−0.530588 + 0.847630i $$0.678029\pi$$
$$242$$ −2.80461 1.61924i −0.180287 0.104089i
$$243$$ 12.6183 9.15302i 0.809466 0.587166i
$$244$$ 12.0081i 0.768738i
$$245$$ −9.41443 + 11.2167i −0.601466 + 0.716608i
$$246$$ 1.54195 5.10435i 0.0983108 0.325441i
$$247$$ −7.03906 + 5.90647i −0.447884 + 0.375820i
$$248$$ 2.76352 2.31887i 0.175484 0.147248i
$$249$$ 13.4458 0.749673i 0.852092 0.0475086i
$$250$$ −1.45896 4.00847i −0.0922729 0.253518i
$$251$$ −3.32201 + 5.75389i −0.209683 + 0.363182i −0.951615 0.307293i $$-0.900577\pi$$
0.741931 + 0.670476i $$0.233910\pi$$
$$252$$ 9.80376 + 11.1285i 0.617579 + 0.701030i
$$253$$ −1.75661 3.04254i −0.110437 0.191283i
$$254$$ −1.65861 + 1.97666i −0.104071 + 0.124027i
$$255$$ −13.8475 10.3625i −0.867162 0.648927i
$$256$$ 1.12657 + 6.38909i 0.0704105 + 0.399318i
$$257$$ −2.77291 1.00925i −0.172969 0.0629556i 0.254084 0.967182i $$-0.418226\pi$$
−0.427053 + 0.904227i $$0.640448\pi$$
$$258$$ −4.03668 + 5.39422i −0.251313 + 0.335830i
$$259$$ −15.8817 22.6846i −0.986840 1.40955i
$$260$$ 10.0427 5.79813i 0.622819 0.359585i
$$261$$ 14.7831 + 14.0864i 0.915051 + 0.871925i
$$262$$ 4.43662 2.56149i 0.274096 0.158249i
$$263$$ 7.05911 8.41272i 0.435283 0.518750i −0.503156 0.864196i $$-0.667828\pi$$
0.938439 + 0.345445i $$0.112272\pi$$
$$264$$ 3.48890 0.194525i 0.214727 0.0119722i
$$265$$ 7.20250 19.7887i 0.442446 1.21561i
$$266$$ −2.43398 1.70453i −0.149237 0.104511i
$$267$$ 13.4743 12.6493i 0.824615 0.774128i
$$268$$ 1.09920 6.23390i 0.0671446 0.380796i
$$269$$ −4.61707 + 7.99700i −0.281508 + 0.487586i −0.971756 0.235987i $$-0.924168\pi$$
0.690249 + 0.723572i $$0.257501\pi$$
$$270$$ 3.03814 2.51102i 0.184896 0.152816i
$$271$$ 16.1261 9.31044i 0.979594 0.565569i 0.0774463 0.996997i $$-0.475323\pi$$
0.902147 + 0.431428i $$0.141990\pi$$
$$272$$ −11.8048 9.90540i −0.715771 0.600603i
$$273$$ 7.16630 11.5524i 0.433724 0.699185i
$$274$$ −0.245393 1.39169i −0.0148248 0.0840754i
$$275$$ 0.883209 0.155734i 0.0532595 0.00939109i
$$276$$ −7.05579 3.56549i −0.424708 0.214617i
$$277$$ −17.0077 14.2711i −1.02189 0.857469i −0.0320277 0.999487i $$-0.510196\pi$$
−0.989864 + 0.142018i $$0.954641\pi$$
$$278$$ 0.447324 0.0268287
$$279$$ 7.06924 + 3.09105i 0.423224 + 0.185056i
$$280$$ 5.48950 + 5.49022i 0.328060 + 0.328103i
$$281$$ −10.7163 29.4429i −0.639283 1.75642i −0.653967 0.756523i $$-0.726897\pi$$
0.0146842 0.999892i $$-0.495326\pi$$
$$282$$ −0.225517 + 0.301358i −0.0134293 + 0.0179456i
$$283$$ 23.4060 4.12710i 1.39134 0.245331i 0.572760 0.819723i $$-0.305873\pi$$
0.818580 + 0.574393i $$0.194762\pi$$
$$284$$ −13.2162 + 2.33038i −0.784238 + 0.138282i
$$285$$ 6.72444 8.98588i 0.398321 0.532277i
$$286$$ −0.529136 1.45379i −0.0312884 0.0859643i
$$287$$ 5.81248 + 21.6981i 0.343100 + 1.28080i
$$288$$ 9.60299 7.07540i 0.565862 0.416922i
$$289$$ 5.78370 0.340218
$$290$$ 3.95517 + 3.31878i 0.232255 + 0.194885i
$$291$$ 9.51479 + 4.80809i 0.557767 + 0.281855i
$$292$$ −3.26410 + 0.575548i −0.191017 + 0.0336814i
$$293$$ −4.09795 23.2406i −0.239405 1.35773i −0.833136 0.553068i $$-0.813457\pi$$
0.593731 0.804663i $$-0.297654\pi$$
$$294$$ 4.20823 + 1.27184i 0.245429 + 0.0741753i
$$295$$ −23.0362 19.3296i −1.34122 1.12541i
$$296$$ −12.7143 + 7.34063i −0.739006 + 0.426665i
$$297$$ 3.68844 + 6.49977i 0.214025 + 0.377155i
$$298$$ −2.47663 + 4.28966i −0.143468 + 0.248493i
$$299$$ −1.25834 + 7.13640i −0.0727717 + 0.412709i
$$300$$ 1.47132 1.38124i 0.0849467 0.0797458i
$$301$$ 2.47560 28.2749i 0.142691 1.62974i
$$302$$ −2.12050 + 5.82602i −0.122021 + 0.335250i
$$303$$ −14.1723 + 0.790182i −0.814179 + 0.0453948i
$$304$$ 6.42779 7.66035i 0.368659 0.439351i
$$305$$ 11.6430 6.72210i 0.666677 0.384906i
$$306$$ −1.22246 + 5.04627i −0.0698832 + 0.288476i
$$307$$ −10.8453 + 6.26156i −0.618976 + 0.357366i −0.776470 0.630154i $$-0.782992\pi$$
0.157494 + 0.987520i $$0.449659\pi$$
