Properties

Label 189.2.ba.a.38.12
Level $189$
Weight $2$
Character 189.38
Analytic conductor $1.509$
Analytic rank $0$
Dimension $132$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [189,2,Mod(5,189)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(189, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([5, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("189.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 189 = 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 189.ba (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.50917259820\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 38.12
Character \(\chi\) \(=\) 189.38
Dual form 189.2.ba.a.5.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.284285 + 0.0501271i) q^{2} +(1.43787 - 0.965670i) q^{3} +(-1.80108 - 0.655540i) q^{4} +(-0.499509 - 2.83286i) q^{5} +(0.457172 - 0.202449i) q^{6} +(0.989753 + 2.45365i) q^{7} +(-0.979151 - 0.565313i) q^{8} +(1.13496 - 2.77702i) q^{9} +O(q^{10})\) \(q+(0.284285 + 0.0501271i) q^{2} +(1.43787 - 0.965670i) q^{3} +(-1.80108 - 0.655540i) q^{4} +(-0.499509 - 2.83286i) q^{5} +(0.457172 - 0.202449i) q^{6} +(0.989753 + 2.45365i) q^{7} +(-0.979151 - 0.565313i) q^{8} +(1.13496 - 2.77702i) q^{9} -0.830377i q^{10} +(2.61285 + 0.460715i) q^{11} +(-3.22276 + 0.796666i) q^{12} +(-4.11463 - 4.90363i) q^{13} +(0.158378 + 0.747148i) q^{14} +(-3.45384 - 3.59093i) q^{15} +(2.68649 + 2.25423i) q^{16} +2.47492 q^{17} +(0.461857 - 0.732573i) q^{18} +4.65971i q^{19} +(-0.957395 + 5.42965i) q^{20} +(3.79255 + 2.57226i) q^{21} +(0.719698 + 0.261949i) q^{22} +(5.08246 + 6.05704i) q^{23} +(-1.95380 + 0.132688i) q^{24} +(-3.07712 + 1.11998i) q^{25} +(-0.923922 - 1.60028i) q^{26} +(-1.04975 - 5.08901i) q^{27} +(-0.174161 - 5.06804i) q^{28} +(-0.285491 + 0.340235i) q^{29} +(-0.801870 - 1.19398i) q^{30} +(-2.04142 + 5.60874i) q^{31} +(2.10423 + 2.50773i) q^{32} +(4.20184 - 1.86070i) q^{33} +(0.703581 + 0.124060i) q^{34} +(6.45645 - 4.02945i) q^{35} +(-3.86461 + 4.25763i) q^{36} +(-1.80657 + 3.12907i) q^{37} +(-0.233578 + 1.32469i) q^{38} +(-10.6516 - 3.07742i) q^{39} +(-1.11236 + 3.05618i) q^{40} +(5.96872 - 5.00835i) q^{41} +(0.949225 + 0.921364i) q^{42} +(-2.51543 + 0.915543i) q^{43} +(-4.40393 - 2.54261i) q^{44} +(-8.43384 - 1.82804i) q^{45} +(1.14124 + 1.97669i) q^{46} +(0.418068 - 0.152164i) q^{47} +(6.03967 + 0.647039i) q^{48} +(-5.04078 + 4.85701i) q^{49} +(-0.930918 + 0.164146i) q^{50} +(3.55862 - 2.38995i) q^{51} +(4.19626 + 11.5291i) q^{52} +(-2.28728 - 1.32056i) q^{53} +(-0.0433320 - 1.49935i) q^{54} -7.63196i q^{55} +(0.417961 - 2.96201i) q^{56} +(4.49975 + 6.70008i) q^{57} +(-0.0982156 + 0.0824127i) q^{58} +(4.11304 - 3.45125i) q^{59} +(3.86664 + 8.73169i) q^{60} +(-1.27720 - 3.50909i) q^{61} +(-0.861493 + 1.49215i) q^{62} +(7.93717 + 0.0362321i) q^{63} +(-3.03446 - 5.25585i) q^{64} +(-11.8360 + 14.1056i) q^{65} +(1.28779 - 0.318342i) q^{66} +(0.361168 + 2.04828i) q^{67} +(-4.45752 - 1.62241i) q^{68} +(13.1570 + 3.80128i) q^{69} +(2.03745 - 0.821869i) q^{70} +(-12.0809 + 6.97492i) q^{71} +(-2.68119 + 2.07752i) q^{72} +(1.49574 - 0.863568i) q^{73} +(-0.670431 + 0.798988i) q^{74} +(-3.34298 + 4.58187i) q^{75} +(3.05463 - 8.39252i) q^{76} +(1.45564 + 6.86700i) q^{77} +(-2.87383 - 1.40880i) q^{78} +(0.786549 - 4.46074i) q^{79} +(5.04399 - 8.73645i) q^{80} +(-6.42372 - 6.30364i) q^{81} +(1.94787 - 1.12460i) q^{82} +(-11.7399 - 9.85096i) q^{83} +(-5.14448 - 7.11902i) q^{84} +(-1.23624 - 7.01109i) q^{85} +(-0.760992 + 0.134183i) q^{86} +(-0.0819453 + 0.764904i) q^{87} +(-2.29792 - 1.92819i) q^{88} +11.6407 q^{89} +(-2.30598 - 0.942448i) q^{90} +(7.95930 - 14.9492i) q^{91} +(-5.18329 - 14.2410i) q^{92} +(2.48090 + 10.0360i) q^{93} +(0.126478 - 0.0223015i) q^{94} +(13.2003 - 2.32757i) q^{95} +(5.44726 + 1.57380i) q^{96} +(2.49357 + 6.85103i) q^{97} +(-1.67648 + 1.12809i) q^{98} +(4.24490 - 6.73304i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 132 q - 3 q^{2} - 9 q^{3} - 3 q^{4} - 9 q^{5} - 18 q^{6} - 6 q^{7} - 18 q^{8} + 3 q^{9} - 9 q^{11} - 9 q^{12} + 3 q^{14} - 24 q^{15} + 3 q^{16} - 18 q^{17} - 3 q^{18} + 18 q^{20} - 21 q^{21} - 12 q^{22} - 6 q^{23} - 9 q^{24} - 3 q^{25} - 12 q^{28} + 6 q^{29} + 51 q^{30} - 9 q^{31} + 3 q^{32} - 9 q^{33} - 18 q^{34} + 18 q^{35} + 3 q^{37} - 99 q^{38} - 36 q^{39} - 54 q^{40} - 45 q^{42} - 12 q^{43} - 9 q^{44} - 9 q^{45} + 3 q^{46} + 45 q^{47} - 24 q^{49} - 9 q^{50} - 48 q^{51} - 9 q^{52} - 45 q^{53} + 171 q^{54} + 3 q^{56} - 3 q^{58} + 36 q^{59} + 57 q^{60} - 9 q^{61} - 99 q^{62} - 33 q^{63} + 18 q^{64} + 69 q^{65} - 9 q^{66} - 3 q^{67} + 36 q^{68} + 108 q^{69} + 66 q^{70} + 18 q^{71} - 129 q^{72} - 9 q^{73} + 75 q^{74} + 36 q^{75} + 36 q^{76} + 15 q^{77} + 66 q^{78} - 21 q^{79} + 72 q^{80} - 33 q^{81} - 18 q^{82} - 90 q^{83} - 120 q^{84} + 9 q^{85} - 105 q^{86} - 54 q^{87} - 63 q^{88} - 18 q^{89} + 81 q^{90} + 6 q^{91} + 150 q^{92} + 21 q^{93} - 9 q^{94} + 45 q^{95} - 81 q^{96} + 27 q^{98} + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/189\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(136\)
\(\chi(n)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.284285 + 0.0501271i 0.201020 + 0.0354452i 0.273251 0.961943i \(-0.411901\pi\)
−0.0722316 + 0.997388i \(0.523012\pi\)
\(3\) 1.43787 0.965670i 0.830157 0.557530i
\(4\) −1.80108 0.655540i −0.900540 0.327770i
\(5\) −0.499509 2.83286i −0.223387 1.26689i −0.865744 0.500487i \(-0.833154\pi\)
0.642357 0.766406i \(-0.277957\pi\)
\(6\) 0.457172 0.202449i 0.186640 0.0826494i
\(7\) 0.989753 + 2.45365i 0.374092 + 0.927392i
\(8\) −0.979151 0.565313i −0.346182 0.199868i
\(9\) 1.13496 2.77702i 0.378321 0.925674i
\(10\) 0.830377i 0.262588i
\(11\) 2.61285 + 0.460715i 0.787803 + 0.138911i 0.553054 0.833145i \(-0.313462\pi\)
0.234748 + 0.972056i \(0.424573\pi\)
\(12\) −3.22276 + 0.796666i −0.930331 + 0.229978i
\(13\) −4.11463 4.90363i −1.14119 1.36002i −0.923314 0.384046i \(-0.874531\pi\)
−0.217879 0.975976i \(-0.569914\pi\)
\(14\) 0.158378 + 0.747148i 0.0423282 + 0.199684i
\(15\) −3.45384 3.59093i −0.891777 0.927175i
\(16\) 2.68649 + 2.25423i 0.671622 + 0.563558i
\(17\) 2.47492 0.600255 0.300128 0.953899i \(-0.402971\pi\)
0.300128 + 0.953899i \(0.402971\pi\)
\(18\) 0.461857 0.732573i 0.108861 0.172669i
\(19\) 4.65971i 1.06901i 0.845165 + 0.534506i \(0.179502\pi\)