$$308$$ −5.82463 + 4.07788i −0.331889 + 0.232359i
$$309$$ −8.63794 + 11.5429i −0.491395 + 0.656652i
$$310$$ 1.83320 + 0.667229i 0.104119 + 0.0378961i
$$311$$ −0.350083 1.98542i −0.0198514 0.112583i 0.973272 0.229656i $$-0.0737600\pi$$
−0.993123 + 0.117073i $$0.962649\pi$$
$$312$$ −5.77062 4.31835i −0.326697 0.244479i
$$313$$ −19.9312 + 23.7531i −1.12658 + 1.34260i −0.194266 + 0.980949i $$0.562232\pi$$
−0.932312 + 0.361655i $$0.882212\pi$$
$$314$$ 0.121297 + 0.210093i 0.00684519 + 0.0118562i
$$315$$ −5.30207 + 15.7354i −0.298738 + 0.886591i
$$316$$ 2.45850 4.25825i 0.138301 0.239545i
$$317$$ 2.59245 + 7.12271i 0.145607 + 0.400051i 0.990960 0.134156i $$-0.0428324\pi$$
−0.845354 + 0.534207i $$0.820610\pi$$
$$318$$ −6.31216 + 0.351936i −0.353969 + 0.0197356i
$$319$$ −7.49927 + 6.29264i −0.419879 + 0.352320i
$$320$$ −8.03715 + 6.74397i −0.449291 + 0.377000i
$$321$$ 0.185654 0.614577i 0.0103622 0.0343024i
$$322$$ −2.33446 + 0.204085i −0.130094 + 0.0113732i
$$323$$ 14.7848i 0.822646i
$$324$$ 14.9524 + 7.69604i 0.830687 + 0.427558i
$$325$$ −1.60201 0.924921i −0.0888636 0.0513054i
$$326$$ −2.14223 5.88572i −0.118647 0.325980i
$$327$$ −1.25179 5.34071i −0.0692241 0.295342i
$$328$$ 11.7284 2.06804i 0.647594 0.114188i
$$329$$ 0.138304 1.57963i 0.00762493 0.0870877i
$$330$$ 1.03445 + 1.58134i 0.0569448 + 0.0870498i
$$331$$ −0.982278 + 0.357520i −0.0539909 + 0.0196511i −0.368874 0.929479i $$-0.620257\pi$$
0.314884 + 0.949130i $$0.398035\pi$$
$$332$$ 7.26388 + 12.5814i 0.398657 + 0.690495i
$$333$$ −26.1477 17.3840i −1.43289 0.952639i
$$334$$ 0.0513329 + 0.0296371i 0.00280881 + 0.00162167i
$$335$$ 6.65972 2.42394i 0.363859 0.132434i
$$336$$ −5.49722 + 13.7353i −0.299898 + 0.749324i
$$337$$ 18.8812 15.8432i 1.02852 0.863035i 0.0378500 0.999283i $$-0.487949\pi$$
0.990675 + 0.136249i $$0.0435046\pi$$
$$338$$ 0.520775 1.43082i 0.0283264 0.0778262i
$$339$$ 9.57069 + 22.3395i 0.519809 + 1.21332i
$$340$$ 3.23998 18.3748i 0.175712 0.996515i
$$341$$ −1.84947 + 3.20338i −0.100155 + 0.173473i
$$342$$ −3.27462 0.793274i −0.177071 0.0428954i
$$343$$ −17.8901 + 4.78989i −0.965977 + 0.258630i
$$344$$ −14.8193 2.61304i −0.799004 0.140886i
$$345$$ −0.492722 8.83724i −0.0265273 0.475781i
$$346$$ 3.06592 + 3.65382i 0.164825 + 0.196431i
$$347$$ −7.85434 + 21.5796i −0.421643 + 1.15845i 0.529123 + 0.848545i $$0.322521\pi$$
−0.950766 + 0.309909i $$0.899701\pi$$
$$348$$ −6.37022 + 21.0875i −0.341480 + 1.13041i
$$349$$ 11.7725 14.0299i 0.630166 0.751003i −0.352616 0.935768i $$-0.614708\pi$$
0.982783 + 0.184765i $$0.0591524\pi$$
$$350$$ 0.154863 0.577806i 0.00827779 0.0308850i
$$351$$ 2.78964 15.1604i 0.148900 0.809200i
$$352$$ 2.85927 + 4.95240i 0.152399 + 0.263964i
$$353$$ −21.2563 + 7.73666i −1.13136 + 0.411781i −0.838786 0.544462i $$-0.816734\pi$$
−0.292574 + 0.956243i $$0.594512\pi$$
$$354$$ −2.61061 + 8.64199i −0.138753 + 0.459317i
$$355$$ −9.65795 11.5099i −0.512591 0.610882i
$$356$$ 18.7353 + 6.81908i 0.992967 + 0.361410i
$$357$$ −6.82737 20.7809i −0.361343 1.09984i
$$358$$ −1.29260 + 7.33071i −0.0683161 + 0.387440i
$$359$$ 27.3052i 1.44111i 0.693397 + 0.720556i $$0.256113\pi$$
−0.693397 + 0.720556i $$0.743887\pi$$
$$360$$ 8.06599 + 3.52688i 0.425115 + 0.185883i
$$361$$ 9.40591 0.495048
$$362$$ 4.06323 + 3.40945i 0.213559 + 0.179197i
$$363$$ 14.2197 6.09198i 0.746339 0.319746i
$$364$$ 14.6099 + 1.27917i 0.765769 + 0.0670465i
$$365$$ −2.38529 2.84267i −0.124852 0.148792i
$$366$$ −3.23142 2.41818i −0.168909 0.126400i
$$367$$ −11.5182 2.03097i −0.601244 0.106016i −0.135262 0.990810i $$-0.543188\pi$$
−0.465982 + 0.884794i $$0.654299\pi$$
$$368$$ 7.88609i 0.411091i
$$369$$ 15.1086 + 20.5059i 0.786522 + 1.06750i
$$370$$ −6.87558 3.96962i −0.357444 0.206370i
$$371$$ 21.8175 15.2746i 1.13271 0.793019i
$$372$$ 0.463354 + 8.31051i 0.0240238 + 0.430880i