−0.845165 + 0.534506i \(0.820498\pi\)
\(20\) −0.957395 + 5.42965i −0.214080 + 1.21411i
\(21\) 3.79255 + 2.57226i 0.827603 + 0.561314i
\(22\) 0.719698 + 0.261949i 0.153440 + 0.0558476i
\(23\) 5.08246 + 6.05704i 1.05977 + 1.26298i 0.963524 + 0.267623i \(0.0862382\pi\)
0.0962431 + 0.995358i \(0.469317\pi\)
\(24\) −1.95380 + 0.132688i −0.398818 + 0.0270848i
\(25\) −3.07712 + 1.11998i −0.615423 + 0.223996i
\(26\) −0.923922 1.60028i −0.181196 0.313841i
\(27\) −1.04975 5.08901i −0.202025 0.979380i
\(28\) −0.174161 5.06804i −0.0329134 0.957769i
\(29\) −0.285491 + 0.340235i −0.0530143 + 0.0631800i −0.791900 0.610651i \(-0.790908\pi\)
0.738886 + 0.673831i \(0.235352\pi\)
\(30\) −0.801870 1.19398i −0.146401 0.217990i
\(31\) −2.04142 + 5.60874i −0.366649 + 1.00736i 0.609978 + 0.792419i \(0.291178\pi\)
−0.976627 + 0.214942i \(0.931044\pi\)
\(32\) 2.10423 + 2.50773i 0.371980 + 0.443308i
\(33\) 4.20184 1.86070i 0.731447 0.323906i
\(34\) 0.703581 + 0.124060i 0.120663 + 0.0212762i
\(35\) 6.45645 4.02945i 1.09134 0.681102i
\(36\) −3.86461 + 4.25763i −0.644101 + 0.709605i
\(37\) −1.80657 + 3.12907i −0.296998 + 0.514416i −0.975448 0.220231i \(-0.929319\pi\)
0.678450 + 0.734647i \(0.262652\pi\)
\(38\) −0.233578 + 1.32469i −0.0378913 + 0.214892i
\(39\) −10.6516 3.07742i −1.70562 0.492782i
\(40\) −1.11236 + 3.05618i −0.175879 + 0.483224i
\(41\) 5.96872 5.00835i 0.932158 0.782173i −0.0440458 0.999030i \(-0.514025\pi\)
0.976204 + 0.216856i \(0.0695803\pi\)
\(42\) 0.949225 + 0.921364i 0.146469 + 0.142170i
\(43\) −2.51543 + 0.915543i −0.383600 + 0.139619i −0.526620 0.850101i \(-0.676541\pi\)
0.143020 + 0.989720i \(0.454319\pi\)
\(44\) −4.40393 2.54261i −0.663917 0.383313i
\(45\) −8.43384 1.82804i −1.25724 0.272508i
\(46\) 1.14124 + 1.97669i 0.168267 + 0.291448i
\(47\) 0.418068 0.152164i 0.0609815 0.0221954i −0.311349 0.950296i \(-0.600781\pi\)
0.372331 + 0.928100i \(0.378559\pi\)
\(48\) 6.03967 + 0.647039i 0.871752 + 0.0933921i
\(49\) −5.04078 + 4.85701i −0.720111 + 0.693859i
\(50\) −0.930918 + 0.164146i −0.131652 + 0.0232138i
\(51\) 3.55862 2.38995i 0.498306 0.334660i
\(52\) 4.19626 + 11.5291i 0.581917 + 1.59880i
\(53\) −2.28728 1.32056i −0.314183 0.181393i 0.334614 0.942355i \(-0.391394\pi\)
−0.648797 + 0.760962i \(0.724727\pi\)
\(54\) −0.0433320 1.49935i −0.00589674 0.204035i
\(55\) 7.63196i 1.02909i
\(56\) 0.417961 2.96201i 0.0558524 0.395815i
\(57\) 4.49975 + 6.70008i 0.596006 + 0.887447i
\(58\) −0.0982156 + 0.0824127i −0.0128963 + 0.0108213i
\(59\) 4.11304 3.45125i 0.535472 0.449314i −0.334514 0.942391i \(-0.608572\pi\)
0.869986 + 0.493077i \(0.164128\pi\)
\(60\) 3.86664 + 8.73169i 0.499181 + 1.12726i
\(61\) −1.27720 3.50909i −0.163529 0.449293i 0.830680 0.556749i \(-0.187952\pi\)
−0.994210 + 0.107456i \(0.965729\pi\)
\(62\) −0.861493 + 1.49215i −0.109410 + 0.189503i
\(63\) 7.93717 + 0.0362321i 0.999990 + 0.00456481i
\(64\) −3.03446 5.25585i −0.379308 0.656981i
\(65\) −11.8360 + 14.1056i −1.46807 + 1.74958i
\(66\) 1.28779 0.318342i 0.158516 0.0391851i
\(67\) 0.361168 + 2.04828i 0.0441237 + 0.250238i 0.998889 0.0471221i \(-0.0150050\pi\)
−0.954765 + 0.297360i \(0.903894\pi\)
\(68\) −4.45752 1.62241i −0.540554 0.196746i
\(69\) 13.1570 + 3.80128i 1.58392 + 0.457621i
\(70\) 2.03745 0.821869i 0.243522 0.0982321i
\(71\) −12.0809 + 6.97492i −1.43374 + 0.827771i −0.997404 0.0720121i \(-0.977058\pi\)
−0.436338 + 0.899783i \(0.643725\pi\)
\(72\) −2.68119 + 2.07752i −0.315981 + 0.244838i
\(73\) 1.49574 0.863568i 0.175064 0.101073i −0.409908 0.912127i \(-0.634439\pi\)
0.584971 + 0.811054i \(0.301106\pi\)
\(74\) −0.670431 + 0.798988i −0.0779360 + 0.0928805i
\(75\) −3.34298 + 4.58187i −0.386014 + 0.529068i
\(76\) 3.05463 8.39252i 0.350390 0.962688i
\(77\) 1.45564 + 6.86700i 0.165886 + 0.782567i
\(78\) −2.87383 1.40880i −0.325397 0.159515i
\(79\) 0.786549 4.46074i 0.0884937 0.501872i −0.908054 0.418853i \(-0.862432\pi\)
0.996548 0.0830199i \(-0.0264565\pi\)
\(80\) 5.04399 8.73645i 0.563935 0.976765i
\(81\) −6.42372 6.30364i −0.713746 0.700404i
\(82\) 1.94787 1.12460i 0.215106 0.124192i
\(83\) −11.7399 9.85096i −1.28862 1.08128i −0.991993 0.126290i \(-0.959693\pi\)
−0.296629 0.954993i \(-0.595863\pi\)
\(84\) −5.14448 7.11902i −0.561308 0.776749i
\(85\) −1.23624 7.01109i −0.134089 0.760459i
\(86\) −0.760992 + 0.134183i −0.0820599 + 0.0144694i
\(87\) −0.0819453 + 0.764904i −0.00878546 + 0.0820063i
\(88\) −2.29792 1.92819i −0.244959 0.205545i
\(89\) 11.6407 1.23391 0.616956 0.786998i \(-0.288366\pi\)
0.616956 + 0.786998i \(0.288366\pi\)
\(90\) −2.30598 0.942448i −0.243071 0.0993427i
\(91\) 7.95930 14.9492i 0.834362 1.56711i
\(92\) −5.18329 14.2410i −0.540396 1.48472i
\(93\) 2.48090 + 10.0360i 0.257257 + 1.04068i
\(94\) 0.126478 0.0223015i 0.0130452 0.00230022i
\(95\) 13.2003 2.32757i 1.35432 0.238804i
\(96\) 5.44726 + 1.57380i 0.555959 + 0.160625i
\(97\) 2.49357 + 6.85103i 0.253184 + 0.695617i 0.999548 + 0.0300786i \(0.00957575\pi\)
−0.746364 + 0.665538i \(0.768202\pi\)
\(98\) −1.67648 + 1.12809i −0.169350 + 0.113955i
\(99\) 4.24490 6.73304i 0.426629 0.676696i
\(100\) 6.27632 0.627632
\(101\) −2.57671 2.16212i −0.256393 0.215139i 0.505527 0.862811i \(-0.331298\pi\)
−0.761919 + 0.647672i \(0.775743\pi\)
\(102\) 1.13146 0.501044i 0.112031 0.0496107i
\(103\) 4.90650 0.865149i 0.483452 0.0852456i 0.0733901 0.997303i \(-0.476618\pi\)
0.410062 + 0.912058i \(0.365507\pi\)
\(104\) 1.25676 + 7.12744i 0.123236 + 0.698903i
\(105\) 5.39244 12.0286i 0.526248 1.17388i
\(106\) −0.584044 0.490071i −0.0567274 0.0475999i
\(107\) 3.28484 1.89651i 0.317558 0.183342i −0.332746 0.943017i \(-0.607975\pi\)
0.650303 + 0.759675i \(0.274642\pi\)
\(108\) −1.44536 + 9.85387i −0.139079 + 0.948189i
\(109\) −3.99786 + 6.92450i −0.382926 + 0.663247i −0.991479 0.130266i \(-0.958417\pi\)
0.608553 + 0.793513i \(0.291750\pi\)
\(110\) 0.382568 2.16965i 0.0364764 0.206868i
\(111\) 0.424029 + 6.24375i 0.0402471 + 0.592631i
\(112\) −2.87213 + 8.82283i −0.271391 + 0.833679i
\(113\) 1.59010 4.36878i 0.149584 0.410980i −0.842157 0.539232i \(-0.818715\pi\)
0.991742 + 0.128252i \(0.0409367\pi\)
\(114\) 0.943353 + 2.13029i 0.0883531 + 0.199520i
\(115\) 14.6200 17.4235i 1.36332 1.62475i
\(116\) 0.737229 0.425639i 0.0684500 0.0395196i
\(117\) −18.2874 + 5.86099i −1.69067 + 0.541849i
\(118\) 1.34227 0.774962i 0.123566 0.0713411i
\(119\) 2.44956 + 6.07257i 0.224550 + 0.556672i
\(120\) 1.35183 + 5.46856i 0.123404 + 0.499209i
\(121\) −3.72191 1.35467i −0.338356 0.123151i
\(122\) −0.187189 1.06160i −0.0169473 0.0961131i
\(123\) 3.74585 12.9652i 0.337752 1.16903i
\(124\) 7.35351 8.76357i 0.660365 0.786992i
\(125\) −2.48161 4.29827i −0.221962 0.384449i
\(126\) 2.25460 + 0.408167i 0.200856 + 0.0363624i
\(127\) 1.55254 2.68908i 0.137766 0.238618i −0.788885 0.614541i \(-0.789341\pi\)
0.926651 + 0.375924i \(0.122674\pi\)
\(128\) −2.83847 7.79863i −0.250888 0.689308i
\(129\) −2.73276 + 3.74551i −0.240606 + 0.329774i
\(130\) −4.07186 + 3.41670i −0.357126 + 0.299664i
\(131\) −15.9864 + 13.4142i −1.39674 + 1.17201i −0.434218 + 0.900808i \(0.642975\pi\)
−0.962524 + 0.271198i \(0.912580\pi\)
\(132\) −8.78761 + 0.596790i −0.764864 + 0.0519439i
\(133\) −11.4333 + 4.61197i −0.991393 + 0.399908i
\(134\) 0.600400i 0.0518667i
\(135\) −13.8921 + 5.51581i −1.19564 + 0.474726i
\(136\) −2.42332 1.39910i −0.207798 0.119972i
\(137\) 6.77762 + 18.6213i 0.579051 + 1.59093i 0.789784 + 0.613385i \(0.210193\pi\)
−0.210733 + 0.977544i \(0.567585\pi\)
\(138\) 3.54980 + 1.74017i 0.302179 + 0.148133i
\(139\) 5.16629 0.910956i 0.438199 0.0772663i 0.0498033 0.998759i \(-0.484141\pi\)
0.388395 + 0.921493i \(0.373029\pi\)
\(140\) −14.2700 + 3.02491i −1.20604 + 0.255651i
\(141\) 0.454189 0.622509i 0.0382496 0.0524247i
\(142\) −3.78405 + 1.37728i −0.317551 + 0.115579i
\(143\) −8.49172 14.7081i −0.710114 1.22995i
\(144\) 9.30912 4.90197i 0.775760 0.408498i
\(145\) 1.10644 + 0.638805i 0.0918850 + 0.0530498i
\(146\) 0.468505 0.170522i 0.0387738 0.0141125i
\(147\) −2.55773 + 11.8515i −0.210958 + 0.977495i
\(148\) 5.30500 4.45142i 0.436068 0.365905i
\(149\) 3.71385 10.2037i 0.304250 0.835921i −0.689499 0.724286i \(-0.742169\pi\)
0.993749 0.111634i \(-0.0356084\pi\)
\(150\) −1.18003 + 1.13498i −0.0963492 + 0.0926708i
\(151\) −3.09120 + 17.5310i −0.251558 + 1.42666i 0.553197 + 0.833050i \(0.313407\pi\)
−0.804756 + 0.593606i \(0.797704\pi\)
\(152\) 2.63420 4.56256i 0.213662 0.370073i
\(153\) 2.80894 6.87290i 0.227089 0.555641i
\(154\) 0.0695936 + 2.02515i 0.00560801 + 0.163191i
\(155\) 16.9085 + 2.98142i 1.35812 + 0.239474i
\(156\) 17.1670 + 12.5252i 1.37446 + 1.00282i
\(157\) 2.54045 + 3.02759i 0.202750 + 0.241628i 0.857832 0.513929i \(-0.171811\pi\)
−0.655083 + 0.755557i \(0.727366\pi\)
\(158\) 0.447208 1.22869i 0.0355779 0.0977495i
\(159\) −4.56406 + 0.309957i −0.361953 + 0.0245812i
\(160\) 6.05296 7.21363i 0.478528 0.570288i
\(161\) −9.83147 + 18.4656i −0.774828 + 1.45529i
\(162\) −1.51018 2.11403i −0.118651 0.166094i
\(163\) 3.81207 + 6.60270i 0.298585 + 0.517164i 0.975812 0.218610i \(-0.0701522\pi\)
−0.677228 + 0.735773i \(0.736819\pi\)
\(164\) −14.0333 + 5.10771i −1.09582 + 0.398845i
\(165\) −7.36995 10.9738i −0.573750 0.854308i
\(166\) −2.84368 3.38896i −0.220712 0.263035i
\(167\) −17.9253 6.52426i −1.38710 0.504862i −0.462775 0.886476i \(-0.653146\pi\)
−0.924322 + 0.381613i \(0.875369\pi\)
\(168\) −2.25935 4.66261i −0.174313 0.359728i
\(169\) −4.85794 + 27.5507i −0.373688 + 2.11929i
\(170\) 2.05511i 0.157620i
\(171\) 12.9401 + 5.28860i 0.989557 + 0.404430i
\(172\) 5.13067 0.391210
\(173\) −1.26918 1.06497i −0.0964941 0.0809682i 0.593264 0.805008i \(-0.297839\pi\)
−0.689759 + 0.724039i \(0.742283\pi\)
\(174\) −0.0616382 + 0.213343i −0.00467278 + 0.0161735i
\(175\) −5.79362 6.44166i −0.437956 0.486944i
\(176\) 5.98082 + 7.12766i 0.450821 + 0.537268i
\(177\) 2.58126 8.93429i 0.194020 0.671543i
\(178\) 3.30927 + 0.583514i 0.248040 + 0.0437362i
\(179\) 6.01171i 0.449337i −0.974435 0.224668i \(-0.927870\pi\)
0.974435 0.224668i \(-0.0721298\pi\)
\(180\) 13.9917 + 8.82116i 1.04288 + 0.657491i
\(181\) −4.20460 2.42753i −0.312525 0.180437i 0.335531 0.942029i \(-0.391084\pi\)
−0.648056 + 0.761593i \(0.724418\pi\)
\(182\) 3.01207 3.85086i 0.223269 0.285445i
\(183\) −5.22508 3.81227i −0.386249 0.281811i
\(184\) −1.55237 8.80394i −0.114442 0.649035i
\(185\) 9.76660 + 3.55475i 0.718055 + 0.261351i
\(186\) 0.202206 + 2.97744i 0.0148264 + 0.218317i
\(187\) 6.46657 + 1.14023i 0.472883 + 0.0833820i
\(188\) −0.852724 −0.0621913
\(189\) 11.4476 7.61259i 0.832693 0.553734i
\(190\) 3.86932 0.280710
\(191\) 9.70443 + 1.71115i 0.702188 + 0.123815i 0.513332 0.858190i \(-0.328411\pi\)
0.188856 + 0.982005i \(0.439522\pi\)
\(192\) −9.43859 4.62695i −0.681172 0.333922i
\(193\) −11.3944 4.14722i −0.820187 0.298524i −0.102362 0.994747i \(-0.532640\pi\)
−0.717825 + 0.696224i \(0.754862\pi\)
\(194\) 0.365462 + 2.07264i 0.0262387 + 0.148807i
\(195\) −3.39732 + 31.7117i −0.243287 + 2.27092i
\(196\) 12.2628 5.44344i 0.875915 0.388817i
\(197\) −15.2644 8.81291i −1.08754 0.627894i −0.154623 0.987974i \(-0.549416\pi\)
−0.932922 + 0.360079i \(0.882750\pi\)
\(198\) 1.54427 1.70132i 0.109746 0.120907i
\(199\) 15.6797i 1.11151i 0.831347 + 0.555754i \(0.187570\pi\)
−0.831347 + 0.555754i \(0.812430\pi\)
\(200\) 3.64610 + 0.642906i 0.257818 + 0.0454603i
\(201\) 2.49728 + 2.59641i 0.176145 + 0.183136i
\(202\) −0.624139 0.743820i −0.0439143 0.0523350i
\(203\) −1.11738 0.363745i −0.0784248 0.0255299i
\(204\) −7.97606 + 1.97168i −0.558436 + 0.138045i
\(205\) −17.1694 14.4068i −1.19916 1.00622i
\(206\) 1.43821 0.100205
\(207\) 22.5890 7.23960i 1.57004 0.503187i
\(208\) 22.4489i 1.55655i
\(209\) −2.14680 + 12.1751i −0.148497 + 0.842170i
\(210\) 2.13595 3.14925i 0.147394 0.217319i
\(211\) 3.12171 + 1.13621i 0.214907 + 0.0782198i 0.447230 0.894419i \(-0.352410\pi\)
−0.232323 + 0.972639i \(0.574633\pi\)
\(212\) 3.25390 + 3.87785i 0.223479 + 0.266332i
\(213\) −10.6354 + 21.6952i −0.728723 + 1.48653i
\(214\) 1.02890 0.374488i 0.0703339 0.0255995i
\(215\) 3.85009 + 6.66854i 0.262574 + 0.454791i
\(216\) −1.84902 + 5.57635i −0.125810 + 0.379422i
\(217\) −15.7824 + 0.542356i −1.07138 + 0.0368175i
\(218\) −1.48364 + 1.76813i −0.100484 + 0.119753i
\(219\) 1.31677 2.68610i 0.0889791 0.181510i
\(220\) −5.00305 + 13.7458i −0.337305 + 0.926739i
\(221\) −10.1834 12.1361i −0.685007 0.816360i
\(222\) −0.192436 + 1.79626i −0.0129155 + 0.120557i
\(223\) 5.47895 + 0.966086i 0.366897 + 0.0646939i 0.354057 0.935224i \(-0.384802\pi\)
0.0128399 + 0.999918i \(0.495913\pi\)
\(224\) −4.07041 + 7.64508i −0.271966 + 0.510809i
\(225\) −0.382206 + 9.81636i −0.0254804 + 0.654424i
\(226\) 0.671036 1.16227i 0.0446367 0.0773130i