$$373$$ 1.50182 + 8.51724i 0.0777613 + 0.441006i 0.998685 + 0.0512637i $$0.0163249\pi$$
−0.920924 + 0.389743i $$0.872564\pi$$
$$374$$ −2.33913 0.851374i −0.120954 0.0440235i
$$375$$ 19.5060 + 5.89248i 1.00729 + 0.304286i
$$376$$ −0.827908 0.145983i −0.0426961 0.00752847i
$$377$$ 20.1924 1.03996
$$378$$ 4.96900 0.397174i 0.255578 0.0204284i
$$379$$ 7.21949 0.370840 0.185420 0.982659i $$-0.440635\pi$$
0.185420 + 0.982659i $$0.440635\pi$$
$$380$$ 11.9238 + 2.10248i 0.611676 + 0.107855i
$$381$$ −2.81279 12.0006i −0.144103 0.614811i
$$382$$ 7.74754 + 2.81987i 0.396398 + 0.144277i
$$383$$ −3.18408 18.0578i −0.162699 0.922711i −0.951405 0.307941i $$-0.900360\pi$$
0.788707 0.614770i $$-0.210751\pi$$
$$384$$ 15.1041 + 7.63253i 0.770778 + 0.389496i
$$385$$ −7.21453 3.36476i −0.367686 0.171484i
$$386$$ −1.21508 0.701526i −0.0618458 0.0357067i
$$387$$ −9.07725 30.8767i −0.461423 1.56955i
$$388$$ 11.5006i 0.583855i
$$389$$ −2.39377 0.422085i −0.121369 0.0214006i 0.112634 0.993637i $$-0.464071\pi$$
−0.234003 + 0.972236i $$0.575182\pi$$
$$390$$ 0.462087 3.87014i 0.0233987 0.195972i
$$391$$ 7.49461 + 8.93173i 0.379019 + 0.451697i
$$392$$ 1.70378 + 9.66999i 0.0860537 + 0.488408i
$$393$$ −2.90125 + 24.2990i −0.146349 + 1.22572i
$$394$$ 0.485781 + 0.407619i 0.0244733 + 0.0205355i
$$395$$ 5.50506 0.276990
$$396$$ −4.46363 + 6.71385i −0.224306 + 0.337384i
$$397$$ 36.9399i 1.85396i 0.375112 + 0.926979i $$0.377604\pi$$
−0.375112 + 0.926979i $$0.622396\pi$$
$$398$$ −0.660406 + 3.74535i −0.0331032 + 0.187737i
$$399$$ 13.4851 4.43041i 0.675099 0.221798i
$$400$$ 1.89171 + 0.688526i 0.0945855 + 0.0344263i
$$401$$ −20.0275 23.8679i −1.00013 1.19190i −0.981379 0.192081i $$-0.938476\pi$$
−0.0187479 0.999824i $$-0.505968\pi$$
$$402$$ −1.45621 1.55118i −0.0726290 0.0773658i
$$403$$ 7.16946 2.60947i 0.357136 0.129987i
$$404$$ −7.65639 13.2612i −0.380919 0.659772i
$$405$$ 0.908234 + 18.8060i 0.0451305 + 0.934479i
$$406$$ 1.68962 + 6.30740i 0.0838545 + 0.313031i
$$407$$ 9.67610 11.5315i 0.479626 0.571597i
$$408$$ −11.2908 + 2.64642i −0.558979 + 0.131017i
$$409$$ −0.147979 + 0.406570i −0.00731710 + 0.0201036i −0.943297 0.331949i $$-0.892294\pi$$
0.935980 + 0.352052i $$0.114516\pi$$
$$410$$ 4.13972 + 4.93352i 0.204446 + 0.243649i
$$411$$ 6.02488 + 3.04455i 0.297186 + 0.150176i
$$412$$ −15.3168 2.70076i −0.754603 0.133057i
$$413$$ −9.84090 36.7363i −0.484239 1.80768i
$$414$$ −2.38038 + 1.18072i −0.116989 + 0.0580293i
$$415$$ −8.13262 + 14.0861i −0.399215 + 0.691460i
$$416$$ 2.04822 11.6161i 0.100422 0.569524i
$$417$$ −1.28025 + 1.71080i −0.0626941 + 0.0837782i
$$418$$ 0.552472 1.51790i 0.0270223 0.0742432i
$$419$$ −13.0454 + 10.9464i −0.637310 + 0.534766i −0.903191 0.429239i $$-0.858782\pi$$
0.265881 + 0.964006i $$0.414337\pi$$
$$420$$ −17.7305 + 2.55105i −0.865158 + 0.124478i
$$421$$ −10.9652 + 3.99100i −0.534410 + 0.194509i −0.595107 0.803647i $$-0.702890\pi$$
0.0606961 + 0.998156i $$0.480668\pi$$
$$422$$ −0.413563 0.238771i −0.0201319 0.0116232i
$$423$$ −0.507117 1.72499i −0.0246569 0.0838716i
$$424$$ −7.06004 12.2283i −0.342866 0.593861i
$$425$$ −2.79688 + 1.01798i −0.135669 + 0.0493794i
$$426$$ −2.03436 + 4.02582i −0.0985652 + 0.195052i
$$427$$ 16.9381 + 1.48301i 0.819693 + 0.0717678i
$$428$$ 0.682071 0.120268i 0.0329692 0.00581335i
$$429$$ 7.07444 + 2.13708i 0.341557 + 0.103179i
$$430$$ −2.78319 7.64676i −0.134217 0.368760i
$$431$$ 20.6932 + 11.9473i 0.996759 + 0.575479i 0.907288 0.420511i $$-0.138149\pi$$
0.0894710 + 0.995989i $$0.471482\pi$$
$$432$$ −0.124813 + 16.7750i −0.00600505 + 0.807087i
$$433$$ 32.9313i 1.58258i 0.611442 + 0.791289i $$0.290590\pi$$
−0.611442 + 0.791289i $$0.709410\pi$$
$$434$$ 1.41502 + 2.02114i 0.0679231 + 0.0970178i
$$435$$ −24.0125 + 5.62820i −1.15131 + 0.269852i
$$436$$ 4.53319 3.80380i 0.217101 0.182169i
$$437$$ −5.79596 + 4.86339i −0.277258 + 0.232647i