\(227\) 2.18551 12.3946i 0.145057 0.822660i −0.822264 0.569106i \(-0.807289\pi\)
0.967321 0.253554i \(-0.0815996\pi\)
\(228\) −3.71223 15.0171i −0.245849 0.994535i
\(229\) −2.64176 + 7.25817i −0.174572 + 0.479633i −0.995862 0.0908781i \(-0.971033\pi\)
0.821290 + 0.570511i \(0.193255\pi\)
\(230\) 5.02963 4.22036i 0.331644 0.278282i
\(231\) 8.72428 + 8.46821i 0.574016 + 0.557167i
\(232\) 0.471877 0.171749i 0.0309803 0.0112759i
\(233\) 2.38185 + 1.37516i 0.156040 + 0.0900897i 0.575987 0.817459i \(-0.304618\pi\)
−0.419947 + 0.907549i \(0.637951\pi\)
\(234\) −5.49263 + 0.749495i −0.359065 + 0.0489960i
\(235\) −0.639889 1.10832i −0.0417418 0.0722988i
\(236\) −9.67034 + 3.51971i −0.629485 + 0.229114i
\(237\) −3.17664 7.17353i −0.206345 0.465971i
\(238\) 0.391971 + 1.84913i 0.0254077 + 0.119861i
\(239\) 9.44308 1.66507i 0.610822 0.107704i 0.140324 0.990106i \(-0.455185\pi\)
0.470498 + 0.882401i \(0.344074\pi\)
\(240\) −1.18390 17.4327i −0.0764206 1.12528i
\(241\) 0.524067 + 1.43986i 0.0337581 + 0.0927497i 0.955427 0.295229i \(-0.0953958\pi\)
−0.921669 + 0.387978i \(0.873174\pi\)
\(242\) −0.990178 0.571679i −0.0636510 0.0367489i
\(243\) −15.3237 2.86065i −0.983018 0.183510i
\(244\) 7.15741i 0.458206i
\(245\) 16.2771 + 11.8537i 1.03991 + 0.757304i
\(246\) 1.71480 3.49804i 0.109331 0.223027i
\(247\) 22.8495 19.1730i 1.45388 1.21995i
\(248\) 5.16955 4.33777i 0.328267 0.275449i
\(249\) −26.3933 2.82755i −1.67261 0.179189i
\(250\) −0.490024 1.34633i −0.0309918 0.0851494i
\(251\) −11.2902 + 19.5553i −0.712634 + 1.23432i 0.251231 + 0.967927i \(0.419165\pi\)
−0.963865 + 0.266391i \(0.914169\pi\)
\(252\) −14.2717 5.26839i −0.899034 0.331877i
\(253\) 10.4891 + 18.1677i 0.659445 + 1.14219i
\(254\) 0.576160 0.686641i 0.0361515 0.0430837i
\(255\) −8.54796 8.88726i −0.535294 0.556542i
\(256\) 1.69171 + 9.59414i 0.105732 + 0.599634i
\(257\) 4.33157 + 1.57656i 0.270196 + 0.0983433i 0.473565 0.880759i \(-0.342967\pi\)
−0.203369 + 0.979102i \(0.565189\pi\)
\(258\) −0.964634 + 0.927806i −0.0600555 + 0.0577627i
\(259\) −9.46569 1.33568i −0.588169 0.0829950i
\(260\) 30.5643 17.6463i 1.89552 1.09438i
\(261\) 0.620818 + 1.17897i 0.0384277 + 0.0729763i
\(262\) −5.21712 + 3.01210i −0.322315 + 0.186088i
\(263\) 2.33928 2.78784i 0.144246 0.171906i −0.689084 0.724681i \(-0.741987\pi\)
0.833330 + 0.552776i \(0.186431\pi\)
\(264\) −5.16611 0.553453i −0.317952 0.0340627i
\(265\) −2.59845 + 7.13919i −0.159622 + 0.438557i
\(266\) −3.48150 + 0.737994i −0.213464 + 0.0452493i
\(267\) 16.7379 11.2411i 1.02434 0.687943i
\(268\) 0.692240 3.92589i 0.0422853 0.239812i
\(269\) 5.41440 9.37801i 0.330122 0.571788i −0.652414 0.757863i \(-0.726244\pi\)
0.982535 + 0.186075i \(0.0595769\pi\)
\(270\) −4.22580 + 0.871692i −0.257174 + 0.0530495i
\(271\) −7.73136 + 4.46370i −0.469647 + 0.271151i −0.716092 0.698006i \(-0.754071\pi\)
0.246445 + 0.969157i \(0.420738\pi\)
\(272\) 6.64883 + 5.57903i 0.403145 + 0.338279i
\(273\) −2.99155 29.1812i −0.181057 1.76613i
\(274\) 0.993339 + 5.63351i 0.0600098 + 0.340333i
\(275\) −8.55602 + 1.50866i −0.515948 + 0.0909755i
\(276\) −21.2050 15.4714i −1.27639 0.931268i
\(277\) −15.2023 12.7563i −0.913419 0.766449i 0.0593476 0.998237i \(-0.481098\pi\)
−0.972766 + 0.231788i \(0.925542\pi\)
\(278\) 1.51436 0.0908253
\(279\) 13.2587 + 12.0348i 0.793777 + 0.720503i
\(280\) −8.59974 + 0.295527i −0.513933 + 0.0176611i
\(281\) 5.24675 + 14.4153i 0.312995 + 0.859947i 0.992048 + 0.125858i \(0.0401683\pi\)
−0.679053 + 0.734089i \(0.737609\pi\)
\(282\) 0.160323 0.154203i 0.00954712 0.00918263i
\(283\) 17.2740 3.04587i 1.02683 0.181058i 0.365233 0.930916i \(-0.380989\pi\)
0.661599 + 0.749858i \(0.269878\pi\)
\(284\) 26.3310 4.64287i 1.56246 0.275504i
\(285\) 16.7327 16.0939i 0.991161 0.953320i
\(286\) −1.67679 4.60695i −0.0991509 0.272415i
\(287\) 18.1963 + 9.68811i 1.07409 + 0.571871i
\(288\) 9.35225 2.99733i 0.551087 0.176619i
\(289\) −10.8748 −0.639694
\(290\) 0.282523 + 0.237065i 0.0165903 + 0.0139209i
\(291\) 10.2013 + 7.44295i 0.598009 + 0.436314i
\(292\) −3.26006 + 0.574836i −0.190781 + 0.0336398i
\(293\) 0.0433429 + 0.245810i 0.00253212 + 0.0143604i 0.986048 0.166463i \(-0.0532348\pi\)
−0.983516 + 0.180824i \(0.942124\pi\)
\(294\) −1.32120 + 3.24099i −0.0770542 + 0.189018i
\(295\) −11.8314 9.92772i −0.688851 0.578014i
\(296\) 3.53780 2.04255i 0.205631 0.118721i
\(297\) −0.398262 13.7804i −0.0231095 0.799622i
\(298\) 1.56727 2.71459i 0.0907896 0.157252i
\(299\) 8.78902 49.8450i 0.508282 2.88261i
\(300\) 9.02456 6.06086i 0.521033 0.349924i
\(301\) −4.73608 5.26582i −0.272983 0.303517i
\(302\) −1.75756 + 4.82886i −0.101136 + 0.277869i
\(303\) −5.79288 0.620600i −0.332792 0.0356525i
\(304\) −10.5041 + 12.5183i −0.602450 + 0.717972i
\(305\) −9.30278 + 5.37097i −0.532676 + 0.307541i
\(306\) 1.14306 1.81306i 0.0653442 0.103646i
\(307\) 3.87598 2.23780i 0.221214 0.127718i −0.385298 0.922792i \(-0.625902\pi\)
0.606512 + 0.795074i \(0.292568\pi\)
\(308\) 1.87987 13.3222i 0.107115 0.759105i
\(309\) 6.21948 5.98204i 0.353814 0.340306i
\(310\) 4.65737 + 1.69515i 0.264521 + 0.0962778i
\(311\) −3.09532 17.5544i −0.175519 0.995419i −0.937543 0.347870i \(-0.886905\pi\)
0.762024 0.647549i \(-0.224206\pi\)
\(312\) 8.68982 + 9.03475i 0.491964 + 0.511492i
\(313\) 15.4221 18.3794i 0.871710 1.03886i −0.127185 0.991879i \(-0.540594\pi\)
0.998896 0.0469848i \(-0.0149612\pi\)
\(314\) 0.570446 + 0.988042i 0.0321921 + 0.0557584i
\(315\) −3.86205 22.5030i −0.217602 1.26790i
\(316\) −4.34083 + 7.51854i −0.244191 + 0.422951i
\(317\) −7.09204 19.4852i −0.398329 1.09440i −0.963098 0.269150i \(-0.913257\pi\)
0.564770 0.825249i \(-0.308965\pi\)
\(318\) −1.31303 0.140667i −0.0736310 0.00788820i
\(319\) −0.902695 + 0.757451i −0.0505412 + 0.0424091i
\(320\) −13.3733 + 11.2216i −0.747592 + 0.627304i
\(321\) 2.89179 5.89901i 0.161404 0.329251i
\(322\) −3.72056 + 4.75665i −0.207339 + 0.265078i
\(323\) 11.5324i 0.641680i
\(324\) 7.43735 + 15.5644i 0.413186 + 0.864687i
\(325\) 18.1532 + 10.4807i 1.00696 + 0.581366i
\(326\) 0.752740 + 2.06814i 0.0416904 + 0.114543i
\(327\) 0.938360 + 13.8172i 0.0518914 + 0.764091i
\(328\) −8.67557 + 1.52974i −0.479028 + 0.0844656i
\(329\) 0.787142 + 0.875187i 0.0433965 + 0.0482506i
\(330\) −1.54508 3.48911i −0.0850539 0.192069i
\(331\) −27.7217 + 10.0899i −1.52372 + 0.554590i −0.962075 0.272785i \(-0.912055\pi\)
−0.561649 + 0.827375i \(0.689833\pi\)
\(332\) 14.6868 + 25.4383i 0.806045 + 1.39611i
\(333\) 6.63911 + 8.56826i 0.363821 + 0.469538i
\(334\) −4.76883 2.75329i −0.260939 0.150653i
\(335\) 5.62210 2.04628i 0.307168 0.111800i
\(336\) 4.39018 + 15.4596i 0.239504 + 0.843393i
\(337\) 12.0127 10.0799i 0.654375 0.549086i −0.254020 0.967199i \(-0.581753\pi\)
0.908395 + 0.418113i \(0.137308\pi\)
\(338\) −2.76207 + 7.58874i −0.150237 + 0.412773i
\(339\) −1.93243 7.81727i −0.104955 0.424576i
\(340\) −2.36947 + 13.4379i −0.128503 + 0.728774i
\(341\) −7.91794 + 13.7143i −0.428781 + 0.742670i
\(342\) 3.41358 + 2.15212i 0.184585 + 0.116373i
\(343\) −16.9065 7.56105i −0.912866 0.408258i
\(344\) 2.98056 + 0.525552i 0.160701 + 0.0283359i
\(345\) 4.19643 39.1708i 0.225928 2.10889i
\(346\) −0.307425 0.366375i −0.0165273 0.0196965i
\(347\) 1.66317 4.56953i 0.0892838 0.245305i −0.887012 0.461747i \(-0.847223\pi\)
0.976296 + 0.216442i \(0.0694451\pi\)
\(348\) 0.649015 1.32394i 0.0347909 0.0709704i
\(349\) −9.42487 + 11.2321i −0.504502 + 0.601242i −0.956844 0.290603i \(-0.906144\pi\)
0.452342 + 0.891845i \(0.350589\pi\)
\(350\) −1.32414 2.12168i −0.0707780 0.113409i
\(351\) −20.6353 + 26.0870i −1.10143 + 1.39242i
\(352\) 4.34269 + 7.52176i 0.231466 + 0.400911i
\(353\) 5.63074 2.04942i 0.299694 0.109080i −0.187797 0.982208i \(-0.560135\pi\)
0.487491 + 0.873128i \(0.337912\pi\)
\(354\) 1.18166 2.41049i 0.0628047 0.128116i
\(355\) 25.7935 + 30.7395i 1.36898 + 1.63148i
\(356\) −20.9658 7.63094i −1.11119 0.404439i
\(357\) 9.38625 + 6.36613i 0.496773 + 0.336931i
\(358\) 0.301349 1.70904i 0.0159268 0.0903255i
\(359\) 1.82006i 0.0960588i 0.998846 + 0.0480294i \(0.0152941\pi\)
−0.998846 + 0.0480294i \(0.984706\pi\)
\(360\) 7.22459 + 6.55769i 0.380769 + 0.345620i
\(361\) −2.71293 −0.142786
\(362\) −1.07362 0.900872i −0.0564281 0.0473488i
\(363\) −6.65980 + 1.64630i −0.349549 + 0.0864084i
\(364\) −24.1352 + 21.7071i −1.26503 + 1.13776i
\(365\) −3.19351 3.80587i −0.167156 0.199208i
\(366\) −1.29431 1.34569i −0.0676548 0.0703403i
\(367\) −26.7758 4.72129i −1.39768 0.246450i −0.576493 0.817102i \(-0.695579\pi\)
−0.821192 + 0.570653i \(0.806690\pi\)
\(368\) 27.7292i 1.44549i
\(369\) −7.13403 22.2596i −0.371383 1.15879i
\(370\) 2.59831 + 1.50013i 0.135080 + 0.0779882i
\(371\) 0.976353 6.91922i 0.0506897 0.359228i
\(372\) 2.11070 19.7020i 0.109435 1.02150i
\(373\) 1.76316 + 9.99937i 0.0912929 + 0.517748i 0.995820 + 0.0913325i \(0.0291126\pi\)
−0.904528 + 0.426415i \(0.859776\pi\)
\(374\) 1.78119 + 0.648301i 0.0921032 + 0.0335228i
\(375\) −7.71896 3.78396i −0.398605 0.195403i
\(376\) −0.495372 0.0873475i −0.0255469 0.00450460i
\(377\) 2.84307 0.146426
\(378\) 3.63599 1.59031i 0.187015 0.0817965i
\(379\) 12.0300 0.617937 0.308969 0.951072i \(-0.400016\pi\)
0.308969 + 0.951072i \(0.400016\pi\)
\(380\) −25.3006 4.46118i −1.29790 0.228854i
\(381\) −0.364406 5.36581i −0.0186691 0.274899i
\(382\) 2.67304 + 0.972909i 0.136765 + 0.0497783i
\(383\) −3.03110 17.1902i −0.154882 0.878380i −0.958893 0.283766i \(-0.908416\pi\)
0.804011 0.594614i \(-0.202695\pi\)
\(384\) −11.6123 8.47243i −0.592586 0.432357i
\(385\) 18.7261 7.55375i 0.954372 0.384975i
\(386\) −3.03136 1.75016i −0.154292 0.0890808i
\(387\) −0.312440 + 8.02452i −0.0158822 + 0.407909i
\(388\) 13.9739i 0.709417i
\(389\) 36.6560 + 6.46344i 1.85853 + 0.327709i 0.986758 0.162198i \(-0.0518584\pi\)
0.871774 + 0.489908i \(0.162970\pi\)
\(390\) −2.55542 + 8.84485i −0.129399 + 0.447877i
\(391\) 12.5787 + 14.9907i 0.636131 + 0.758111i
\(392\) 7.68141 1.90613i 0.387970 0.0962741i
\(393\) −10.0328 + 34.7256i −0.506087 + 1.75167i
\(394\) −3.89767 3.27054i −0.196362 0.164767i
\(395\) −13.0295 −0.655587
\(396\) −12.0592 + 9.34404i −0.605997 + 0.469556i
\(397\) 25.0865i 1.25906i 0.776977 + 0.629529i \(0.216752\pi\)
−0.776977 + 0.629529i \(0.783248\pi\)
\(398\) −0.785979 + 4.45751i −0.0393976 + 0.223435i
\(399\) −11.9860 + 17.6722i −0.600051 + 0.884718i
\(400\) −10.7913 3.92772i −0.539566 0.196386i
\(401\) 15.7151 + 18.7286i 0.784777 + 0.935260i 0.999139 0.0414939i \(-0.0132117\pi\)
−0.214362 + 0.976754i \(0.568767\pi\)
\(402\) 0.579789 + 0.863300i 0.0289172 + 0.0430575i
\(403\) 35.9029 13.0676i 1.78845 0.650942i
\(404\) 3.22351 + 5.58329i 0.160376 + 0.277779i
\(405\) −14.6486 + 21.3462i −0.727895 + 1.06070i
\(406\) −0.299421 0.159418i −0.0148600 0.00791180i
\(407\) −6.16189 + 7.34346i −0.305434 + 0.364002i
\(408\) −4.83549 + 0.328391i −0.239393 + 0.0162578i
\(409\) 11.6774 32.0835i 0.577412 1.58643i −0.215113 0.976589i \(-0.569012\pi\)
0.792526 0.609838i \(-0.208766\pi\)
\(410\) −4.15882 4.95629i −0.205390 0.244774i
\(411\) 27.7274 + 20.2302i 1.36769 + 0.997883i
\(412\) −9.40414 1.65820i −0.463309 0.0816939i
\(413\) 12.5390 + 6.67606i 0.617006 + 0.328507i
\(414\) 6.78460 0.925789i 0.333445 0.0455000i
\(415\) −22.0422 + 38.1782i −1.08201 + 1.87409i
\(416\) 3.63882 20.6368i 0.178408 1.01180i
\(417\) 6.54879 6.29877i 0.320695 0.308452i
\(418\) −1.22061 + 3.35359i −0.0597018 + 0.164029i
\(419\) −9.48775 + 7.96117i −0.463507 + 0.388929i −0.844419 0.535682i \(-0.820054\pi\)
0.380912 + 0.924611i \(0.375610\pi\)
\(420\) −17.5975 + 18.1296i −0.858668 + 0.884633i
\(421\) 23.5715 8.57934i 1.14881 0.418132i 0.303720 0.952761i \(-0.401771\pi\)
0.845086 + 0.534630i \(0.179549\pi\)
\(422\) 0.830499 + 0.479489i 0.0404281 + 0.0233412i
\(423\) 0.0519279 1.33369i 0.00252482 0.0648460i
\(424\) 1.49306 + 2.58606i 0.0725096 + 0.125590i
\(425\) −7.61560 + 2.77185i −0.369411 + 0.134455i
\(426\) −4.11099 + 5.63450i −0.199178 + 0.272993i
\(427\) 7.34596 6.60695i 0.355496 0.319732i
\(428\) −7.15950 + 1.26241i −0.346067 + 0.0610210i
\(429\) −26.4132 12.9482i −1.27524 0.625144i
\(430\) 0.760246 + 2.08876i 0.0366623 + 0.100729i
\(431\) −11.6318 6.71561i −0.560283 0.323479i 0.192976 0.981203i \(-0.438186\pi\)
−0.753259 + 0.657724i \(0.771519\pi\)
\(432\) 8.65165 16.0380i 0.416253 0.771626i
\(433\) 26.7899i 1.28744i −0.765261 0.643720i \(-0.777390\pi\)
0.765261 0.643720i \(-0.222610\pi\)
\(434\) −4.51388 0.636941i −0.216673 0.0305741i
\(435\) 2.20780 0.149937i 0.105856 0.00718894i
\(436\) 11.7398 9.85082i 0.562232 0.471769i
\(437\) −28.2241 + 23.6828i −1.35014 + 1.13290i
\(438\) 0.508984 0.697611i 0.0243202 0.0333331i
\(439\) 1.51839 + 4.17174i 0.0724688 + 0.199106i 0.970639 0.240542i \(-0.0773252\pi\)
−0.898170 + 0.439649i \(0.855103\pi\)