$$438$$ −0.502440 + 0.994284i −0.0240075 + 0.0475087i
$$439$$ 10.3614 + 28.4677i 0.494522 + 1.35869i 0.896502 + 0.443040i $$0.146100\pi$$
−0.401979 + 0.915649i $$0.631678\pi$$
$$440$$ −2.11024 + 3.65505i −0.100602 + 0.174248i
$$441$$ −16.9082 + 12.4544i −0.805153 + 0.593067i
$$442$$ 2.56721 + 4.44654i 0.122110 + 0.211500i
$$443$$ 12.1741 14.5086i 0.578410 0.689322i −0.394924 0.918714i $$-0.629229\pi$$
0.973334 + 0.229392i $$0.0736736\pi$$
$$444$$ 4.01587 33.6343i 0.190585 1.59621i
$$445$$ 3.87620 + 21.9830i 0.183749 + 1.04209i
$$446$$ 2.44083 + 0.888390i 0.115577 + 0.0420665i
$$447$$ −9.31770 21.7490i −0.440712 1.02869i
$$448$$ −13.2185 + 1.15560i −0.624517 + 0.0545970i
$$449$$ −0.762216 + 0.440066i −0.0359712 + 0.0207680i −0.517878 0.855455i $$-0.673278\pi$$
0.481907 + 0.876223i $$0.339944\pi$$
$$450$$ −0.0754025 0.674091i −0.00355451 0.0317769i
$$451$$ −10.5752 + 6.10559i −0.497966 + 0.287501i
$$452$$ −16.8528 + 20.0844i −0.792689 + 0.944690i
$$453$$ −16.2128 24.7840i −0.761744 1.16446i
$$454$$ 2.65122 7.28416i 0.124428 0.341863i
$$455$$ 6.93834 + 14.8819i 0.325274 + 0.697672i
$$456$$ −1.71731 7.32682i −0.0804203 0.343110i
$$457$$ −2.38512 + 13.5267i −0.111571 + 0.632751i 0.876820 + 0.480819i $$0.159661\pi$$
−0.988391 + 0.151932i $$0.951451\pi$$
$$458$$ 4.31900 7.48072i 0.201813 0.349551i
$$459$$ −15.8009 19.1178i −0.737522 0.892345i
$$460$$ 8.26913 4.77418i 0.385550 0.222597i
$$461$$ −0.487527 0.409083i −0.0227064 0.0190529i 0.631364 0.775487i $$-0.282495\pi$$
−0.654070 + 0.756434i $$0.726940\pi$$
$$462$$ −0.0755879 + 2.38863i −0.00351667 + 0.111129i
$$463$$ −0.609420 3.45619i −0.0283221 0.160623i 0.967367 0.253381i $$-0.0815427\pi$$
−0.995689 + 0.0927584i $$0.970432\pi$$
$$464$$ −21.6408 + 3.81586i −1.00465 + 0.177147i
$$465$$ −7.79848 + 5.10148i −0.361646 + 0.236575i
$$466$$ −0.330295 0.277150i −0.0153006 0.0128387i
$$467$$ 34.1128 1.57855 0.789276 0.614039i $$-0.210456\pi$$
0.789276 + 0.614039i $$0.210456\pi$$
$$468$$ 15.9543 4.69031i 0.737489 0.216810i
$$469$$ 8.65754 + 2.32039i 0.399768 + 0.107146i
$$470$$ −0.155488 0.427200i −0.00717214 0.0197053i
$$471$$ −1.15066 0.137386i −0.0530195 0.00633042i
$$472$$ −19.8570 + 3.50132i −0.913992 + 0.161161i
$$473$$ 15.1949 2.67927i 0.698662 0.123193i
$$474$$ −0.650819 1.51912i −0.0298931 0.0697753i
$$475$$ −0.660587 1.81495i −0.0303098 0.0832755i
$$476$$ 16.6868 16.6846i 0.764839 0.764739i
$$477$$ 16.7195 25.1482i 0.765535 1.15146i
$$478$$ −7.25242 −0.331718
$$479$$ 2.11224 + 1.77238i 0.0965108 + 0.0809821i 0.689766 0.724032i $$-0.257713\pi$$
−0.593256 + 0.805014i $$0.702158\pi$$
$$480$$ 0.802014 + 14.3845i 0.0366067 + 0.656562i
$$481$$ −30.5778 + 5.39170i −1.39423 + 0.245840i
$$482$$ 1.20236 + 6.81890i 0.0547658 + 0.310592i
$$483$$ 5.90073 9.51227i 0.268493 0.432823i
$$484$$ 12.7842 + 10.7272i 0.581100 + 0.487601i
$$485$$ −11.1510 + 6.43803i −0.506340 + 0.292336i
$$486$$ 5.08213 2.47391i 0.230530 0.112219i
$$487$$ −13.8571 + 24.0013i −0.627927 + 1.08760i 0.360040 + 0.932937i $$0.382763\pi$$
−0.987967 + 0.154664i $$0.950570\pi$$
$$488$$ 1.56535 8.87753i 0.0708600 0.401867i
$$489$$ 28.6412 + 8.65206i 1.29520 + 0.391259i
$$490$$ −4.06800 + 3.41255i −0.183774 + 0.154163i
$$491$$ −6.42037 + 17.6398i −0.289747 + 0.796074i 0.706354 + 0.707859i $$0.250339\pi$$
−0.996101 + 0.0882154i $$0.971884\pi$$
$$492$$ −12.3929 + 24.5244i −0.558713 + 1.10564i
$$493$$ 20.8838 24.8883i 0.940558 1.12091i
$$494$$ −2.88544 + 1.66591i −0.129822 + 0.0749528i
$$495$$ −9.00848 0.569533i −0.404901 0.0255986i
$$496$$ −7.19060 + 4.15149i −0.322867 + 0.186408i
$$497$$ −1.65492 18.9301i −0.0742333 0.849130i
$$498$$ 4.84850 + 0.578901i 0.217267 + 0.0259412i
$$499$$ −32.7122 11.9063i −1.46440 0.532998i −0.517825 0.855486i $$-0.673258\pi$$
−0.946573 + 0.322489i $$0.895481\pi$$
$$500$$ 3.81717 + 21.6482i 0.170709 + 0.968138i
$$501$$ −0.260263 + 0.111502i −0.0116277 + 0.00498154i