\(440\) −4.31444 + 7.47284i −0.205683 + 0.356253i
\(441\) 7.76694 + 19.5109i 0.369854 + 0.929090i
\(442\) −2.28663 3.96056i −0.108764 0.188385i
\(443\) −14.8474 + 17.6944i −0.705420 + 0.840687i −0.993128 0.117031i \(-0.962662\pi\)
0.287708 + 0.957718i \(0.407107\pi\)
\(444\) 3.32932 11.5235i 0.158002 0.546880i
\(445\) −5.81464 32.9765i −0.275640 1.56323i
\(446\) 1.50915 + 0.549287i 0.0714605 + 0.0260095i
\(447\) −4.51337 18.2580i −0.213475 0.863574i
\(448\) 9.89263 12.6475i 0.467383 0.597538i
\(449\) 8.28201 4.78162i 0.390852 0.225659i −0.291677 0.956517i \(-0.594213\pi\)
0.682529 + 0.730858i \(0.260880\pi\)
\(450\) −0.600721 + 2.77148i −0.0283182 + 0.130649i
\(451\) 17.9028 10.3362i 0.843009 0.486711i
\(452\) −5.72781 + 6.82614i −0.269414 + 0.321075i
\(453\) 12.4845 + 28.1925i 0.586571 + 1.32460i
\(454\) 1.24261 3.41405i 0.0583187 0.160229i
\(455\) −46.3248 15.0803i −2.17174 0.706975i
\(456\) −0.618287 9.10415i −0.0289539 0.426341i
\(457\) 6.32868 35.8917i 0.296043 1.67894i −0.366889 0.930265i \(-0.619577\pi\)
0.662932 0.748679i \(-0.269312\pi\)
\(458\) −1.11484 + 1.93096i −0.0520931 + 0.0902279i
\(459\) −2.59805 12.5949i −0.121267 0.587878i
\(460\) −37.7536 + 21.7970i −1.76027 + 1.01629i
\(461\) 25.6345 + 21.5099i 1.19392 + 1.00182i 0.999783 + 0.0208432i \(0.00663506\pi\)
0.194137 + 0.980974i \(0.437809\pi\)
\(462\) 2.05569 + 2.84471i 0.0956395 + 0.132348i
\(463\) −2.24659 12.7410i −0.104408 0.592126i −0.991455 0.130448i \(-0.958359\pi\)
0.887047 0.461678i \(-0.152753\pi\)
\(464\) −1.53393 + 0.270474i −0.0712111 + 0.0125564i
\(465\) 27.1913 12.0411i 1.26097 0.558393i
\(466\) 0.608190 + 0.510332i 0.0281738 + 0.0236407i
\(467\) 13.9472 0.645399 0.322699 0.946502i \(-0.395410\pi\)
0.322699 + 0.946502i \(0.395410\pi\)
\(468\) 36.7793 + 1.43202i 1.70012 + 0.0661953i
\(469\) −4.66830 + 2.91348i −0.215562 + 0.134532i
\(470\) −0.126354 0.347154i −0.00582827 0.0160130i
\(471\) 6.57649 + 1.90005i 0.303029 + 0.0875499i
\(472\) −5.97832 + 1.05414i −0.275174 + 0.0485207i
\(473\) −6.99424 + 1.23327i −0.321596 + 0.0567060i
\(474\) −0.543484 2.19856i −0.0249630 0.100983i
\(475\) −5.21878 14.3385i −0.239454 0.657895i
\(476\) −0.431035 12.5430i −0.0197565 0.574906i
\(477\) −6.26322 + 4.85305i −0.286773 + 0.222206i
\(478\) 2.76799 0.126605
\(479\) 8.98168 + 7.53652i 0.410383 + 0.344352i 0.824491 0.565876i \(-0.191462\pi\)
−0.414107 + 0.910228i \(0.635906\pi\)
\(480\) 1.73740 16.2175i 0.0793011 0.740222i
\(481\) 22.7771 4.01622i 1.03855 0.183124i
\(482\) 0.0768082 + 0.435601i 0.00349852 + 0.0198411i
\(483\) 3.69522 + 36.0451i 0.168138 + 1.64011i
\(484\) 5.81543 + 4.87972i 0.264338 + 0.221806i
\(485\) 18.1624 10.4861i 0.824714 0.476149i
\(486\) −4.21291 1.58137i −0.191101 0.0717325i
\(487\) 6.97325 12.0780i 0.315988 0.547308i −0.663659 0.748035i \(-0.730997\pi\)
0.979647 + 0.200728i \(0.0643307\pi\)
\(488\) −0.733159 + 4.15795i −0.0331885 + 0.188222i
\(489\) 11.8573 + 5.81265i 0.536206 + 0.262857i
\(490\) 4.03315 + 4.18575i 0.182199 + 0.189093i
\(491\) 3.99625 10.9796i 0.180348 0.495503i −0.816270 0.577670i \(-0.803962\pi\)
0.996619 + 0.0821674i \(0.0261842\pi\)
\(492\) −15.2458 + 20.8958i −0.687333 + 0.942055i
\(493\) −0.706566 + 0.842052i −0.0318221 + 0.0379241i
\(494\) 7.45685 4.30521i 0.335500 0.193701i
\(495\) −21.1941 8.66199i −0.952605 0.389327i
\(496\) −18.1276 + 10.4660i −0.813955 + 0.469937i
\(497\) −29.0711 22.7389i −1.30402 1.01998i
\(498\) −7.36147 2.12685i −0.329875 0.0953063i
\(499\) 31.7223 + 11.5460i 1.42008 + 0.516868i 0.934072 0.357084i \(-0.116229\pi\)
0.486011 + 0.873952i \(0.338451\pi\)
\(500\) 1.65189 + 9.36833i 0.0738747 + 0.418965i
\(501\) −32.0745 + 7.92882i −1.43298 + 0.354233i
\(502\) −4.18989 + 4.99332i −0.187004 + 0.222863i
\(503\) −17.9602 31.1080i −0.800807 1.38704i −0.919086 0.394058i \(-0.871071\pi\)
0.118279 0.992980i \(-0.462262\pi\)
\(504\) −7.75121 4.52246i −0.345266 0.201446i
\(505\) −4.83789 + 8.37946i −0.215283 + 0.372881i
\(506\) 2.07120 + 5.69059i 0.0920762 + 0.252977i
\(507\) 19.6198 + 44.3056i 0.871347 + 1.96768i
\(508\) −4.55906 + 3.82550i −0.202275 + 0.169729i
\(509\) 15.2676 12.8110i 0.676724 0.567839i −0.238323 0.971186i \(-0.576598\pi\)
0.915047 + 0.403347i \(0.132153\pi\)
\(510\) −1.98456 2.95500i −0.0878779 0.130849i
\(511\) 3.59931 + 2.81531i 0.159224 + 0.124542i
\(512\) 19.4105i 0.857833i
\(513\) 23.7133 4.89155i 1.04697 0.215967i
\(514\) 1.15237 + 0.665322i 0.0508289 + 0.0293461i
\(515\) −4.90169 13.4673i −0.215994 0.593439i
\(516\) 7.37726 4.95453i 0.324766 0.218111i
\(517\) 1.16245 0.204972i 0.0511246 0.00901464i
\(518\) −2.62400 0.854200i −0.115292 0.0375314i
\(519\) −2.85333 0.305682i −0.125247 0.0134180i
\(520\) 19.5633 7.12045i 0.857907 0.312252i
\(521\) 1.03640 + 1.79510i 0.0454056 + 0.0786448i 0.887835 0.460162i \(-0.152209\pi\)
−0.842429 + 0.538807i \(0.818875\pi\)
\(522\) 0.117391 + 0.366282i 0.00513806 + 0.0160317i
\(523\) −31.2489 18.0416i −1.36642 0.788902i −0.375950 0.926640i \(-0.622683\pi\)
−0.990469 + 0.137738i \(0.956017\pi\)
\(524\) 37.5864 13.6803i 1.64197 0.597628i
\(525\) −14.5510 3.66757i −0.635058 0.160066i
\(526\) 0.804767 0.675280i 0.0350895 0.0294436i
\(527\) −5.05233 + 13.8812i −0.220083 + 0.604673i
\(528\) 15.4826 + 4.47318i 0.673795 + 0.194670i
\(529\) −6.86244 + 38.9188i −0.298367 + 1.69212i
\(530\) −1.09657 + 1.89931i −0.0476318 + 0.0825007i
\(531\) −4.91605 15.3390i −0.213338 0.665657i
\(532\) 23.6156 0.811542i 1.02387 0.0351848i
\(533\) −49.1182 8.66086i −2.12754 0.375144i
\(534\) 5.32180 2.35665i 0.230297 0.101982i
\(535\) −7.01334 8.35817i −0.303213 0.361355i
\(536\) 0.804284 2.20975i 0.0347398 0.0954468i
\(537\) −5.80533 8.64409i −0.250518 0.373020i
\(538\) 2.00932 2.39462i 0.0866281 0.103239i
\(539\) −15.4085 + 10.3683i −0.663690 + 0.446593i
\(540\) 28.6366 0.827613i 1.23232 0.0356148i
\(541\) 10.8625 + 18.8144i 0.467015 + 0.808893i 0.999290 0.0376783i \(-0.0119962\pi\)
−0.532275 + 0.846571i \(0.678663\pi\)
\(542\) −2.42166 + 0.881412i −0.104019 + 0.0378599i
\(543\) −8.38987 + 0.569778i −0.360044 + 0.0244515i
\(544\) 5.20780 + 6.20642i 0.223283 + 0.266098i
\(545\) 21.6131 + 7.86653i 0.925803 + 0.336965i
\(546\) 0.612314 8.44572i 0.0262046 0.361443i
\(547\) 5.04440 28.6082i 0.215683 1.22320i −0.664035 0.747702i \(-0.731157\pi\)
0.879717 0.475497i \(-0.157732\pi\)
\(548\) 37.9815i 1.62249i
\(549\) −11.1944 0.435861i −0.477766 0.0186021i
\(550\) −2.50797 −0.106940
\(551\) −1.58540 1.33031i −0.0675401 0.0566729i
\(552\) −10.7338 11.1599i −0.456862 0.474996i
\(553\) 11.7236 2.48512i 0.498537 0.105678i
\(554\) −3.68235 4.38846i −0.156448 0.186448i
\(555\) 17.4759 4.32003i 0.741809 0.183375i
\(556\) −9.90207 1.74600i −0.419941 0.0740469i
\(557\) 11.2465i 0.476528i 0.971200 + 0.238264i \(0.0765783\pi\)
−0.971200 + 0.238264i \(0.923422\pi\)
\(558\) 3.16597 + 4.08592i 0.134026 + 0.172971i
\(559\) 14.8396 + 8.56762i 0.627646 + 0.362372i
\(560\) 26.4285 + 3.72925i 1.11681 + 0.157590i
\(561\) 10.3992 4.60507i 0.439055 0.194426i
\(562\) 0.768973 + 4.36106i 0.0324372 + 0.183960i
\(563\) −6.54090 2.38069i −0.275666 0.100334i 0.200488 0.979696i \(-0.435747\pi\)
−0.476154 + 0.879362i \(0.657970\pi\)
\(564\) −1.22611 + 0.823450i −0.0516285 + 0.0346735i
\(565\) −13.1704 2.32230i −0.554083 0.0976998i
\(566\) 5.06341 0.212831
\(567\) 9.10901 22.0006i 0.382543 0.923938i
\(568\) 15.7721 0.661781
\(569\) −6.84382 1.20675i −0.286908 0.0505896i 0.0283420 0.999598i \(-0.490977\pi\)
−0.315250 + 0.949009i \(0.602088\pi\)
\(570\) 5.56360 3.73649i 0.233033 0.156504i
\(571\) −27.5455 10.0258i −1.15274 0.419565i −0.306244 0.951953i \(-0.599072\pi\)
−0.846500 + 0.532388i \(0.821295\pi\)
\(572\) 5.65253 + 32.0571i 0.236344 + 1.34038i
\(573\) 15.6061 6.91085i 0.651956 0.288705i
\(574\) 4.68729 + 3.66631i 0.195644 + 0.153029i
\(575\) −22.4231 12.9460i −0.935108 0.539885i
\(576\) −18.0396 + 2.46159i −0.751651 + 0.102566i
\(577\) 13.4978i 0.561919i 0.959720 + 0.280960i \(0.0906527\pi\)
−0.959720 + 0.280960i \(0.909347\pi\)
\(578\) −3.09154 0.545121i −0.128591 0.0226741i
\(579\) −20.3886 + 5.04005i −0.847319 + 0.209457i
\(580\) −1.57403 1.87585i −0.0653580 0.0778906i
\(581\) 12.5512 38.5556i 0.520710 1.59956i
\(582\) 2.52697 + 2.62728i 0.104746 + 0.108904i
\(583\) −5.36792 4.50422i −0.222316 0.186546i
\(584\) −1.95275 −0.0808052
\(585\) 25.7381 + 48.8781i 1.06414 + 2.02086i
\(586\) 0.0720526i 0.00297647i
\(587\) 6.81709 38.6616i 0.281371 1.59574i −0.436595 0.899658i \(-0.643816\pi\)
0.717966 0.696078i \(-0.245073\pi\)
\(588\) 12.3758 19.6688i 0.510370 0.811128i
\(589\) −26.1351 9.51242i −1.07688 0.391952i
\(590\) −2.86584 3.41537i −0.117985 0.140609i
\(591\) −30.4587 + 2.06853i −1.25290 + 0.0850878i
\(592\) −11.9070 + 4.33378i −0.489373 + 0.178117i
\(593\) −13.3004 23.0369i −0.546181 0.946012i −0.998532 0.0541725i \(-0.982748\pi\)
0.452351 0.891840i \(-0.350585\pi\)
\(594\) 0.577553 3.93753i 0.0236973 0.161559i
\(595\) 15.9792 9.97255i 0.655082 0.408835i
\(596\) −13.3779 + 15.9431i −0.547979 + 0.653056i
\(597\) 15.1415 + 22.5455i 0.619698 + 0.922725i
\(598\) 4.99717 13.7296i 0.204349 0.561445i
\(599\) −21.2140 25.2819i −0.866781 1.03299i −0.999127 0.0417852i \(-0.986695\pi\)
0.132346 0.991204i \(-0.457749\pi\)
\(600\) 5.86347 2.59651i 0.239375 0.106002i
\(601\) −11.4857 2.02525i −0.468513 0.0826115i −0.0655926 0.997846i \(-0.520894\pi\)
−0.402920 + 0.915235i \(0.632005\pi\)
\(602\) −1.08243 1.73440i −0.0441167 0.0706888i
\(603\) 6.09805 + 1.32176i 0.248332 + 0.0538261i
\(604\) 17.0598 29.5484i 0.694153 1.20231i
\(605\) −1.97845 + 11.2203i −0.0804353 + 0.456171i
\(606\) −1.61572 0.466807i −0.0656341 0.0189628i
\(607\) −1.16536 + 3.20181i −0.0473007 + 0.129958i −0.961094 0.276223i \(-0.910917\pi\)
0.913793 + 0.406180i \(0.133139\pi\)
\(608\) −11.6853 + 9.80513i −0.473901 + 0.397650i
\(609\) −1.95791 + 0.556001i −0.0793386 + 0.0225303i
\(610\) −2.91387 + 1.06056i −0.117979 + 0.0429409i
\(611\) −2.46635 1.42395i −0.0997780 0.0576068i
\(612\) −9.56458 + 10.5373i −0.386625 + 0.425944i
\(613\) −0.935230 1.61987i −0.0377736 0.0654258i 0.846521 0.532356i \(-0.178693\pi\)
−0.884294 + 0.466930i \(0.845360\pi\)
\(614\) 1.21405 0.441880i 0.0489953 0.0178328i
\(615\) −38.5997 4.13524i −1.55649 0.166749i
\(616\) 2.45671 7.54672i 0.0989838 0.304066i
\(617\) 2.51227 0.442981i 0.101140 0.0178337i −0.122849 0.992425i \(-0.539203\pi\)
0.223989 + 0.974592i \(0.428092\pi\)
\(618\) 2.06797 1.38884i 0.0831858 0.0558672i
\(619\) 2.09682 + 5.76096i 0.0842782 + 0.231553i 0.974672 0.223638i \(-0.0717934\pi\)
−0.890394 + 0.455191i \(0.849571\pi\)
\(620\) −28.4991 16.4540i −1.14455 0.660807i
\(621\) 25.4890 32.2231i 1.02284 1.29307i
\(622\) 5.14561i 0.206320i
\(623\) 11.5214 + 28.5622i 0.461596 + 1.14432i
\(624\) −21.6782 32.2786i −0.867822 1.29218i
\(625\) −23.4793 + 19.7014i −0.939170 + 0.788058i
\(626\) 5.30558 4.45191i 0.212054 0.177934i
\(627\) 8.67031 + 19.5794i 0.346259 + 0.781925i
\(628\) −2.59085 7.11829i −0.103386 0.284051i
\(629\) −4.47110 + 7.74418i −0.178275 + 0.308781i
\(630\) 0.0300863 6.59085i 0.00119867 0.262586i
\(631\) −5.17604 8.96516i −0.206055 0.356898i 0.744413 0.667719i \(-0.232729\pi\)
−0.950468 + 0.310821i \(0.899396\pi\)
\(632\) −3.29186 + 3.92309i −0.130943 + 0.156052i
\(633\) 5.58583 1.38081i 0.222017 0.0548825i
\(634\) −1.03942 5.89485i −0.0412807 0.234114i
\(635\) −8.39331 3.05491i −0.333078 0.121231i
\(636\) 8.42342 + 2.43366i 0.334010 + 0.0965010i
\(637\) 44.5579 + 4.73328i 1.76545 + 0.187539i
\(638\) −0.294591 + 0.170082i −0.0116630 + 0.00673362i
\(639\) 5.65812 + 41.4653i 0.223832 + 1.64034i
\(640\) −20.6746 + 11.9365i −0.817235 + 0.471831i
\(641\) −0.357124 + 0.425604i −0.0141056 + 0.0168104i −0.773051 0.634344i \(-0.781270\pi\)
0.758946 + 0.651154i \(0.225715\pi\)
\(642\) 1.11779 1.53204i 0.0441157 0.0604648i
\(643\) −7.70030 + 21.1564i −0.303670 + 0.834327i 0.690184 + 0.723634i \(0.257529\pi\)
−0.993855 + 0.110694i \(0.964693\pi\)
\(644\) 29.8122 26.8130i 1.17476 1.05658i
\(645\) 11.9755 + 5.87061i 0.471537 + 0.231155i
\(646\) −0.578085 + 3.27848i −0.0227445 + 0.128990i
\(647\) −8.90914 + 15.4311i −0.350254 + 0.606659i −0.986294 0.164998i \(-0.947238\pi\)
0.636039 + 0.771657i \(0.280572\pi\)
\(648\) 2.72626 + 9.80362i 0.107098 + 0.385123i
\(649\) 12.3368 7.12264i 0.484261 0.279588i
\(650\) 4.63530 + 3.88948i 0.181811 + 0.152558i
\(651\) −22.1693 + 16.0204i −0.868885 + 0.627890i
\(652\) −2.53751 14.3910i −0.0993767 0.563594i
\(653\) 45.7951 8.07491i 1.79210 0.315996i 0.824007 0.566580i \(-0.191734\pi\)
0.968095 + 0.250584i \(0.0806228\pi\)
\(654\) −0.425853 + 3.97505i −0.0166522 + 0.155437i
\(655\) 45.9860 + 38.5868i 1.79682 + 1.50771i
\(656\) 27.3249 1.06686