$$502$$ −1.54853 + 1.84547i −0.0691142 + 0.0823671i
$$503$$ 3.38336 + 5.86014i 0.150856 + 0.261291i 0.931543 0.363632i $$-0.118464\pi$$
−0.780686 + 0.624923i $$0.785130\pi$$
$$504$$ 5.79720 + 9.50527i 0.258228 + 0.423398i
$$505$$ 8.57206 14.8473i 0.381452 0.660694i
$$506$$ −0.435690 1.19705i −0.0193688 0.0532153i
$$507$$ 3.98172 + 6.08674i 0.176834 + 0.270321i
$$508$$ 10.1861 8.54719i 0.451937 0.379220i
$$509$$ 23.2453 19.5051i 1.03033 0.864549i 0.0394394 0.999222i $$-0.487443\pi$$
0.990890 + 0.134673i $$0.0429983\pi$$
$$510$$ −4.29227 4.57220i −0.190065 0.202461i
$$511$$ −0.408727 4.67529i −0.0180810 0.206823i
$$512$$ 21.8934i 0.967562i
$$513$$ 12.4059 10.2535i 0.547735 0.452702i
$$514$$ −0.926618 0.534983i −0.0408714 0.0235971i
$$515$$ −5.95565 16.3630i −0.262437 0.721040i
$$516$$ 25.3128 23.7631i 1.11434 1.04611i
$$517$$ 0.848890 0.149682i 0.0373342 0.00658302i
$$518$$ −4.24282 9.10030i −0.186419 0.399844i
$$519$$ −22.7488 + 1.26837i −0.998563 + 0.0556751i
$$520$$ 8.18034 2.97740i 0.358732 0.130568i
$$521$$ 10.2997 + 17.8395i 0.451237 + 0.781565i 0.998463 0.0554198i $$-0.0176497\pi$$
−0.547227 + 0.836985i $$0.684316\pi$$
$$522$$ 4.39190 + 5.96084i 0.192228 + 0.260899i
$$523$$ 28.1811 + 16.2704i 1.23228 + 0.711454i 0.967504 0.252857i $$-0.0813702\pi$$
0.264771 + 0.964311i $$0.414704\pi$$
$$524$$ −24.8077 + 9.02925i −1.08373 + 0.394445i
$$525$$ 1.76661 + 2.24597i 0.0771012 + 0.0980222i
$$526$$ 3.05040 2.55959i 0.133004 0.111604i
$$527$$ 4.19861 11.5356i 0.182894 0.502498i
$$528$$ −7.98574 0.953481i −0.347535 0.0414949i
$$529$$ 2.95779 16.7745i 0.128600 0.729325i
$$530$$ 3.81788 6.61276i 0.165838 0.287240i
$$531$$ −25.5798 34.7179i −1.11007 1.50663i
$$532$$ 10.8270 + 10.8284i 0.469408 + 0.469470i
$$533$$ 24.8046 + 4.37372i 1.07441 + 0.189447i
$$534$$ 5.60794 3.66851i 0.242679 0.158752i
$$535$$ 0.498434 + 0.594010i 0.0215492 + 0.0256813i
$$536$$ 1.62528 4.46541i 0.0702012 0.192876i
$$537$$ −24.3370 25.9242i −1.05022 1.11871i
$$538$$ −2.15221 + 2.56490i −0.0927884 + 0.110581i
$$539$$ −5.03275 8.71962i −0.216776 0.375580i
$$540$$ −17.6653 + 10.0246i −0.760195 + 0.431389i
$$541$$ −11.9337 20.6698i −0.513071 0.888665i −0.999885 0.0151593i $$-0.995174\pi$$
0.486814 0.873506i $$-0.338159\pi$$
$$542$$ 6.34464 2.30926i 0.272525 0.0991912i
$$543$$ −24.6686 + 5.78198i −1.05863 + 0.248128i
$$544$$ −12.1991 14.5383i −0.523033 0.623326i
$$545$$ 6.22584 + 2.26602i 0.266686 + 0.0970656i
$$546$$ 3.28637 3.67399i 0.140644 0.157232i
$$547$$ −2.89649 + 16.4268i −0.123845 + 0.702359i 0.858142 + 0.513412i $$0.171619\pi$$
−0.981987 + 0.188947i $$0.939492\pi$$
$$548$$ 7.28234i 0.311086i
$$549$$ 18.4968 5.43774i 0.789422 0.232077i
$$550$$ 0.325187 0.0138660
$$551$$ 16.1505 + 13.5519i 0.688033 + 0.577328i
$$552$$ −4.75153 3.55573i −0.202239 0.151342i
$$553$$ 5.70289 + 3.99376i 0.242512 + 0.169832i
$$554$$ −5.17463 6.16688i −0.219849 0.262006i
$$555$$ 34.8599 14.9347i 1.47972 0.633941i
$$556$$ −2.27014 0.400286i −0.0962752 0.0169759i
$$557$$ 31.3610i 1.32881i −0.747374 0.664403i $$-0.768686\pi$$
0.747374 0.664403i $$-0.231314\pi$$
$$558$$ 2.32970 + 1.54888i 0.0986240 + 0.0655691i
$$559$$ −27.5613 15.9125i −1.16572 0.673027i
$$560$$ −10.2483 14.6382i −0.433071 0.618575i
$$561$$ 9.95074 6.50941i 0.420120 0.274827i
$$562$$ −1.97281 11.1884i −0.0832180 0.471953i
$$563$$ 15.2963 + 5.56740i 0.644662 + 0.234638i 0.643601 0.765362i $$-0.277440\pi$$
0.00106174 + 0.999999i $$0.499662\pi$$
$$564$$ 1.41415 1.32757i 0.0595464 0.0559007i
$$565$$ −28.9080 5.09726i −1.21617 0.214443i
$$566$$ 8.61779 0.362233
$$567$$ −12.7024 + 20.1408i −0.533449 + 0.845832i
$$568$$ −10.0745 −0.422716
$$569$$ 41.6897 + 7.35102i 1.74772 + 0.308171i 0.953932 0.300022i $$-0.0969939\pi$$
0.793790 + 0.608192i $$0.208105\pi$$
$$570$$ 2.96698 2.78533i 0.124273 0.116665i
$$571$$ 30.1954 + 10.9902i 1.26364 + 0.459926i 0.884988 0.465614i $$-0.154167\pi$$
0.378649 + 0.925540i $$0.376389\pi$$
$$572$$ 1.38441 + 7.85136i 0.0578849 + 0.328282i
$$573$$ −32.9583 + 21.5601i −1.37685 + 0.900685i
$$574$$ 0.709354 + 8.11406i 0.0296079 + 0.338675i
$$575$$ −1.31910 0.761580i −0.0550101 0.0317601i
$$576$$ −13.4785 + 6.68567i −0.561606 + 0.278570i
$$577$$ 33.3564i 1.38865i −0.719663 0.694323i $$-0.755704\pi$$
0.719663 0.694323i $$-0.244296\pi$$
$$578$$ 2.06528 + 0.364164i 0.0859041 + 0.0151472i
$$579$$ 6.16058 2.63931i 0.256025 0.109686i
$$580$$ −17.1024 20.3818i −0.710137 0.846309i
$$581$$ −18.6439 + 8.69233i −0.773481 + 0.360619i
$$582$$ 3.09486 + 2.31599i 0.128286 + 0.0960008i
$$583$$ 11.0907 + 9.30624i 0.459332 + 0.385425i
$$584$$ −2.48816 −0.102961
$$585$$ 13.4789 + 12.8437i 0.557285 + 0.531021i
$$586$$ 8.55691i 0.353483i
$$587$$ 1.67617 9.50604i 0.0691830 0.392356i −0.930479 0.366346i $$-0.880609\pi$$
0.999662 0.0260103i $$-0.00828026\pi$$
$$588$$ −20.2183 10.2202i −0.833790 0.421475i
$$589$$ 7.48565 + 2.72455i 0.308441 + 0.112263i
$$590$$ −7.00881 8.35278i −0.288548 0.343878i
$$591$$ −2.94926 + 0.691267i −0.121316 + 0.0284349i
$$592$$ 31.7523 11.5569i 1.30501 0.474985i
$$593$$ −12.2780 21.2661i −0.504196 0.873293i −0.999988 0.00485158i $$-0.998456\pi$$
0.495793 0.868441i $$-0.334878\pi$$
$$594$$ 0.907838 + 2.55321i 0.0372490 + 0.104760i
$$595$$ 25.5187 + 6.83949i 1.04616 + 0.280392i
$$596$$ 16.4073 19.5535i 0.672070 0.800942i
$$597$$ −12.4341 13.2450i −0.508893 0.542082i
$$598$$ −0.898670 + 2.46908i −0.0367494 + 0.100968i
$$599$$ −20.6509 24.6108i −0.843773 1.00557i −0.999841 0.0178236i $$-0.994326\pi$$
0.156068 0.987746i $$-0.450118\pi$$
$$600$$ 1.26780 0.829346i 0.0517576 0.0338579i
$$601$$ 8.38253 + 1.47807i 0.341931 + 0.0602916i 0.341977 0.939708i $$-0.388904\pi$$
−4.61367e−5 1.00000i $$0.500015\pi$$
$$602$$ 2.66429 9.94068i 0.108589 0.405152i
$$603$$ 10.1002 1.12979i 0.411312 0.0460086i
$$604$$ 15.9747 27.6691i 0.650003 1.12584i
$$605$$ −3.24453 + 18.4006i −0.131909 + 0.748092i
$$606$$ −5.11049 0.610182i −0.207599 0.0247869i
$$607$$ −0.457171 + 1.25607i −0.0185560 + 0.0509822i −0.948625 0.316403i $$-0.897525\pi$$
0.930069 + 0.367385i $$0.119747\pi$$
$$608$$ 9.43419 7.91623i 0.382607 0.321045i
$$609$$ −28.9585 11.5899i −1.17346 0.469647i
$$610$$ 4.58080 1.66728i 0.185471 0.0675060i
$$611$$ −1.53976 0.888982i −0.0622921 0.0359643i
$$612$$ 10.7195 24.5156i 0.433311 0.990983i
$$613$$ 7.78963 + 13.4920i 0.314620 + 0.544938i 0.979357 0.202140i $$-0.0647896\pi$$
−0.664737 + 0.747078i $$0.731456\pi$$
$$614$$ −4.26697 + 1.55305i −0.172201 + 0.0626760i
$$615$$ −30.7163 + 1.71260i −1.23860 + 0.0690585i
$$616$$ −4.83771 + 2.25548i −0.194917 + 0.0908758i
$$617$$ −7.82014 + 1.37890i −0.314827 + 0.0555125i −0.328829 0.944389i $$-0.606654\pi$$
0.0140019 + 0.999902i $$0.495543\pi$$
$$618$$ −3.81127 + 3.57792i −0.153312 + 0.143925i
$$619$$ 4.65611 + 12.7926i 0.187145 + 0.514177i 0.997413 0.0718827i $$-0.0229007\pi$$
−0.810268 + 0.586059i $$0.800678\pi$$
$$620$$ −8.70627 5.02657i −0.349652 0.201872i
$$621$$ 2.29699 12.4830i 0.0921750 0.500927i
$$622$$ 0.731007i 0.0293107i
$$623$$ −11.9325 + 25.5851i −0.478067 + 1.02504i
$$624$$ 11.3539 + 12.0944i 0.454519 + 0.484162i
$$625$$ −16.4649 + 13.8157i −0.658596 + 0.552627i
$$626$$ −8.61273 + 7.22694i −0.344234 + 0.288847i
$$627$$ 4.22407 + 6.45721i 0.168693 + 0.257876i
$$628$$ −0.427573 1.17475i −0.0170620 0.0468775i
$$629$$ −24.9792 + 43.2653i −0.995987 + 1.72510i
$$630$$ −2.88405 + 5.28506i −0.114903 + 0.210562i
$$631$$ −2.91637 5.05129i −0.116099 0.201089i 0.802120 0.597163i $$-0.203706\pi$$
−0.918218 + 0.396074i $$0.870372\pi$$
$$632$$ 2.37266 2.82762i 0.0943793 0.112477i
$$633$$ 2.09681 0.898313i 0.0833406 0.0357047i
$$634$$ 0.477255 + 2.70665i 0.0189542 + 0.107495i
$$635$$ 13.9895 + 5.09177i 0.555158 + 0.202061i