\(657\) −0.700535 5.13384i −0.0273305 0.200290i
\(658\) 0.179902 + 0.288259i 0.00701330 + 0.0112375i
\(659\) 15.2241 + 41.8278i 0.593046 + 1.62938i 0.764820 + 0.644245i \(0.222828\pi\)
−0.171773 + 0.985136i \(0.554950\pi\)
\(660\) 6.08012 + 24.5960i 0.236668 + 0.957397i
\(661\) 6.43212 1.13416i 0.250180 0.0441135i −0.0471515 0.998888i \(-0.515014\pi\)
0.297332 + 0.954774i \(0.403903\pi\)
\(662\) −8.38664 + 1.47879i −0.325956 + 0.0574749i
\(663\) −26.3618 7.61636i −1.02381 0.295795i
\(664\) 5.92627 + 16.2823i 0.229984 + 0.631876i
\(665\) 18.7761 + 30.0852i 0.728106 + 1.16665i
\(666\) 1.45789 + 2.76862i 0.0564923 + 0.107282i
\(667\) −3.51181 −0.135978
\(668\) 28.0079 + 23.5014i 1.08366 + 0.909297i
\(669\) 8.81095 3.90174i 0.340651 0.150850i
\(670\) 1.70085 0.299906i 0.0657095 0.0115864i
\(671\) −1.72045 9.75714i −0.0664171 0.376670i
\(672\) 1.52989 + 14.9233i 0.0590167 + 0.575680i
\(673\) −26.3036 22.0713i −1.01393 0.850788i −0.0250770 0.999686i \(-0.507983\pi\)
−0.988853 + 0.148898i \(0.952428\pi\)
\(674\) 3.92031 2.26339i 0.151005 0.0871826i
\(675\) 8.92980 + 14.4838i 0.343708 + 0.557481i
\(676\) 26.8101 46.4365i 1.03116 1.78602i
\(677\) 2.17087 12.3116i 0.0834333 0.473174i −0.914250 0.405150i \(-0.867219\pi\)
0.997684 0.0680240i \(-0.0216695\pi\)
\(678\) −0.157503 2.31920i −0.00604885 0.0890682i
\(679\) −14.3420 + 12.8992i −0.550395 + 0.495025i
\(680\) −2.75299 + 7.56378i −0.105572 + 0.290058i
\(681\) −8.82664 19.9324i −0.338237 0.763811i
\(682\) −2.93841 + 3.50186i −0.112517 + 0.134093i
\(683\) −23.7951 + 13.7381i −0.910493 + 0.525674i −0.880590 0.473879i \(-0.842853\pi\)
−0.0299035 + 0.999553i \(0.509520\pi\)
\(684\) −19.8393 18.0080i −0.758576 0.688552i
\(685\) 49.3662 28.5016i 1.88618 1.08899i
\(686\) −4.42725 2.99697i −0.169033 0.114425i
\(687\) 3.21048 + 12.9874i 0.122487 + 0.495500i
\(688\) −8.82152 3.21077i −0.336317 0.122410i
\(689\) 2.93578 + 16.6496i 0.111844 + 0.634300i
\(690\) 3.15650 10.9253i 0.120166 0.415920i
\(691\) 7.49226 8.92892i 0.285019 0.339672i −0.604471 0.796627i \(-0.706615\pi\)
0.889490 + 0.456955i \(0.151060\pi\)
\(692\) 1.58777 + 2.75010i 0.0603579 + 0.104543i
\(693\) 20.7219 + 3.75144i 0.787160 + 0.142506i
\(694\) 0.701872 1.21568i 0.0266427 0.0461465i
\(695\) −5.16122 14.1803i −0.195776 0.537891i
\(696\) 0.512647 0.702632i 0.0194318 0.0266332i
\(697\) 14.7721 12.3953i 0.559533 0.469504i
\(698\) −3.24238 + 2.72068i −0.122726 + 0.102979i
\(699\) 4.75274 0.322771i 0.179765 0.0122083i
\(700\) 6.21201 + 15.3999i 0.234792 + 0.582061i
\(701\) 32.4601i 1.22600i −0.790082 0.613001i \(-0.789962\pi\)
0.790082 0.613001i \(-0.210038\pi\)
\(702\) −7.17395 + 6.38175i −0.270763 + 0.240864i
\(703\) −14.5806 8.41809i −0.549916 0.317494i
\(704\) −5.50714 15.1307i −0.207558 0.570261i
\(705\) −1.99035 0.975703i −0.0749610 0.0367471i
\(706\) 1.70346 0.300367i 0.0641107 0.0113044i
\(707\) 2.75477 8.46231i 0.103604 0.318258i
\(708\) −10.5058 + 14.3993i −0.394834 + 0.541157i
\(709\) −36.9085 + 13.4336i −1.38613 + 0.504509i −0.924030 0.382321i \(-0.875125\pi\)
−0.462097 + 0.886830i \(0.652903\pi\)
\(710\) 5.79182 + 10.0317i 0.217363 + 0.376484i
\(711\) −11.4949 7.24704i −0.431092 0.271785i
\(712\) −11.3980 6.58064i −0.427158 0.246620i
\(713\) −44.3478 + 16.1413i −1.66084 + 0.604496i
\(714\) 2.34925 + 2.28030i 0.0879186 + 0.0853380i
\(715\) −37.4243 + 31.4027i −1.39959 + 1.17439i
\(716\) −3.94092 + 10.8276i −0.147279 + 0.404646i
\(717\) 11.9701 11.5131i 0.447030 0.429963i
\(718\) −0.0912340 + 0.517414i −0.00340482 + 0.0193097i
\(719\) −18.1544 + 31.4443i −0.677043 + 1.17267i 0.298824 + 0.954308i \(0.403406\pi\)
−0.975867 + 0.218365i \(0.929928\pi\)
\(720\) −18.5366 23.9228i −0.690818 0.891551i
\(721\) 6.97900 + 11.1825i 0.259911 + 0.416460i
\(722\) −0.771245 0.135991i −0.0287028 0.00506108i
\(723\) 2.14397 + 1.56427i 0.0797353 + 0.0581756i
\(724\) 5.98148 + 7.12845i 0.222300 + 0.264927i
\(725\) 0.497433 1.36668i 0.0184742 0.0507574i
\(726\) −1.97580 + 0.134182i −0.0733290 + 0.00497996i
\(727\) 0.158059 0.188367i 0.00586208 0.00698616i −0.763105 0.646274i \(-0.776326\pi\)
0.768968 + 0.639288i \(0.220771\pi\)
\(728\) −16.2444 + 10.1381i −0.602056 + 0.375741i
\(729\) −24.7960 + 10.6844i −0.918372 + 0.395719i
\(730\) −0.717088 1.24203i −0.0265406 0.0459697i
\(731\) −6.22548 + 2.26589i −0.230258 + 0.0838070i
\(732\) 6.91170 + 10.2915i 0.255464 + 0.380383i
\(733\) 7.05145 + 8.40360i 0.260451 + 0.310394i 0.880384 0.474261i \(-0.157285\pi\)
−0.619933 + 0.784655i \(0.712840\pi\)
\(734\) −7.37528 2.68438i −0.272227 0.0990824i
\(735\) 34.8512 + 1.32576i 1.28551 + 0.0489013i
\(736\) −4.49473 + 25.4909i −0.165678 + 0.939606i
\(737\) 5.51825i 0.203267i
\(738\) −0.912289 6.68566i −0.0335818 0.246103i
\(739\) 49.9364 1.83694 0.918469 0.395492i \(-0.129426\pi\)
0.918469 + 0.395492i \(0.129426\pi\)
\(740\) −15.2602 12.8048i −0.560974 0.470713i
\(741\) 14.3399 49.6334i 0.526789 1.82333i
\(742\) 0.624403 1.91809i 0.0229225 0.0704152i
\(743\) 9.20279 + 10.9675i 0.337617 + 0.402357i 0.907965 0.419047i \(-0.137636\pi\)
−0.570347 + 0.821404i \(0.693191\pi\)
\(744\) 3.24431 11.2292i 0.118942 0.411684i
\(745\) −30.7608 5.42395i −1.12699 0.198718i
\(746\) 2.93105i 0.107313i
\(747\) −40.6807 + 21.4215i −1.48843 + 0.783773i
\(748\) −10.8994 6.29274i −0.398520 0.230085i
\(749\) 7.90454 + 6.18278i 0.288826 + 0.225914i
\(750\) −2.00470 1.46265i −0.0732014 0.0534085i
\(751\) −4.71689 26.7508i −0.172122 0.976150i −0.941414 0.337253i \(-0.890502\pi\)
0.769292 0.638897i \(-0.220609\pi\)
\(752\) 1.46615 + 0.533634i 0.0534649 + 0.0194596i
\(753\) 2.65000 + 39.0207i 0.0965712 + 1.42199i
\(754\) 0.808242 + 0.142515i 0.0294344 + 0.00519009i
\(755\) 51.2071 1.86362
\(756\) −25.6085 + 6.20651i −0.931371 + 0.225728i
\(757\) −37.8156 −1.37443 −0.687216 0.726453i \(-0.741167\pi\)
−0.687216 + 0.726453i \(0.741167\pi\)
\(758\) 3.41993 + 0.603026i 0.124218 + 0.0219029i
\(759\) 32.6260 + 15.9938i 1.18425 + 0.580539i
\(760\) −14.2409 5.18326i −0.516572 0.188017i
\(761\) 6.94531 + 39.3888i 0.251767 + 1.42784i 0.804237 + 0.594309i \(0.202574\pi\)
−0.552470 + 0.833533i \(0.686314\pi\)
\(762\) 0.165377 1.54368i 0.00599098 0.0559218i
\(763\) −20.9472 2.95580i −0.758339 0.107007i
\(764\) −16.3567 9.44356i −0.591765 0.341656i
\(765\) −20.8730 4.52425i −0.754667 0.163574i
\(766\) 5.03886i 0.182062i
\(767\) −33.8473 5.96818i