$$636$$ 32.3487 + 3.86237i 1.28271 + 0.153153i
$$637$$ −3.60868 + 20.4502i −0.142981 + 0.810267i
$$638$$ −3.07409 + 1.77483i −0.121704 + 0.0702661i
$$639$$ −9.57445 19.3024i −0.378759 0.763593i
$$640$$ −17.7015 + 10.2199i −0.699712 + 0.403979i
$$641$$ 2.54635 3.03462i 0.100575 0.119860i −0.713409 0.700748i $$-0.752850\pi$$
0.813984 + 0.580887i $$0.197294\pi$$
$$642$$ 0.104991 0.207767i 0.00414365 0.00819992i
$$643$$ −16.5501 + 45.4710i −0.652672 + 1.79320i −0.0450352 + 0.998985i $$0.514340\pi$$
−0.607636 + 0.794215i $$0.707882\pi$$
$$644$$ 12.0298 + 1.05327i 0.474041 + 0.0415045i
$$645$$ 37.2107 + 11.2408i 1.46517 + 0.442606i
$$646$$ −0.930905 + 5.27942i −0.0366260 + 0.207716i
$$647$$ 10.0033 17.3262i 0.393270 0.681163i −0.599609 0.800293i $$-0.704677\pi$$
0.992879 + 0.119130i $$0.0380106\pi$$
$$648$$ 10.0510 + 7.63882i 0.394840 + 0.300081i
$$649$$ 17.9045 10.3372i 0.702813 0.405769i
$$650$$ −0.513818 0.431145i −0.0201536 0.0169109i
$$651$$ −11.7797 0.372767i −0.461683 0.0146099i
$$652$$ 5.60483 + 31.7866i 0.219502 + 1.24486i
$$653$$ 27.6858 4.88176i 1.08343 0.191038i 0.396699 0.917949i $$-0.370156\pi$$
0.686732 + 0.726911i $$0.259045\pi$$
$$654$$ −0.110725 1.98591i −0.00432968 0.0776551i
$$655$$ −22.6421 18.9989i −0.884698 0.742350i
$$656$$ −27.4103 −1.07019
$$657$$ −2.36467 4.76725i −0.0922544 0.185988i
$$658$$ 0.148846 0.555355i 0.00580261 0.0216500i
$$659$$ 5.63224 + 15.4744i 0.219401 + 0.602799i 0.999746 0.0225507i $$-0.00717872\pi$$
−0.780345 + 0.625349i $$0.784957\pi$$
$$660$$ −3.83472 8.95085i −0.149266 0.348411i
$$661$$ −21.4195 + 3.77683i −0.833121 + 0.146902i −0.573909 0.818919i $$-0.694574\pi$$
−0.259212 + 0.965821i $$0.583463\pi$$
$$662$$ −0.373268 + 0.0658172i −0.0145075 + 0.00255806i
$$663$$ −24.3533 2.90773i −0.945803 0.112927i
$$664$$ 3.73008 + 10.2483i 0.144755 + 0.397711i
$$665$$ −4.43827 + 16.5595i −0.172109 + 0.642151i
$$666$$ −8.24241 7.85395i −0.319387 0.304334i
$$667$$ 16.6264 0.643777
$$668$$ −0.233990 0.196341i −0.00905335 0.00759666i
$$669$$ −10.3834 + 6.79242i −0.401444 + 0.262610i
$$670$$ 2.53071 0.446232i 0.0977698 0.0172395i
$$671$$ 1.60502 + 9.10252i 0.0619611 + 0.351399i
$$672$$ −9.60474 + 15.4833i −0.370511 + 0.597282i
$$673$$ 9.03852 + 7.58422i 0.348409 + 0.292350i 0.800151 0.599799i $$-0.204753\pi$$
−0.451742 + 0.892149i $$0.649197\pi$$
$$674$$ 7.73975 4.46855i 0.298124 0.172122i
$$675$$ 2.79388 + 1.64088i 0.107536 + 0.0631576i
$$676$$ −3.92325 + 6.79527i −0.150894 + 0.261357i
$$677$$ −4.78391 + 27.1309i −0.183861 + 1.04273i 0.743550 + 0.668681i $$0.233141\pi$$
−0.927410 + 0.374045i $$0.877971\pi$$
$$678$$ 2.01097 + 8.57974i 0.0772310 + 0.329503i
$$679$$ −16.2223 1.42034i −0.622555 0.0545076i
$$680$$ 4.79061 13.1621i 0.183711 0.504743i
$$681$$ 20.2706 + 30.9870i 0.776771 + 1.18743i
$$682$$ −0.862117 + 1.02743i −0.0330122 + 0.0393424i
$$683$$ 10.0793 5.81928i 0.385673 0.222669i −0.294610 0.955617i $$-0.595190\pi$$
0.680284 + 0.732949i $$0.261857\pi$$
$$684$$ 15.9086 + 6.95609i 0.608280 + 0.265973i
$$685$$ −7.06095 + 4.07664i −0.269785 + 0.155760i
$$686$$ −6.68990 + 0.583968i −0.255422 + 0.0222960i
$$687$$ 16.2491 + 37.9280i 0.619942 + 1.44705i
$$688$$ 32.5453 + 11.8455i 1.24078 + 0.451606i
$$689$$ −5.18561 29.4090i −0.197556 1.12039i
$$690$$ 0.380482 3.18667i 0.0144847 0.121315i
$$691$$ −5.61278 + 6.68905i −0.213520 + 0.254464i −0.862165 0.506628i $$-0.830892\pi$$
0.648644 + 0.761092i $$0.275336\pi$$
$$692$$ −12.2897 21.2864i −0.467184 0.809187i
$$693$$ −8.91903 7.12539i −0.338806 0.270671i
$$694$$ −4.16341 + 7.21123i −0.158041 + 0.273735i
$$695$$ −0.882701 2.42520i −0.0334828 0.0919931i
$$696$$ −7.45841 + 14.7595i −0.282710 + 0.559459i
$$697$$ 31.0447 26.0496i 1.17590 0.986700i
$$698$$ 5.08716 4.26863i 0.192552 0.161570i
$$699$$ 2.00528 0.470010i 0.0758466 0.0177774i
$$700$$ −1.30297 + 2.79375i −0.0492475 + 0.105594i
$$701$$ 49.8729i 1.88367i 0.336072 + 0.941836i $$0.390901\pi$$
−0.336072 + 0.941836i $$0.609099\pi$$
$$702$$ 1.95070 5.23790i 0.0736242 0.197692i
$$703$$ −28.0756 16.2095i −1.05889 0.611352i
$$704$$ −2.46703 6.77812i −0.0929799 0.255460i
$$705$$ 2.07885 + 0.627988i 0.0782939 + 0.0236514i
$$706$$ −8.07745 + 1.42427i −0.303999 + 0.0536032i
$$707$$ 19.6514 9.16202i 0.739066 0.344573i
$$708$$ 20.9819 41.5214i 0.788549 1.56047i
$$709$$ −8.39943 + 3.05714i −0.315447 + 0.114813i −0.494892 0.868955i $$-0.664792\pi$$
0.179444 + 0.983768i $$0.442570\pi$$
$$710$$ −2.72401 4.71812i −0.102230 0.177068i
$$711$$ 7.67254 + 1.85867i 0.287743 + 0.0697055i
$$712$$ 12.9620 + 7.48361i 0.485771 + 0.280460i
$$713$$ 5.90333 2.14864i 0.221081 0.0804671i
$$714$$ −1.12951 7.85043i −0.0422710 0.293795i
$$715$$ −6.83768 + 5.73750i −0.255715 + 0.214570i
$$716$$ 13.1197 36.0461i 0.490307 1.34711i
$$717$$ 20.7566 27.7370i 0.775168 1.03586i
$$718$$ −1.71924 + 9.75028i −0.0641614 + 0.363877i
$$719$$ −17.3762 + 30.0965i −0.648025 + 1.12241i 0.335569 + 0.942016i $$0.391071\pi$$
−0.983594 + 0.180396i $$0.942262\pi$$
$$720$$ −16.8729 11.2178i −0.628816 0.418062i
$$721$$ 5.70122 21.2717i 0.212325 0.792199i
$$722$$ 3.35871 + 0.592232i 0.124998 + 0.0220406i
$$723$$ −29.5202 14.9174i −1.09787 0.554783i
$$724$$ −17.5696 20.9387i −0.652971 0.778180i
$$725$$ −1.45163 + 3.98833i −0.0539123 + 0.148123i
$$726$$ 5.46121 1.28003i 0.202685 0.0475065i
$$727$$ −14.1462 + 16.8588i −0.524654 + 0.625258i −0.961675 0.274193i $$-0.911589\pi$$
0.437021 + 0.899451i $$0.356034\pi$$
$$728$$ 10.6343 + 2.85020i 0.394134 + 0.105636i
$$729$$ −5.08364 + 26.5171i −0.188283 + 0.982115i
$$730$$ −0.672766 1.16526i −0.0249002 0.0431284i
$$731$$ −48.1181 + 17.5135i −1.77971 + 0.647762i
$$732$$ 14.2353 + 15.1637i 0.526152 + 0.560466i
$$733$$ −1.91223 2.27890i −0.0706297 0.0841733i 0.729573 0.683903i $$-0.239719\pi$$
−0.800202 + 0.599730i $$0.795275\pi$$
$$734$$ −3.98510 1.45046i −0.147093 0.0535373i
$$735$$ −1.40868 25.3249i −0.0519598 0.934125i
$$736$$ 1.68651 9.56466i 0.0621655 0.352558i
$$737$$ 4.87242i 0.179478i
$$738$$ 4.10393 + 8.27367i 0.151068 + 0.304558i
$$739$$ −15.0051 −0.551970 −0.275985 0.961162i $$-0.589004\pi$$
−0.275985 + 0.961162i $$0.589004\pi$$
$$740$$ 31.3408 + 26.2981i 1.15211 + 0.966737i
$$741$$ 1.88688 15.8033i 0.0693163 0.580548i
$$742$$ 8.75245 4.08064i 0.321312 0.149805i
$$743$$ 0.0879752 + 0.104845i 0.00322750 + 0.00384638i 0.767656 0.640862i $$-0.221423\pi$$
−0.764428 + 0.644709i $$0.776979\pi$$
$$744$$ −0.740785 + 6.20433i −0.0271585 + 0.227462i
$$745$$ 28.1438 + 4.96252i 1.03111 + 0.181813i
$$746$$ 3.13595i 0.114815i
$$747$$ −16.0905 + 16.8864i −0.588721 + 0.617840i
$$748$$ 11.1091 + 6.41382i 0.406188 + 0.234513i
$$749$$ 0.0854082 + 0.976956i 0.00312075 + 0.0356972i
$$750$$ 6.59431 + 3.33229i 0.240790 + 0.121678i
$$751$$ −0.0242053 0.137275i −0.000883263 0.00500923i 0.984363 0.176152i $$-0.0563651\pi$$
−0.985246 + 0.171143i $$0.945254\pi$$
$$752$$ 1.81820 + 0.661772i 0.0663031 + 0.0241323i
$$753$$ −2.62610 11.2041i −0.0957003 0.408301i
$$754$$ 7.21041 + 1.27139i 0.262588 + 0.0463013i
$$755$$ 35.7705 1.30182
$$756$$ −25.5727 2.43086i −0.930070 0.0884096i
$$757$$ −9.74965 −0.354357 −0.177178 0.984179i $$-0.556697\pi$$
−0.177178 + 0.984179i $$0.556697\pi$$
$$758$$ 2.57798 + 0.454567i 0.0936363 + 0.0165106i
$$759$$ 5.82509 + 1.75967i 0.211437 + 0.0638720i
$$760$$ 8.54112 + 3.10871i 0.309819 + 0.112765i
$$761$$ 2.02254 + 11.4704i 0.0733172 + 0.415802i 0.999271 + 0.0381665i $$0.0121517\pi$$
−0.925954 + 0.377636i $$0.876737\pi$$
$$762$$ −0.248800 4.46236i −0.00901306 0.161654i
$$763$$ 4.80564 + 6.86412i 0.173976 + 0.248498i
$$764$$ −36.7948 21.2435i −1.33119 0.768563i
$$765$$ 29.7710 3.33013i 1.07637 0.120401i
$$766$$ 6.64867i 0.240226i
$$767$$ −41.9958 7.40499i −1.51638